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Abstract

The glymphatic system is the subject of numerous pieces of research in biology. Math-
ematical modelling plays a considerable role in this field since it can indicate the possible
physical effects of this system and validate the biologists’ hypotheses. The available mathe-
matical models that describe the system at the scale of the brain (i.e. the macroscopic scale)
are often solely based on the diffusion equation and do not consider the fine structures formed
by the perivascular spaces. We therefore propose a mathematical model representing the time
and space evolution of a mixture flowing through multiple compartments of the brain. We
adopt a macroscopic point of view in which the compartments are all present at any point
in space. The equations system is composed of two coupled equations for each compartment:
One equation for the pressure of a fluid and one for the mass concentration of a solute. The
fluid and solute can move from one compartment to another according to certain membrane
conditions modelled by transfer functions. We propose to apply this new modelling framework
to the clearance of 14C-inulin from the rat brain.

1 Introduction

The proposed glymphatic system [42] explains clearance of metabolic waste from the brain and
has been the subject of many pieces of research in the past decade [42, 39, 2, 44]. The glymphatic
theory suggests that clearance of metabolic solutes in the brain is facilitated by specific pathways
for exchange between interstitial fluid (ISF) and cerebrospinal fluid (CSF). This exchange occurs
via perivascular spaces (PVSs), small fluid-filled spaces surrounding blood vessels. According
to the glymphatic theory, CSF enters the parenchyma via periarterial spaces and exits it via
perivenous spaces. Furthermore, Iliff et al. [42] suggested that a bulk flow of fluid occurs in the
interstitial space between periarterial and perivenous spaces draining metabolic waste out of the
brain. Understanding the glymphatic system is critically important since its impairment may be
linked to neurodegenerative diseases such as Alzheimer’s disease [83].

Even after a decade of research to verify this theory, many questions remain to be answered:
i) Does the circulation of CSF as described by Iliff et al. [42] (inflow around arteries and outflow
around veins) occur? ii) What are the mechanisms explaining the movement of CSF in the
perivascular spaces? iii) Does convection in the interstitial space occur, and is this flow sufficient
to dominate transport?

In vivo studies using two-photon microscopy have imaged flow along periarterial spaces at
the pial surface in the same direction as blood [12, 62], suggesting these spaces act as an entry to
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the brain. However, the direction and magnitude of flow in penetrating PVS is still debated [8].
Furthermore, the question of the existence of a bulk flow of fluid within the extracellular space
(ECS) as proposed by Iliff et al. [42] remains open. Indeed, some pieces of research indicate that
solute transport in the ECS is dominated by diffusion [6, 39, 91], while others claim that diffusion
alone can not explain the transport of tracer within the brain [99, 82, 95]. In a recent study,
Ray et al. [81] concluded that the transport of large molecules is dominated by convection, given
the expected ECS flow rates reported in the literature. Convection-diffusion equations have been
widely used to study transport within the brain [81, 99, 39, 68, 93, 82, 19]. These works helped to
gain some insights into the relevant mechanisms that may play a role in the clearance of interstitial
solutes. However, in these works, the fluid velocities and concentrations are averaged between
ECS and PVS (and all other routes of transport) to capture the overall spread of solutes. For a
review of current fluid models available for mathematical and computational representations of
the glymphatic system, we refer the reader to [48].

In contrast, coupled discrete-continuous models that can represent different structures such
as blood vessels and tissue have been used to study, for example, drug transport to the lung [30],
the brain [75] and tissue in general [89] with great detail. However, these models require detailed
information on vessel structure and require too many degrees of freedom to study the brain at
the macroscale.

To circumvent these limitations, homogenized models have been successfully applied to rep-
resent infiltration in porous media [41]. Such framework has been successfully applied to rep-
resent the transport of solute and fluid in the ECS and vascular network of vascularized tu-
mors [88, 90, 73]. In full-scale patient-specific geometries, multiple-network poroelastic theory
(MPET) has been used to study exchange between multiple fluid compartments contained within
the (elastic) brain tissue [13, 14, 7, 98, 100, 37, 36]. However, the MPET equations have not yet
been investigated in terms of the transport of tracers or solutes in the context of the glymphatic
system.

In this paper, we therefore develop a homogenized model to describe the glymphatic system
and the blood flow at the scale of the rat brain (Fig 1). To validate the relevancy of our modelling
framework, we study the clearance of 14C-inulin from the rat brain. 14C-inulin is known not to
cross the blood-brain-barrier (BBB) and is therefore well suited for investigating the mechanisms
behind the clearance of large proteins from the brain tissue. Consequently, it has been used in
experimental studies of the glymphatic system (e.g. [104, 35]), which provide reference values
for the expected clearance rates of our model. In particular, the presented multi-compartment
model represents a movement of CSF through different structures, including the PVSs, the ECS
and the vasculature, while the subarachnoid space (SAS) is included via boundary conditions.
This modelling of the fluid movement is coupled to a diffusion-convection equation for each
compartment to represent the clearance of 14C-inulin from the brain. Our model suggests that
without blood filtration, transport is explained mainly by diffusion within the brain. However,
when ISF is allowed to filtrate across the vascular wall, PVS flow is reversed, and clearance from
the ECS is substantially increased.

2 Methods

2.1 Mathematical models

Notations We denote by Ω ⊂ R3 the spatial domain, i.e. the rat brain. We assume that the
boundary ∂Ω of this domain is sufficiently smooth. Therefore, we denote by x ∈ Ω any point
of this domain such that the coordinates are given by x = (x1, x2, x3). Bold symbols will be
used to denote vectors. Since we model the time evolution of the glymphatic system, our time-
space domain is denoted by ΩT = Ω × [0, T ] for some finite T > 0. We test two mathematical
models: A pure diffusion model in a single compartment and a multi-compartment model, which
includes both diffusive and convective transport. When an unknown or a parameter is indicated

2



SA
SSAS

SAS

Figure 1: Illustrative representation of the three test cases. Red arrows indicate the movement of
fluids through the compartments and blue arrows the diffusive movement of 14C-inulin . Double
arrows indicate that the movement could be directed in both directions and is, a priori, not
known. With exception of the blood compartments, the arrows pointing to the outside of any
compartment denotes a connection of this compartment with the subarachnoid space. AEF
denotes the astrocyte endfeet barrier and BBB the blood-brain barrier.
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with a subscript, it denotes its compartment. The subscripts a, c, and v denote the arterial,
capillary and venous blood networks, respectively. Similarly, the subscripts pa, pc, pv denote the
periarterial, pericapillary and perivenous fluid networks. The subscript e indicates the ECS.

The diffusion equation Denoting by ce = ce(t,x) the solute concentration in ISF, the diffu-
sion equation reads

∂ce
∂t

= D∗
e∆ce, ∀x ∈ Ω, t ∈ (0, T ]. (1)

Here, D∗
e is the effective diffusion coefficient of 14C-inulin in the ECS and ∆ = ∇ · ∇ is the

Laplace operator i.e. ∆f = ∂2f
∂x2

1
+ ∂2f

∂x2
2
+ ∂2f

∂x2
3
(for a general scalar function f).

The multi-compartment model To take into account the different structures in which the
fluid flows, we consider the multiple compartments as depicted in the schematic illustrations
given in Fig 1. We denote by J the set of compartments (J can thus be modified to describe
all three test cases shown in Fig 1), and we denote the pressure in the j−th compartment by
pj = pj(t,x) and for the solute concentration, cj = cj(t,x). The fluid flow in our model is
computed via static MPET equations [7, 98] without displacements. The velocity fields are
defined using Darcy’s law [26] for flow in porous media, which stipulates that the velocity is
proportional to the opposite of the gradient of the fluid’s pressure, i.e.

vj = −κj
µj

∇pj , (2)

where κj is the permeability coefficient for the fluid in compartment j and µj is the dynamic
viscosity of the fluid in the compartment. We denote by ϕj the porosity of the j−th compart-
ment (i.e. the relative volume taken by the pores of this compartment). We emphasize that the
compartments are all present at any point x ∈ Ω. Under the assumption of incompressible flow,
then for all x ∈ Ω, t ∈ (0, T ], the equations’ systems for each j ∈ J is given by−∇ · ( κj

ϕjµj
∇pj) = rj ,

∂cj
∂t

− κj
ϕjµj

∇ · (cj∇pj)−D∗
j∆cj = sj .

(3)

Here, D∗
j is the effective diffusion coefficient in the j-th compartment, and rj , sj are the transfer

functions to model the exchanges between the compartments and will be described in the next
paragraph.

Remark 1. For simplicity reasons, we consider the porosity, permeability and diffusion coeffi-
cients to be homogeneous, i.e. no spatial variation is considered for these parameters.

Remark 2. We note that cj denotes the microscopic fluid concentration, which is related to the
macroscopic or total concentration via ctotalj = cj ∗ ϕj.

Transfer functions The transfer functions in System (3) model the exchange of fluid, rj , and
solutes, sj , between the different compartments. These compartments are either separated by
a membrane or directly connected to vessels along the same tree (e.g. an artery branching to
capillaries or the PVS around arteries branching to the PVS around capillaries. We assume the
possibility of PVS around capillaries in line with e.g. [38]).

When the compartments are separated by a membrane, the fluid flows from one compartment
to another due to a difference in pressure which is related to the hydraulic conductivity of the
membrane, i.e.

rj =
1

ϕj

∑
i∈J,i̸=j

γj,i [(pi − pj)− σi,j(πi − πj)] , (4)
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with

γj,i = Li,j
|Si,j |
|Ω|

, (5)

where |Ω| =
∫
Ω 1 dx = 2313 mm3 is the brain volume (computed from our rat brain mesh), Li,j is

the hydraulic conductivity of the membrane separating the i−th and j−th compartments,
|Si,j |
|Ω|

is the ratio between the surface of the membrane and the total volume of the tissue, and σi,j is
the osmotic reflection coefficient for the membrane. This reflection coefficient corresponds to a
specific solute. In this work, we only consider osmotic effects due to plasma cells in the blood
where πj is the osmotic pressure. The solute crosses the membrane due to the combination of
two effects: Either via convection of fluid through the pores of the membrane or via diffusion.
These two effects are modelled by the transfer functions (see e.g. [43])

sj =
1

ϕj

∑
i∈J,i̸=j

λj,i(ci − cj) +
(cj + ci)

2
γ̃j,i(pi − pj − σi,j(πi − πj)), (6)

where this time

λj,i = Pi,j
|Si,j |
|Ω|

, γ̃j,i = γj,i(1− σreflect),

in which Pi,j is the permeability of the membrane separating the i−th and j−th compartments
to the solute and σreflect reflects the solvent-drag reflection coefficient.

In the case of a continuous transition between compartments, such as between arteries and
capillaries, no membrane is present and we set Pi,j = 0. Values for the exchange coefficients
γj,i, γ̃j,i and λj,i are given in Subsection 2.3.

Clearance of 14C-inulin To study the clearance of 14C-inulin from the rat brain, we consider
3 model variations.

We first assume that the bulk flow of fluid in the interstitial space is negligible and transport
occurs only due to diffusion in the interstitial space. Hence, we use Equation (1). Clearance
of 14C-inulin occurs at the brain surface and is modelled by appropriate boundary conditions
described below. This scenario is represented by Test case 1 on Fig 1.

Secondly, we consider a clearance of 14C-inulin due to the glymphatic system. Hence, we
use System (3) with |J | = 4 compartments: ECS, PVS around arteries, PVS around capillaries,
and PVS around veins. Test case 2 in Fig 1 depicts this scenario. CSF is assumed to flow
from the PVS around arteries to the PVS around capillaries or in the ECS. From the PVS
around capillaries, CSF flows to the ECS or the PVS around veins. From the ECS, CSF may be
reabsorbed in the PVS around veins or capillaries. Clearance from the brain may occur at the
brain surface from the ECS, the PVS around veins and the PVS around arteries.

Thirdly, we add the effect of blood vasculature. Indeed, cerebral blood vessels are not imper-
meable, and some fluid could leak from them to the other structures [69]. This case is depicted
by Test case 3 in Fig 1.

For the sake of clarity, in the following, we refer to these 3 applications of our modelling
framework as

• Pure diffusion model: Test case 1. Diffusion only in the interstitial space modeled by
Equation (1).

• 4-compartment model: Test case 2. Clearance from the glymphatic system using
System (3) with J = 4 compartments.

• 7-compartment model: Test case 3. Clearance from the glymphatic system and con-
sidering the blood perfusion that could affect fluid movement using System (3) with J = 7
compartments.
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2.2 Initial and boundary conditions

Initial condition We consider the application in which the solute is injected directly into the
ECS of the rat brain and assume that the initial 14C-inulin concentration is given as a three-
dimensional Gaussian around the centre of injection s (see Fig 2b),

ce(0,x) = C0 exp−|x− s|2

σ2
(7)

where C0 is a reference concentration, and σ determines the initial spread of the solute after
injection. The reference concentration is chosen such that the integral of the initial condition
over the domain matches the injected tracer amount. Already for σ = 1mm, the initial condition
quickly decays towards zero. More than 96% of the total mass is located within a ball of radius
2mm surrounding the injection point, and the concentration values outside of this region have
minimal impact. However, to ensure that also the initial condition adheres to the prescribed
boundary conditions (below), we project the initial condition onto a space of functions which
vanish at the boundary. We emphasize that the initial condition is the same for the case of a
single compartment and when multiple compartments are considered. In the following, we present
numerical results for which the initial point of injection is located in the right hemisphere with
coordinates s = (4, 2, 3).

Boundary conditions To generate a relevant bulk flow within the PVSs, we assume a slight
pressure difference between the boundary of the PVSs around arteries and veins. We know that
intracranial pressure in a rat is 4 ± 0.74mmHg (see [85]). ISF pressure has been measured in
rat [103] and is 3.43± 0.65mmHg.

Therefore, we supplement the pressure equations with{
− κe

µCSF

∂pe
∂ννν (t,x) = Le,SAS(pSAS − pe), − κpa

µCSF

∂ppa
∂ννν (t,x) = LPVSpial,pa(pPVSpial − ppa),

∂ppc
∂ννν (t,x) = 0, ppv = 3.26mmHg,

(8)

on ∂Ω, t > 0, with ννν being the outward-pointing normal vector to the boundary ∂Ω,
pPVSpial = 4.74mmHg the CSF pressure inside the PVS of pial arteries and pSAS = 3.26mmHg
is the CSF pressure inside the SAS. We emphasize that these pressure values have been chosen
to be in the biologically relevant threshold compared to measurements [85]. The coefficients
LPVSpial,pa and LSAS,e are related to the permeability of the pial surface of the brain for the CSF
(specified in Appendix A).

If cerebral blood perfusion is included in the model(test case 3), then fluid movement is
affected and we need additional parameters, namely{

−κa
µa

∂pa
∂ννν (t,x) = Bblood

|∂Ω|
∂pc
∂ννν (t,x) = 0, pv(t,x) = 7.0mmHg,

on ∂Ω, t ≥ 0, (9)

with Bblood = 2.32mL/min (see Table 7 in Appendix A and assuming a 2g rat brain) and |∂Ω|
is the area of the surface of the rat brain.

For the concentration equations, different boundary conditions are considered. The first and
simplest approach is to use homogeneous Dirichlet boundary conditions to represent clearance
from the tissue and zero-flux boundary conditions for the compartments that are not in com-
munication with the SAS. Since the periarterial, perivenous and extracellular spaces represent
possible outflow routes, we impose Dirichlet boundary conditions for the concentration equations
in these compartments. For the other compartments, we assume that there is no flow at the
brain’s surface. Thus, we have

cj
∣∣
∂Ω

= 0, for j = {pa, pv, e},
∂

(
Dj∇cj+

κj
µj

cj∇pj

)
∂ν = 0 on ∂Ω, and for j = {pc}.
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This condition assumes that no membrane restricts 14C-inulin movement over the pial surface.
Moreover, the clearance of solutes from the SAS is assumed to be sufficiently quick so that
14C-inulin concentration in the CSF stays zero.

Alternatively, the solute concentration in the CSF within the SAS may be represented by a
time-dependent boundary condition. Still assuming instant absorption at the surface, we modify
the Dirichlet boundary conditions to

cj
∣∣
∂Ω

= g(t), for j = {pa, pv, e}, t > 0, (10)

where g(t) is given as the total amount of 14C-inulin that has been cleared from the brain up to
that time, averaged over the CSF volume VCSF in the fluid-filled space surrounding the brain,
i.e. the SAS. The rate of change of 14C-inulin tracer within the brain per unit of time is given by

d

dt

∫
Ω

∑
j∈J

ϕjcj dx =
∑
j∈J

∫
Ω
ϕj

∂cj
∂t

dx = −
∫
∂Ω

q · ννν ds, (11)

in which q is the total mass flux from all the compartments at the surface of the brain (we recall
that ννν is the outward pointing normal to the surface of the brain). For each compartment, this
flux is given by the combination of diffusion and convection

q =
∑
j∈J

−Dj∇cj + cjvj , vj = −κj
µj

∇pj .

A decrease of 14C-inulin within the brain corresponds to an increase of concentration in the SAS,
and vice-versa. Therefore, g satisfies the linear ordinary differential equation{

dg
dt = −αg(t) + 1

VCSF

∫
∂Ω q · ννν ds,

g(0) = 0,
(12)

where α > 0 is the rate of CSF absorption from the SAS. This model assumes instantaneous
absorption of 14C-inulin in the CSF and instant mixing of the solute within the whole SAS.

If α = 0, the latter Dirichlet boundary condition may be interpreted as a model for conser-
vation of intracranial 14C-inulin . Assuming that 14C-inulin is not eliminated from the SAS, an
alternate formulation of this condition is given by∑

j∈J

∫
Ω
ϕjcj dx+ g(t)VCSF = N0, (13)

where N0 =
∑

j∈J
∫
Ω ϕjcj(0,x) dx is the total amount of 14C-inulin initially injected into the

brain. Thus, for this case, g is given by

g(t) =
1

VCSF

N0 −
∑
j∈J

∫
Ω
ϕjcj dx

 . (14)

We test the effect of all three different concentration boundary conditions (Homogeneous,
Conservation (10) with Equation (14), and Decay (10) with Equation (12)) on clearance of 14C-
inulin from the brain.

2.3 Parameter values

2.3.1 For the convection-diffusion equation

14C-inulin diffusion coefficient The free diffusion coefficient for 14C-inulin is Dfree = 2.98×
10−4mm2/s as reported in [52], and the tortuosity of the rat brain is given by λ = 1.7 (see [102]).
Hence, the effective diffusion coefficient of 14C-inulin in the rat brain is given by

D∗ =
Dfree

λ2
= 1.03× 10−4mm2/s.
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2.3.2 For the multi-compartment model

Porosity coefficients From [22], we know that the volume fraction of the extracellular space
of rats is

ϕe = 0.14.

From [74], the volume fraction of blood is estimated to be

VBlood = 3.29× VBrain/100.

Furthermore, using the fractions of arteries, veins, and capillaries stated in [79], we obtain

ϕa = 0.0069, ϕc = 0.011, ϕv = 0.015.

The porosity of the PVS in human white matter is estimated to be around 1% [9]. This value is
unknown for the rat. Hence, we assume that the relation holds without relying on measurements.
Based on percentages of arterial, venous, and capillary blood volume, we assume a similar volume
fraction distribution for the corresponding perivascular spaces:

ϕpa = 0.0021, ϕpc = 0.0033, ϕpv = 0.0046.

Fluid parameters The interstitial fluid and plasma in the blood compartments are assumed to
possess different properties. The dynamic viscosity of blood and CSF is given by respectively [36]
and [15]. We have

µa = µv = µc = 2.67× 10−3 Pa s, and µpa = µpv = µpc = µe = 7.0× 10−4 Pa s.

In [101], the authors used experimentally obtained resistance coefficients for several compart-
ments. From the definition of these resistances, we can compute the permeability coefficients in
several compartments (see Appendix A for details). The remaining permeabilities are obtained
from [28] and [45].

κa = 3.30× 10−6mm2, κv = 6.59× 10−6mm2, κc = 8.8× 10−9mm2,

κpa = 1.0× 10−11mm2, κpv = 6.51× 10−9mm2, κpc = 3.54× 10−13mm2,

κe = 2.0× 10−11mm2.

The baseline values for the fluid parameters are summarized in Table 1.

Symbol Unit Meaning Value Reference

D mm2/s Free diffusion coefficient D
14C-inulin
free = 2.98× 10−4 [52]

D∗ mm2/s Apparent diffusion coefficient D∗,14C-inulin = 1.03× 10−4 [52]
κj mm2 Permeability κa = 3.30× 10−6, κv = 6.59× 10−6, κc = 8.8× 10−9, [39] and computed

κpa = 1.0× 10−11, κpv = 6.51× 10−9, κpc = 3.54× 10−13, κe = 2.0× 10−11

ϕj No unit Porosity ϕe = 0.14, ϕa = 0.0071, ϕc = 0.011, ϕv = 0.016 [22, 74, 54]
ϕpa = 0.0021, ϕpc = 0.0033, ϕpv = 0.0046 and computed

µj Pa s Viscosity µpa = µpv = µpc = µe = 7.0× 10−4 [15]
µa = µv = µc = 2.67× 10−3 [98]

Table 1: Baseline fluids (Blood and CSF) viscosity, permeability, porosity and diffusion param-
eters.

Exchange coefficients We start with the exchange coefficients from blood to tissue,
i.e. γe,a, γe,c, γe,v, defined by

γj,i = Li,j
|Si,j |
|Ω|

.

As in [87], we use the hydraulic conductivities reported in [33, 49, 84]. We use the following
values

La,e = 9.1× 10−10mm/(sPa), Lc,e = 1.0× 10−10mm/(s Pa), Lv,e = 2.0× 10−11mm/(s Pa).
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Furthermore, from [92], we estimate the ratio between the surface area of capillaries and brain
volume to

|Sc,e|
|Ω|

= 9mm−1.

Using the computations performed in [27], we assume that the surface density of capillaries is
three times greater than the surface density of arteries and veins, i.e.

|Sa,e|
|Ω|

= 3mm−1,
|Sv,e|
|Ω|

= 3mm−1.

Altogether, we obtain

γe,a = 2.7× 10−9 (s Pa)−1, γe,c = 9.0× 10−10 (s Pa)−1, γe,v = 6.0× 10−11 (s Pa)−1.

Then, we turn to the values of the exchange parameters from PVSs to ECS, i.e. γe,pa, γe,pc, γe,pv.
From the 1D resistance parameters in [101], we compute the following coefficients (see Appendix A
for details about the computations)

γe,pa = 2.2× 10−7 (s Pa)−1, γe,pc = 9.2× 10−9 (s Pa)−1, γe,pv = 2.0× 10−7 (s Pa)−1.

From the previous values, we determine the following exchange coefficients for the transfer be-
tween blood vessels and PVSs (see Appendix A for details)

γpa,a = 2.8× 10−9 (s Pa)−1, γpc,c = 1.0× 10−9 (s Pa)−1, γpv,v = 6.0× 10−11 (s Pa)−1.

For the exchanges between compartments corresponding to the branching of blood vessels, we
use

γc,a =
Bflow

∆pc,a |Ω|
= 3.3× 10−6 (s Pa)−1, γv,c =

Bflow

∆pv,c |Ω|
= 9.7× 10−6 (s Pa)−1.

where Bflow = 116mL/100g/min (from [53]), and ∆pc,a, ∆pv,c correspond to the blood pressure
drops between vessels. We assume a ∆pc,a = 40mmHg blood pressure drop from arteries to
capillaries and a ∆pv,c = 13mmHg blood pressure drop from capillaries to veins.

Similarly, to obtain the transfer coefficients for connected PVS compartments, we assume that
the CSF flow in PVS is proportional to CSF production QCSF = 3.38µL/min. This latter value
from [18] corresponds to an upper estimate of the CSF production in our case since more recent
works using another technique of measurement found 1.40µL/min for CSF production rate [47].
Using the production rate of CSF as flow in the PVS is, of course, an upper estimate of what
the actual flow in the network is. Then, assuming ∆ppa,pc = 1mmHg and ∆ppc,pv = 0.25mmHg,
we arrive to

γpa,pc = 1.83× 10−7 (Pa s)−1, γpc,pv = 7.31× 10−7 (Pa s)−1.

To compute the exchange coefficients between the pial surface artery PVSs and the arterial
PVS as well as for the exchange between ECS and SAS, we adapt the fluid resistance coefficient
for this space from the one used in [101] to obtain (see Appendix A)

LPVSpial,pa = 1.25× 10−6 (s Pa)−1, and Le,SAS = 3.13× 10−7 (s Pa)−1.

The osmotic pressure in the capillary compartment has been reported to be 20mmHg [46].
We thus set πa = πc = πv = 20mmHg and πe = πpa = πpc = πpv = 0.2 × πc (extravascular
osmotic pressures have been chosen from the fact that due to the BBB the osmotic pressure in
the ECS within the brain is known to be lower than 30% of the capillary one [46]).

We now define the advective mass exchange coefficients using the equation

γ̃
14C-inulin
j,i = γj,i(1− σ

14C-inulin
ij,reflect ),

9



where σ
14C-inulin
ij,reflect is the reflection coefficient for the 14C-inulin and the membrane under consid-

eration. Since Inulin is approximately 5000Da in size (measured in [97]), we set

σ
14C-inulin
ij,reflect = 0.2,

for all the membranes.
The diffusive permeabilities through the astrocyte endfeet (AEF) membrane for 14C-inulin

test case 2 and 3 are computed from [56, 63] (see Appendix A for details)

P
14C-inulin
pa,e = P

14C-inulin
pv,e = 1.2× 10−3mms−1, P

14C-inulin
pc,e = 4.1× 10−4mms−1.

From the two previous parameters, we defined for the 7 compartments system γpa,a, γpc,c,
γpv,v, γe,pa, γe,pc, γe,pv and γe,v as well as their corresponding transfer coefficients for 14C-inulin .

The transfer of solutes between vessel compartments for which the connection exists without
a membrane is assumed to be solely driven by convection, and the fact that 14C-inulin does not
cross the BBB implies

P
14C-inulin
a,pa = P

14C-inulin
v,pv = P

14C-inulin
c,pc = P

14C-inulin
a,c = P

14C-inulin
c,v = P

14C-inulin
pa,pc = P

14C-inulin
pc,pv = 0,

For connected vessel compartments, the solvent-drag reflection coefficient is assumed to be
σreflect = 1.

Altogether, we obtain the transfer coefficients reported in Table 2.

Symbol Unit Meaning Value Reference

γi→j 1/(Pa s) Fluid mass transfer coefficient γa,e = 2, 7× 10−9, γv,e = 6× 10−11, γc,e = 9× 10−10 Computed
γpa,e = 2.19× 10−7, γpv,e = 1.95× 10−7, γpc,e = 9.20× 10−9

γa,pa = 2.76× 10−9, γv,pv = 6.00× 10−11, γc,pc = 9.98× 10−10

γa,c = 3.14× 10−6, γc,v = 9.65× 10−6

γpa,pc = 1.83× 10−7, γpc,pv = 7.31× 10−7

γPVSpial,pa = 1.25× 10−6, γe,SAS = 3.13× 10−7

γ̃
14C-inulin
i→j 1/(Pa s) Advective mass transfer coefficient Given by Eq. (22)

λi→j s−1 Solute mass transfer coefficient λ
14C-inulin
pa,e = 3.70× 10−3, λ

14C-inulin
pv,e = 3.72× 10−3, λ

14C-inulin
pc,e = 3.70× 10−3 Computed from [55]

Table 2: Baseline diffusive and convective exchange parameters.

The last value we specify is the CSF volume surrounding the brain, i.e. in the subarachnoid
space. This parameter value is required to define the boundary conditions. The reported values
for this volume vary in the literature, ranging from 90µL [72] to 520µL [51], but seem to be
consistently in the region 5-20% of the total intracranial volume. For the simulations in this
paper, we will assume that the CSF volume is 10.8% of the total intracranial volume, as reported
by [64]. Assuming that the intracranial volume consists of brain tissue and the CSF spaces, this
value corresponds to a CSF volume of VCSF = 0.12 × |Ω|, where |Ω| is the volume of the brain
tissue.

Remark 3. In the previous section, all the parameter values required to model the clearance of
14C-inulin using Equation (1) or System (3) have been specified. Coefficients for which no value
has been specified are assumed to be zero, e.g. for exchange coefficients between compartments
that are not in communication.

Remark 4. Most parameter values have been found using measurements from in-vitro or in-vivo
biological experiments. However, we have indicated the ones for which the values are adapted from
the literature or the works from which we extracted the values and estimated these parameters
using numerical simulations. We recall that Appendix A provides details about the estimates and
computed coefficients.
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2.4 Model variations

Sensitivity analysis Some of the parameters used in this model may be uncertain or, to some
degree, unknown. It is not clear a-priori how these uncertainties may affect the output from the
model. We therefore set out to investigate the model sensitivity to changes in unknown or critical
parameters. Each parameter was varied, taking into account the relative uncertainty found in
the literature. In particular, we changed ECS permeability (κe) by a factor between 0.1 and
1000, periarterial permeability (κpa) by a factor 0.01 to 1000, pericapillary permeability (κpc)
by a factor 0.01 to 1000, CSF pressure (pSAS) by a factor 0.5 to 2, diffusive transfer between

the periarterial and extracellular network (P
14C-inulin
pa,e ) by a factor 0.01 to 1000. In addition, we

tested a change in apparent diffusion D∗ by a factor of 0.5 to 2 and a change in periarterial
porosity between 0.1 and 50.

Parameter Factors of variation

κe {0.1, 1, 10, 100, 1000}
κpa {0.01, 0.1, 1, 10, 100, 1000}
κpc {0.01, 0.1, 1, 10, 100, 1000}
pSAS {0.5, 0.75, 1, 1.5, 2}

P
14C-inulin
pa,e {0.01, 0.1, 1, 10, 100, 1000}
γpa,a {0.1, 0.5, 1, 2, 5}
D∗ {0.5, 0.75, 1, 1.5, 2}
ϕpa {0.1, 0.5, 1, 10, 20}

Table 3: Factors of variation for each of the tested parameters.

For the 7-compartment model, we further changed the BBB permeability between the arterial
and periarterial compartments (γpa,a) by a factor of 0.1 to 5. For a complete overview of all
parameter variations for the sensitivity analysis, see Table 3. To save computational cost, the
sensitivity analysis was performed on the mesh of resolution 16, which yield a few % faster
clearance than the 32 mesh used in the simulations (for details see Appendix C)

The effect of CSF clearance It has been suggested that the flow of CSF in the SAS plays
a major role in clearance also from the brain parenchyma [78, 40]. In the present study, the
effect of CSF clearance from the SAS is modelled by three different boundary conditions for the
concentration: 1) A homogeneous Dirichlet condition as described by Equation (2.2), representing
instantaneous clearance from the SAS, 2) CSF/ISF exchange and conservation of 14C-inulin in
the intracranial compartment (Equation (13)), and 3) CSF/ISF exchange and exponential decay
of particles from the SAS due to CSF production and absorption (Equation (12)).

The effect of sleep Xie et al. [104] reported an increase of the ECS porosity when the animal
is sleeping, which may increase convective transport in the brain [95]. Indeed, they indicated that
the porosity of the ECS in the awake state is ϕawake

e = 0.14 whereas, in the sleeping state, they
measured ϕsleep

e = 0.23. Using the Kozeny-Carman equation, this leads to the relation (see [96]
for example)

κsleepe = 5.5× κawakee .

Recent results [16] indicate that when the animal is asleep, dilation and reduction of the
perivascular spaces are observed due to vasomotion. Assuming that the vasomotion leads on
average to an enhancement of PVS porosities and that the contraction of the blood vessels leads
to a constant factor Cϕ of increase of porosity for these spaces i.e.

ϕsleep
j = Cϕϕ

awake
j .
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Then, assuming free (Poiseuille) fluid flow in perivascular spaces, a change of porosity creates a
modification of the permeability leading to

κsleepj = C2
ϕκ

awake
j ,

(see Appendix A for details). We assume that the parameter values corresponding to the awake
state are given by the baseline values of Table 1. Based on the measurements from [16], we use
an upper estimate of PVS variations during sleep and assume Cϕ = 4.

The effect of communication with blood The blood vessels composing the cerebral vascu-
lature are not completely impermeable, and there is a debate going on to which extent CSF/ISF
communicates with the microcirculation [69]. We consider both a 4-compartment model (test
case 2) that assumes no communication between CSF/ISF and blood, and a 7-compartment
model (test case 3) where fluid can exchange between the blood vessels and the perivascular
spaces around them.

2.5 Quantities of interest

a) b)

.

Figure 2: a): The computational mesh of the rat brain used for most of the simulations within
this article. The meshing procedure is described in section 2.6. For the given mesh, the maximum
cell size is ≈ 1/32 times the diameter of the mesh. b): The initial 14C-inulin concentration within
the ECS, simulating an injection directly into the brain tissue.

To study how sample size variations from experimental data could affect the results, we
integrate the concentrations over several cubes ω ⊂ Ω of varying sizes embedded in the brain
mesh to represent possible measurement samples of the brain. In addition, we assess the mass of
14C-inulin in the entire brain Ω.

For the first test case (ECS only), the relative mass of 14C-inulin in the entire brain at time
t is denoted by

ctot(t) :=

∫
Ω ϕece(t,x) dx∫
Ω ϕece(0,x) dx

.

The relative mass of 14C-inulin in the ECS within a cube ω ⊂ Ω centred around the injection
point is defined as

cω(t) :=

∫
ω ϕece(t,x) dx∫
ω ϕece(0,x) dx

.

For the other test cases (4-, and 7-compartments), the relative mass of 14C-inulin in the entire
brain and within a cube ω ⊂ Ω at time t is denoted by

ctot(t) :=

∫
Ω

∑
j∈J ϕjcj(t,x) dx∫

Ω ϕece(0,x) dx
, cω(t) :=

∫
ω

∑
j∈J ϕjcj(t,x) dx∫

ω ϕece(0,x) dx
,

respectively.
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We further measure the fluid velocity in the different compartments. From the solution of
the pressure equations, we compute the vector fields

uj = − κj
ϕjµj

∇pj , j ∈ J, (15)

to obtain the velocity inside the j-th compartment. From these computed velocity fields uj , we
compute the average velocity within a compartment uaver,j and the maximal velocity umax,j given
by

uaver,j =

∫
Ω

√
uj · uj dx

|Ω|
umax,j =

∥∥√uj · uj

∥∥
L∞ , (16)

To compute the volume of fluid transferring between compartment j and compartment i, we
use

Qj,i =

∫
Ω
γj,i (pi − pj) dx. (17)

To compute the volume of CSF exchanged between compartment j and the SAS, we use

Qj,SAS =

∫
∂Ω

(
−κj
µj

∇pj · ννν
)

ds. (18)

To compute the mass of 14C-inulin moving from compartment i to j, we use [43]:

Mji(t) =

∫
Ω
λj,i(ci − cj) +

(cj + ci)

2
γ̃j,i(pi − pj − σi,j(πi − πj)) dx. (19)

2.6 Computational mesh, solution method and verification

The computational mesh used for the simulations in this paper was constructed from the ”Wax-
holm Space Atlas of the Sprague Dawley Rat Brain v4” (RRID: SCR 017124) [71, 70, 50], available
under the licence CC-BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0/) at
https://www.nitrc.org/projects/whs-sd-atlas. The atlas provides a detailed segmentation
of different regions within the rat brain.

In the original study behind the atlas [71], the animal was anaesthetized by intraperitoneal
injection of a mixture of Nembutal (Ovation Pharmaceuticals, Inc., Lake Forest, IL) and bu-
torphanol, and transcardially perfused with 0.9% saline and ProHance (10:1 v:v) for 4 minutes
followed by a flush of ProHance in 10% phosphate-buffered formalin (1:10 v:v). All procedures
and experiments in their work were approved by the Duke University Institutional Animal Care
and Use Committee [71].

Since the models in this paper do not separate between tissue from different regions of the
brain, the segmentation is mainly of interest for removing unwanted sections. Most importantly,
we wanted to remove the segments representing various parts of the ventricles. Moreover, we
removed some external artefacts such as the spinal trigeminal tract, the optic nerves, and parts
of the auditory system [70].

The various segments in the raw data file have a few irregularities. For example, in regions
where the lateral ventricles are very thin, small groups of unlabeled voxels create holes in the 3D
reconstruction of the ventricles. To repair these irregularities, we have made use of 3D Slicer1,
an open-source software application for visualization and analysis of medical images [32]. 3D
Slicer provides a segment editor with tools for manual labelling of voxels, hole filling and surface
smoothing. After refining the segmentation of the ventricular system, it may be removed from the
original volume to create a realistic representation of the brain surface. The surface is exported
as an stl-file to be used in the meshing algorithm.

1https://www.slicer.org/
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Compartment uaver (in µm/s) umax (in µm/s)

PVS arteries 9.5× 10−1 7.9
ECS 3.3× 10−3 6.0× 10−2

PVS veins 4.4× 10−1 3.0
PVS capillaries 4.0× 10−3 2.7× 10−2

Table 4: Velocities of CSF in the different compartments for baseline parameter values.

The creation of the computational mesh is performed by SVMTK2, which provides a python
API for 3D mesh generation methods from the CGAL library. The mesh generation algorithm
consists of a Delaunay refinement process followed by an optimization phase [3]. Following the
procedures described in [59], we created the mesh illustrated in Fig 2a.

To solve the equations (1) and (3), we use the finite element method for the discretization
in space and an implicit Euler method to integrate the resulting ordinary differential systems in
time.

In this paper, we choose a resolution for the spatial mesh of h = 1/32. The temporal
domain is [0, T ] with T = 360min with a time step of ∆t = 1min. Details of the mesh
and time resolutions can be found in Appendix C.2. The numerical scheme has been imple-
mented using the FEniCS Library [4, 58], and the linear system was solved using the generalized
minimal residual method (GMRES) and the incomplete LU (ILU) preconditioner. Our code
is publicly available on GitHub at the following link: https://github.com/jorgenriseth/

multicompartment-solute-transport.

3 Results

3.1 CSF flow in the 4-compartment model

Fig 3 depicts the pressure fields inside the different compartments for the 4-compartment model.
We observe that for baseline parameter values, the pressure gradients in the different fields give
a bulk flow of fluid in line with the glymphatic theory. Indeed, using Equation (15), our model
represents an inflow of CSF from the surface of the brain in the PVS of arteries and an outflow
from the PVS of veins. Smaller pressure gradients leading to lower velocities directed from the
surface to the depth of the brain are also seen in the ECS and the PVS of capillaries.

Computing the transfer of CSF between the compartments using Equation (17), we obtain

Qpa,e = 0.72µL/min, Qe,pv = 0.27µL/min, Qe,pc = 4.4× 10−3 µL/min.

The transfer between the compartments and the SAS is computed in the same way using Equa-
tion (18), and we obtain

QSAS,e = 0.22µL/min, QSAS,pa = 0.94µL/min, Qpv,SAS = 0.68µL/min.

In this notation, we choose subscripts such that the flow occurs from the first denoted compart-
ment to the second (e.g. flow occurs from the PVS of arteries to the ECS).

From these pressure fields, we compute the velocity of the CSF in the compartments using
Equation (15). We report the average velocities uaver and the maximal ones umax for each
compartment in Table 4.

3.2 Transport within the brain

In the following two subsections, we report the relative amount of 14C-inulin in the entire brain
from the diffusion and the 4-compartment simulations using Equation (10) with (12) as standard

2https://github.com/SVMTK/SVMTK
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Figure 3: Pressure fields in the 4 compartments (left: coronal cut, right: sagittal cut)
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boundary conditions (aside from Subsection 3.2.4 the boundary condition used for the concen-
tration equations will always be (10) with (12) and will be referred to as ”Decay” boundary
conditions). We then vary the size of the measurement sample (i.e. the domain in which the
remaining mass of 14C-inulin is computed) and the boundary conditions.

3.2.1 Diffusion in the ECS only

Pure diffusion steadily decreased the tracer amount found within the brain over the entire sim-
ulation time, and ∼53% of the tracer remains after 6 hours (Fig 4a, blue dashed line). If we
assume an exponential decay between the first- and the last time point, the clearance corresponds
to a rate constant of 0.0018/min. Fig 4c shows the distribution of 14C-inulin transported by pure
diffusion (i.e. Equation (1)) in the ECS at different points in time. The tracer spreads radially
out from the point of injection, and peak concentration has decreased drastically after T = 360
min. At the first time step, some very small negative values appear near the tail of the Gaussian
curve, but are smoothed out over time.

3.2.2 4-compartment convection-diffusion

Fig 5 shows the spatial distribution of 14C-inulin concentration over time in all 4 compartments
considered in 14C-inulin test case 2. Initially, the tracer is contained only in the ECS where it was
first injected. Already after 10 minutes, the concentration spreads equally to all compartments.
From all time points on, the tracer spreads radially outwards in all compartments, similar to
the test case for pure diffusion. We note here that even with equal concentrations, the total
mass of tracer differs between each compartment due to differences in porosity. 14C-inulin is thus
mainly still contained to the ECS in the 4-compartment model. The tracer in the 4-compartment
convection-diffusion model is cleared from the brain slightly faster compared to diffusion alone
and ∼ 50 % of the tracer remains in the brain after 6 hours, corresponding to a rate constant of
0.0023/min.

3.2.3 Effect of the measurement sample

Fig 4a shows the evolution of the relative mass of 14C-inulin inside the rat brain and in samples
of the brain of different sizes (cubes of side length 2mm, 4mm, and 5mm). The boundary
conditions for the concentration equations correspond to the time-dependent Dirichlet boundary
conditions (12). For the smallest measurement sample, the relative mass of tracers remaining in
the sample after 6 hours were ∼15% for diffusion and for the 4-compartment model (compared
to 53% and 50% for the entire brain). We observe that as the measurement sample size increases,
the mass of 14C-inulin remaining in the sample increases.

3.2.4 Effect of the concentration in the subarachnoid space

Fig 4b shows the evolution of the relative mass of 14C-inulin for the three different boundary con-
ditions for the concentration equations: Homogeneous Dirichlet boundary condition, conservation
of the mass in the subarachnoid space (corresponding to Equation (10) with (14)), and clearance
of 14C-inulin in the subarachnoid space (corresponding to Equation (10) with (12)). Fig 4b com-
pares the relative mass of tracer for the diffusion model (dashed lines) to the four-compartment
model (solid lines). In both models, the homogeneous Dirichlet boundary conditions lead to fast
clearance from the tissue with ∼33% remaining in the brain after 6 hours (For both diffusion
only and the 4-compartment simulations). When the concentration of 14C-inulin is computed
using the time-dependent Dirichlet boundary conditions representing tracer conservation in the
SAS, the mass of tracers is close to plateau level at 68% or 72% at 6 hours (corresponding to
a clearance rate of ∼0.001/min). With the time-dependent boundary conditions modelling ab-
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T = 0 T = 100 min

T = 360 minT = 200 min

Figure 4: a) Relative 14C-inulin mass located within regions of varying size surrounding the
injection point. Solid lines result from the multi-compartment model simulations, while dashed
lines result from diffusion only in the ECS. b) Relative 14C-inulin mass located in the totality of
the brain for the different boundary conditions. Solid lines result from the multi-compartment
model simulations, while dashed lines result from diffusion only in the ECS. c) Evolution in space
and time of 14C-inulin relative concentration in the ECS for test case 1 (single diffusion). The
colour scale is chosen for a visual comparison between all time points.

17



sorption of CSF in SAS, the relative tracer mass steadily decreases and ends up between the two
previously described cases with 50-53% of the tracer remaining in the brain after 6 hours.

3.3 Variations of the 4-compartment model

ECS PVS arteries PVS veins PVS capillaries

T=0

T=10 
min

T=100 
min

T=200 
min

T=360 
min

Figure 5: Evolution in time and space of the relative 14C-inulin amount in the rat brain (frontal
cut at the injection point) within the 4 compartments of test case 2.

3.3.1 Sensitivity analysis

For several parameters, value changes of several orders of magnitude do not drastically alter
the results. A full overview of model sensitivity changes in parameters is shown in Table 3. In
particular, for the extracellular and pericapillary permeabilities (κe, κpc), subarachnoid space
pressure (pSAS)) and the periarterial to extracellular diffusive transfer (Ppa,e), there is less than
1% difference in tracer mass between the tested parameter values.

An increase of 1000 in periarterial permeability reduces the tracer mass by 10%, while a
decrease gives no difference in output. With a change in the diffusion constant, the final tracer
mass increases by 43.2% when the diffusion coefficient is decreased by a factor 2 and decreases
by 36.2% when the diffusion coefficient is increased by a factor 2. An increase in periarterial
porosity slightly delayed clearance, and with an increase of a factor 20, the tracer mass at the
final timestep is increased by 7.4%.
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Figure 6: Comparison of 14C-inulin clearance for different variations of porosity and permeability
coefficients. ”MC Baseline” denotes the clearance curve given by the multi-compartment model
with baseline parameter values and is hidden by the dashed curve ”Diffusion”, representing
the clearance given by the application of the Diffusion model in the ECS compartment only.
The enhancement of ECS porosity leads to the curve denoted ”MC enhancement ECS” and
the increase of the porosities in all the compartments gives the clearance curve denoted ”MC
enhancement ECS+PVS”

3.3.2 Effect of an increase in ECS porosity

It is postulated that sleep has an effect on the clearance of solutes in the brain [104]. The accepted
hypothesis is that the ECS porosity increases during sleep, enhancing the convection in this space
and even dominating diffusion [104, 95]. This is better measured by the Péclet number Pe that
measures the importance of convection over diffusion (Pe < 1 if diffusion dominates while Pe > 1
if convection is preponderant).

With an increase of ECS porosity from 0.14 to 0.23, we find no relevant difference in the total
CSF transfer between the compartments. Interestingly, we find that the maximum velocity in
the ECS increases to umax = 7.9× 10−2 µm/s (from 6.0× 10−2 µm/s) and the average velocity of
CSF in ECS increases to 4.0 × 10−3 µm/s (from 3.3 × 10−3 µm/s). See Table 4 for all reference
velocities computed with baseline parameter values. The Péclet number in ECS increases from
3.2× 10−2 for baseline coefficients to 3.9× 10−2 after ECS porosity increase.

Tracer clearance is slightly slower for the four-compartment model when ECS porosity is
increased (blue versus orange line, Fig 6). Since the velocity field in the ECS is directed inwards
from the brain surface, solutes are transported away from the sinks at the domain boundaries.
Hence, additional flow in the ECS slows down clearance in this compartment, and the relative
mass of tracers within the brain is, in this case, 57% after 6 hours.

3.3.3 Effect of an increase in PVS porosity

Increasing the PVS porosity by a factor of 4 decreases the clearance slightly from the brain via
PVS. The relative mass of tracers found in the brain after 6 hours increases from 50 % during
baseline to 53% with increased PVS porosity (Fig 6, blue versus red line). Since the diffusive
transfer between the compartments tends to average the concentration between them, increasing
the porosity of PVSs increases the mass of 14C-inulin in these compartments. Since the PVS of
arteries is now larger and is an inflow route (with a convective field directed to the depth of the
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brain), clearance of 14C-inulin appears slower.

3.3.4 Combined enhancement of the extracellular volume and perivascular spaces

Combining the increase of both ECS and PVS porosity and permeability, we obtain the following
computed amount of CSF transfer between the compartments

Qpa,e = 1.88µL/min, Qe,pv = 9.5× 10−1 µL/min, Qe,pc = 2.0× 10−2 µL/min,

Qe,SAS = 7.7× 10−1 µL/min, QSAS,pa = 3.5µL/min, Qpv,SAS = 2.3µL/min.

We also obtain the maximum and averaged velocities reported in Table 5.

Compartment uaver (in µm/s) umax (in µm/s)

PVS arteries 1.8 9.2
ECS 9.1× 10−3 0.12

PVS veins 0.73 4.6
PVS capillaries 7.0× 10−3 2.0× 10−2

Table 5: Velocities of CSF in the different compartments for an increase of porosity and perme-
ability in all the 4 compartments.

With an increase in both ECS and PVS permeability, we observe a very similar clearance
compared to when the ECS porosity is increased (Fig 6, orange versus green line). The mass of
14C-inulin within the brain after 6 hours for the 4-compartment model, with increased porosity
in ECS and PVS, reaches ∼58% of the original content.

3.4 7-compartment model: Additional effect of cerebral blood perfusion

Using the baseline parameter values for the second and the third test cases, we obtain the pressure
fields in the ECS shown in Fig 7a. Interestingly, the leakage of fluid from arteries and capillaries
to the PVSs occurring in the 7-compartment model changes the pressure fields compared to the
4-compartment model (shown in Fig 3), in which the PVSs were assumed to be isolated from
the blood. In contrast to the 4-compartment model, the fluid flow in the PVS of arteries and the
ECS is directed towards the brain surface. In addition, flow velocities are increased compared to
the 4-compartment model (see Table 6 for details).

Fig 7b shows the clearance curves of 14C-inulin obtained with all three test cases (pure
diffusion, 4-compartment, 7-compartment). We observe that with the additional effect of blood
perfusion, the clearance is much faster compared to both pure diffusion and all variations of
the 4-compartment model. Only ∼23% of the tracer remains in the brain after 6 hours for the
7-compartment model (compared to 53% and 50% for pure diffusion and the 4-compartment
model). The clearance rate for the 7-compartment model with baseline parameter values is
thus 0.0041/min, which is close to twice the clearance rate for the 4-compartment model, see
Subsection 3.2.2).

Computing the fluid flow between the different compartments using Equation (17), we find

Qa,pa = 2.6µL/min, Qv,pv = 4.2× 10−3 µL/min, Qc,pc = 2.3× 10−1 µL/min,

Qpa,e = 1.29µL/min, Qe,pv = 7.5× 10−1 µL/min, Qe,pc = 1.9× 10−2 µL/min,

Qa,influx = 2.3mL/min, Qv,outflow = 1.8mL/min, Qe,SAS = 3.5µL/min,

QSAS,pa = 6.9× 10−1 µL/min, Qpv,SAS = 2.0µL/min.
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Compartment uaver (in µm/s) umax (in µm/s)

Arterial blood 3.88× 103 69× 103

Venous blood 88× 101 5.6× 103

Capillary blood 1.2 28
PVS arteries 0.69 5.8

ECS 4.3× 10−3 7.1× 10−2

PVS veins 2.7 18
PVS capillaries 2.8× 10−3 1.9× 10−2

Table 6: Velocities of CSF and blood in the different compartments for baseline values coefficients
for test case 3.

3.4.1 Sensitivity analysis

Similar to the 4-compartment model, we found that results were robust to changes in several
model parameters. For all parameter changes except changes in the arterial to periarterial fluid
transfer (γpa,a), the diffusion coefficient (D) and the periarterial porosity (ϕpa), the tracer mass in
the brain at the final time step changed less than 3.1% compared to baseline parameters. As the
total mass is already low at the final time step due to rapid convective transport, a constriction
in fluid transport from the blood vessels to the periarterial space had a drastic effect. Changing
this transport parameter by a factor of 0.1 increased the mass at the final timestep by 82.3%.
An increase in the transport parameter by a factor of 5 had an opposite but still drastic effect,
with a 96.8% reduction in tracer mass compared to the baseline case. Increasing the diffusion
coefficient by a factor of 2 led to a 19.7% decrease in tracer mass after 6 hours, while decreasing
the diffusion by a factor of 2 led to an increase of 21.1%. Changes in periarterial porosity had a
smaller effect with a 2.0% decrease in tracer mass when ϕpa was reduced by a factor of 0.1, and
an increase of 29.4% when the porosity was increased by a factor of 20.

4 Discussion

The main goal of this article is to propose a multi-compartment model representing fluid move-
ment and solute transport in the brain. We apply our model to the glymphatic system at the
scale of the rat brain. We design our model and numerical method to explore different scenar-
ios and hypotheses related to the clearance of 14C-inulin from the brain. Indeed, changing the
parameter values for permeability, porosity, and exchange coefficients allows us to represent, for
example, the possible effect of sleep, the disruption of a membrane, an enhanced CSF flow in the
parenchyma or the effect of blood perfusion on the standard picture depicted by the glymphatic
theory. Furthermore, the numerical results explore different situations and allow us to assess the
importance of different modelling aspects, such as the boundary conditions, and experimental bi-
ological aspects, such as the importance of the measurement sample. To the best of the authors’
knowledge, this is the first attempt at using a multi-compartment model to combine fluid flow
and transport of solute at the scale of the entire brain. This work is largely built upon works
related to blood perfusion in tissues [88, 90, 73].

Effect of the measurement sample The effect of the measurement sample is depicted in
Fig 4a. Our results show that if the measurement sample is small, clearance appears to be faster
compared to larger samples or the entire brain. This information needs to be taken into account
when quantitatively comparing biological experiments to simulations (e.g. clearance curves).
For instance, comparisons between simulation results and the results obtained by, e.g. Iliff et
al. [42] and measurements in a piece of tissue or slice (e.g. tracer influx in Xie et al. [104]) is not
straightforward. According to simulations of transport in mice [81], diffusion is quantitatively
comparable to experimental data on Aqp4 null mice with relative Aβ-concentration. However,
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Figure 7: a-b) Comparison of pressure in ECS for the test cases 3 a) and 2 b). The velocity
field is directed opposite of the gradient of pressure. Thus the velocity is mostly oriented to
the outside of the brain, and the magnitude is larger when blood is considered in the model. c)
Comparison of 14C-inulin clearance for test case 2 with baseline parameter values and increase of
ECS and PVSs porosities with test case 3. ”MC Baseline” denotes the clearance curve given by
the multi-compartment model with baseline parameter values. The enhancements of ECS and
PVSs porosities lead to the curve denoted ”MC enhancement ECS+PVS”, and the result of test
case 3 is denoted ”MC 7-compartments”

with a convective velocity field, simulations match the wild-type mice experiments. We argue
that our results can not be compared to the results from Ray et al. [81] due to the difference
in measurement sample. When measuring the entire brain, clearance curves differ from those
measured in a cube of arbitrary size, as shown in Fig 4a).

Modelling the clearance of 14C-inulin from the SAS using boundary conditions Usu-
ally, mathematical models representing clearance of 14C-inulin from the brain use homogeneous
Dirichlet boundary conditions for the concentrations (e.g. see [39, 93]). This modelling assumes
that clearance in the SAS is instantaneous, which in reality, is not the case. Some studies have
taken this into account by adding mass conservation between the brain and the SAS [19]. How-
ever, the numerical results presented in Fig 4b show that taking the concentration of solutes
in the CSF in the SAS into account leads to much slower clearance rates (there are 39% less
relative 14C-inulin mass cleared assuming conservation of 14C-inulin in SAS than for homoge-
neous Dirichlet boundary conditions after 6 hours). Even when adding an absorption rate of
CSF in SAS, we also obtain slower clearance rates compared to homogeneous Dirichlet boundary
conditions (There is a difference of 20% of relative 14C-inulin mass after 6 hours between the
boundary conditions modelling slower clearance from the CSF in the SAS and the homogeneous
boundary condition). Hence, our results indicate that forthcoming mathematical models should
be careful with the choice of boundary conditions to obtain biologically relevant results.

Baseline parameter values for the 4-compartment model Even though the model in-
cludes many parameters, most of them can be estimated using measurements reported in the
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literature. Using baseline parameter values, diffusion in the ECS (test case 1) gives clearance
results very similar to the ones given by the 4-compartment model considering the PVSs as
being isolated from the effect of blood perfusion (test case 2). The results from these models
correspond qualitatively to the clearance results reported in Xie et al. [104], but the absolute
clearance is slightly slower. Measuring both absolute recovery and rate constant, Xie et al. report
an absolute recovery of ∼ 60% and a rate constant of around 0.006. Regarding recovery, we have
similar values, but for the rate constant we find a value of only 0.002/min. This difference may be
explained by the lack of full recovery (i.e. a steady state plateu level) in the experimental data.
Overall, these results indicate that diffusion in the ECS is the main mechanism to explain the
observed clearance, but also that an additional mechanism is needed. Most of the 14C-inulin mass
is contained and cleared within the ECS. Therefore, even though the Péclet number is higher in
the PVSs than in the ECS (Pe = 9.4 in the PVS of arteries compared to Pe = 1.6× 10−2 in the
ECS), most of the transport still occurs in the latter. We also note that the maximal velocity in
PVS arteries obtained from baseline coefficient values (see Table 4) is close to the measurements
of CSF velocity in the PVS arteries at the pial surface in [62, 12] (7.9µm/s in our work compared
to 18µm/s in Mestre et al. [62]). We also note that the location of the maximal velocity we
obtained is close to the surface of the brain where the gradient of the pressure is the largest in
the PVS arteries compartment (see Fig 3). ISF velocity has also been reported to be around
0.1 − 0.25µm/s by Cserr et al. [20, 21] and numerical results obtained in [77] indicated a peak
velocity in the ECS close to the surface of the brain and with magnitude umax = 0.5µm/s. Simi-
lar fluid velocities in the parenchyma have been reported by Nicholson [67] and Abbott [1] while
a numerical study [19] have shown that even a velocity of 1µm/s may play a complementary
role in transport within the parenchyma. Ray et al. [81] obtained using a computational model
a bulk flow velocity in the ECS of 0.008− 0.42µm/s. Altogether, our model compares well with
the previously cited results with an average velocity in the ECS of uaver = 0.0033µm/s and a
peak velocity located close to the surface of the brain of 0.06µm/s (see Table 4). We note that
our average velocities are slightly lower than experimental results. However, movement in the
parenchyma is typically measured by lumping all compartments together while we report each
compartment separately. This difference may explain the discrepancy between our simulations
and experimental data of flow in the ECS.

Increasing the porosity of the ECS slows the clearance of 14C-inulin Since the work of
Xie et al. [104], sleep is believed to play an important role in the clearance of 14C-inulin . In [104],
an increase in the porosity of the ECS was measured when the animal was asleep. Our results
show that when only the ECS porosity was increased, the clearance of 14C-inulin was slower. This
may be explained by the fact that increasing the ECS porosity leads to smaller concentration
gradients, hence decreasing diffusive movement. However, in this scenario, we assumed that the
diffusion coefficient remained constant. Furthermore, the increased ECS porosity only led to a
74% increase in average velocity, and still, the Péclet number remains small (Pe = 2.2 × 10−2

after ECS porosity increase) in the ECS.
Compared to the usual representation of the glymphatic system in which vessels are clearly

spaced, and convective movement occurs between them, our multi-compartment model represents
this effect through the exchange terms. The enhancement of the ECS porosity allows for more
fluid transfer from the ECS to PVS veins (as shown in Subsection 3.3.4), hence, capturing well
the hypothesized faster convective movement in the ECS from the PVS of arteries to the PVS
of veins during sleep. However, the usual schematic representation of the glymphatic system
does not allow us to consider the directions of the pressure gradients in the ECS at the scale
of the brain. If we assume that the convective movement in the PVS of arteries is generated
by a pressure gradient, our results show fluid flow in the ECS directed inwards from the surface
of the brain. This latter counters the diffusive movement and, hence, slows down the clearance
of solutes. This could indicate an effect that is neglected in the current glymphatic theory and
needs further investigation.
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The minor effect of increased porosity in our model seems to indicate that to obtain the
measured effect of sleep (see Xie et al. [104]), another induced change must take place. Recent
results from [16] indicate that sleep also induces vasomotion in the brain. If we assume that sleep
induces a general vasoconstriction trend, we can model this effect by reducing the radius of blood
vessels, and hence, the PVS width increases. Therefore, porosity and permeability coefficients
are adapted correspondingly (see Appendix A). This leads to an enhanced CSF movement in all
structures (e.g. an increase of 305% of fluid volume from the PVS of arteries to the ECS) and
affects the clearance of 14C-inulin . The clearance curves shown in Fig 6 clearly reveal that the
clearance is slower for the scenario in which PVS permeabilities are increased with a magnitude
associated with sleep. When the permeability is further increased, our sensitivity analysis re-
vealed a nonlinear effect, and faster clearance is observed. This indicates that the vasomotion of
arteries only could contribute positively to clearance, and that a multi-compartment system such
as the brain may involve complex, non intuitive interaction between compartments. However, it
is worth mentioning that even when varying key parameters such as ECS, periarterial and peri-
capillary permeability with orders of magnitude we did not obtained rate constants as observed
by Xie et al. [104] for 14C-inulin in sleeping animals (rate constant of ∼0.015/min). These results
indicate that the improvement of clearance due to sleep does not seem to be explained only by
an increase of the porosity coefficients in the ECS and PVSs.

Fluid leakage from the blood vessels improve 14C-inulin clearance and make the
periarterial space an outflow route Using biologically relevant parameter values, our results
indicate that if the effect of leakage from the blood vessels is taken into account, the flow of CSF
in the ECS and PVS of arteries is reversed compared to the standard picture of the glymphatic
theory. With the inclusion of blood vessels, the flow direction is in line with the proposed
hypothesis by Cserr et al. [23]. The PVS arteries compartment becomes an outflow route in this
case. Additionally, the flow is also reversed in the ECS compared to the 4-compartment model
(as observed in Fig 7a-b). This leads to a faster clearance of 14C-inulin as observed in Fig 7c. The
fluid velocities in all compartments are all increased in this case compared to the 4-compartment
model case. We obtain a Péclet number of 4.1× 10−2, which still indicates that diffusion in the
interstitial space is the dominant effect for transport. However, referring to Croci et al. [19], we
emphasize that even a small increase in velocities in the ECS could lead to a significant change
in transport that could explain our enhanced clearance for that case. The sensitivity analysis
also revealed that increasing the diffusion coefficient has less effect on the 7-compartment model,
suggesting that convection play more prominent role in this case. Indeed, for this third test case,
the relative amount of 14C-inulin decays exponentially with ∼20% of relative 14C-inulin mass after
6 hours. The shape for the clearance curve corresponds more to the sleeping animals’ results
from Xie et al. [104], however with standard parameters, the rate constant in our model was
around 3-4 times lower than the rate constant observed experimentally. However, the sensitivity
analysis revealed that increased blood filtration (by a factor around 100) in the 7-compartment
model gave a rate constant of ∼0.014/min. Therefore, combining our results from the 4- and
7-compartment models seem to indicate that the transfer of fluid between blood vessels and PVSs
and ECS provide a great potential to increase clearance during sleep. This could be related again
to observed vasomotion of cerebral vessels during sleep [16].

Limitations and further works Our model is based on a homogenization procedure that
represents the different structures (ECS, PVS, blood vessels) as a continuum. Usually, the
derivation of the macroscopic model is assumed to be correct if the ratio between the length
scale of the pores (in our case the distance between vessels) and the length scale of the chamber
is less than one. In our model, this holds true for most compartments (see Shipley et al. [90] for
homogenization related issues). However, we emphasize that this ratio is close to one for cerebral
arterioles and venules. This strong modelling assumption could be relaxed by considering a 1D-
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3D model (see e.g. [25]) in which only the ECS and capillaries are represented as continuous
media while the other structures are modelled by one-dimensional curves within the domain.

1D-3D models provide a more detailed description of the pressure-field and solute transport.
However, this type of model requires very high resolution meshes with cell sizes on the scale of
the radius of the blood vessels to properly model fluid and solute exchange between tissue and
the 1D structures [34]. It is therefore currently too computationally costly to be used at the scale
of the whole brain. Nevertheless, some of the observations and assumptions from this present
work could be tested and verified more accurately with such a 1D-3D model. The comparison
between these two types of models will be the subject of a future work.

In our article, the clearance of solutes from the CSF in the SAS is taken into account using
a simplified boundary condition. Indeed, we assumed that once the solute reaches the SAS it
diffuses instantaneously within the CSF in this region. We plan to derive more rigorously these
boundary conditions in a future work to first model fluid movement inside a three dimensional
subarachnoid space and then to seek effective boundary conditions while studying the asymptotic
limit of zero width for the subarachnoid space.

Furthermore, due to the complexity induced by the modelling of the different compartments
and exchange between them, there are 8 coefficients per compartment (some of them might be
shared between two compartments, for example for the exchange through a shared membrane).
Some measurements of these parameters exist, however sometimes in different species (rats versus
humans), and we have to the best of our ability translated parameters to reflect rat physiology.
In addition, the measured values may suffer from experimental uncertainties. The present model
could also be used to investigate phenomena with continuous production and clearance of sub-
stances that are naturally produced in the brain [60, 10]. However, for this application additional
parameters would be needed, and given the already complex parameter space, this addition were
therefore not considered in the present study.

To study uncertainties about parameter values, we performed a sensitivity analysis. However,
inverse modelling may also be used to find parameter values numerically. Optimization techniques
have been previously used to estimate parameters in the context of the glymphatic system [99].
To optimize parameters, PDE constrained optimization techniques (see e.g. [94] about inverse
problems and [5] for PDE-constrained optimization) have to be applied to our model to minimize
the error between the output of our model and results from experiments. Two main difficulties
arise in our case. First, the dimension of the inverse problem (the number of parameters to
optimize) is very large but based on our sensitivity analysis and on experimental works, some of
them can be fixed and, hence, decrease the computational cost of the optimization by reducing
the dimension. The second issue comes with experimental data and whether sufficient data is
available to perform parameter optimization on our model.

In our study, we made some variations of parameter values to model a possible increase in ECS
or PVSs volumes. The enhancement of ECS volume is reported in [104]. However, the increase
of PVSs volume has been measured recently in [16] and does not appear to be fixed but rather a
time-dependent value. Indeed, oscillations, vasoconstrictions and vasodilatations may occur over
a few minutes (see Fig 2d in [16]). If the effect of these oscillations in porosity were accounted for
in our model, the equations would change drastically (ϕ(t) becomes a time-dependent function
and stays in the time derivative of both the concentration and pressure equations). Adding the
effect in the system forces us to keep the time derivative in the pressure equation and solve a
coupled system of equations at each time step for each compartment. This will increase the
computational cost of the simulations tremendously.

The use of standard continuous finite elements for the discretization of the diffusion equation
leads to the presence of small oscillations of the numerical solution. See e.g. [59] for details about
this effect and some remarks about stabilization, which could be included in further works.
However, we note that integrated quantities over large domains (e.g. the brain) are not affected
as small oscillations around zero concentration even out. In this work, we arranged the scale on
the figures so that no negative values for the concentration appear visually.
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Conclusion In this paper, we presented a multi-compartment model for fluid and solute trans-
port with application to the glymphatic system of a rat brain. The model allows us to test the
effect of different physiological changes (e.g. sleep) and assess different theories concerning fluid
flow and transport in the brain. Unless blood filtration was added to the model, diffusion was
the main driving force for transport. However, as our simulations show, only a small leakage
from blood vessels increased clearance by an order of magnitude.

A Computing biologically relevant parameters

A.1 Permeability coefficients

In the present article, we use a definition of the permeability coefficients that can be obtained from
the resistance values given in [101]. Even though this latter work considers a one-dimensional
model, a relation between 1D resistances and 3D permeabilities can be found. Indeed, assuming
that a 1D line is embedded into a 3D cylinder of length L and cross-sectional area A, the
volumetric flux in the 1D geometry is given by the Poiseuille equation

Q =
1

R
∆p,

where R is the resistance in the 1D geometry and ∆p is the pressure difference between the two
ends of the line. Then, if we assume that the flow in the 3D cylinder is given only by the flow in
the line, Darcy’s law gives the relation

Q =
κ

µ

A

L
∆p =

1

R
∆p,

where κ is the averaged permeability and µ is the dynamic viscosity. Altogether, we obtain

κ =
µL

RA
. (20)

For all compartments, L
A is related to the length scale of the brain. Therefore, knowing the

permeability of the ECS, for example, from [39] and the resistance as computed by [101], we
obtain a constant relationship between Rj and κj for all compartments. Resistance coefficients
Rj for the different compartments can be found in [101]. Choosing a permeability for the ECS
of κe = 2.0 × 10−11mm2, a CSF dynamic viscosity of µe = 0.7 × 10−3 Pa s, and the resistance
coefficient Re = 4.56 (Pa s)/mm3 indicated in [101] we have

L

A
= 1.3× 10−7mm−1,

and we obtain the values for the permeability coefficients

κpa = 1.0× 10−11mm2, κpv = 6.51× 10−9mm2, κpc = 3.54× 10−13mm2.

Then, from [28] and [45], as well as choosing a dynamic viscosity of blood µblood = 2.67 ×
10−3 Pa s [98]

κa = 3.30× 10−6mm2, κv = 6.59× 10−6mm2, κc = 8.8× 10−9mm2.

It is worth mentioning that in previous works related to multi-compartment modelling of
the glymphatic system, several authors evaluated these coefficients through numerical testing,
leading to very different values. Indeed, from [98, 36, 29] in which the MPET equations are used
to represent the movement of CSF through different compartments in the brain, permeabilities
are

κa = κv = κc = κpa = κpv = κpc = 1.0× 10−4mm2, and κe = 1.4× 10−8mm2.

Therefore, we obtain a difference between these two parameter sets of several orders of magnitude,
leading to tremendous differences in fluid movement.
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A.2 Transfer coefficients

Following the Starling equation, the definition of the coefficients for transfer between vessels and
tissues is

γi,j = Li,j
|Si,j |
|Ω|

, (21)

where Li,j is the hydraulic conductivity of the membrane (in mm/(s Pa)),
|Si,j |
|Ω| is the ratio

between the surface area of the vessel per unit of volume of tissue (in mm−1).

We know the ratio
|Si,j |
|Ω| , but we are missing the value of the hydraulic conductivity for some

of the considered membranes. For the transfer from blood vessels to ECS, we can find the value of
the hydraulic conductivity of the BBB at the different levels (i.e. arteries, capillaries and veins).
These values are reported in the main body of this article, in Section 2.

For the transfer coefficients between PVSs and the ECS, we use the following method. We
search for a suitable relation between the 1D resistance parameters from [101] and the 3D ex-
change coefficients γj,i. In the following, we assume that the transfer coefficients for the PVSs
to ECS are comparable between humans and rats.

Starting from the volumetric flow Qj,i through a 1D structure

Qj,i =
1

Rj,i
(pi − pj),

where Rj,i is the resistance through the structure and using the fact that this same volumetric
flux in 3D is given by

Qj,i =

∫
Ω
γj,i(pi − pj) dx,

assuming that the pressure difference (pi−pj)(x) is constant in space (which is not unreasonable
since the transfer coefficient is homogeneous in space as well), we obtain the relation

γj,i =
1

Rj,i |Ω|
.

We emphasize that since the resistance coefficients reported here are for humans, the volume |Ω|
is the volume of the human brain, i.e. |Ω| = 1 × 106mm3. Thus, from this equation, we can
define the transfer coefficient in a different manner using only the 1D resistances estimated in
[101] and the volume of our computational domain.

We apply the previously presented method to compute the exchange coefficients between
PVSs and ECS. We obtain

γpa,e = 2.19× 10−7 (Pa s)−1, γpv,e = 1.95× 10−7 (Pa s)−1, γpc,e = 9.19× 10−9 (Pa s)−1.

For the exchange from blood vessels to ECS, we obtain

γa,e = 2.73× 10−9 (Pa s)−1, γv,e = 6.00× 10−11 (Pa s)−1, γc,e = 9.00× 10−10 (Pa s)−1.

To compute the fluid exchange coefficients between blood vessels and PVSs, we compute the
resistance of the blood-brain-barrier at the different levels (i.e. arteries, veins, capillaries) and
subtract to it the resistance of the astrocyte end-feet barrier. We obtain the relation

Ra,pa =
1

γa,e |Ω|
−Rpa,e, Rv,pv =

1

γv,e |Ω|
−Rpv,e.

Knowing these resistances and using the previous method, we can compute the coefficients

γa,pa = 2.76× 10−9 (Pa s)−1, γv,pv = 6.00× 10−11 (Pa s)−1 γc,pc = 9.98× 10−10 (Pa s)−1.
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Next, we need to specify the transfer coefficients for connected spaces, e.g. from arteries to
capillaries. To do so, we use the equation

γj,i =
Q

|∆pi,j |
,

where Q is the flow rate of fluid (CSF or blood) and ∆pi,j denotes the pressure drop from one
compartment to the other. Using values from Table 7 and using a value of 2.0 g for the weight of

Name Unit Value Reference

Cerebral blood flow (CBF) mL/g/min 1.16 [53]
CSF production rate µL/min 3.38 [18]

Mean arterial blood pressure (MAP) mmHg 95 [24]
Pial venous pressure mmHg 7 [61]

Pial arteriolar pressure mmHg 56 [61, 11]

Table 7: Blood and CSF parameters

the brain (see [76]) as well as a pressure drop from arteries to capillaries of ∆pa,c = 40mmHg,
and a pressure drop from capillaries to veins of ∆pc,v = 13mmHg, we obtain

γa,c = 3.14× 10−6 (Pa s)−1, γc,v = 9.65× 10−6 (Pa s)−1.

Then, assuming a total flow rate of CSF through perivascular spaces of QCSF = 3.38µL/min
(which corresponds to CSF production rate, see [47], and clearly represents an upper estimate of
the actual flow in the PVS), and a pressure drop from PVS arteries to PVS capillaries of ∆ppa,pc =
1mmHg, and a pressure drop from PVS capillaries to PVS veins of ∆ppc,pv = 0.25mmHg (both
of these latter values are assumed to be correct but we emphasize that we could not find any
measurement in the literature), we obtain

γpa,pc = 1.83× 10−7 (Pa s)−1, γpc,pv = 7.31× 10−7 (Pa s)−1.

The coefficients γ̃j,i are given by the value of the reflection coefficient σreflect,ij and the equation

γ̃
14C-inulin
j,i = γj,i(1− σ

14C-inulin
reflect,ij ). (22)

We also define the hydraulic permeability of the fluid at the pial surface to define the Robin
boundary conditions. Therefore, we search the 3D coefficients γi,j using the previous method,
and we then compute the hydraulic conductivity Li,j that we can use in the definition of the
boundary conditions. We assume that the boundary permeability for the ECS compartment is
given by a resistance coefficient that we assume to be twice larger than the resistance coefficient
of the PVS of arteries, i.e. Re,SAS = 2 × Rpa (we emphasize again that we could not find a
measurement of this hydraulic conductivity at the pial surface of the brain). Then, using the
relation

Li,j =
1

Ri,j |Si,j |
,

where |Si,j | corresponds to the surface area of the pial membrane of the human brain (≈ 1750×
102mm2), we obtain

Le,SAS = 3.13× 10−7mm/(Pa s), Lpa,SAS = 1.25× 10−6mm/(Pa s).

The next coefficient to define is λi,j for the mass transfer of the solute. Following the definition
of diffusive mass transfer, we know that

λi,j = Pi,j
Avessel

Vtissue
, (23)
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where Pi,j is the permeability (in mm/s) between the two compartments.
The diffusive permeabilities are computed using the method from [57], namely for the per-

meability to the molecule α = 14C-inulin , we have

Pα =
1

πDv

∑
r∈F

1

Rα
r

,

where Dv corresponds to the diameter of the considered vessel (10× 10−3mm for capillaries [31],
50 × 10−3 for arterioles and venules [65, 66]), F is the index set corresponding to the different
layers of the membrane for which we compute the permeability, Rα

r is the resistances to solute
transport for the different layers. For the AEF barrier, the only layer to cross is the astrocyte
endfeet processes. We have the definition of the resistance

RAEF =
LAEF

2BAEFDα
AEF

,

where LAEF is the width of the membrane, 2BAEF is the width between two astrocyte endfeet (at
the perivenous and periarterial level, we take BAEF = 250nm and at the pericapillary level, we
take BAEF = 25nm), and Dα

AEF is the diffusion coefficient in this same cleft. Assuming that the
cleft has a cylindrical shape, the latter parameter is assumed to be given from the relation [63]{

Dα
AEF = Dα

free

(
1− 2.10444β + 2.08877β3 − 0.094813β5 − 1.372β6

)
,

β = aα

BAEF
,

in which aα is the solute radius. The Stokes radius of inulin is indicated to be aInulin = 15.2 ×
10−7mm in [86]. Finally, we obtain

λ
14C-inulin
pa,e = 3.70× 10−3 s−1, λ

14C-inulin
pv,e = 3.72× 10−3 s−1, λ

14C-inulin
pc,e = 3.70× 10−3 s−1.

A.3 Variations of PVS porosities

In our article, we assumed some variations of the PVSs volume. Using the resistance formula
provided in [101] which gives

R ∝ 1

r41
,

where r1 is the inner radius of the PVS. Thus, with our equation for the permeability coeffi-
cient (20), we obtain the proportionality relation

κj ∝ r41.

Furthermore, assuming that the PVSs are just holed cylinders, the change of volume is propor-
tional to the change in r21. Therefore, from the two previous proportionality relations, we obtain
that multiplying the volume of the PVS by a constant C results in multiplying the permeability
by the square of this constant.

B Sensitivity analysis
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Figure 8: Sensitivity analysis of the 4-compartment model. Each curve represents a change in
the parameter of a given factor. The largest effects were seen in changes in the periarterial
permeability, the diffusion coefficient and the periarterial porosity.

Figure 9: Sensitivity analysis of the 7-compartment model. Each curve represents a change in the
parameter of a given factor. The undisputed greatest effect was seen in changes in the convective
fluid transfer permeability between the periarterial and arterial networks.
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C Numerical verification

C.1 Method of manufactured solutions

To ensure the correctness of the implemented numerical solver, we use the method of manufac-
tured solutions. Consider the square Ω = [−1, 1]2, and define the functions

pj(x, y) = aj cos(πx/2) cos(πy/2) + p0j , cj(x, y, t) = bj(1− t/T )(x2 + y2) + c0j (24)

for j ∈ {e, pa, pc, pv}, where aj , bj , p0j and c0j are some predetermined constants and T is the end
time of the simulations. For these functions to be valid solutions, we need to augment each of
the modelling equations by an additional source term, chosen such that the functions defined in
(24) solve the problem. Since the model with the additional source terms defines a more general
form of our original problem, then a solution algorithm for the multi-compartment model with
sources should be able to solve the problem without the source terms as well (which is equivalent
to setting each of the sources to fj .)

Fig 10 plots the errors of the numerically obtained solutions compared to the analytically
correct solutions defined in (24) for varying mesh resolution. Denoting by V = H1(Ω)|J |, where
|J | = 4 is the number of compartments in the model, the error for the pressure equations is
measured in the norm

∥u∥V =

√∑
j

∥uj∥2H1(Ω)
, (25)

The time-dependent concentration equations error for they are measured in the following ap-
proximate Bochner-space norm,

∥u∥L2([0,T ],V ) =

√∫ T

0
∥u(t)∥2V dt ≈

√√√√N−1∑
n=0

∆t

2

(
∥un∥2V + ∥un+1∥2V

)
, (26)

where un, n = 0, ..., N is the numerical solution at time tn.

Figure 10: Error of the numerical solution for varying mesh resolution, supplemented by a
dashed black line indicating the expected convergence rate. a) Convergence plot for the pressure
equation. The error converges quadratically with respect to cell size, measured in the norm
defined in (25). b) Convergence plot for the concentration equation. The error converges linearly
with respect to cell size, measured in the Bochner-space norm (26).

As shown in Fig 10a, the solver for the pressure equations exhibits quadratic convergence
with respect to the largest cell size hmax, as expected from the Bramble-Hilbert lemma applied
to piecewise linear elements on a shape-regular triangulation [17, p. 79 Theorem 6.4]. Similarly,
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figure 10b shows a linear error convergence with respect to the cell size, as expected from e.g.
[80, Theorem 5.1 p. 134].

These results verify the correctness of the implemented numerical solver and that the base-
line parameters do not introduce any significant numerical challenges. We can not, however,
exclude that some numerical issues are introduced when going to the complex three-dimensional
geometries of the brain. In Section C.2, we take some further steps to verify that the reported
clearance curves behave as expected with regard to the mesh resolution.

C.2 Clearance curves under varying mesh resolution and time steps

This section investigates how the clearance curves for the entire rat brain are impacted by varying
mesh resolution and the size of time steps used in the simulations. Following the procedure from
Section 2.6, we create different meshes of varying resolution. The smallest and largest cell size
corresponding to each of the resolutions are listed in Table 8. For each of these meshes, we

Resolution hmin hmax

16 0.265 2.374
32 0.154 1.190
64 0.073 0.622

Table 8: The smallest and largest cell size h of the mesh
for different values of the resolution argument provided to
SVMTK.

simulate a pure diffusion model to investigate the impact of mesh resolution on different tracer
measurements of interest. Results can be found in Fig 11. We observe a slight difference between
the clearance curves obtained from the mesh with resolution 16 and the mesh with resolution
32. However, the clearance curves obtained from the 64- and 32-resolution mesh are virtually
indistinguishable. We conclude that our scheme converges for the pure diffusion model and the
mesh with resolution 32 produces accurate results.

Figure 11: The evolution of tracer measurements relative to the initial value, plotted for varying
mesh resolution. The simulations were run for a pure diffusion model using the tracer decay
model and a time step of 1 minute. a) Relative mass within the entire brain. b) Relative mass
within a cube with side lengths of 2mm. c) Relative concentration at the injection point.

Similarly, we investigate the impact of varying the time step sizes on the clearance curves.
The results are shown in Fig 12 and illustrate that a time step of δt = 60 seconds, as used in our
simulations, is sufficiently accurate.

Next, we plot the clearance curves for the 7-compartment model for both varying mesh
resolutions and time step size in Fig 13. The behaviour for the full model is similar to the pure
diffusion model and indicates that further refining the mesh or reducing the time steps will have
minimal impact on the clearance curves, especially if we compare it to the uncertainty in other
parameters.

Finally, we study the convergence properties of the numerical method for solving pressure
equations. We use the solution of the 64-resolution mesh as a reference solution and compute
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Figure 12: The evolution of tracer measurements relative to the initial value in the pure diffusion
model, plotted for varying time step sizes. The simulations were done using the tracer decay
model and a mesh with resolution 32. a) Relative mass within the entire brain. b) Relative mass
within a cube with side lengths of 2mm. c) Relative concentration at the injection point.

Figure 13: The evolution of total tracer mass relative to the initial value in the 7-compartment
model, plotted for a) varying mesh resolution (with a timestep of 60s) and b) varying time step
sizes (with mesh resolution 32).

the L2 and H1 error norm with the solutions for the different mesh refinement levels. We obtain
the results stated in Table 9 for second-order Lagrange polynomials.

Resolution L2-error norm order H1-error norm order

8 748 2302
16 404 0.89 1659 0.47
32 82 2.29 851 0.96

Table 9: Computed L2 and H1 error norms and convergence orders for our numerical method
to solve the pressure equation of the multi-compartment model using second-order Lagrange
elements
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