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Étude d'un modèle avec endommagement

On considère un modèle en Mécanique des Solides qui prend en compte le phénomène d'endommagement des matériaux. L'étude de cette loi de comportement générale conduit à une équation différentielle multivoque analogue à un processus de rafle au sens de J.-J. Moreau, à la différence près que sa fonnulation fait intervenir un produit scalaire dépendant de l'état (inconnu) du système. Un exemple d'application est présenté.

Study of a mode! involving damage

Abstract -A mode/ in Solids Mechanics which takes into accoum the damage of materials is considered. The study of these constitutive equations requires to solve a certain multivalued differential equatîon which looks like a sweeping process in the sense of J.�J. Moreau, with the difference that an inner product depending on the (unknown) state of the sy.1iem is used in its formulation. An example of application is given.

l. LE MODÈLE. -Le phénomène d'endommagement d'un matériau s'exprime à travers la dépendance des caractéristiques élastiques de ce milieu par rapport à l'histoire des déformations subies [START_REF] Lemaitre | Mécanique des matériaux solides[END_REF]. Considérons la loi de comportement générale suivante, dans laquelle les caractéristiques dépendent d'une manière assez peu restrictive de variables internes. L'évolution de celles-ci est régie par une condition de normalité qui constitue une variante du principe de dissipativité maximale des Matériaux standard généralisés.

On note X l"espace euclidien des tenseurs 'I d'ordre 2 symétriques. muni du produit scalaire usuel 'J. 'T*. En un point quelconque du milieu considéré, la dépendance des propriétés mécaniques par rapport à l"histoire des déformations ( endommagement. écrouissage ... ) est décrite à l'aide d'un nombre fini de paramètres ll 1 , ... , Il" (de nature scalaire ou tensorielle). Ces variables internes (ll 1 , ... , c,,,)=ll définissent l'état d'irréversibilité dans un espace euclidien Y dont le produit scalaire est noté Il. Il*. On appelle contrainte généralisée le couple (cr, ll)=s, où cr est le tenseur des contraintes usuel. La variable s prend ses valeurs dans l'espace produit E = X x Y muni du produit scalaire canonique s. s* =a. a*+ ci. ci*.

Considérons la loi de comportement suivante, dans laquelle s désigne le tenseur des petites déformations

(!) (2) (3) f(s)�0 Ë=L(s)Ô-+Ê"" (Ê'", -M(s)CÏ)EN K s.
Dans ces relations, le point exprime la dérivation par rapport au temps, le critère f: E---> IR est une fonction convexe telle que f (0) < 0, K = { rE E :f (r)� 0} et NKs désigne le cône normal à K en s, i.e. l'ensemble des n E E tels que n. (rs) � 0 pour tout r E K. D'une manière générale, la condition d'admissibilité sur cr en (l) dépend de Il (modélisa tion de l'écrouissage). L'opérateur linéaire des c0mpliances élastiques L (s) E 2' (X) dépend de Il (description de l'endommagement) et -éventuellement -de cr (prise en compte d'une différence de comportement en traction et en c•:• mpression). La dépendance par rapport à l"état s de l'opérateur linéaire M (s)E 2' (Y) est -naturellement -destinée à Note présentée par Maurice ROSEAU.
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Allure de la courbe de traction uniaxîale pour certains composites céramique-céramique [2].

Simplified uniaxia! tension curve

for some ceramic-ceramic composite materials [2].

offrir une plus grande flexibilité de la modélisation de l'écoulement par une condition de normalité. 2. ÉTUDE DE LA LOI DE COMPORTEMENT. -Dans une première étude (locale) de la loi de comportement, on se donne un trajet de déformation E (1) dans l'intervalle de temps (0, T]. La réponse en contrainte généralisée s(t)=(a(t), a(t)), fournie par le modèle (1), (2), (3), vérifie l'inéquation d'évolution suivante, où on a noté e = ( E, 0) (4)

On note A

A(s(t))s(t).(r-s(t));;;é(t).(r-s(t))

quel que soit rEK, avec s(t)EK.

Ce problème d'évolution s'apparente à un processus de rafle au sens de J.-J. Moreau [START_REF] Moreau | Evolution problem associated with a moving convex set in a Hilbert space[END_REF] en considérant un produit scalaire r, r* ➔ A (s (t)) r .r* qui dépend de l'état s(t) du système. Cette différence par rapport au cas classique empêche l'application directe de résultats mathématiques connus.

On suppose ici que les compliances élastiques généralisées vérifient, outre les conditions classiques de symétrie et de coercivité, une condition de Lipschitz (par rapport à s) sur les bornés de E. Précisément, les hypothèses sont les suivantes, en notant Ir 1 = (r. r) 1 1 2

(5) /'application s ➔ A (s) de E dans se (E) est telle que : A(s)r.r*=r.A(s)r* et ,. A(s) r.r;;;c/r/ 2 quels que soient s, r, r* E E où c est une constante strictement positive, (6) pour tout sous-ensemble borné B de E on a :

Il A (s)-A(r) 1/.,, ,s, + 11 A (s) -1 -A(,)-1 llzcE,::â1 (B) Ir-s 1 quels que soient r, SEE où l(B) ne dépend que de B. THÉORÈME 1. -Supposant [START_REF] Moreau | Evolution problem associated with a moving convex set in a Hilbert space[END_REF], ( 6) et se donnant e dans W 1 • 00 (0, T; X) ( 1 ), ainsi que so dans K, il existe une unique fonction s dans w i . 00 (0, T; E) qui vérifie /'inéquation (4) p.p. IE]0, T[ et la condition initiale s(0)=s 0 .

Idée de la preuve. -Une méthode de pénalisation classique de l'inéquation (4) conduit à une équation différentielle ordinaire localement lipschitzienne (le caractère local disparaissant dans le cas classique où A (s) = A0). Grâce à des estimations a priori découlant de la coercivité uniforme de A (s), on montre l'existence d'une (unique) solution globale (dans [O, T]) au problème pénalisé, qui appartient à un borné de w i . 00 (O. T; X) (borné indépendant du paramètre de pénalisation). Par passage à la limite, on obtient alors une solution s(t) de (4).

Si s et s* sont deux solutions, on considère la fonction numérique h (t) = A (s (t)) r (1). r (t) où r=s-s*.

On a (A(s)s-A(s*)s*

).r�0 p.p. Dans le cas classique, ceci suffit à conclure que r = 0. Ici, une étape supplémentaire pour obtenir l'unicité de la solution fait intervenir les estimations ainsi que la propriété de Lipschitz de A (.) sur les bornés.

3. UNE APPLICATION. -Certains types de matériaux composites céramique-céramique présentent, lors d'un essai de traction dans une direction de fibre, le comportement avec endommagement schématisé sur la figure ci-contre [2]. Dans le cadre de modélisation précédent, définissons une loi de comportement simplifiée qui soit identifiable à l'aide des renseignements expérimentaux disponibles.

L'essai uniaxial permet de déterminer numériquement le module élastique E (y) et le module tangent F (y) en fonction de la variable y, définie par la valeur actuelle du seuil en contrainte, comme le suggère la figure. Sous l'hypothèse des contraintes planes dans le plan défini par deux directions orthogonales de fibres, on pose a;= ( a; 1 , a: 2 ) où a:, joue le rôle de la variable y dans la i-ième direction de fibre, tel que cela sera précisé plus loin.

Considérons la condition d'admissibilité sur cr (qui découle du choix de a; 1 et a: Pour la loi de comportement ainsi particularisée on peut s'assurer de la validité des hypothèses introduites plus haut. En s'appuyant alors sur le théorème l, on vérifie que l'on a, avec la notation x + =max(x, 0): a:, (1) = max ( cr,, ( t' ) -s 0) + .

t':;iît

  (s) l'opérateur des compliances élastiques généralisées défini dans se (E) par: A(s)s*=(L(s)a*, M(s)a*) pour tout s*=(a*, a*). Dans le cas des Matériaux standard généralisés de Nguyen Q.S. (1], la matrice des compliances élastiques généralisées est définie comme la Hessienne de la fonction conju guée de l'énergie libre supposée fortement convexe. La loi de comportement (1 ), (2), (3) apparaît comme une extension du modèle des Matériaux standard généralisés à énergie libre quadratique séparée. Notons que, dans ce dernier cas, la loi d'écoulement (3) s'interprète comme un principe de dissipativité maximale.
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 2 2 ) : crii �so+a.i, i=let2 où s 0 est le seuil en contrainte initial (cf. fig.) et en se plaçant dans le repère défini par les directions de fibres. Cette condition peut être écrite sous la forme (l) en posant: J(s)=max (J 1 (s), f 2 (s)) Concernant la spécification de la matrice des compliances élastiques L (cr, a;), indiquons, par exemple, que les modules de Young directionnels E, sont choisis ainsi E 1 =E* si cr 11 <0 où E• est le module élastique en compression uniaxiale et a une constante de couplage phénoménologique donnée positive. La permutation des indices 1 et 2 fournit la définition de E Dans la loi d'écoulement (3) la matrice 2 x 2 M ( cr, a;)= (M,) est prise diagonale avec : M,,=N(a:,) où N(y)=F(y)-1 -E(y)-1 .