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The evaporation of drops of pure water on soluble substrates of salt leads to the
growth of unprecedented hollow peripheral deposits. We report here on the experimental
determination and numerical simulation of the flows inside a drop in this configuration. The
velocity field is measured experimentally by a microparticle image velocimetry technique
and is simulated using the hydrodynamics equations solved by the finite-elements method.
The flow is characterized by an inward motion at the beginning of the evaporation, that
is progressively replaced by an outward motion until the end of the evaporation. The
transition between the two flow regions takes the form of a stagnation line, where the
radial component of the velocity vanishes. This line migrates from the periphery toward
the center of the drop, inducing the progressive inversion of the flow. The comparison
between the experiments and simulations leads to the following interpretation of this
flow reversal. The dissolution of the substrate induces the creation of a surface tension
gradient at the drop free-surface, leading to an outward Marangoni flow along the drop
surface and an inward flow near the substrate. As the diffusion progressively makes the
concentration more uniform, this surface-driven convection stops and is replaced by the
standard coffee-stain outward capillary flow.

DOI: 10.1103/PhysRevFluids.7.093605

I. INTRODUCTION

The exponential growth of the number of works devoted to the evaporation of sessile drops during
the past two decades may be attributed to the omnipresence of the phenomenon [1]. Drops indeed
evaporate on substrates in nature, in everyday life, as much as in industrial processes [2]. If the
evaporating liquid is not pure, and contains solutes, colloids, or polymers, then a deposit is left on
the surface, generally in the form of a coffee stain [3]. This phenomenon may be both detrimental,
in the case of heritage degradation by rain [4] or stain formation in ultraclean processes [5], but can
also be of great help for DNA mapping [6], innovative medical tests [7], nanolithography [8], or
ink-jet printing [9].

This intense activity has brought a better knowledge of the interplay between the numerous
mechanisms interacting during this apparently simple phenomenon. For instance, the flow patterns
in the atmosphere around a droplet evaporating on a heated surface and its influence on the
evaporation rate is now well understood [10]. The existence of Rayleigh [11], or Marangoni [12], or
both flows [13] inside evaporating two-component drops, driven by concentration gradients, is also
well established.
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A configuration has held particular attention, in which the substrate is made of a thin film of
polymer spin-coated on a flat surface [14], or more rarely is made of a bulk polymer [15], and
the drop contains a solvent of the polymer. Here in addition to the above-mentioned mechanisms,
the evaporated solvent may also be adsorbed by the substrate surrounding the drop, the substrate
may swell by solvent uptake, it may dissolve in the drop, the solution may gel and the triple
line may be subject to pinning-depinning. These studies are sometimes inspired by applications,
because the pattern left by such drops on polymer layers may be used for device manufacturing in
optoelectronics [16], or because this situation may be encountered with hydrosoluble polymers in
the food industry [17,18].

To investigate the influence of the sole dissolution of a soluble substrate in an evaporating drop,
compared to an inert substrate, without adsorption, solvent uptake, or gelation, we have recently
studied the evaporation of a water drop on a mineral substrate, namely a salt crystal. In this
configuration, the transport of the components of the dissolved salt toward the edge of the drop,
and their precipitation at the liquid-air interface, leads to the formation of unexpectedly hollow rims
[19].

To better understand the formation of these peculiar patterns, we investigate here both experi-
mentally and numerically the inner flows during the evaporation of a drop of pure water on a salt
substrate. Using microparticle image velocimetry in a confocal microscope, we measure the velocity
field evolution inside a water drop evaporating on a heated dissolving salt substrate and compare
it with numerical simulations of the phenomenon. The main conclusion of this study is that, in the
course of the evaporation, a flow inversion occurs inside the drop. This reversal is revealed by the
presence of a circular stagnation line propagating from the edge toward the center of the drop.
Thanks to the experiment-simulation confrontation, we interpret this reversal as a consequence
of the change of leading mechanism: Marangoni convection occurs at the very beginning of the
phenomenon, whereas a capillary outward flow dominates afterwards, leading eventually to the
formation of the ring deposit.

II. EXPERIMENTS

A. Experimental setup

The substrates are 10 × 10 × 1 mm3 samples of NaCl single crystals, polished with grit size
down to 1 µm, to guarantee a good reproducibility of the surface roughness, hence of the drop
contact angle. The samples are cleared from dust with compressed air and stored in a dessicator
before use. The evaporating liquid is ultrapure water. The substrate is embedded in a heating device
which allows to investigate substrate temperatures in the 20 to 70◦C range. The relative humidity
(RH) is monitored during the experiments. Microparticle image velocimetry (µ-PIV) measurements
in the evaporating drops are performed with a Leica SP5 inverted confocal microscope. In the
course of the experiment, a drop of volume ∼1 µl seeded with 1 µm fluorescent beads (FluoSpheres
carboxylate-modified microspheres yellow-green with an excitation wavelength of 505 nm and an
emission wavelength of 515 nm) is deposited on a flat and horizontal salt substrate. Images are
obtained with a 10× N.A. 0.3 air objective, which gives approximately an observation window of
1 × 1 mm2 in a plane parallel to the solid surface. The size of the pinhole is fixed to 1 Airy unit that
provides a depth of field of 11 µm. Afterwards the in-plane colloid velocity field is obtained during
the evaporation by following the average correlation method [20] with a home made Matlab code,
to reduce errors due to Brownian motion and to achieve a higher signal-to-noise ratio.

B. Evaporation scenario and associated kinetics

Once the drop is deposited, the evaporation proceeds in four steps. First, due to the very high
dissolution rate of the salt, the substrate is immediately etched by the water, which induces an
instantaneous anchoring of the triple line [Fig. 1 (left)]. The evaporation therefore remains in the
constant-radius regime, with no initial receding phase, unlike the case of nanodroplets of water on
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FIG. 1. Side and top view of a water drop, of sessile diameter d = 1.85 mm, evaporating on a NaCl single
crystal at T = 55◦C and RH = 45% for elapsed times t = 2, 13, and 34 s from left to right.

silicon wafer, where the reaction between water and silicon is too slow to induce an immediate
pinning of the triple line [5]. Second, a peripheral deposit is observed to form at the edge of the
drop. Thus, the contact line leaves the initial perimeter of the drop and moves inward, following
the growing ring deposit [Fig. 1 (middle)], and the apex continues to lower [Fig. 1 (right)]. In the
third step, the evaporation is such that the apex of the drop reaches the substrate and starts to recede
outwards by dewetting (Fig. 2). Finally, the inner triple line reaches the peripheral deposit, which
in the majority of cases can roll-up and close, forming a hollow shell, inside which the remaining
liquid continues to evaporate.

Before investigating the inner flow, the evaporation kinetics is estimated from the evolution of
the drop volume. Figure 3 exhibits the change with time of the normalized drop volume during the
pinned triple line regime, i.e., before the rim starts to depart visibly from the substrate and grow. It
can be seen that for four sample temperatures, the volume decreases linearly with time, as expected.
Indeed, the evaporation rate dV/dt is known to be proportional to the drop sessile radius rw, not

FIG. 2. Central dewetting at the end of the evaporation in the experiment of Fig. 1. The substrate is now
visible at the center of the drop.
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FIG. 3. Left: Time evolution of the volume V , normalized by the initial volume V0, of water drops (initial
sessile radius rw ≈ 0.6 mm, initial contact angle θ0 ≈ 45◦) evaporating on NaCl single crystals at temperature
20 (cyan circles), 30 (blue squares), 45 (green diamonds), and 55◦C (red triangles) for RH ≈ 30%. Right:
Evaporation time t f as a function of the drop sessile radius rw at temperature 45 (cyan circles), 50 (blue squares),
60 (green diamonds), and 70◦C (red triangles). The initial contact angle for all drops is θ0 � 45◦. The straight
lines are guides for the eyes.

to its evaporating surface area, as a consequence of the diffusion-limited nature of the evaporation
[21]. As the triple line is initially pinned, rw remains constant, so does dV/dt , and the evaporation
regime is linear.

The total evaporation time tf is a characteristic parameter of the phenomenon which is required
to make the simulations cope with the experiments (see Sec. III A). As the evaporation scenario
is complex, the determination of tf is not straightforward. Here we choose to estimate each tf as
the time at which the extrapolation of the V (t )/V0 curve reaches the value V/V0 = 0 [Fig. 3 (left)].
Figure 3 (right) shows the change of the total evaporation time with the sessile drop radius for some
investigated temperatures. This evaporation time is seen to increase linearly with the drop radius
and the slope of the tf(rw) lines is diminishing when the temperature increases.

C. Internal flows

The velocity field is measured by µ-PIV in a plane parallel and close to the solid-liquid interface
for several temperatures (see video in the Supplemental Material [22]). In all measurements, the
fluid initially experiences an uniform inward motion. Within a few tens of seconds, a stagnation line
forms at the edge of the drop, where the fluid is seen to be at rest. This line moves progressively
inward, splitting the velocity field into two parts. Inside the line, the fluid continues to move inward.
Outside, the liquid exhibits a different behavior, showing an outward motion (see Fig. 4). Once the
stagnation line has reached the center of the drop, it disappears and the in-plane flow is seen purely
outward.

The mean radial velocity 〈vr〉, averaged along circles of radius r, exhibits at the beginning of the
experiment negative values, corresponding to an inward motion as shown in Fig. 5. Then positive
values appear close to the drop periphery, i.e., at r = rw, corresponding to the initiation of an
outward flow. Between the negative and positive values, the crossing of the 〈vr〉 = 0 line by the
curve corresponds to the position of the stagnation line rst. With time, this crossing of the abscissa
axis is seen to move leftward, showing the movement of the stagnation line toward the drop center.
The latest times exhibit purely positive values, when the fluid motion is exclusively centrifugal.

Figure 6 shows the evolution of the stagnation line position for various temperatures. After a
transient period of a few seconds corresponding to the drop installation, the line is observed to
accelerate slightly during its displacement.
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FIG. 4. In-plane velocity field (5 ± 5) μm above the bottom of a drop of pure water of sessile diameter
1.2 mm seeded with fluorescent beads evaporating on a NaCl single crystal, from left to right, 10, 27, and 33 s
after deposition. The color indicates the increasing magnitude, from blue to red, together with the length of the
arrows. The red dashed line shows the stagnation line.

III. SIMULATIONS

A. Analytical model

The drops have always been observed to keep a circular shape. Therefore the simulated drop has
been considered to show an axis of rotation and the problem has been solved in the two-dimensional
coordinate system (r, z) (Fig. 7). The radius of the droplet base is always of the order rw ∼ 10−3 m.
As the drops have always been observed to be immediately pinned once deposited, this radius has
been kept constant throughout the modeling time. The height of the drop apex at the beginning of
evaporation is of the order h(0, 0) ∼ 10−4 m.

For a water drop of the specified size, the capillary number Ca = μv/σ , for the characteristic
flow velocity v � 102 m/s shown in Fig. 5 (here μ ∼ 10−3 Pa s is the dynamic viscosity and
σ ∼ 10−1 N/m the surface tension of the liquid) and the Bond number Bo = �ρgh2/σ (here g ∼
10 m/s2 is the acceleration of gravity and �ρ ∼ 103 kg/m3 is the difference in density of water and
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FIG. 5. Mean radial velocity 〈vr〉 of the flow inside the drop along the radius r in the drop deduced from
the µ-PIV measurements of Fig. 4. The colors give the elapsed time since deposition for each curve and refer
to the color-bar with the time given in seconds. Positive (negative) values stand for outward (inward) radial
velocity components.
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FIG. 6. Dependence of the stagnation line position on time at 18 (blue triangles), 30 (green diamonds), and
45◦C (pink circles). After a transient period of a few seconds, the line is observed to accelerate slightly during
its displacement. The position is normalized by the drop sessile radius and the time by the total evaporation
time.

air) are always much smaller than one. Therefore the capillary forces always exceed all other forces.
So we have considered the liquid-air interface h(r, t ), the free surface of the drop, as a spherical
segment and we have used the parabolic approximation for simplicity h(r, t ) = h(0, t )[1 − (r/rw)2].

The substrate temperature is kept constant and equal to or higher than the ambient temperature.
Nonetheless, two heat sources are present inside the drop for the entire duration of the phenomenon,
due to the double phase change. Both the dissolution of the salt and the evaporation of water are
endothermal mechanisms, which may induce a temperature decrease of the drop. However, the char-
acteristic time of the heat transfer in a drop of this size is τT = h(0, 0)2/λ ∼ 0.1 s (λ ∼ 10−7 m2/s
is the thermal diffusivity of water). The characteristic salt diffusion time is τD = h(0, 0)2/D ∼ 10 s
(D ∼ 10−9 m2/s is the diffusion coefficient of NaCl components in water). The drying time of the
drop tf depends on the substrate temperature and on the drop size and ranges from ∼10 to ∼100 s
(see Fig. 3 right). Therefore the temperature equalization time τT is at least two orders of magnitude
shorter than the drying time tf and the salt diffusion time τD. Furthermore, the thermal conductivity
of the salt substrate is known to be one order of magnitude higher than the thermal conductivity
of the aqueous salt solution, thereby accelerating even more the thermal equilibration of the drop.
Consequently, both the solid and liquid contribute to homogenize the temperature inside the drop
quasi instantaneously, thus making the presence of thermal gradients unlikely. For this reason, the

FIG. 7. Model of the drop evaporating on a soluble substrate: coordinate system.
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temperature of the drop T is assumed to be uniform, and potential thermal effects, like thermal
Marangoni convection, are not taken into account in the model.

To elaborate a simple but complete model of the drop evaporation, the determination of the
respective part of diffusion and convection in the distribution of the salt concentration is first
necessary. This balance can be evaluated from the Péclet number Pe = vzh(0, 0)/D, with vz the
vertical component of the fluid velocity. This latter quantity can be estimated from the radial
component of the velocity vr via vz ∼ vrh(0, 0)/rw. As can be observed in Fig. 5, the experiments
exhibit vr values of the order of 10 μm/s, therefore vz ∼ 1 μm/s, which induces Pe = 10−1.

Therefore the convective transport of salt plays a secondary role compared to diffusion and the
distribution of the salt concentration C = mNaCl/(mNaCl + mwater ) (mNaCl and mwater are the mass
of salt and water in the solution) in the droplet was calculated using the diffusion equation in the
special case when the change of density of the solution and the change of diffusion coefficient of
salt dissolved in water are negligible:

∂C

∂t
= D div(grad C). (1)

The initial and boundary conditions for the salt concentration are C(t = 0) = 0 and C(z = 0) =
Cmax, Cmax being the concentration of the saturated salt solution. Indeed, even though the exact
dissolution rate of NaCl is not known, it is accepted that the chemical reaction is so fast compared
to the mass transport of the released ions in the drop that the solution remains always saturated at
the interface, whatever the shape of the latter [23]. Regarding the concentration gradient, dC/dn =
JC/(ρD) on the liquid-air interface (the condition for the absence of accumulation of salt particles
at the moving boundary) and dC/dr = 0 on the symmetry axis (n is a vector normal to the drop
surface, J is the evaporation rate and ρ the density of water).

The velocity field, v = vrnr + vznz, in the droplet was calculated at different times using the
Navier-Stokes equation for incompressible liquid in the lubrication approximation [24]. The evapo-
ration rate was taken as J (r) = J0√

1−(r/rw )2
[25]. J0 can be determined using the evaporation time tf,

considering that the whole volume of water evaporates during the time tf:

tf

∫ rw

0
2πrJ dr ≈ ρwaterπh(0, 0)r2

w

2

⇒ J0 ≈ ρwaterh(0, 0)

2tf
. (2)

Here ρwater is the density of water.
The absence of flows was assumed in the region of dissolution of the substrate (region II in

Fig. 7). The conditions for velocity were as follows: vr = 0 and vz = 0 at z = 0, ∂vr
∂z + ∂vz

∂r = 1
μ

∂σ
∂r ,

and vz = ∂h(r,t )
∂t + J

ρ
at z = h(r, t ). Also averaging over the droplet height the r component of the

velocity, we get [25]

〈vr〉 = 1

h

∫ h

0
vrdz = − 1

rh

∫ r

0
r

(
J

ρ
+ ∂h

∂t

)
dr, (3)

and using the continuity equation div v = 0, we can derive expressions for vr and vz:

vr =
{

1

μ

∂σ

∂r
+ 2r

r2
w

∂h(0, t )

∂t
− rJ0

ρr2
w[1 − (r/rw )2]3/2

}[
3z

h(r, t )
− 2

]
z

4

+ 3zr2
w

2rh2(r, t )

[
z

h(r, t )
− 2

]{
J0

ρ
− J0

√
1 − (r/rw )2

ρ
+ r2

4r2
w

∂h(0, t )

∂t
[2 − (r/rw )2]

}
, (4)
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vz = − z2

4

{
1

μr

∂σ

∂r
+ 1

μ

∂2σ

∂r2
+ 4

r2
w

∂h(0, t )

∂t
− J0[2 + (r/rw )2]

ρr2
w[1 − (r/rw )2]5/2

}[
z

h(r, t )
− 1

]

− 3z2h(0, t )

h3(r, t )

[
z

h(r, t )
− 2

]{
J0

ρ
− J0

√
1 − (r/rw )2

ρ
+ r2

4r2
w

∂h(0, t )

∂t
[2 − (r/rw )2]

}

−
{

1

μ

∂σ

∂r
+ 2r

r2
w

∂h(0, t )

∂t
− rJ0

ρr2
w[1 − (r/rw )2]3/2

}
z3rh(0, t )

2h2(r, t )r2
w

− z2

2h2(r, t )

[
z

h(r, t )
− 3

]{
J

ρ
+ ∂h(0, t )

∂t
[1 − (r/rw )2]

}
. (5)

The rate of decrease of the liquid-air interface at the apex h(0, t ) can be estimated by assuming
that it decreases due to the evaporation of water and to the dissolution of the salt substrate. The
average rate of decrease in the height of the drop at the top due to evaporation is equal to h(0,0)

tf
.

The change of the position of the liquid-air interface due to dissolution can be estimated from the
mass conservation using the following assumptions: the volume occupied by the crystalline salt is
filled with a saturated solution of this salt, the solution of the drop becomes saturated in a time
approximately equal to the characteristic salt diffusion time τD, and the liquid-substrate interface is
a spherical segment. Thus, the depth of the pit in the center of the substrate is

h(0, 0)
ρwaterCmax

ρNaCl(1 − Cmax)
≈ 10−1h(0, 0) (6)

and

h(0, τD) = h(0, 0)
ρwater(ρNaCl − ρsolCmax)

ρNaCl ρsol(1 − Cmax)
. (7)

Here ρwater is the density of water, ρNaCl is the density of NaCl crystal, ρsol is the density
of a saturated aqueous solution of NaCl. The average rate of decrease in the drop apex due to
dissolution is h(0,0)−h(0,τD )

τD
. Hence one obtains h(0, t ) = h(0, 0) − [ h(0,0)

tf
+ h(0,0)−h(0,τD )

τD
]t in linear

approximation.

B. Numerical computation details

Numerical calculations were carried out from the time when a clean drop of water was deposited
onto the substrate, at t = 0, to the moment of time slightly exceeding τD. The calculations were
carried out by the finite element method using the program FlexPDE for region I (Fig. 7). The
equations were reduced to a dimensionless form. The dimensionless quantities were determined
as follows: r̃ = r/rw, z̃ = z/h(0, 0), t̃ = t/tf, h̃ = h/h(0, 0), ṽr = vrtf/rw, ṽz = vztf/h(0, 0), and
J̃0/ρ = J0tf/[ρh(0, 0)].

The physical properties of the solution, density ρ, viscosity µ, and diffusion coefficient of the
salt components in water D, are constant with concentration. The surface tension σ depends on the
salt concentration C linearly [26]. The calculations were carried out for several temperatures within
the range 20–60◦C. At the first stage, the salt concentration in the solution was calculated [Eq. (1)].
At the second stage, the velocity field in the solution was determined [Eqs. (4) and (5)] taking
into account the salt concentration gradient at the liquid-air interface. The values of the physical
parameters of the pure water and of the aqueous solution of NaCl at different temperatures were
taken from Refs. [26–30].

C. Internal flows

Once the seeded drop of ultraclean water is placed onto the horizontal salt substrate, the latter
dissolves. At the same time, the drop volume decreases due to evaporation. The reverse flow within
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FIG. 8. Distribution of salt concentration C in the drop at T = 60◦C at t = 0.01tf = 0.6 s (left) and t =
0.06tf = 3.6 s (right), with tf = 60 s. The concentration is normalized by Cmax, and the coordinates r and z
are normalized by rw and h(0, 0), respectively. The average concentration value, averaged over the drop, is
C̃mean = 0.738478 (left) and C̃mean = 0.994449 (right).

the drop near the substrate, which is observed at the beginning of the experiments (Fig. 4), opposite
to the regular outward capillary flow [3], may originate from the dependence of the surface tension
on the salt concentration, i.e., from a solutal Marangoni flow. Indeed, the surface tension of the
solution increases with an increase in the salt concentration. When the substrate starts to dissolve,
immediately after placing the drop, the surface tension at the edge of the drop [for r ≈ rw, where
h(r, t ) is small] will be greater than at the center of the surface [for r ≈ 0, where h(r, t ) is larger].
Therefore, the Marangoni flow will be directed along the surface from the center toward the edge of
the drop. Thus, near the substrate, the flow will be directed from the edge to the center to ensure the
continuity of the flow [31].

Subsequently, the salt concentration in the solution will gradually equalize during the diffusion
of the salt and the surface tension will become uniform after a time of the order of the characteristic
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FIG. 9. r component of the salt concentration gradient on the liquid-air boundary of the drop of Fig. 8
at different times: 0.005tf = 0.3 s, 0.01tf = 0.6 s, 0.06tf = 3.6 s, 0.175tf = 10.5 s. The concentration is
normalized by Cmax and the coordinate r by rw.
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FIG. 10. Velocity field in the drop of Fig. 8 at times t = 0.005tf = 0.3 s, t = 0.06tf = 3.6 s, t = 0.16tf =
9.6 s, and t = 0.175tf = 10.5 s. The r component of the velocity vr is normalized by rw/tf = 1.7 × 10−5 m/s,
the z component of the velocity vz is normalized by h(0, 0)/tf = 1.7 × 10−6 m/s. There is a multiplicative
factor of the velocity values of 104 at t̃ = 0.005 and 103 at t̃ = 0.06 in the color bar.

time of salt diffusion in water τD, and the dominant flow at the solid-liquid interface will be directed
towards the edge of the drop, as during evaporation on an inert substrate [3]. To validate or invalidate
this interpretation, hydrodynamic simulations of the system, using the experimental parameters used
as inputs, have been carried out.

In Figs. 8–11, the results of numerical calculations at T = 60◦C are shown. In the simulations,
the radius of the drop base is rw = 1.02 × 10−3 m, the height of the drop apex at the beginning
of evaporation is h(0, 0) = 0.1 × 10−3 m, the drying time is tf = 60 s [cf. Fig. 3 (right)] and the
characteristic salt diffusion time is τD ≈ 3 s.

The salt concentration in the drop increases due to the dissolution of the substrate and becomes
almost uniform during the first 10 s (see Fig. 8). The lines of constant concentration are curved and
the distance between them is minimal at the liquid-air interface, where the concentration gradient
exhibits therefore a maximum. This gradient decreases and shifts to the top of the drop with time,
as shown in Fig. 9.

A vortex is observed in the velocity field, the center of which shifts with time to the center of the
drop (Fig. 10). The moment of disappearance of the vortex was interpreted as the transition between
the Marangoni regime, where the incoming flow is predominant, and the capillary regime, where
the outgoing flow dominates. This moment occurs at time ttr = 10.5 s. To confirm this statement, we
have additionally plotted the dependence of the velocity r component on the coordinate r at different
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FIG. 11. Dependence of the r component of the velocity vr on the r coordinate at the height h(0, t )/24
in the drop of Fig. 8 at different times: 0.005tf = 0.3 s, 0.01tf = 0.6 s, 0.06tf = 3.6 s (left), 0.16tf = 9.6 s,
0.17tf = 10.2 s, and 0.175tf = 10.5 s (right). Inset: the same dependence for times from 0.01tf to 0.17tf (from
right to left) with a step of 0.01tf in the neighborhood of vr = 0, evidencing the inward motion of the stagnation
line, i.e., of the intersection of the curves with the vr = 0 axis. The r component of the velocity vr is normalized
by rw/tf = 1.7 × 10−5 m/s.

heights in the droplet at different times near the transition. At ttr, when the flow regime changes,
this velocity component takes on only nonnegative values, whatever the height (see Fig. S4 in the
Supplemental Material [22]). The radial speed of the inward flow decreases with time [Fig. 11 (left)]
before reversing progressively [insert of Fig. 11 (right)] and becoming uniformly and constantly
outward [Fig. 11 (right)].

A similar analysis performed at 20◦C can be found in Figs. S1– S5 of the Supplemental Material
[22]. Figure S5 in particular exhibits values of the velocity without normalization. Whereas the
lubrication model permits to keep all the necessary ingredients of the phenomenon in a tractable
manner, thereby simulating the correct flow regimes, it is not intended to bring values in quantitative
agreement with the experiments, as can be seen in comparing Figs. 5 and S5.

So far, the trends of the velocities from the numerical simulations are similar to the ones observed
in the experiments and confirm our assumption of a change of leading hydrodynamic regime
stemming from the concentration homogenization at the beginning of the evaporation.

IV. DISCUSSION

To get further in the experiment-simulation confrontation, Fig. 12 shows the dependence on time
of the position of the point rst at which the radial component of the velocity at height h(0, 0)/24
vanishes (vr = 0) at 20 and 45◦C, obtained from graphs similar to the inset in Fig. 11, and the
experimental corresponding values from Fig. 6.

Regarding the crudeness of the assumptions, the similarity between the trend of the experimental
and numerical rst/rw(t/tf ) curves is striking. Both exhibit the inward motion of the stagnation curve,
with an inflection point sharing an initial slow movement and a faster migration at the end. Both
results show that the temperature change does not modify the nature of the phenomenon but only
its kinetics. This agreement supports the point that the ingredients included in the model (water
evaporation, salt dissolution and diffusion, concentration dependence of the liquid surface tension)
are sufficient to explain the flow patterns during the experiments.

To estimate the variability of the stagnation line motion with the drop size, numerical calculations
were also performed at the two temperatures for a drop of radius rw = 0.7 mm (see Fig. S6 of the
Supplemental Material [22]), which shows trends similar to the rw = 1.02 mm drop.
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FIG. 12. The lines are the dependence of the radial position of the point rst at which the radial component
of the velocity [at height h(0, 0)/24] vanishes (vr = 0), on time, at T = 20 and 45◦C. The coordinate r is
normalized by rw and the time t is normalized by tf. The symbols correspond to the experimental data.

A schematic representation of the mechanisms explaining the flow reversal is shown in Fig. 13. It
is worth mentioning that this process, based on a concentration effect, widens the possible source of
flow inversion in evaporating drops. Indeed, two previous cases of stagnation line, close to the triple
line, had been observed at the surface of a drop evaporating on an inert substrate. In the first case,
for a pure water drop, this flow reversal had been interpreted as the consequence of the existence
of a maximum temperature at a given height of the liquid-air interface [32]. This thermal peak
induces a minimum of the surface tension gradient, which creates two opposite Marangoni streams,
flowing away from this point, where the in-plane liquid velocity is vanishing. The second case also
corresponds to a thermal Marangoni flow, stemming here from the previous heating of a colloidal
suspension drop deposited on a nonheated substrate, competing with the usual capillary flow [33].
Therefore we have shown here that, not only thermal Marangoni flows, but also solutal Marangoni
flows may induce a stream arrest during drop evaporation.

FIG. 13. Overall scheme of the flows inside the droplet. As the concentration Cmin is smaller at the top of
the droplet than the concentration Cmax at the triple line, the concentration gradient induces a surface tension
gradient (green arrow), so a Marangoni convection loop (yellow arrows), hindering the capillary outward
coffee-stain flow (orange arrow). Starting from the three-phase line, the concentration gets progressively
uniform, which stops the Marangoni flow. The vertical black dashed line at position rst is the stagnation line
between the Marangoni and coffee-stain flows.
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V. CONCLUSION

We have investigated the flows inside a drop evaporating onto a soluble substrate, both ex-
perimentally, with µ-PIV measurements, and numerically, with finite-elements simulations of the
hydrodynamic equations. A crossover has been observed between two regimes in the form of a
flow reversal: at some point, an outward flow takes over the initial inward flow until the end
of the evaporation. The crossover is characterized by a moving stagnation line, where the fluid
radial velocity vanishes, starting from the edge and moving rapidly toward the center of the drop.
Thanks to the confrontation of experiments and simulations, we have interpreted this behavior as
a consequence of the change in the concentration field inside the drop. In the first regime, the salt
starts to dissolve in the water drop. This dissolution generates a concentration gradient, which in
turn induces a surface tension gradient at the drop-free surface, the tension being higher at the drop
edge. This surface tension gradient leads to an outward Marangoni flow along the surface and an
inward flow near the substrate. In a few tens of seconds, the concentration homogenizes, which
stops the Marangoni flow. Subsequently, the expected centrifugal flow takes place, stemming from
the pinning of the triple line, which requires a constant replenishing of the drop edge. This capillary
flow contributes to the formation of the original hollow rims left by the evaporated drop in this
peculiar configuration.
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