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We consider linear one-dimensional strongly degenerate parabolic equations with measurable coefficients that may be degenerate or singular. Taking 0 as the point where the strong degeneracy occurs, we assume that the coefficient a = a(x) in the principal part of the parabolic equation is such that the function x → x/a(x) is in L p (0, 1) for some p > 1. After establishing some spectral estimates for the corresponding elliptic problem, we prove that the parabolic equation is null controllable in the energy space by using one boundary control.

Introduction

We continue our investigation of the controllability of parabolic equations with measurable coefficients [START_REF] Martin | Null controllability of one-dimensional parabolic equations by the flatness approach[END_REF] (see also [START_REF] Alessandrini | Null-controllability of one-dimensional parabolic equations[END_REF]) by studying the case of a strongly degenerate equation of the type (a(x)u x ) x + q(x)u = ρ(x)u t , x ∈ (0, 1), t ∈ (0, T ), where the nonnegative function a may vanish strongly at x = 0, and the potential q may be singular at x = 0. Only weakly degenerate (i.e. 1/a ∈ L 1 (0, 1)) parabolic equations were covered by the theory developed in [START_REF] Martin | Null controllability of one-dimensional parabolic equations by the flatness approach[END_REF].

The null controllability of (weakly or strongly) degenerate parabolic equations was considered in e.g. [START_REF] Alabau-Boussouira | Carleman estimates for degenerate parabolic operators with applications to null controllability[END_REF][START_REF] Beauchard | Null controllability of Grushin-type operators in dimension two[END_REF][START_REF] Beauchard | Minimal time issues for the observability of Grushin-type equations[END_REF][START_REF] Cannarsa | Carleman estimates for a class of degenerate parabolic operators[END_REF][START_REF] Cannarsa | Global Carleman estimates for degenerate parabolic operators with applications[END_REF][START_REF] Cannarsa | The cost of controlling strongly degenerate parabolic equations[END_REF][START_REF] Fragnelli | Carleman estimates, observability inequalities and null controllability for interior degenerate nonsmooth parabolic equations[END_REF][START_REF] Fragnelli | Singular parabolic equations with interior degeneracy and non smooth coefficients: the Neumann case[END_REF][START_REF] Fragnelli | Control of degenerate and singular equations -Carleman estimates and observability[END_REF][START_REF] Moyano | Flatness for a strongly degenerate 1-D parabolic equation[END_REF]. Most of the papers were concerned with a parabolic equation with a(x) = x 2-ε , which is strongly (resp. weakly) degenerate for ε ∈ (0, 1] (resp. ε ∈ (1, 2)). More general choices for the coefficient a were considered in e.g. [START_REF] Fragnelli | Singular parabolic equations with interior degeneracy and non smooth coefficients: the Neumann case[END_REF]. However, several technical assumptions (e.g. x → a(x)/x γ nondecreasing for some exponent γ and a ∈ W 1,∞ (0, 1) in [START_REF] Fragnelli | Singular parabolic equations with interior degeneracy and non smooth coefficients: the Neumann case[END_REF]) were required in order to derive some Carleman estimate to prove the null controllability of the parabolic equation. The purpose of this paper is to remove these technical assumptions in the derivation of the null controllability of the parabolic equation.

More precisely, we propose a general method based on the flatness approach to deal with quite general parabolic equations, displaying both a strong degeneracy of a and a singularity of the potential q at the same point, with measurable coefficients, and without any monotony assumption about a. Roughly, the main assumption is that the function x → x/a(x) is in L p (0, 1) for some p > 1. That assumption is slightly stronger (by Hölder inequality) than Trudinger assumption 1/ √ a ∈ L 1 (0, 1) (see e.g. [START_REF] Duc | A class of strongly degenerate elliptic operators[END_REF][START_REF] Trudinger | Linear elliptic operators with measurable coefficients[END_REF]) which was made in order to investigate the degenerate elliptic system      -(au x ) x = f, x ∈ (0, 1), (au x )(0) = 0, u(1) = 0.

Our method is based on the flatness approach, introduced in [START_REF] Laroche | Motion planning for the heat equation[END_REF] and developed since then in [START_REF] Martin | Null controllability of the heat equation using flatness[END_REF][START_REF] Martin | Null controllability of one-dimensional parabolic equations by the flatness approach[END_REF] for the heat equation, in [START_REF] Martin | Exact controllability of a linear Korteweg-de Vries equation by the flatness approach[END_REF] for the Korteweg-de Vries equation, and in [START_REF] Martin | Controllability of the 1D Schrödinger equation using flatness[END_REF] for Schrödinger equation. (See also [START_REF] Martin | On the reachable states for the boundary control of the heat equation[END_REF] for a recent study of the reachable states of the heat equation and [START_REF] Laurent | Exact controllability of semilinear heat equations in spaces of analytic functions[END_REF] for the exact controllability of semilinear heat equations.) In [START_REF] Moyano | Flatness for a strongly degenerate 1-D parabolic equation[END_REF], the flatness approach is used to derive for ε ∈ (0, 1) the null controllability of the control system [START_REF] Alabau-Boussouira | Carleman estimates for degenerate parabolic operators with applications to null controllability[END_REF], t ∈ (0, T ), (x 2-ε u x )(0, t) = 0, t ∈ (0, T ), u(1, t) = h(t), t ∈ (0, T ), u(x, •) = u 0 (x), x ∈ (0, 1).

         u t -(x 2-ε u x ) x = 0, x ∈ (0,
For the corresponding elliptic problem

     -(x 2-ε u x ) x = f, x ∈ (0, 1), (x 2-ε u x )(0) = 0, u (1) 
= 0, the eigenfunctions and eigenvalues can be expressed in terms of Bessel functions, and the asymptotic behaviour of the eigenvalues is perfectly known [START_REF] Moyano | Flatness for a strongly degenerate 1-D parabolic equation[END_REF]. For a more general function a, however, Bessel functions cannot be used and, to the best knowledge of the authors, nothing is known about the sharp asymptotic behaviour of the eigenvalues. (See [START_REF] Atkinson | Asymptotics of Sturm-Liouville eigenvalues for problems on a finite interval with one limit-circle singularity. I[END_REF][START_REF] Harris | Asymptotics of eigenvalues for regular Sturm-Liouville problems[END_REF][START_REF] Harris | Asymptotics for Sturm-Liouville problems with an interior singularity[END_REF] for some results in that direction.) For the application of the flatness approach, what is needed is not a spectral gap, but merely that the eigenvalues tend to infinity faster than some power of the index of the eigenvalue.

To be more precise, we are concerned with the null controllability of the system (a(x)u x ) x + q(x)u = ρ(x)u t , x ∈ (0, 1), t ∈ (0, T ), (1.1) (au x )(0, t) = 0, t ∈ (0, T ), (1.2) αu(1, t) + β(au x )(1, t) = h(t), t ∈ (0, T ), (1.3) u(x, 0) = u 0 (x),

x ∈ (0, 1) (1.4) where (α, β) ∈ R 2 + \ {(0, 0)}, u 0 ∈ L 2 (0, 1) is the initial state, and h ∈ L 2 (0, T ) is the control input.

The given functions a, q, ρ are assumed to satisfy the following conditions: a(x) > 0 and ρ(x) > 0 for a.e. x ∈ (0, 1), (1.5) a ∈ L 1 loc (0, 1), x → x a(x) ∈ L p (0, 1), (1.6) ρ ∈ L r (0, 1), lim sup where p := p p-1 • As the functions a and ρ are defined a.e., the limits in (1.7) and (1.8) should be taken after modifying them on a zero measure set, if needed. Note that (1.6) and (1.8) are satisfied by any measurable function a : (0, 1) → R fulfilling the condition

x→0 + ρ(x) < ∞, (1.7) 
C 1 x 2-ε 1 ≤ a(x) ≤ C 2 x 2-ε 2 ∀x ∈ (0, 1) (1.11)
for some positive constants C 1 , C 2 , ε 1 , ε 2 with ε 1 ≤ ε 2 < 2ε 1 ≤ 4. Such a function needs not be monotonous nor smooth. (Note that a continuous function a : (0, 1) → R + satisfying both (1.6) and (1.8) and vanishing on a sequence x n 0 could also be constructed, so that (1.1) can be strongly degenerate at 0 and also weakly degenerate at each x n .) A typical example displaying both a (possibly strong) degeneracy for a and a singularity for q at x = 0 is the parabolic equation

(x 2-ε u x ) x + µ u x ε = u t (1.12) for 0 < ε < 2 and µ < 1 4 (1 -ε) 2 .
Let us introduce some notations. For any t 1 < t 2 and s ≥ 0, we denote by G s ([t 1 , t 2 ]) the space of (Gevrey) functions h ∈ C ∞ ([t 1 , t 2 ]) for which there exist some positive constants M, R such that

|h (p) (t)| ≤ M p! s R p ∀t ∈ [t 1 , t 2 ], ∀p ∈ N. Let L 2
ρ denote the space of (classes of) measurable functions f : (0, 1) → R such that

f L 2 ρ := 1 0 f (x) 2 ρ(x)dx 1 2 < ∞.
The main result in this paper is the following Theorem 1.1. Let the functions a, q, ρ, v : (0, 1) → R satisfy assumptions (1.5)-(1.9) for some numbers p and r as in (1.10).

Let (α, β) ∈ R 2 + \ {(0, 0)} and T > 0. Pick any u 0 ∈ L 2 ρ and any s ∈ (1, 1 + 1 p -1 r ). Then there exists a function h ∈ G s ([0, T ]) such that the solution u of (1.1)-(1.4) satisfies u ∈ C 0 ([0, T ], L 2 ρ ) ∩ C 1 ((0, T ], W 1,1 (0, 1)), au x ∈ C 1 ((0, T ], W 1,r (0, 1)), and u(x, T ) = 0 for all x ∈ [0, 1].
Remark 1.2. A null controllability result with a distributed control can be derived from Theorem 1.1 by using a partition of unity.

Clearly, assumptions (1.5)-(1.8) are easy to test, while assumption (1.9) is not obvious to check at first glance. We shall provide in the following propositions two classes of coefficients (a, q, ρ) satisfying (1.9). Proposition 1.3. Let the numbers p, p , r be as in (1.10) and let the functions a, q, ρ satisfy (1.5)- (1.8). Assume in addition that q ∈ L p (0, 1) and that either

1 0 1 a(x) x 0 |q(s)| ds dx < 1, (1.13) 
or q(x) ≤ 0 for a.e. x ∈ (0, 1).

(1.14)

Then (1.9) holds for some function v ∈ W 1,1 (0, 1) with av x ∈ W 1,r (0, 1), and the conclusion of Theorem 1.1 is valid for any u 0 ∈ L 2 ρ . Finally, if (1.14) is replaced by the condition

∃K ∈ R + such that q(x) ≤ Kρ(x) for a.e. x ∈ (0, 1), (1.15) 
then the conclusion of Theorem 1.1 is still valid for any

u 0 ∈ L 2 ρ . Proposition 1.4. Let a(x) = x 2-ε , q(x) = µ x -ε and ρ(x) = 1 for x ∈ (0, 1), where 0 < ε < 1 and (1 -ε) 2 -1 4 < µ ≤ 0. (1.16) Pick v(x) := x δ with δ := (ε -1 + (1 -ε) 2 -4µ)/2.
Then the function v : (0, 1) → (0, ∞) fulfills

(av x ) x + qv = 0 in (0, 1), (1.17) (av x )(0) = 0, (1.18) 
and (1.5)-(1.8) hold for some numbers p and r as in (1.10). Furthermore the conclusion of Theorem 1.1 is valid for (1.12) supplemented with (1.2)-(1.4) for any initial data u 0 : (0, 1) → R with u 0 ∈ L 2 (0, 1).

Remark 1.5.

(1) Note that the main result in [START_REF] Moyano | Flatness for a strongly degenerate 1-D parabolic equation[END_REF] corresponds to the case µ = 0. (2) Note that Proposition 1.4 is not a consequence of Proposition 1.3, since we cannot find any p in (1, +∞] with both (x → x ε-1 ) ∈ L p (0, 1) and (x → x -ε ) ∈ L p (0, 1). (3) Our computations suggest that for a(x) = x 2-ε and q(x) = µx -κ , κ should be at most ε.

It would be interesting to see whether it is a necessary condition, or merely a technical assumption.

Let us say a few words about the proof of the main result. In a first step, we show that we can get rid of the term q(x)u in (1.1) by a change of variables, using assumption (1.9). Therefore we can restrict to the simplified parabolic equation

(au x ) x = ρu t .
We first prove that the boundary-value problem

     -(au x ) x = f, (au x )(0) = 0, αu(1) + β(au x )(1) = 0
possesses a unique solution in some weighted Sobolev space. Next, we pay some attention to the spectral properties of this boundary-value problem. We show that the eigenvalue λ n grows at least as a power of n, and that the L ∞ -norm of the corresponding eigenfunction e n grows at most as a power of λ n . This is done by using a modified Prüfer method (see [START_REF] Birkhoff | Ordinary Differential Equations[END_REF][START_REF] Walter | Ordinary Differential Equations[END_REF]) introducing a phase θ n associated with λ n . However, since 1/a ∈ L 1 (0, 1) in the interesting situation of a strong degeneracy, the classical argument relating λ n to the variation of the phase θ n has to be refined in using a splitting of the interval (0, 1) involving the frequency λ n . Roughly, we split

(0, 1) into (0, A n ) ∪ [A n , 1) with A n := (Cλ n ) -p r
r-p , C denoting some positive constant. We show that e n (x) remains close to e n (0) for x ∈ (0, A n ), so that the (bad) integral term An 0 dθn dx dx does not contribute too much in the variation of the phase θ n (1) -θ n (0).

With these spectral estimates at hand, we can prove that the eigenfunctions e n , n ≥ 0, can be expressed in terms of the generating functions g i , i ≥ 0, defined by g 0 (x) = 1 and the relation

g i (x) = x 0 1 a(s) s 0 ρ(σ)g i-1 (σ)dσ ds, i ≥ 1.
Finally, the trajectories of the control problem (1.1)-(1.4) can be expanded in the form

u(x, t) = ∞ i=0 y (i) (t)g i (x)
for some function y ∈ G s ([0, T ]) (as in [START_REF] Martin | Null controllability of one-dimensional parabolic equations by the flatness approach[END_REF]), the series being convergent thanks to the spectral estimates.

The paper is organized as follows. Section 2 is devoted to the study of the corresponding elliptic problem. We introduce the appropriate weighted Sobolev space, derive some generalized Hardy inequality and obtain some estimates for both the eigenfunctions and the eigenvalues. In Section 3, we define and investigate the generating functions. The proof of the main results are given in Section 4. Finally, in some appendix we prove that the conditions (1.6) and (1.8) are independent, and we provide a class of functions for which (1.8) holds.

Study of the elliptic problem

Through the paper, we denote u L p for u L p (0,1) (1 ≤ p ≤ ∞), and u L p (x 1 ,x 2 ) for the L p norm of u on an interval (x 1 , x 2 ) = (0, 1).

In this section, we investigate the elliptic problem

-(au ) = ρf in (0, 1), (2.1) (au )(0) = 0, (2.2) αu(1) + β(au )(1) = 0, (2.3) 
where = d/dx, the functions a and ρ satisfy (1.5)-(1.8) for some numbers p, p , and r as in (1.10), (α, β) ∈ R 2 + \ {(0, 0)}. Let us introduce the spaces

H a := {u ∈ W 1,1 loc (0, 1); √ au ∈ L 2 (0, 1) and u(1) = 0}, (2.4) 
H a,ρ := {u ∈ W 1,1 loc (0, 1);

√ au ∈ L 2 (0, 1) and √ ρu ∈ L 2 (0, 1)} (2.5)
endowed respectively with the norms

u Ha := 1 0 a(x)u (x) 2 dx 1 2 , u Ha,ρ := 1 0 [a(x)u (x) 2 + ρ(x)u(x) 2 ]dx 1 2 
.

Then the following result holds.

Proposition 2.1. The spaces H a and H a,ρ are complete. Furthermore, we have H a ⊂ L 2 (0, 1), H a,ρ ⊂ L 2 (0, 1) and H a,ρ ⊂ L 2 ρ with continuous and compact embeddings. Proof. We first investigate the space H a . By Hölder inequality, we have for all ε ∈ (0, 1)

1 ε dx a(x) ≤ 1 ε x a(x) p dx 1 p 1 ε x -p dx 1 p < ∞, so that a -1 ∈ L 1 (ε, 1
). Thus, by Cauchy-Schwarz inequality, ]). Therefore, the condition u(1) = 0 is meaningful whenever √ au ∈ L 2 (0, 1), and if u ∈ H a satisfies u Ha = 0, then √ au = 0 a.e., u is constant and u = 0 since u(1) = 0. Thus • Ha is a norm on H a , which is clearly Hilbertian.

1 ε |u (x)|dx ≤ 1 ε a(x)u (x) 2 dx 1 2 1 ε dx a(x) 1 2 < ∞ (2.6) if √ au ∈ L 2 (0, 1), so that u ∈ W 1,1 (ε, 1) ⊂ C 0 ([ε, 1 
If (u n ) is a Cauchy sequence in H a , then by (2.6) and the fact that u n (1) = 0, (u n ) is a Cauchy sequence in W 1,1 (ε, 1) for all ε > 0. Therefore, there exists u ∈ W 1,1 loc (0, 1) such that u n → u in W 1,1 (ε, 1) for all ε > 0, hence in D (0, 1). There is also some v ∈ L 2 a such that u n → v in L 2 a . But for any ϕ ∈ D(0, 1) := C ∞ c (0, 1) ,

1 0 (u n -v)ϕdx ≤ 1 0 (u n -v) 2 a dx 1 2 1 0 ϕ 2 a dx 1 2
→ 0, that is, u n → v in D (0, 1). We infer that u = v ∈ L 2 a , and hence, with u(1) = 0 (since

u n → u in W 1,1 (ε, 1)), u ∈ H a and u n → u in H a . Therefore H a is complete.
Let us now show that H a,ρ is complete. We first need the following Lemma 2.2. Let δ ∈ (0, 1). Then for any ε > 0, there exists some number C δ,ε > 0 such that

1 δ |u|dx ≤ ε 1 δ |u |dx + C δ,ε 1 δ ρu 2 dx 1 2
∀u ∈ H a,ρ .

(2.7)

Proof of Lemma 2.2: If (2.7) does not hold, there exists ε > 0 and a sequence (u n ) in H a,ρ such that for all n ≥ 1 1 =

1 δ |u n |dx > ε 1 δ |u n |dx + n 1 δ ρu 2 n dx 1 2 
.

(2.8)

Recall that ρ ∈ L r (0, 1) for some r ∈ (p , ∞], by (1.7) and (1.10). Since (

u n ) is bounded in W 1,1 (δ, 1), which is compactly embedded in L 2r (δ, 1) (2 ≤ 2r < 2p ≤ ∞), there is a subsequence (u n k ) such that u n k → u in L 2r (δ, 1
). Then, by Hölder inequality,

1 δ ρ(u n k -u) 2 dx ≤ 1 δ ρ r dx 1 r 1 δ |u n k -u| 2r dx 1 r → 0,
and hence (2.8), and hence 1 δ ρu 2 dx = 0. It follows that u = 0 a.e. in (δ, 1). But this contradicts the fact that 1 =

1 δ ρu 2 n k dx → 1 δ ρu 2 dx. But 1 δ ρu 2 n dx → 0 by
1 δ |u n k |dx → 1 δ |u|dx. Lemma 2.2 is proved.
Combining (2.6) and (2.7), we obtain that for all δ ∈ (0, 1), there is some

C δ > 0 such that u W 1,1 (δ,1) ≤ C δ a Ha,ρ ∀u ∈ H a,ρ . (2.9) 
Proceeding as above and using the fact that W 1,1 (ε, 1) ⊂ C 0 ([ε, 1]) continuously for any ε ∈ (0, 1), one can prove that H a,ρ is a Hilbert space. The next result is concerned with the density of spaces of smooth functions.

Lemma 2.3. The space D(0, 1) is dense in

H a if a -1 ∈ L 1 (0, 1), while the space {ϕ ∈ C ∞ ([0, 1]); ϕ(1) = 0} is dense in H a if a -1 ∈ L 1 (0, 1).
Proof. 1. Assume first that a -1 ∈ L 1 (0, 1).

(2.10)

Let u ∈ H a with 1 0 au ϕ dx = 0 for all ϕ ∈ D(0, 1). Note that au ∈ L 1 loc (0, 1) ⊂ D (0, 1), for

ε δ |au |dx ≤ ε δ au 2 dx 1 2 ε δ dx a 1 2 < ∞ if 0 < δ < ε < 1.
Thus (au ) , ϕ D ,D = -au , ϕ D ,D = 0 for all ϕ ∈ D(0, 1) and (au ) = 0 in D (0, 1). Thus there is some number

K ∈ R such that au = K a.e. in (0, 1). But K √ a = √ au ∈ L 2 (0, 1), hence 1 0 K 2 a dx < ∞ and K = 0, by (2.10). Thus u = 0 and D(0, 1) is dense in H a . 2. Assume now that a -1 ∈ L 1 (0, 1). (2.11) Pick any u ∈ H a with 1 0 au ϕ dx = 0 for all ϕ ∈ C ∞ ([0, 1]) with ϕ(1) = 0. (Such functions ϕ belong to H a , for 1 0 aϕ 2 dx < ∞.)
In particular, as 1 0 au ϕ dx = 0 for all ϕ ∈ D(0, 1), we infer that au = K a.e. in (0, 1) for some K ∈ R. Thus

0 = 1 0 au ϕ dx = K 1 0 ϕ dx = -Kϕ(0)
for all ϕ ∈ C ∞ ([0, 1]) with ϕ(1) = 0. This yields again K = 0, u = 0, and the density of the space {ϕ ∈ C ∞ ([0, 1]); ϕ(1) = 0} in H a .

The following result gives a generalized Hardy inequality (see [START_REF] Bradley | Hardy inequalities with mixed norms[END_REF][START_REF] Hardy | Inequalities[END_REF][START_REF] Muckenhoupt | Hardy's inequality with weights[END_REF]).

Lemma 2.4. Let a : (0, 1) → R be as in (1.5) and (1.8). Extend a to (0, ∞) by setting

a(x) = x 2 for x ≥ 1,
(2.12)

and let b(x) = a(x) -1 ∞ x ds a(s) -2 , x ∈ (0, ∞).
(2.13)

Then lim x→0 + b(x) = +∞ (2.14)
and

1 0 b(x)u(x) 2 dx ≤ 4 1 0 a(x)u (x) 2 dx ∀u ∈ H a . (2.15)
Proof. First, we note that (2.14) follows from (1.8) and the fact that [START_REF] Bradley | Hardy inequalities with mixed norms[END_REF][START_REF] Muckenhoupt | Hardy's inequality with weights[END_REF], if α, β, f are nonnegative measurable functions defined on R + , if

lim x→0 + 1 x a(s) -1 ds ∞ x a(s) -1 ds =      1 0 a(s) -1 ds ∞ 0 a(s) -1 ds ∈ (0, ∞) if 1 0 a(s) -1 ds < ∞; 1 if 1 0 a(s) -1 ds = ∞. From
K := sup r>0 r 0 β(x) 2 dx 1 2 ∞ r α(x) -2 dx 1 2 < ∞ (2.16) then ∞ 0 [β(x) ∞ x f (t)dt] 2 dx 1 2 ≤ 2K ∞ 0 [α(x)f (x)] 2 dx 1 2
.

(2.17)

Pick α(x) := a(x) and β(x) := b(x). Let us check that condition (2.16) is satisfied. For 0 < ε < r, we have that

r ε β(x) 2 dx = r ε a(x) -1 ∞ x a(s) -1 ds -2 dx = r ε d dx ∞ x a(s) -1 ds -1 dx = ∞ r a(s) -1 ds -1 - ∞ ε a(s) -1 ds -1
.

Note that by (2.12),

l := lim ε→0 + ∞ ε ds a(s) -1 ∈ [0, 1)
always exists. It follows that

1 0 β(x) 2 dx = 1 -l < ∞. Thus r 0 β(x) 2 dx ∞ r α(x) -2 dx = ∞ r ds a(s) -1 -l ∞ r ds a(s) ≤ 1 ∀r ∈ (0, +∞) and (2.16) is indeed satisfied with K ≤ 1. Pick now any u ∈ H a . Extend u by 0 for x ≥ 1. (Note that u ∈ W 1,1 (ε, +∞) for all ε ∈ (0, 1).) Pick f (x) = |u (x)| for x ∈ (0, +∞). Then for x ∈ (0, 1) |u(x)| = ∞ x u (t)dt ≤ ∞ x f (t)dt
and (2.15) follows from (2.17).

By (2.14), one may pick x 0 ∈ (0, 1) such that b(x) ≥ 1 for 0 < x < x 0 . Then (2.15) yields

x 0 0 u(x) 2 dx ≤ 4 u 2 Ha ∀u ∈ H a .
Combined with (2.6) and the fact that u(1) = 0, we infer the existence of some constant C > 0 such that

1 0 u(x) 2 dx ≤ C u 2 Ha .
Thus H a ⊂ L 2 (0, 1) continuously. Actually, the embedding is also compact.

Lemma 2.5. The embedding H a ⊂ L 2 (0, 1) is compact.

Proof of Lemma 2.5: Let (u n ) be a sequence in H a and let u ∈ H a be such that u n → u weakly in H a . We have to show that u n → u strongly in L 2 (0, 1). Since for δ ∈ (0, 1) the embedding

W 1,1 (δ, 1) ⊂ L 2 (δ, 1) is compact, the map v ∈ H a → v |(δ,1) ∈ L 2 (δ, 1
) is compact for any δ ∈ (0, 1), and hence u n → u in L 2 (δ, 1). Let ε > 0 be given. By (2.14), there exists some

δ ∈ (0, 1) such that b(x) ≥ B := 8 ε 2 1 + 4 sup n≥0 u n 2 Ha ∀x ∈ (0, δ).
Using the fact that u Ha ≤ sup n≥0 u n Ha and (2.15), we obtain

δ 0 |u n (x) -u(x)| 2 dx ≤ B -1 δ 0 b(x)|u n (x) -u(x)| 2 dx ≤ 4B -1 u n -u 2 Ha ≤ ε 2 2 • Since u n → u in L 2 (δ, 1), we have that 1 δ |u n (x) -u(x)| 2 dx ≤ ε 2 /2 for n ≥ n 0 for some n 0 ∈ N. Thus u n -u L 2 (0,1) ≤ ε for n ≥ n 0 , and u n → u in L 2 (0, 1). Lemma 2.6. The embeddings H a,ρ ⊂ L 2 (0, 1) and H a,ρ ⊂ L 2 ρ are compact. The space C ∞ ([0, 1]) is dense in H a,ρ .
Proof of Lemma 2.6: By (1.7) one may pick some numbers δ ∈ (0, 1 2 ) and C > 0 such that 0 ≤ ρ(x) ≤ C ∀x ∈ (0, 2δ).

(2.18)

Let θ ∈ C ∞ ([0, 1]) be such that θ(x) = 1 if 0 ≤ x ≤ δ, 0 if 2δ ≤ x ≤ 1. Let u ∈ H a,ρ . Then θu ∈ H a , for (θu)(1) = 0 and √ a(θu) = ( √ au )θ + √ a θ u ∈ L 2 (0, 1). Indeed, √ au ∈ L 2 (0, 1), Supp θ ⊂ [δ, 2δ], √ a ∈ L 2 (δ, 2δ), and u ∈ L ∞ (δ, 2δ). Furthermore, (θu) L 2 a ≤ C u Ha,ρ , so that the map u ∈ H a,ρ → θu ∈ H a is continuous. The embedding H a ⊂ L 2 (0, 1) being compact, the map u ∈ H a,ρ → θu ∈ L 2 (0, 1) is compact. Clearly, the map u ∈ H a,ρ → (1 -θ)u ∈ W 1,1 (0, 1) is continuous. The embedding W 1,1 (0, 1) ⊂ L 2 (0, 1) being compact, we infer that the map u ∈ H a,ρ → (1 -θ)u ∈ L 2 (0, 1) is compact. Thus the embedding H a,ρ ⊂ L 2 (0, 1) is compact.
The fact that H a,ρ ⊂ L 2 ρ continuously comes from the definition of the spaces H a,ρ and L 2 ρ and of their norms. Using (4.2) and the lines above, we infer that the map u ∈ H a,ρ → θu ∈ L 2 ρ is compact. On the other hand, the embedding W 1,1 (0, 1) ⊂ L 2r (0, 1) is compact, and by Hölder inequality

1 0 ρ(1 -θ) 2 u 2 dx ≤ C 1 0 ρ r dx 1 r 1 0 u 2r dx 1 r . It follows that the map u ∈ H a,ρ → (1 -θ)u ∈ L 2 ρ is compact. Thus the embedding H a,ρ ⊂ L 2 ρ is compact. Let us prove that C ∞ ([0, 1]) is dense in H a,ρ . Pick any u ∈ H a,ρ . If we set a(x) = x, ρ(x) = 1, u(x) = (2 -x)u(1) ∀x ∈ (1, 2), then u ∈ H a (0, 2) := {u ∈ L 1 loc (0, 2); √ au ∈ L 2 (0, 2) and u(2) = 0}. As in Lemma 2.3, C ∞ ([0, 2]) is dense in H a (0, 2), so that we can pick a sequence (ϕ n ) in C ∞ ([0, 2]) with ϕ n → u in H a (0, 2),
and also in L 2 (0, 2). This gives

1 0 [a(ϕ n -u ) 2 + (ϕ n -u) 2 ]dx → 0. By (4.2), we have 2δ 0 ρ(ϕ n -u) 2 dx → 0. Since ϕ n → u in W 1,1 (2δ, 1
) and in L 2r (2δ, 1), we also have that

1 2δ ρ(ϕ n -u) 2 dx → 0. We conclude that ϕ n → u in H a,ρ .
The proof of Proposition 2.1 is complete.

Nest, we investigate the elliptic problem (2.1)-(2.3). Introduce the symmetric bilinear form

a(u, v) = 1 0 au v dx + a b (u, v)
where

a b (u, v) = α β u(1)v(1) if β = 0, 0 if β = 0. Let H =    H a,ρ if αβ = 0, {u ∈ H a,ρ ; u(1) = 0} if β = 0, {u ∈ H a,ρ ; 1 0 uρ dx = 0} if α = 0,
be endowed with the norm • Ha,ρ . By (2.9), H is a closed subspace of H a,ρ , and the bilinear form a is continuous on H ×H. To prove that the bilinear form is coercive, we need the following lemma.

Lemma 2.7. There exist a constant C > 0 such that

1 0 |u| 2 ρ dx ≤ C 1 0 |u | 2 a dx + u(1) 2 ∀u ∈ H a,ρ , (2.19 
) We have to prove that a(u, u)

1 0 |u| 2 ρ dx ≤ C 1 0 |u | 2 a dx + 1 0 uρ dx 2 ∀u ∈ H a,ρ . ( 2 
≥ K u 2 Ha,ρ ∀u ∈ H (2.22) for some constant K > 0. If β = 0 (resp. α = 0), then (2.19) (resp. (2.20)) yields u 2 L 2 ρ ≤ C u 2 L 2 a for u ∈ H, which gives (2.22). If αβ > 0, then (2.19) yields 1 0 |u| 2 ρ dx ≤ C a(u, u)
for some C > 0, which gives again (2.22). Thus the bilinear form a is coercive.

Let f ∈ L 2 ρ be given (with also 

1 0 f ρ dx = 0 if α = 0). Since the linear form L(v) = 1 0 f vρ dx is continuous on H,
(au )(1)v(1) -(au )(0)v(0) + α β u(1)v(1) = 0. Picking v(x) = 1 -x (resp. v(x) = 1) yields (2.2) (resp. (2.3)). If β = 0,
(x) = 1 (resp. by v(x) = 1 -2x), we obtain (2.2)-(2.3).
Finally, using

1 0 |ρf |dx ≤ 1 0 ρf 2 dx 1 2 1 0 ρ dx 1 2 < ∞,
we infer from (2.1) that au ∈ W 1,1 (0, 1) for any value of (α, β).

We are in a position to study the spectral problem associated with (2.1)-(2.3).

Theorem 2.8. Let a, ρ and (α, β) be as above. Then there are a sequence (e n ) n≥0 in L 2 ρ and a nondecreasing sequence (λ n ) n≥0 in (0, +∞) such that (i) (e n ) n≥0 is an orthonormal basis in L 2 ρ ; (ii) for all n ≥ 0, e n ∈ H a,ρ , ae n ∈ W 1,min(2,r) (0, 1), and e n solves -(ae n ) = λ n ρ e n in (0, 1), (2.24) (ae n )(0) = 0, (2.25) αe n (1) + β(ae n )(1) = 0.

(2.26)

Proof. Assume first that α = 0. For f ∈ L 2 ρ , let T (f ) denote the unique solution u ∈ H of (2.23). The operator 

T : f ∈ L 2 ρ → u = T (f ) ∈ L 2 ρ is continuous, compact,
K u 2 Ha,ρ ≤ a(u, u) = (f, u) L 2 ρ
. By the spectral theorem, there are an orthonormal basis (e n ) n≥0 in L 2 ρ and a sequence (µ n ) n≥0 in (0, +∞) with µ n 0 such that T (e n ) = µ n e n for all n ≥ 0. Then (2.24)-(2.26) hold with λ n := µ -1 n > 0. Assume now that α = 0, and let

V := {f ∈ L 2 ρ ; 1 0 f ρ dx = 0}. For f ∈ V , let T (f ) denote the unique solution u ∈ H of (2.23). Again, the operator T : f ∈ V → u = T (f ) ∈ V is continuous, compact, selfadjoint
and positive definite. Therefore there are an orthonormal basis (e n ) n≥1 in V and a sequence (µ n ) n≥1 in (0, +∞) with µ n 0 such that T (e n ) = µ n e n for all n ≥ 1. Let e 0 := 1. Noticing that V = {u ∈ L 2 ρ ; (u, e 0 ) L 2 ρ = 0}, we see that (e n ) n≥0 is a orthonormal basis of L 2 ρ and that (2.24)-(2.26) hold with λ 0 := 0 and λ n := µ -1 n > 0 for n ≥ 1. By (1.7), one can pick some numbers C > 0 and δ ∈ (0, 1) such that 0 ≤ ρ(x) ≤ C for 0 < x < δ, so that (ae n ) = -λ n ρe n ∈ L 2 (0, δ). Next, e n ∈ W 1,1 (δ, 1) ⊂ L ∞ (δ, 1), and (ae n ) ∈ L r (δ, 1). Thus (ae n ) ∈ L min(2,r) (0, 1) and ae n ∈ W 1,min(2,r) (0, 1).

We are now interested in the asymptotic behavior of the eigenvalues λ n , n ≥ 0. Indeed, to apply the flatness approach, we need to prove that λ n ≥ Cn κ for some C, κ > 0 and all n ≥ 0. The estimate we shall derive is likely not sharp, but it is sufficient for the sequel.

Theorem 2.9. Let a, ρ, (α, β) and the sequences (e n ) n≥0 , (λ n ) n≥0 be as in Theorem 2.8. Then (i) e n ∈ W 1,1 (0, 1) and ae n ∈ W 1,r (0, 1) for all n ≥ 0;

(ii) there exists some constant C 1 > 0 such that

e n L ∞ (0,1) ≤ C 1 λ 3 4 (1+ p r r-p ) n if λ n > 0;
(2.27)

(iii) let κ := [ 1 2 + 1 p ( p r r-p )] -1 > 0 if p < ∞ and pick any κ < 2 if p = ∞.
Then there exists some constant C 2 > 0 such that λ n ≥ C 2 n κ ∀n ≥ 0.

(2.28)

Proof. (i) We need several lemmas.

Lemma 2.10. Let p, p be as in (1.10), let a be as in (1.5)-(1.6), and let q ∈ L p (0, 1). Then there exists a unique function v ∈ W 1,1 (0, 1) with av ∈ W 1,p (0, 1) and such that (av ) = -qv a.e. in (0, 1), ( (2.34) Therefore, if v ∈ C 0 ([0, 1]) satisfies (2.33), then v ∈ W 1,1 (0, 1) by (2.34) and av ∈ W 1,p (0, 1) by (2.32). Therefore, it is sufficient to prove the existence and uniqueness of a solution v ∈ C 0 ([0, 1]) of (2.33).

First, one may pick some δ ∈ (0, 1) such that for all x 1 , x 2 ∈ [0, 1] with 0 ≤ x 2 -x 1 ≤ δ, we have

x 2 x 1 dy a(y) y 0 |q(s)|ds ≤ 1 2 • For 0 ≤ x 1 < x 2 ≤ 1 and γ 1 , γ 2 ∈ R with γ 1 = 0 if x 1 = 0, we consider the map Γ : C 0 ([x 1 , x 2 ]) → C 0 ([x 1 , x 2 ]) defined by Γ(v)(x) = γ 2 - x x 1 dy a(y) γ 1 + y x 1
(qv)(s)ds .

(2.35)

By (1.6) and (2.34), the map Γ is well defined. Let us prove that it is a contraction provided that

|x 2 -x 1 | is "small enough". For v, w ∈ C 0 ([x 1 , x 2 ]), we have Γ(v) -Γ(w) L ∞ (x 1 ,x 2 ) ≤ x 2
x 1 dy a(y)

y x 1 |q(s)(v -w)(s)|ds. The map Γ is a contraction in C 0 ([0, δ]) for x 1 = 0, x 2 = δ, γ 1 = 0 and γ 2 = 1, since Γ(v) -Γ(w) L ∞ (0,δ) ≤ 1 2 v -w L ∞ (0,δ) .
This gives a solution v of (2.33) on [0, δ] by the contraction principle. Note that

v(δ) = 1 - δ 0 dy a (y) y 0 
(qv)(s)ds.

(2.36)

If δ ≤ x 1 ≤ x 2 ≤ 1 and x 2 -x 1 ≤ δ, then Γ(v) -Γ(w) L ∞ (x 1 ,x 2 ) ≤ x 2
x 1 dy a(y)

y x 1 |q(s)|ds v -w L ∞ (x 1 ,x 2 ) ≤ 1 2 v -w L ∞ (x 1 ,x 2 ) . Then Γ is a contraction in C 0 ([x 1 , x 2 ]) if δ ≤ x 1 ≤ x 2 ≤ 1 and x 2 -x 1 ≤ δ. Picking x 1 = δ, x 2 = x 1 + δ, γ 1 = δ 0 ( 
qv)(s)ds, and γ 2 = v(δ), we obtain a solution of (2.33) on [0, 2δ]. We can proceed in a similar way to extend v to [0, 3δ], [0, 4δ],... and finally to [0, 1].

Corollary 2.11. Let ρ and r be as in (1.7) and (1.10), and let λ ∈ R. Then there exists a unique function u ∈ W 1,1 (0, 1) with au ∈ W 1,r (0, 1) such that (au ) = -λρu a.e. in (0, 1), (2.37) (au )(0) = 0, (2.38) u(0) = 1.

(2.39) Furthermore, the map λ → (u, au ) from R to W 1,1 (0, 1) × W 1,r (0, 1) is continuous.

Proof. Since ρ ∈ L r (0, 1) ⊂ L p (0, 1), the existence and uniqueness of u follows from Lemma 2.10. The continuity of the map λ ∈ R → u ∈ C 0 ([0, δ]) (or C 0 ([δ, 2δ]), etc.) follows from the version of the contraction principle with a parameter. Using (2.32) and (2.33) gives the last sentence in the statement.

Lemma 2.12.

Let λ ∈ R. If 0 < x 0 -δ < x 0 + δ < 1 and u ∈ W 1,1 (x 0 -δ, x 0 + δ) is such that au ∈ W 1,1 (x 0 -δ, x 0 + δ) and      (au ) = -λρu in (x 0 -δ, x 0 + δ), u(x 0 ) = 0, (au )(x 0 ) = 0, then u = 0 in (x 0 -δ, x 0 + δ).
The proof is similar to those of Lemma 2.10 by applying the contraction principle to the map Γ from C 0 ([x 0 -δ, x 0 + δ]) into itself defined by

Γ(u)(x) = -λ x x 0 dy a(y) y x 0
(ρu)(s)ds when δ > 0 is small enough, and by propagating the uniqueness up to [x 0 -δ, x 0 + δ] when δ is as in the statement of the lemma. Lemma 2.13. Let n ≥ 0, and let e n and λ n be as in Theorem 2.8. If u is the function associated with λ = λ n in Corollary 2.11, then e n (x) = e n (0)u(x) ∀x ∈ (0, 1), (

so that e n ∈ W 1,1 (0, 1) and ae n ∈ W 1,r (0, 1).

Proof of Lemma 2.13: As u(0) = 1 and u ∈ C 0 ([0, 1]), we can pick some ε ∈ (0, 1/2) such that

u(x) ≥ 1 2 ∀x ∈ [0, 2ε]. Let v(x) := u(x) x ε ds u(s) 2 a(s) x ∈ (0, 2ε]. Since a -1 ∈ L 1 loc (0, 1), v ∈ W 1,1 loc (0, 2ε) and v (x) = u (x) x ε ds u(s) 2 a(s) + 1 u(x)a(x)
a.e. in (0, 2ε).

(2.41) Since u, au ∈ W 1,1 (0, 1), it follows that av ∈ W 1,1 loc (0, 2ε) and that (av ) (x) = (au ) (x)

x ε ds u(s) 2 a(s) + (au )(x) u(x) 2 a(x) - u (x) u(x) 2 = -λ(ρu)(x) x ε ds u(s) 2 a(s) = -λ(ρv)(x)
a.e. in (0, 2ε).

Note that the function u satisfies (2.37) for λ = λ n in (0, 2ε) and that it is not proportional to v (otherwise we would have [u(s) 2 a(s)] -1 = 0 a.e.). Note also that v(ε) = 0 and (av )(ε) = 1/u(ε) > 0. We may therefore find some number µ ∈ R so that the function U (x) := e n (x)en(ε) u(ε) u(x) -µv(x) satisfies the assumptions of Lemma 2.12 for 0 < δ < x 0 = ε. We infer from Lemma 2.12 that U = 0 on (0, 2ε), that is 

e n (x) = e n (ε) u(ε) u(x) + µv(x), x ∈ (0, 2ε). ( 2 
x ε ds u(s) 2 a(s) (0 + ) = -1.
But this is impossible, since

x ε ds u(s) 2 a(s) < 0 and (au )(x) ≤ 0 for 0 < x < ε. Indeed, λ n ≥ 0 yields

(au )(x) = - x 0 λ n ρ(x)u(x)dx ≤ 0, 0 < x < ε.
Thus µ = 0 and e n (x) = en(ε) u(ε) u(x) for x ∈ (0, 2ε). Using Lemma 2.12 several times, we infer that

e n (x) = e n (ε) u(ε) u(x) ∀x ∈ (0, 1).
Thus, by Corollary 2.11, e n ∈ W 1,1 (0, 1), ae n ∈ W 1,r (0, 1), and letting x → 0 yields e n (0) = e n (ε)/u(ε), so that e n (x) = e n (0)u(x) ∀x ∈ (0, 1).

The proof of Lemma 2.13 is complete. This ends the proof of (i) in Theorem 2.9.

(ii) In what follows, we fix some n ≥ 0 for which λ n > 0 and denote e = e n and λ = λ n to simplify the writing. The letter C will denote a constant that may change from line to line.

• Assume first that α = 0. We first check that and

1 x ds a(s) ≤ 1 x 1 x s a(s) ds ≤ 1 x s a(s)) L 1 (2.44)
where s a(s) L 1 denotes

1 0 s a(s) ds. It follows that |e(x)| ≤ ( β α λ) 1 2 + s a(s) L 1 λ x 1 2 , 0 < x < 1.
(2.45)

On the other hand, for 0 < x < 1, by Hölder inequality

x 0 1 a(s) ( s 0 ρ(t)dt)ds ≤ ρ L r x 0 s 1-1 r a(s) ds ≤ ρ L r s a(s) L p x 0 s -p r ds 1 p ≤ Cx 1 p -1 r (2.46) with C := ρ L r s a(s) L p (1 -p r ) - 1 
p . The function u(x) still denoting the solution to (2.37)-(2.39), we have that

u (x) = - λ a(x) x 0 (ρu)(s)ds ≤ 0 if u ≥ 0 on [0, x],
and hence for such x

0 ≤ 1 -u(x) ≤ x 0 |u (s)|ds ≤ λ u L ∞ (0,x) x 0 1 a(s) ( s 0 ρ(t)dt)ds ≤ Cλx 1 p -1 r .
It follows that 

( x 0 ρeds)dx = 2λ (4Cλ) p r p -r 0 • • • dx + 1 (4Cλ) p r p -r • • • dx =: 2λ(I 1 + I 2 ). ( 2 
|e(x)| ≤ ( β α λ) 1 2 + ( s a(s) L 1 (4C) -p r p -r ) 1 2 λ 1 2 (1-p r p -r ) ≤ C λ 1 2 (1+ p r r-p ) (2.50) for λ ≥ 1, where C := β α + s a(s) 1 2 L 1 (4C) -p r
2(p -r) . Since by Cauchy-Schwarz inequality

x 0 ρ|e|ds ≤ 1 0 ρe 2 dx 1 2 1 0 ρdx 1 2 = ρ 1 2 L 1
we obtain with (2.44) that

|I 2 | ≤ 1 (4Cλ) p r p -r |e(x)| a(x) ( x 0 ρ(s)|e(s)|ds)dx ≤ C λ 1 2 (1+ p r r-p ) (4Cλ) p r p -r s a(s) L 1 ρ 1 2 L 1 .
( • Assume now that α = 0. Then 1 0 ρedx = 0 and hence there exists x ∈ ((2Cλ) p r p -r , 1] such that e(x) = 0. For any y ∈ (0, 1), we have e(y) 2 = 2λ

x y e(x) a(x)

( x 0 ρeds)dx ≤ 2λ    (4Cλ) p r p -r 0 • • • dx + 1 (4Cλ) p r p -r • • • dx    =: 2λ(I 1 + I 2 ).
The estimate (2.49) for I 1 is still valid without any change. For I 2 , we first notice that for

x > (4Cλ)

p r p -r , |e(x)| ≤ x x e (s) ds ≤ √ λ 1 min(x,x) ds a(s) 1 2 ≤   s a(s) L 1 λ (4Cλ) p r p -r   1 2
, so that (2.50) holds again. Therefore (2.51) and (2.52) hold.

• Since λ n > 0 for n ≥ 1 and since the number of λ n 's in (0, 1) is finite, we infer that (2.52) is still valid for all the eigenvalues λ n > 0 by replacing the constant C by a larger one denoted C 1 . The proof of (ii) is complete.

(iii) Let λ ∈ [0, ∞), let u given by Corollary 2.11 and let e(x) := e(0)u(x) with e(0) > 0. We use a modified Prüfer substitution (see e.g. [START_REF] Birkhoff | Ordinary Differential Equations[END_REF][START_REF] Walter | Ordinary Differential Equations[END_REF]). We set

ae = λ 1 4 R cos θ, (2.53) 
e = λ -1 4 R sin θ, (2.54) so that R = (λ -1 2 (ae ) 2 + λ 1 2 e 2 ) 1 2 , cot θ = cos θ sin θ = λ -1 2 ae e •
We can impose that θ(0) = π 2 , for (ae )(0) = 0 and e(0) > 0. We note that R ∈ W 1,1 (0, 1), since

R ≤ λ -1 4 |ae | + λ 1 4 |e|, |R | ≤ R -1 |λ -1 2 (ae )(ae ) + λ 1 2 ee | ≤ (λ -1 2 |(ae ) | 2 + λ 1 2 |e | 2 ) 1 2 ≤ λ -1 4 |(ae ) | + λ 1 4 |e |
and e, ae ∈ W 1,1 (0, 1). Since R ∈ C 0 ([0, 1]) and R(x) > 0 for all x ∈ [0, 1] by Lemma 2.12, we infer that inf x∈[0,1] R(x) > 0 and R -1 ∈ W 1,1 (0, 1). Thus cos θ = λ - R are both in W 1,1 (0, 1). The functions arcsin and arccos being both of class C 1 on (-1, 1), we infer that θ ∈ W 1,1 (0, 1).

We obtain by straightforward computations that the pair (R, θ) solves the following Cauchy problem

R = λ 1 2 R( 1 a -ρ) cos θ sin θ, (2.55) θ = λ 1 2 (ρ sin 2 θ + 1 a cos 2 θ), (2.56) R(0) = λ 1 4 e(0), (2.57) θ(0) = π 2 (2.58)
on (0, 1). Conversely, if R, θ ∈ W1,1 (0, 1) satisfy (2.55)-(2.58), then the function e, defined in (2.54), is in W 1,1 (0, 1), (2.53) holds, (ae ) = -λρe a.e. in (0, 1), and e(x) = e(0)u(x), where u is as given in Corollary 2.11.

Lemma 2.14. The map λ → θ(x, λ) is continuous and strictly increasing for all x ∈ (0, 1].

Proof of Lemma 2.14: The continuity of the map λ → θ(x, λ) follows from those of the maps λ ∈ R + → u ∈ W 1,1 (0, 1) and λ ∈ R + → au ∈ W 1,r (0, 1) and from the definition of θ.

Let us show that the map λ → θ(x, λ) is strictly increasing for all x ∈ (0, 1]. Assume λ 1 < λ 2 , and let θ 1 and θ 2 be associated with λ 1 and λ 2 , respectively. Let w := θ 2 -θ 1 . Then w(0) = 0, and we have a.e. in (0, 1)

w = (λ 1 2 2 -λ 1 2 1 ) ρ sin 2 θ 2 + 1 a cos 2 θ 2 + λ 1 2 1 ρ(sin 2 θ 2 -sin 2 θ 1 ) + 1 a (cos 2 θ 2 -cos 2 θ 1 ) =: J 1 + J 2 .
Then J 1 > 0 and

|J 2 | ≤ 2λ 1 2
1 (ρ + 1 a )|w| a.e. in (0, 1), where we used the mean value theorem. It follows that w > -2λ and we -2λ

1 2 1 x d (ρ+a -1 )ds = [w -2λ 1 2 1 (ρ + 1 a )w]e -2λ 1 2 1 
x d (ρ+a -1 )ds > 0 a.e. in (c, d), so that the function x → w(x)e -2λ 1 2 1

x d (ρ+a -1 )ds is strictly increasing in [c, d], and thus negative in [c, d]. This yields c = 0 and w(0) < 0, which is a contradiction. We infer that w(x) ≥ 0 for all

x ∈ [0, 1]. If w(x) = 0 for all x ∈ [c, d] for some c, d with 0 ≤ c < d ≤ 1, then w = (λ 1 2 2 -λ 1 2 1 )[ρ sin 2 θ 2 + 1 a cos 2 θ 2 ] > 0 a.e. in (c, d)
which is a contradiction. Thus for any d ∈ (0, 1) one can pick some c ∈ (0, d) with w(c) > 0. Then

we 2λ 1 2 1 x d (ρ+a -1 )ds = [w + 2λ 1 2 1 (ρ + 1 a )w]e 2λ
and hence w(x) > 0 on [c, 1]. We conclude that w(x) > 0 for all x ∈ (0, 1]. Note that the map x → θ(x, λ) is also strictly increasing for all λ > 0, for the r.h.s. of (2.56) is positive a.e. on (0, 1), while θ(., 0) ≡ π 2 . We claim that lim

λ→+∞ θ(1, λ) = +∞. Indeed θ(1, λ) -θ( 1 2 , λ) = λ 1 2 1 1 2 (ρ sin 2 θ + 1 a cos 2 θ)dx ≥ λ 1 2 1 1 2 min(ρ, 1 a )dx >0 
.

It follows that θ(1, [0, +∞)) = [ π 2 , +∞).
Let Λ n := θ(1, .) -1 (nπ) for all n ∈ N * . We claim that for all n ∈ N * there exists a unique λ ∈ [Λ n , Λ n+1 ) such that the function u associated with λ in Corollary 2.11 satisfies

αu(1) + β(au )(1) = 0. (2.59) Indeed, if β = 0, then the condition u(1) = 0 is equivalent to sin θ(1, λ) = 0 and λ = Λ n is the only solution in [Λ n , Λ n+1 ). If β = 0, then (2.59) can be written α β λ -1 2 sin θ(1, λ) + cos θ(1, λ) = 0. If α = 0, cos θ(1, λ) = 0 gives θ(1, λ) = nπ + π 2 and λ = θ(1, .) -1 (nπ + π 2 )
. If α = 0, then both cos θ(1, λ) and sin θ(1, λ) have to be different from 0 and

h(λ) := α β λ -1 2 + cot θ(1, λ) = 0.
But the function h is continuous and strictly decreasing in (Λ n , Λ n+1 ) with h(Λ + n ) = +∞ and h(Λ - n+1 ) = -∞. It follows that there exists a unique λ ∈ (Λ n , Λ n+1 ) such that (2.59) holds. Consider now the possible solutions λ of (2.59) in [0, Λ 1 ). If β = 0, (2.59) cannot hold, for sin θ(1, λ) > 0 (since π/2 ≤ θ(1, λ) < π). If α = 0, (2.59) holds only if λ = 0. If α = 0 and β = 0, then α/β > 0 and h(0 + ) = +∞, h(Λ - 1 ) = -∞, so that there exists a unique λ ∈ (0, Λ 1 ) with h(λ) = 0.

We conclude that the eigenvalues λ n , n ∈ N, which are all simple by Lemma 2.13, fulfill the following property:

if β = 0, λ n = Λ n+1 for all n ∈ N; (2.60) if α = 0, λ 0 = 0 and λ n = θ(1, .) -1 (nπ + π 2 ) for all n ∈ N * ; (2.61) if αβ = 0, λ 0 ∈ (0, Λ 1 ) and λ n ∈ (Λ n , Λ n+1 ) for all n ∈ N * . (2.62) Since λ → θ(1, λ) is strictly increasing and θ(1, Λ n ) = nπ, we infer that if β = 0, θ(1, λ n ) = (n + 1)π for all n ∈ N; (2.63) if α = 0, θ(1, λ n ) = nπ + π 2 for all n ∈ N; (2.64) if αβ = 0, nπ < θ(1, λ n ) < (n + 1)π for all n ∈ N * . (2.65) 
Let n ∈ N and let (λ n , e n ) be as in Theorem 2.8. Assume that λ n = 0. Let (R n , θ n ) denote the pair associated with (λ n , e n ). Since θ n = θ(., λ n ) ∈ W 1,1 (0, 1), we can integrate in (2.56) along (0, 1) to obtain

θ n (1) - π 2 = λ 1 2 n 1 0 ρ sin 2 θ n dx + λ 1 2 n 1 0 cos 2 θ n a dx.
(2.66)

It follows from (2.63)-(2.65) that θ n (1) - π 2 ≥ nπ - π 2 • (2.67)
The first term in the r.h.s. of (2.66) is easily estimated:

λ 1 2 n 1 0 ρ sin 2 θ n dx ≤ λ 1 2 n ρ L r .
To estimate the second term in the r.h.s. of (2.66), we split the integral into two terms as in (ii), namely

λ 1 2 n 1 0 cos 2 θ n a dx = λ 1 2 n (2Cλn) p r p -r 0 cos 2 θ n a dx + λ 1 2 n 1 (2Cλn) p r p -r cos 2 θ n a dx =: I 1 + I 2 . (2.68)
• Assume that p < ∞ (so p > 1). Since for all y ∈ (0, 1)

1 y dx a(x) ≤ 1 y ( x a(x) ) p dx 1 p 1 y x -p dx 1 p ≤ x a(x) L p y 1-p -1 p -1 1 p
, we infer that

I 2 ≤ λ 1 2 n 1 (2Cλn) p r p -r dx a(x) ≤ λ 1 2 n x a(x) L p (p -1) 1 p (2Cλ n ) ( 1 p -1) p r p -r ≤ C 2 λ 1 2 + 1 p p r r-p n (2.69) for some constant C 2 = C 2 (p, r, x a(x) L p , C) > 0. If p = ∞, then p = 1, 1 y dx a(x) ≤ x a(x) L ∞ | ln y|, and 
I 2 ≤ C 2 λ 1 2 n | ln λ n | (2.70) for some constant C 2 = C 2 (r, x a(x) L ∞ , C) > 0. • Let us proceed to estimate I 1 . First, recall that 0 ≤ e n (0) 2 ≤ e n (x) ≤ e n (0) for 0 < x < (2Cλ n ) p r p -r .
Using (2.24)-(2.25) and (2.53), we obtain

I 1 = λ 1 2 n (2Cλn) p r p -r 0 (ae n ) 2 a(λ 1 4 n R n ) 2 dx = λ 2 n (2Cλn) p r p -r 0 ( x 0 (ρe n )(s)ds) 2 a(x)R n (x) 2 dx. But for 0 < x < (2Cλ n ) p r p -r , | x 0 (ρe n )(s)ds| ≤ x 0 ρ r ds 1 r
x 0 e r n ds

1 r ≤ ρ L r e n (0)x 1 r while |R n (x)| 2 ≥ λ 1 2 n e n (x) 2 ≥ λ 1 2 n 4 e n (0) 2 .
It follows that

I 1 ≤ 4 ρ 2 L r λ 3 2 n (2Cλn) p r p -r 0 x 2 r a(x) dx ≤ 4 ρ 2 L r λ 3 2 n x a(x) L p (2Cλn) p r p -r 0 x ( 2 r -1)p dx 1 p . Note that ( 2 r -1)p = ( 1 r -1 r )p > -p /r > -1 by (1.10). It follows that (2Cλn) p r p -r 0 x ( 2 r -1)p dx = (2Cλ n ) [( 2 r -1)p +1] p r p -r ( 2 r -1)p + 1 < ∞.
Thus

I 1 ≤ C 2 λ 3 2 -[ 2 r -1+ 1 p ] p r r-p n (2.71)
for some constant C 2 = C 2 (p, r, x a(x) L p , ρ L r , C) > 0. It remains to compare the exponents of λ n in (2.69) and (2.71). We have

1 2 + 1 p p r r -p > 3 2 -[ 2 r -1 + 1 p ] p r r -p • (2.72) Indeed, [ 1 p + 2 r -1 + 1 p ]p r -(r -p ) = 2 p r r -r + p = (2p -1)r -p ≥ r -p > 0.
If p < ∞, we infer from (2.67)-(2.71) and (2.72) that if

λ n ≥ 1, nπ - π 2 ≤ C 2 λ 1 2 + 1 p p r r-p n It is thus natural to impose (ag 0,x ) x = 0 (3.4) (ag i,x ) x = ρg i-1 , i ≥ 1, (3.5) 
together with the condition (ag i,x )(0) = 0 ∀i ≥ 0.

(3.6) We infer from (3.4) and (3.6) that g 0,x = 0 a.e. We pick g 0 (x) := 1 ∀x ∈ [0, 1].

(3.7)

Integrating in (3.5) yields

g i,x (x) = 1 a(x) x 0 ρ(s)g i-1 (s)ds.
We pick g i (0) = 0, i ≥ 1 (3.8) to obtain a rapid decay of g i L ∞ as i → +∞, so that

g i (x) := x 0 1 a(s) ( s 0 ρ(σ)g i-1 (σ)dσ)ds, i ≥ 1.
This defines formally the sequence (g i ) i≥0 of generating functions. To obtain the estimate of g i L ∞ which ensures the convergence of the series in (3.3) for y ∈ G s ([0, T ]), we need the following Proposition 3.1. There are some constants C, R > 0 such that

g i W 1,1 (0,1) + ag i,x W 1,r (0,1) ≤ C R i (i!) 1+ 1 p -1 r ∀i ∈ N. (3.9)
Proof. We need the following Lemma 3.2. Let f ∈ L ∞ (0, 1) and g(x) =

x 0 1 a(s) s 0 ρ(σ)f (σ)dσ ds. Then g ∈ W 1,1 (0, 1) and ag x ∈ W 1,r (0, 1). If, in addition, |f (x)| ≤ Cx δ for a.e. x ∈ (0, 1), (3.10) for some constants C, δ ≥ 0, then

|g(x)| ≤ C s a(s) L p ρ L r p 1 p
x δ+ω (r δ + 1)

1 r (δ + ω) 1 p ∀x ∈ [0, 1], (3.11) 
where ω :

= 1 r -1 + 1 p = 1 p -1 r > 0. Proof of Lemma 3.2: We have s 0 ρ(σ)f (σ)dσ ≤ f L ∞ s 0 ρ(σ) r dσ 1 r s 1 r and s -1 s 0 ρ(σ)f (σ)dσ L p ≤ f L ∞ ρ L r 1 0 s ( 1 r -1)p ds 1 p . (3.12) 
But ( 1 r -1)p = -p /r > -1, since r > p . Thus (s → s -1 s 0 ρf dσ) ∈ L p (0, 1) and (s → a(s) -1 s 0 ρf dσ) ∈ L 1 (0, 1) by Hölder inequality. Therefore g ∈ W 1,1 (0, 1) and (x → (ag x )(x) =

x 0 (ρf )(s)ds) ∈ W 1,r (0, 1). Assume now that (3.10) holds. Then

s 0 ρ(σ)f (σ)dσ ≤ C ρ L r s 0 σ r δ dσ 1 r and |g(x)| ≤ s a(s) L p (0,x) s -1 s 0 ρf dσ L p (0,x) ≤ C s a(s) L p ρ L r x 0 s (δ+ 1 r -1)p 1 p (r δ + 1) 1 r ≤ C s a(s) L p ρ L r x δ+ 1 r -1+ 1 p (r δ + 1) 1 r ((δ + 1 r -1)p + 1) 1 p ≤ C s a(s) L p ρ L r p 1 p
x δ+ω (r δ + 1)

1 r (δ + ω) 1 p ∀x ∈ [0, 1].
The proof of Lemma 3.2 is complete.

Using (3.7) and (3.11), we obtain by an easy induction that for all i ∈ N,

|g i (x)| ≤ s a(s) L p ρ L r p 1 p i x iω [ i j=1 (1 + (j -1)r ω)] 1 r [ i j=1 (jω)] 1 p ∀x ∈ [0, 1]. (3.13) Since [ i j=1 (1 + (j -1)r ω)] 1 r [ i j=1 (jω)] 1 p ≥ [(r ω) 1 r ω 1 p ] i (ir ω) 1 r (i!) 1 r + 1 p with 1 r + 1 p = 1 + 1 p -1
r > 1 and i ≤ 2 i for all i ≥ 0, we infer that

g i L ∞ ≤ C R i 1 (i!) 1+ 1 p -1 r ∀i ≥ 0 (3.14)
for some positive constants C and R.

On the other hand (ag i,x ) x = ρg i-1 and g i,x (x) = 1 a(x)

x 0 ρg i-1 ds, so that, with (3.12) Next, we show that the eigenfunctions can be expressed in terms of the generating functions.

(ag i,x ) x L r ≤ ρ L r g i-1 L ∞ , g i,x L 1 ≤ C ρ L r x a(x) L p g i-1 L ∞ . ( 3 
Proposition 3.3. Let n ∈ N and let e n and λ n be as in Theorem 2.8. Then

e n = e n (0) i≥0 (-λ n ) i g i in W 1,1 (0, 1). 
Proof. Fix some n ∈ N and set

ẽ = i≥0 (-λ n ) i g i . (3.16) 
The series in (3.16) converges in W 1,1 (0, 1) by (3.9). It follows that

aẽ x = i≥0 (-λ n ) i ag i,x in L 1 (0, 1).
Using (3.9) again, we deduce that aẽ x ∈ W 1,r (0, 1), and that we have in L r (0, 1)

(aẽ x ) x = i≥0 (-λ n ) i (ag i,x ) x = i≥1 (-λ n ) i ρg i-1 = -λ n ρẽ.
On the other hand, by (3.6), (3.7) and (3.8), we have that ẽ(0) = 1, (aẽ x )(0) = 0.

It follows from Corollary 2.11 that ẽ = u for λ = λ n , and from Lemma 2.13 that

e n (x) = e n (0) i≥0 (-λ n ) i g i (x) ∀x ∈ [0, 1].
We are in a position to prove the main results in the paper.

Proof of the main results

4.1. Proof of Theorem 1.1.

4.1.1.

Step 1: Reduction to the case q = 0. Let û(x, t) = u(x, t)/v(x), where u satisfies (1.1) and (1.2) and v is as in (1.9). Then

v 2 aû x = v 2 a( u x v - uv x v 2 ) = a(u x v -uv x ) and (v 2 aû x ) x = (au x ) x v + au x v x -((av x ) x u + au x v x ) = [(au x ) x + qu]v = ρu t v = ρv 2 ût .
Let â(x) := v(x) 2 a(x) and ρ(x) := v(x) 2 ρ(x). Then û satisfies (âû x ) x = ρû t x ∈ (0, 1), t ∈ (0, T ), (âû x )(0) = 0, t ∈ (0, T ) with â and ρ satisfying (1.5)-(1.8). Indeed, using (1.9), one may pick some constants C 1 and C 2 such that 0

< C 1 ≤ v(x) ≤ C 2 ∀x ∈ [0, 1].
We infer from u = ûv and (1.3) that

αv(1) + β(av x )(1) û(1, t) + βv(1)(aû x )(1, t) = h(t).
Setting α := αv(1) + β(av x )(1) and β := β/v(1), we arrive to

αû(1, t) + β(âû x )(1, t) = h(t). Let û0 := u 0 /v. Then û0 ∈ L 2 ρ ⇐⇒ u 0 ∈ L 2 ρ .
for all x ∈ [0, 1]. The above computations are valid, since for 0 < δ ≤ t ≤ T and 0

≤ x ≤ 1 i≥0,n≥0 |c n e n (0)(-λ n ) i e -λnt g i (x)| ≤ i≥0,n≥0 |c n e n (0)| e δ 2 λn ( δ 2 ) i (i!)e -δλn C R i (i!) 1+ 1 p -1 r ≤ |c 0 | + C 1 ∞ n;λn>0 |c n | λ 3 4 (1+ p r r-p ) n e δ 2 λn ∞ i=0 1 ( Rδ 2 ) i (i!) 1 p -1 r < ∞
where we used the estimate x i /i! ≤ e x for x = δλ n /2 ≥ 0 and i ∈ N.

It follows from (4.1) that u is the free evolution (i.e. with a null control) of the parabolic equation for 0 < t ≤ T /3. Therefore

lim t→0 + u(., t) = u 0 in L 2 ρ .
We pick as control input

h(t) := 0 for t = 0, ∞ i=0 y (i) (t)[αg i (1) + β(ag i,x ) (1) 
] for 0 < t ≤ T. It follows from (4.1) that h(t) = 0 for 0 < t ≤ T /3 and from (3.9) combined with the choice of

s that h ∈ C ∞ ([0, T ]) with h (j) (t) = ∞ i=0 y (i+j) (t)[αg i (1) + β(ag i,x )(1)]. Let us check that h ∈ G s ([0, T ]). We have for t ∈ [ , T ] |h (j) (t)| ≤ i≥0 |y (i+j) (t)[αg i (1) + β(ag i,x )(1)]| ≤ C i≥0 (i + j)! s Ri+j 1 R i i! 1+ 1 p -1 r ≤ C( 2 s R ) j i≥0 ( 2 s R R ) i 1 i! 1+ 1 p -1 r -s j! s
for some constant C which does not depend on j and t, where we used (i + j)! ≤ 2 i+j i!j!. As h(t) = 0 for 0 ≤ t ≤ T /3, we conclude that h ∈ G s ([0, T ]). Finally

u(x, t) = 0 ∀(x, t) ∈ [0, 1] × [ 2T 3 , T ].
The proof of Theorem 1.1 is complete.

Remark 4.1. We stress that assumption (1.9) was used only in Step 1 the get rid of the term q(x)u in (1.1). If q ≡ 0 in (1.1), then Theorem 1.1 is still valid with the assumptions (1.5)-(1.8).

4.3.

Proof of Proposition 1.3. Since q ∈ L p (0, 1), we infer from Lemma 2.10 the existence and uniqueness of a function v ∈ W 1,1 (0, 1) with av x ∈ W 1,r (0, 1) such that (2.29)-(2.31) hold. The only property still to establish is the fact that v(x) > 0 for all x ∈ [0, 1]. We know that v satisfies the integral equation (2.33). Therefore, we have If (1.13) holds, we claim that v(x) > 0 for all x ∈ [0, 1]. Otherwise, there would exist some x 0 ∈ (0, 1] such that v(x 0 ) = 0, and we can assume that it is the least, so that v L ∞ (0,x 0 ) = 1. But this yields v(x 0 ) ≥ 1 - ] gives (1.17). We note that (1.18) holds, for

v(x) ≥ 1 -v L ∞ (0,x)
(av x )(x) = δx 1-ε+ √ (1-ε) 2 -4µ 2 
with 1 -ε + (1 -ε) 2 -4µ > 0. Using (1.16), we infer that δ ≥ 0 and that (1 -ε) 2 -4µ < 1. Therefore, we can pick some p ∈ (1, ∞) so that

1 > 1 p > max(1 -ε, (1 -ε) 2 -4µ). (4.2) 
Then the functions x → x/a(x) and x → x/(a(x)v(x) 2 ) are in L p (0, 1 For the application of Theorem 1.1, we do again the change of unknown û(x, t) := u(x, t)/v(x), and we set â = av 2 , ρ = ρv 2 , and û0 = u 0 /v. From âû x = a(u x v -uv x ) (4.3)

we see readily that (au x )(0, t) = 0 implies (âû x )(0, t) = 0. Let α = αv(1) + β(av x )(1) = α + βδ,

β = β v(1) = β.
An application of Theorem 1.1 to the simplified system

        
(âû x ) x = ρû t , (âû x )(0, t) = 0, αû(1, t) + β(âû x )(1, t) = h(t), û(x, 0) = û0 (x) (4.4) yields the existence of a control input h ∈ G s ([0, T ]) such that the solution û of (4.4) satisfies û(., T ) = 0. Going back to the original dependent variable u(x, t) = û(x, t)v(x), we see that u satisfies (1.1), (1.3)-(1.4) and u(., T ) = 0. It remains to show that (1.2) holds. Note that (1.2) is not a direct consequence of (4.3)-(4.4), for v(0) = 0 if δ > 0. We infer from (4.3) that (au x )(0 + , t) = ( âû x v )(0 + , t) + ( u v av x )(0 + , t).

The second term is easy to handle. Indeed, (av x /v)(x) = δx 1-ε , so that (uav x /v)(0 + , t) = 0. To deal with the first term, we write û(x, t) = i≥0 y (i) (t)g i (x)

where the functions g i 's and y are respectively the generating functions and the flat output for system (4.4). It follows that â(x)û x (x, t) v(x) = i≥0 y (i) (t) â(x)g i,x (x) v(x) .

But g 0,x = 0 and for i ≥ 1 (âg i,x )(x) =

x 0 ρ(s)g i-1 (s)ds = x 0 s 2δ g i-1 (s)ds.

This yields

(âg i,x )(x) v(x) ≤ x δ+1 2δ + 1 g i-1 L ∞ ≤ C (2δ + 1)R i-1 [(i -1)!] 1+ 1 p -1 r x δ+1
where we used (3.9). It follows that (âû x /v)(0 + , t) = 0. We conclude that (au x )(0 + , t) = 0 for 0 < t < T .

appendix

The conditions (1.6) and (1.8) are independent. 1. Pick a(x) = x 2 | ln x| α for some α > 0.

Then (1.6) is never satisfied, since 2. Pick Ω = n≥1 (2 -n -10 -n , 2 -n + 10 -n ) ⊂ (0, 1), and a(x) = x 2-ε 1 Ω c (x) + 1 Ω (x) for some ε ∈ (0, 1). Then (1.6) is satisfied for some p > 1, since x/a(x) ≤ x ε-1 for 0 < x < 1. On the other hand, Lemma 4.2. Assume that a(x) = [xg(x)] 2 for some function g ∈ C 1 ((0, 1), (0, +∞)) satisfying for some ε ∈ (0, 1 2 ) and some x 0 ∈ (0, 1) g (x) g(x) ≤ ε x for 0 < x < x 0 , g(0 + ) = +∞, (xg(x))(0 + ) = 0,

1 x 0 dx g(x) 2 < ∞.
Then (1.8) is satisfied.

Proof of Lemma 4.2: We obtain by an integration by parts that (1) Let g(x) = x -ε for some ε ∈ (0, 1 2 ). Then |g (x)/g(x)| = ε/x and Lemma 4.2 may be applied for any x 0 ∈ (0, 1).

(2) Let g(x) = | ln x| α for some α > 0. Then |g (x)/g(x)| = α/(x| ln x|) and Lemma 4.2 may be applied for e.g. ε = 1/4 and x 0 ∈ (0, 1) small enough.

  ) > 0 for all x ∈ [0, 1], (av x ) x + qv = 0 in (0, 1), (av x )(0) = 0, (1.9) for some numbers p, r with p ∈ (1, +∞], r ∈ (p , +∞] (1.10)

1 0

 1 |u | 2 a dx = 0, u(1) = 0. Thus u = 0, but this contradicts the condition 1 0 |u| 2 ρ dx = 1. The proof of Lemma 2.7 is complete.

1 0

 1 we have again D(0, 1) ⊂ H, and picking v ∈ D(0, 1) in (2.23) yields (2.1) in the sense of distributions. Multiplying in (2.1) by v(x) = 1 -x and integrating by parts yields (2.2). Finally (2.3) comes from the definition of H. If α = 0, then for any given θ ∈ D(0, 1) the function ϕ(x) = θ(x) -θρds belongs to H. Picking such a function in (2.23) and using the fact that 1 0 f ρ dx = 0, we obtain 1 0 au θ dx = 1 0 f θρ dx, so that (2.1) holds in the sense of distributions. Multiplying in (2.1) by v

  Proof of Lemma 2.10. If a function v as in Lemma 2.10 does exist, then v ∈ C 0 ([0, 1]) and we obtain by successive integrations (av )(y) = -y 0 (qv)(s)ds ∀y ∈ [0, 1

  estimate (2.43) is obvious if β = 0, for e(1) = 0. If β = 0, we infer from (2.23) with u = v = e that

1 2 ≤

 2 u(x) ≤ 1 for x ∈ [0, (2Cλ) → 0 as λ → ∞, for r > p .) Replacing e by -e if needed, we can assume that e(0) > 0. Using Lemma 2.13, we infer that e(0) 2 ≤ e(x) ≤ e(0) for x ∈ [0, (2Cλ)

4 ( 3 4

 43 1+ p r r-p ) for λ ≥ 1, where C = C (p, r, ρ L 1 , s a(s) L 1 ) > 0. As e(y) 2 -e(1) , ∀y ∈ (0, 1), and |e(1)| ≤ βλ/α, the same calculations as above yield |e(y)| ≤ C λ

  .e. in (0, 1). Assume that there exists d ∈ (0, 1] with w(d) < 0. If [c, d] denotes the largest segment to the left of d where w ≤ 0, then .e. in (c, d)

. 15 )

 15 Finally, (3.9) follows from (3.6), (3.8),(3.14) and(3.15).

4 . 4 .

 44 |ds > 0, a contradiction. If we assume that q(x) ≤ 0 for a.e. x ∈ (0, 1), then we can prove in much the same way that v(x) ≥ 1 for all x ∈ [0, 1]. Finally, if (1.15) holds, the change of unknowns ũ(x, t) = e -Kt u(x, t) transforms (1.5) into (a(x)ũ x ) x + [q(x) -Kρ(x)]ũ = ρ(x)ũ t , and the conclusion follows from the previous case with (1.14) satisfied. Proof of Proposition 1.4. Plugging v(x) = x δ in (1.17) results in [δ(1+δ-ε)+µ]x δ-ε = 0 for x ∈ (0, 1), so that the choice δ = 1 2 [ε -1 + ((1 -ε) 2 -4µ)1 2

  δ ≥ 0, v ∈ C 0 ([0, 1]) so that ρv 2 ∈ L r (0, 1) with r = ∞ and lim sup x→0 + [ρ(x)v(x) 2 ] < ∞.

1 0 2 | 2 | 2 | 2 ≥ C -2 2 |

 122222 x -p | ln x| -αp dx = +∞ for all p > 1. On the other hand, by integrating by parts, we have for any ε ∈ (0, 1) lns| α = α 1-ε x ds s 2 | ln s| α+1 + [-s -1 | ln s| -α ] 1-εx and for 1 -ε small enough and for x ∈ (0, 1ln s| α so that for some positive constants C 1 , C 2 and x > 0 small enoughC 1 x -1 | ln x| -α ≤ ln s| α ≤ C 2 x -1 | ln x| -α .This yields a(x) ln x| α for 0 < x 1, and (1.8) is satisfied.

  n -10 -n ) 2-ε < ∞ = ε = +∞ and 1/a ∈ L 1 (0, 1). It follows that lim

  (s) 2 = [-s -1 g(s) -2 ] x 0 xx 0 g(x 0 ) 2 → 0 as x → 0 + . Example 4.3.

  it follows from Lax-Milgram theorem that there exists a unique function u ∈ H such that a(u, v) = L(v) ∀v ∈ H. (2.23) Assume first αβ = 0. Clearly D(0, 1) ⊂ H. Picking v ∈ D(0, 1) in (2.23), we obtain (2.1) in the sense of distributions. Multiplying in (2.1) by v ∈ C ∞ ([0, 1]) ⊂ H, integrating by parts and comparing with (2.23), we infer that

  and selfadjoint by (2.22), (2.23), and Proposition 2.1. It is also positive definite, for

  ). Applying Lemma 4.2 (see below), we see that (1.8) and

	lim x→0 +

1x d (ρ+a -1 )ds > 0 a.e. in (0, 1),

for some constant C 2 > 0. Then (2.28) follows. If p = ∞ and λ n > 1, we obtain for given κ < 2

for some constants C 2 , C 2 > 0. Then (2.28) follows. The proof of Theorem 2.9 is complete.

Introduction of the generating functions

We shall see later that the zero-order term q(x)u in (1.1) can be removed thanks to a change of variables. Consider the simplified system

and search for a solution of it in the form

where y is the flat output and the g i 's are the generating functions.

A formal computation shows that

4.2.

Step 2: Flatness approach. We follow closely [START_REF] Martin | Null controllability of one-dimensional parabolic equations by the flatness approach[END_REF]. We assume that q = 0 in (1.1). Let

As (e n ) n≥0 is an orthonormal basis in L 2 ρ , we can expand u 0 as a series of the e n 's:

where the sequence (c n ) n≥0 of real numbers satisfies ∞ n=0 c 2 n < ∞. Using (2.27) and (2.28), we notice that the map z → n≥0 c n e n (0)e -λnz is analytic in the set {z = t + it ; t > 0, t ∈ R}. It follows that the map t → n≥0 c n e n (0)e -λnt is real analytic in (0, ∞), and its restriction to [ , T ] belongs to

), and there exist some positive numbers M , R such that

Combined with (3.9), this yields

Furthermore,

and au x (0, t) = 0. We notice that for 0 < t ≤ T /3, we have that y(t) = ∞ n=0 c n e n (0)e -λnt and

c n e n (0)e -λnt ]g i (x)

c n e -λnt e n (0)

c n e -λnt e n (x) (4.1)