
HAL Id: hal-03789625
https://hal.science/hal-03789625v1

Submitted on 19 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Programming Heterogeneous Architectures Using
Hierarchical Tasks

Mathieu Faverge, Nathalie Furmento, Abdou Guermouche, Gwenolé Lucas,
Raymond Namyst, Samuel Thibault, Pierre-André Wacrenier

To cite this version:
Mathieu Faverge, Nathalie Furmento, Abdou Guermouche, Gwenolé Lucas, Raymond Namyst, et
al.. Programming Heterogeneous Architectures Using Hierarchical Tasks. HeteroPar 2022 - twentieth
international workshop, Aug 2022, Glasgow, United Kingdom. pp.12. �hal-03789625�

https://hal.science/hal-03789625v1
https://hal.archives-ouvertes.fr

Programming Heterogeneous Architectures
Using Hierarchical Tasks

Mathieu Faverge, Nathalie Furmento, Abdou Guermouche, Gwenolé Lucas,
Raymond Namyst, Samuel Thibault, Pierre-André Wacrenier

LaBRI/Inria/University of Bordeaux/CNRS/Bordeaux INP
firstname.lastname@inria.fr

Abstract. Task-based systems have gained popularity as they promise
to exploit the computational power of complex heterogeneous systems. A
common programming model is the so-called Sequential Task Flow (STF)
model, which, unfortunately, has the intrinsic limitation of supporting
static task graphs only. This leads to potential submission overhead and
to a static task graph not necessarily adapted for execution on hetero-
geneous systems. A standard approach is to find a trade-off between the
granularity needed by accelerator devices and the one required by CPU
cores to achieve performance. To address these problems, we extend the
STF model of StarPU [5] to enable tasks subgraphs at runtime. We
refer to these tasks as hierarchical tasks. This approach allows for a more
dynamic task graph. Combined with an automatic data manager, it al-
lows to dynamically adapt the granularity to meet the optimal size of the
targeted computing resource. We show that the model is correct and we
provide an early evaluation on shared memory heterogeneous systems,
using the Chameleon [1] dense linear algebra library.

Keywords: Multicore; accelerator; GPU; heterogeneous computing; task graph;
programming model; runtime system; dense linear algebra

1 Introduction

Due to the recent evolution of High Performance Computing systems toward
heterogeneous multicore architectures, many research efforts have recently been
devoted to the design of runtime systems that support portable programming
techniques and tools to exploit the complex hardware. Runtime systems with ma-
ture implementations are now available both for regular homogeneous multicore
systems and for complex heterogeneous systems. Standards like OpenMP (since
version 4.0) support the task-based paradigm with applications represented as
direct acyclic graph (DAG) of tasks.

However, the task-based paradigm poses several problems when trying to
exploit heterogeneous platforms efficiently. First, the computing resources of
heterogeneous platforms have diverse characteristics and requirements. GPU
devices typically favor large data sets, whereas conventional CPU cores reach

peak performance with fine-grain kernels working on a reduced memory foot-
print. Systems usually have a much larger number of CPU units than GPUs,
having more small tasks may lead to better performance. Several efforts have
tried to tackle this problem either by finding the best trade-off between the opti-
mal granularity of each device [1,7,17], or by aggregating CPU cores to process
a task which was meant to be executed by an accelerator like a GPU [9, 15].
Alternatively, some preliminary work has considered splitting the tasks on CPU
cores [18]. Even though these approaches are efficient in specific contexts like
dense linear algebra, they suffer from the fact that the task graph is static and
does not allow to select an alternative granularity for a given operation at run-
time. As an example, when designing linear algebra solvers based on low-rank
approximation algorithms, it is almost impossible to statically predict the right
DAG to ensure good numerical accuracy [2, 6, 8].

These runtime systems all use high-level descriptions of dependencies to build
the task graph at runtime, and then schedule the corresponding computations
on available resources. Several approaches are used to build the task graph. Most
of the previously cited runtime systems rely on the so-called Sequential Task-
Flow model (e.g. OpenMP, StarSS, StarPU) to build the task graph: by
relying on data access-modes and a sequential submission order, dependencies
between tasks can be inferred through data dependency analysis [3] ensuring
the so-called Sequential Consistency at runtime. Other runtime systems such
as PaRSEC use the parameterized task-graph programming model (PTG) [10]
where the task graph is unrolled at runtime using a high-level description of
the dataflow corresponding to the computations. Alternatively, other runtime
systems use a different paradigm for expressing computations. Legion describes
logical regions of data to express the data flow and dependencies between tasks.
All these programming models differ with respect to usability and the overhead
induced on the underlying runtime system.

In this paper, we propose a new type of task, namely the hierarchical tasks,
which can transform themselves into a new task-graph dynamically at runtime.
Programmers only need to provide hints stating which tasks can be transformed
into a hierarchical task. The runtime system can then delay the submission of
parts of the task graph to support dynamic implementation selection, to par-
allelize the task insertion process, and to strongly reduce the number of tasks
in the runtime system. This approach is similar to what is done in OpenMP
for the nested task-based parallelization scheme. However, we extend it to han-
dle heterogeneous platforms while expressing fine grain dependencies. This is
possible thanks to an advanced data manager which can dynamically and asyn-
chronously change the data layout. The proposed model associated to these
hierarchical tasks addresses the issues mentioned above: 1) How to make the
task graph more dynamic? 2) How to reduce the overhead of the runtime sys-
tem? 3) How to overcome the intrinsic limitation of the sequential task flow
submission process? While this model is generic and targets distributed het-
erogeneous architectures, in this paper, we focus on an initial implementation
for shared memory heterogeneous architectures. Our contribution is two-fold: 1)

We present an advanced data management engine which supports asynchronous
data layout modification, 2) We show how we extend the sequential task flow
model to support hierarchical tasks and present our implementation within the
StarPU runtime system.

2 Related Work

Several efforts have targeted the problem of reducing the overhead of task-based
runtime systems (mainly for those based on the sequential task flow model) or
enhancing the amount of parallelism provided by such systems. [4] analyzes the
limiting factors in the scalability of a task-based runtime system and proposes
individual solutions for each of the listed challenges, including a wait-free de-
pendency system and a scalable scheduler design based on delegation instead of
work-stealing. Alternative approaches consider advanced dependency manage-
ment. For instance, [11] proposes an eager approach for releasing data depen-
dencies. Following this approach, the execution of tasks will not be delayed until
their predecessor tasks completely finish their execution. Instead, tasks will be
launched for execution as soon as their data requirements are available. Alterna-
tively, [15] introduces worksharing tasks. These are tasks that internally leverage
worksharing techniques to exploit fine-grained structured loop-based parallelism
without requiring a barrier.

The closest contribution to our proposition from the perspective of task de-
pendencies was introduced in [16] as the concept of weak dependencies. It is
an extension of the OpenMP task-nesting model which enhances the dataflow
model of OpenMP by supporting fine-grained dependencies between any set
of tasks. Our contribution is a generalization of the weak dependency concept
to the heterogeneous case where memory consistency is not ensured by the un-
derlying hardware, thus needing an advanced data manager (see Section 3).
Alternatively, some preliminary work targeting heterogeneous architectures has
considered splitting the tasks when assigned to CPU cores in the context of
ParSEC [18] and XKaapi [12].

From the point of view of advanced/dynamic task management and genera-
tion, several efforts have been made to allow task-based runtime systems to have
a more dynamic expressiveness. In TaskFlow [13], advanced tasking schemes are
introduced including dynamic, composable and conditional tasking. Dynamic
tasking, in particular, allows to dynamically generate a sub-DAG from a given
task. However, a synchronization is added at the end of each hierarchical task
to ease the dependencies management. Furthermore, data management must be
handled by the programmers: it is their responsibility to change the layout of
data when needed. [14] introduces the IRIS runtime which has the ability to
perform dynamic task partitioning (either performed by the user or automati-
cally via a polyhedral compiler). However, no details were provided to illustrate
how dependencies are handled in this context. Finally, an advanced runtime
system supporting hierarchical tasks in the context of low-rank linear algebra
solvers is presented in [6]. In this work, hierarchical tasks are introduced and the

dependencies are expressed at the finest level. However, the data management
is straightforward since the partitioning of data is performed statically at the
beginning of the execution.

3 Automatic Data Management

Data handling is at the heart of StarPU both to automatically infer dependen-
cies between tasks in the STF model and to automatically manage data transfers
between the different memory banks of a distributed/heterogeneous system. To
benefit from these automation, applications must register the data that are han-
dled by the tasks. To do so, StarPU provides an opaque data structure called
handle which is an abstract view of a registered data. Handles are coupled with
an access mode (read-only, read-write, ...) and are used as task parameters. It
is mandatory for a task to access a piece of data through the associated handle.
To ease data manipulation, StarPU brings the notion of data filter, a tool to
partition data associated with a handle into subdata parts associated with new
subhandles. Indeed, instead of registering all data subsets independently, it is of-
ten more convenient to register a large piece of data and to recursively partition
it. Once a handle is partitioned, we can observe that the same piece of data can
be designated simultaneously by several handles. Data in read-only access mode
can advantageously be accessed simultaneously at different partitioning levels by
several tasks. However, when a data is accessed in write access mode, this access
must be exclusive for coherency purpose. This property is ensured by StarPU
when a single partitioning is used for a data, but may be violated when several
handles point to the same data. To deal with this problem, StarPU provides
functions to invalidate other handles to ensure they cannot be used to access
their underlying data, and to unpartition subhandles back into the main handle
to gather the subdata.

We propose a mechanism to automate the management of several simulta-
neous partitions. This mechanism enhances StarPU such that it automatically
inserts partition or unpartition tasks as needed. First, programmers need to
define the partitioning scheme through the plan operation which declares the
partitioning to StarPU, and can be seen as the declaration of a new set of sub-
handles. Once a plan is performed, it is possible to submit tasks using the initial
handle or any of the subhandles even if the actual partitioning has not been done
yet. Furthermore, several partitioning schemes can be planned simultaneously.

The data manager will then handle the actual partitioning tasks and data
coherency. At runtime, StarPU will introduce coherency synchronization: when
a task is ready to be executed, StarPUmust ensure that the partition associated
with each handle it uses is valid. If a data is accessed in read-only mode, StarPU
will allow different partitioning to coexist. As soon as a data is accessed in read-
write mode, StarPU will automatically (and recursively) unpartition subdata
and activate only the partitioning leading to the handle being written to. Figure 1
shows a matrix on which two partition plans are defined. The matrix is first

initialized through its root handle, then modified using the vertical partitioning,
and finally checks are performed in both horizontal and vertical stripes.

Figure 1a shows the state of the DAG and the data-layout after the execution
of the plan operations and the insertion of the initialization task. With the first
task using a vertical stripe, StarPU will automatically insert the corresponding
partitioning task (see Figure 1b). The same scheme is then applied when sub-
mitting tasks working on the horizontal layout and vertical layout in read-mode.
One should note that Cv1

and Cv2 share the same vertical layout as V1 and
V2, so no partition operation is needed for these tasks. On the contrary, tasks
CH1 and CH2 do not share any handles with those using the vertical layout.
However the data manager knows that these handles share a common ancestor
(the whole matrix) and thus it will insert as needed the unpartition/partition
tasks to make the data available to the tasks using the horizontal layout. This
is illustrated in Figure 1c where the Uv and Ph tasks are inserted, making the
tasks using the horizontal layout depend on them. Finally, when the partition
needs to be cleaned, the final unpartition task is inserted (see Figure 1d).

I I PV

V1

V2

I PV

V1

V2

CV1

CH1

CH2

CV2

UV PH I PV

V1

V2

CV1

CH1

CH2

CV2

UV PH UH UV

(a) Step 1. (b) Step 2. (c) Step 3. (d) Step 4.

Fig. 1: Example of the behavior of the automatic data manager. Dotted border
stands for inactive, solid border stands for active. Red border stands for read-
write partitioned. Green border stands for read-only partitioned or unpartitioned.
Step 1. Root handle initialization and partition plan, Step 2. Read-Write Vertical
partitions, Step 3. 3 Read-Only active partitions, Step 4. Partition clean.

The previous example illustrates the general behavior of the data manager.
More precisely, during the submission of tasks, each handle in the partitioning
hierarchy can be either inactive (one cannot access the piece of data), read-
write-active (one can read/write to the piece of data or a subpart of it), or read-
only-active (one can only read from the piece of data or a subpart of it). The
main handle at the root of the partitioning hierarchy is always read-write-active.
Each handle in the hierarchy, when active, is additionally either unpartitioned
(one can read/write the piece of data itself), read-write-partitioned (one can only
write to the subpieces of data), or read-only-partitioned (one can read the piece

of data or subpieces of data) ; when it is partitioned, its children subhandles in
the hierarchy are active.

When submitting a task that accesses a handle within the hierarchy, StarPU
will automatically ensure that the handle is active. This possibly requires recur-
sively making its ancestors active by submitting partitioning tasks for them,
possibly starting right from the root handle of the hierarchy. This also possibly
requires recursively submitting unpartitioning tasks for some subhandles which
were previously written to. In the case of the transition from Figure 1b to Fig-
ure 1c, StarPU indeed had to submit the unpartition task of the root handle,
and repartition it.

4 The Hierarchical Task Paradigm

In a formal way, a hierarchical task is simply a regular task that can, at run-
time, submit a sub-DAG instead of performing actual computations. Processing
a hierarchical task consists in the submission of its corresponding task subgraph,
its outgoing dependencies can be released at the end of that submission process.
To ensure the portability with heterogeneous platforms, coherency synchroniza-
tion tasks are submitted along the sub-graph to ensure a correct execution by
connecting the sub-DAG with the rest of the DAG. Hierarchical tasks represent
an elegant answer to: 1) the problem of adapting the granularity of tasks to the
device executing them, 2) the question of the reduction of the amount of active
tasks in the runtime system, 3) the problem of the dynamic selection of the
implementation of a given operation in the application. Introducing hierarchical
tasks in a task-based runtime system needs to respect the following constraints
which aim at having a general implementation of such a paradigm. First of all,
the depth of the hierarchy is not limited. Secondly, Programmers express their
task-graph at the highest level and only annotate some tasks as possibly hier-
archical. Thirdly, data management needs to be transparent to programmers.
Finally, task dependencies always have to be inferred at the deepest level.

T1

T2 T3

H1 H2

T4

(a) Initial DAG.

T1

T2 T3

P H2

T4

(b) H1 processed.

T1

T2 T3

P

T4

(c) H2 processed.

T1

T2 T3

P U

T4

(d) Auto. U inserted.

Fig. 2: Example of a DAG with 2 hierarchical tasks and 4 regular tasks.

Figure 2a shows an execution scenario for a given task graph where blue
tasks could be transformed into hierarchical tasks. The state of each task (i.e.
node in the graph) is described by its border: 1) a ready task is green (all
dependencies are met), 2) a not-ready task is red (some dependencies are un-
satisfied), 3) an already executed task is black. Thus, we can see in Figure 2a

that T1 has completed its execution making T2 and H1 ready for execution. T2

and T3 execute as normal tasks, while H1 is processed, i.e. its corresponding
subDAG is submitted, resulting to Figure 2b. The dependency between H1 and
H2 is then released, making H2 ready for processing. Furthermore, we can see
that after the processing of H2 (see Figure 2c) the dependencies between the re-
sulting submitted tasks are inferred by the runtime system at the deepest level
of the hierarchy.

We now have to consider how the data coherency will be achieved between the
DAG and the subDAGs. Introducing hierarchical tasks in a task-based runtime
system requires to change the granularity of data dynamically at runtime each
time a hierarchical task has to be processed. We propose to automatically insert a
data management task ahead of a task requiring data which are not in the correct
layout by relying on the data manager introduced in Section 3. Figure 2b shows
the insertion of the partitioning task P (resp. U) ahead of the subgraph produced
by H1 (resp. T4). We can also notice that there is no data management task
between the subgraphs produced by H1 and H2 since they share the same data
layout. Finally, it is important to emphasize that hierarchical tasks are processed
when their dependencies are fulfilled. However the actual computations tasks
submitted by these hierarchical tasks are executed whenever they are ready.
Thus we need to ensure a correct order of the actual computations.

4.1 Ensuring the Correctness of the DAG

We now show why the hierarchical task model to extend the STF model pro-
duces a correct DAG regardless of the depth of the hierarchy. First of all, as
stated above, the STF model infers the dependencies from data access modes of
individual tasks while relying on the sequential consistency. Introducing hierar-
chical tasks makes the submission process parallel while in the STF model, the
submission is done by a single entity. We show that the dependencies respect
the STF model by discussing four simple scenarios which are building blocks
for any general DAG to show its correctness. The two first scenarios (T T

and T H) will not be discussed since they inherently respect the sequential
consistency.

H1 T1

(a) Initial DAG.

P T1

(b) Processing of H1.

P U T1

(c) Insertion of U when T1 is ready.

Fig. 3: Example of a scenario where a task follows a hierarchical task.

Task following hierarchical task. Figure 3 illustrates this scenario (H T). The
main problem is that the regular task is by construction submitted before the
tasks resulting from the hierarchical task (H1 in Figure 3). This may violate the
order required by the sequential consistency. However, the hierarchical task has
changed the data layout before it starts its execution (see Figure 3b). Thus the

task following the hierarchical task (T1 in Figure 3) will request the data layout to
be changed. The data manager will then automatically submit data management
tasks to turn back data to their original layout. These data management tasks
will be inserted ahead of the task in the DAG and will depend on the data
produced by the DAG resulting from the execution of the hierarchical task (see
Figure 3c). Therefore, the data management tasks will ensure that the regular
task T cannot start its execution before the completion of the DAG submitted
by the hierarchical task.

H1 H2

(a) Initial DAG.

P1 H2

(b) H1 processed.

P1

(c) H2 processed.

P1 P2

(d) H11 processed.

P1 P2 U2

(e) Auto. U2 inserted.

Fig. 4: Example of a chain of two hierarchical tasks.

Hierarchical task following hierarchical task. Figure 4 illustrates this scenario
(H H). Since the dependency between the two hierarchical tasks is not released
until the first one has completed its processing, the tasks resulting from the two
hierarchical tasks are correctly ordered making the dependencies between these
tasks coherent with the sequential consistency. This is illustrated in Figure 4
where initially two hierarchical tasks H1 and H2 are submitted (see Figure 4a).
Then H1 is processed (see Figure 4b). Note that in the example, we assume that
the data was previously unpartitioned, and thus a data partitioning task P1 is
needed before the DAG corresponding to H1. Afterwards, H2 is processed (see
Figure 4c) and it does not require any data layout modification. Note that, each
individual task produced by a hierarchical task can itself be hierarchical, and
the same rules can be applied recursively to ensure the correctness of the DAG.
This is illustrated in Figure 4d where the first task submitted by H1, which will
be referred to as H11, is decided to be hierarchical and is processed. We can
also see the partitioning task P2 which was automatically inserted by the data
manager. The resulting task-graph is coherent with the STF paradigm.

5 Experimental Evaluation

To illustrate the potential of hierarchical tasks for handling the coexistence of
multiple levels of granularity, we apply them in a dense linear algebra context1

using the Chameleon library [1]. To do so, we extended the matrix descriptors
in order to describe a hierarchical partitioning of the matrix tiles. Note that
as explained in Section 3, all these partitions are only planned and will be en-
forced, if needed, at runtime. The following experiments were conducted on an

1 https://gitlab.inria.fr/starpu/starpu-papers/heteropar2022 for replication.

https://gitlab.inria.fr/starpu/starpu-papers/heteropar2022

architecture composed of 2 Intel Xeon Gold 6142 of 16 cores each running at
2.6GHz, 2 Nvidia V100, and 384GB of memory. The tile sizes used are the ones
providing the best asymptotic performance for CPUs only (960) and for hybrid
CPU-GPU configuration (2880). Additionally, we provide results for tile size of
320 that provides the best performances on CPU configurations for small matri-
ces. Concerning hierarchical variants we will use the following notation x/y/z/...
meaning that each initial tile is of size x and is partitioned into tiles of size y
which are in turn split into tiles of size z etc. StarPU has been configured to
use a single stream per GPU, to pipeline four events per stream and to use the
DMDA scheduler.

0.0

2.5

5.0

7.5

10.0

0 20000 40000 60000

Matrix order (N)

S
u
b
m

is
si

o
n
 t
im

e
 p

e
r

co
m

p
u
ta

tio
n
a
l t

a
sk

 (
µ
s)

Version: Tile sizes

Hierarchical: 2880 / 960

Hierarchical: 960 / 960

Non-Hierarchical: 960

Fig. 5: Submission cost of computa-
tional tasks for DGEMM with all tiles
partitioned.

0

5

10

15

0 20000 40000 60000

Matrix order (N)

T
F

lo
p
/s

of GPUs

2

1

Version: Tile sizes

Hierarchical: 2880 / 960

Hierarchical: 2880 / 960 / 320

Hierarchical: 2880 / 960 / 480 / 240

Non-Hierarchical: 2880

Non-Hierarchical: 960

Fig. 6: Performance evaluation of
DGEMM with diagonal distribution
of the hierarchical tasks

To evaluate the overhead induced by hierarchical tasks, we consider the graph
of a matrix-matrix multiplication (GEMM) using a tile size of 960. Figure 5 com-
pares the submission time per computational task for that graph in two config-
urations. The ‘960’ curve represents the non-hierarchical case. The ‘960/960’
curve shows the worst possible scenario: the DAG is composed only of hierarchi-
cal tasks and each one of them submits exactly one task when processed. This
doubles the number of tasks submitted as well as heavily increasing the workload
of the data manager making the submission time per computational task roughly
3.5 times slower. Finally, the ‘2880/960’ curve is a more realistic scenario, where
the graph is first submitted at coarse grain (with a tile size of 2880) and then
refined down to the same granularity as the previous configurations (960). In this
case, each individual hierarchical task submits ⌈2880/960⌉3 = 27 regular tasks
when processed, thus amortizing the overhead induced by the management of
hierarchical tasks.

In the following experiments we use a more realistic partitioning of the matrix
where only the diagonal, subdiagonal and superdiagonal tiles are partitioned
recursively. We evaluate the behavior of the GEMM operation on those matrices,
using one and two GPUs (Figure 6). In both cases, the hierarchical versions lag
behind on small matrices, due to the overhead introduced. As the matrix size
increases, the amount of kernels using smaller tiles becomes sufficient to feed
the CPUs and compensates for that overhead. We can also observe that using
more levels of partitioning does not have an impact on performance for this
experiment. Eventually, the number of tasks needed for the computation becomes
large enough that the ‘2880’ curve can start affecting more work to the CPUs
and catches up with the hierarchical curve. All in all, the hierarchical variants
have a good behavior and outperform the regular Chameleon implementation
while relying on simplistic matrix partitioning.

Cholesky Factorization (dpotrf) Cholesky Solve (dposv) Cholesky Inversion (dpoinv)

0
25000

50000
75000

100000
0

25000
50000

75000

100000
0

25000
50000

75000

100000

0

5

10

15

Matrix order (N)

T
F

lo
p

/s

Version: Tile sizes

Non-Hierarchical: 2880
Non-Hierarchical: 960
Non-Hierarchical: 320

Hierarchical: 2880 / 960
Hierarchical: 2880 / 960 / 320

Fig. 7: Performance evaluation of Cholesky type operations (DPOTRF, DPOSV,
DPOINV) with diagonal distribution of the hierarchical tasks.

To better illustrate the expressiveness of hierarchical tasks, Figure 7 shows
results of operations relying on Cholesky decomposition (POTRF): POSV (lin-
ear system solving, in this case of a single vector) and POINV (matrix inversion).
These operations have complex task graphs, and in the case of POINV, validate
the anti-dependency problem (WRITE after READ). We observe a similar be-
havior to the one observed for GEMM. A notable distinction however, is that
we now benefit more from our partitioning scheme, because Chameleon places
all POTRF kernels (which are on the critical path of the factorization) on CPU
cores leading to moderate performance before N ≈ 75000. On the other hand,
thanks to hierarchical tasks, we can partition the tiles along the diagonal and
split those large tasks into subgraphs with a smaller granularity allowing for
better CPU utilization on the critical path. Similarly to the results on GEMM,
the hierarchical tasks are sooner able to take advantage of the performance of

both GPUs and CPUs resources. The sudden drop observed at the end of some
non-hierarchical curves is explained by a conflict between the StarPU sched-
uler data prefetching and eviction in GPU memory. The experimental results
illustrate the interest of hierarchical tasks for tackling the granularity problem
of heterogeneous architectures.

6 Conclusion

In this paper, we propose an extension of the STF model together with an
upgrade of the underlying runtime system in order to overcome the inherent
limitations of the programming model. Our approach introduces a new type of
tasks, the hierarchical tasks, which have the ability to submit at runtime a new
sub-graph of tasks. In addition, to ensure that the parallel submission process
still produces a valid DAG, we introduce a new automatic data manager whose
goal is to handle data layout dynamically by submitting data management tasks
at the right moment.

In the near future, we plan to extend this work in several ways. We first
need to consider the hierarchical tasks from the scheduling point of view, and
answer the question “when does a hierarchical task need to be processed?”. This
requires to consider the amount of tasks in the system and the work assigned
to each resource. Additionally, we will consider the problem of choosing which
subgraph has to be submitted when a hierarchical task is processed. Indeed, to be
able to select the most adapted implementation, we need advanced performance
models which have yet to be designed. Finally, the task graph resulting from the
processing of a hierarchical task has to be efficiently scheduled. More generally,
we want to investigate how this model can be used to implement advanced
irregular algorithms like linear algebra solvers based on low-rank approximation
or sparse solvers. We believe that extending the hierarchical task model to the
distributed memory context will be an elegant answer to the scalability problem
of task-based runtime systems.

Acknowledgment

This work is supported by the french ANR through the Solharis project under the
grant (ANR-19-CE46-0009). Experiments presented in this paper were carried
out using the PlaFRIM experimental testbed2.

References

1. Agullo, E., Augonnet, C., Dongarra, J., Ltaief, H., Namyst, R., Thibault, S., To-
mov, S.: A Hybridization Methodology for High-Performance Linear Algebra Soft-
ware for GPUs. GPU Computing Gems, Jade Edition 2, 473–484 (2011)

2. Akbudak, K., Ltaief, H., Mikhalev, A., Keyes, D.: Tile Low Rank Cholesky Fac-
torization for Climate/Weather Modeling Applications on Manycore Architectures
(2017)

2 https://www.plafrim.fr

https://www.plafrim.fr

3. Allen, R., Kennedy, K.: Optimizing Compilers for Modern Architectures: A
Dependence-Based Approach. Morgan Kaufmann (2002)

4. Álvarez, D., Sala, K., Maroñas, M., Roca, A., Beltran, V.: Advanced Synchro-
nization Techniques for Task-Based Runtime Systems. In: Proc. of PPoPP ’21. p.
334–347 (2021)

5. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.A.: StarPU: A Unified Plat-
form for Task Scheduling on Heterogeneous Multicore Architectures. Concurr.
Comput. : Pract. Exper. 23, 187–198 (Feb 2011)

6. Augonnet, C., Goudin, D., Kuhn, M., Lacoste, X., Namyst, R., Ramet, P.: A Hierar-
chical Fast Direct Solver for Distributed Memory Machines with Manycore Nodes.
Tech. rep. (Oct 2019), https://hal-cea.archives-ouvertes.fr/cea-02304706

7. Bosilca, G., Bouteiller, A., Danalis, A., Faverge, M., Haidar, A., Herault, T.,
Kurzak, J., Langou, J., Lemarinier, P., Ltaief, H., Luszczek, P., YarKhan, A.,
Dongarra, J.: Flexible Development of Dense Linear Algebra Algorithms on Mas-
sively Parallel Architectures with DPLASMA. In: IEEE IPDPS Workshops and
Phd Forum. pp. 1432–1441 (2011)

8. Carratala-Saez, R., Christophersen, S., Aliaga, J.I., Beltran, V., Borm, S.,
Quintana-Orti, E.S.: Exploiting nested task-parallelism in the H-LU factorization.
Journal of Computational Science 33, 20–33 (2019)

9. Cojean, T., Guermouche, A., Hugo, A., Namyst, R., Wacrenier, P.: Resource ag-
gregation for task-based Cholesky Factorization on top of modern architectures.
Parallel Comput. 83, 73–92 (2019)

10. Cosnard, M., Jeannot, E., Yang, T.: Slc: Symbolic scheduling for executing pa-
rameterized task graphs on multiprocessors. In: Proc. of ICPP’99. pp. 413–421
(1999)

11. Elshazly, H., Lordan, F., Ejarque, J., Badia, R.M.: Accelerated execution via eager-
release of dependencies in task-based workflows. The International Journal of High
Performance Computing Applications 35(4), 325–343 (2021)

12. Gautier, T., Lima, J.V.F., Maillard, N., Raffin, B.: Xkaapi: A runtime system for
data-flow task programming on heterogeneous architectures. In: Proc. of IPDPS’13.
pp. 1299–1308 (2013)

13. Huang, T.W., Lin, D.L., Lin, C.X., Lin, Y.: Taskflow: A lightweight parallel and
heterogeneous task graph computing system. IEEE Transactions on Parallel and
Distributed Systems pp. 1–1 (2021)

14. Kim, J., Lee, S., Johnston, B., Vetter, J.S.: Iris: A portable runtime system exploit-
ing multiple heterogeneous programming systems. In: Proc. of HPEC’21. pp. 1–8
(2021)

15. Maroñas, M., Sala, K., Mateo, S., Ayguadé, E., Beltran, V.: Worksharing tasks:
An efficient way to exploit irregular and fine-grained loop parallelism. In: Proc. of
HiPC’19. pp. 383–394 (2019)

16. Perez, J.M., Beltran, V., Labarta, J., Ayguadé, E.: Improving the Integration of
Task Nesting and Dependencies in OpenMP. In: Proc. of IPDPS’17. pp. 809–818
(2017)

17. Valero-Lara, P., Catalán, S., Martorell, X., Usui, T., Labarta, J.: sLASs: A fully
automatic auto-tuned linear algebra library based on OpenMP extensions imple-
mented in OmpSs. J. of Parallel and Distributed Computing 138, 153–171 (2020)

18. Wu, W., Bouteiller, A., Bosilca, G., Faverge, M., Dongarra, J.: Hierarchical DAG
scheduling for Hybrid Distributed Systems. In: Proc. of IPDPS’15. pp. 156–165
(2015)

https://hal-cea.archives-ouvertes.fr/cea-02304706

	Programming Heterogeneous Architectures Using Hierarchical Tasks

