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Abstract. In this article, we generalize the works of Pan et al. (Euro-
crypt’21) and Porter et al. (ArXiv’21) and provide a simple condition
under which an ideal lattice defines an easy instance of the shortest vec-
tor problem. Namely, we show that the more automorphisms stabilize
the ideal, the easier it is to find a short vector in it. This observation
was already made for prime ideals in Galois fields, and we generalize it
to any ideal (whose prime factors are not ramified) of any number field.
We then provide a cryptographic application of this result by showing
that particular instances of the partial Vandermonde knapsack problem,
also known as partial Fourier recovery problem, can be solved classically
in polynomial time. As a proof of concept, we implemented our attack
and managed to solve those particular instances for concrete parameter
settings proposed in the literature. For random instances, we can halve
the lattice dimension with non-negligible probability.

1 Introduction

Euclidean lattices are mathematical objects that play an important role in many
areas of mathematics and computer science. There are several computational
problems related to lattices that are proven to be NP-hard, for instance, the
problem of finding a shortest vector (SVP) or a set of shortest independent
vectors (SIVP) in a given lattice. A standard relaxation consists in solving them
only up to some approximation factor γ ≥ 1, denoted γ-S(I)VP. It is commonly
conjectured that the problems remain hard to solve for approximation factors
that are polynomial in the lattice rank. Their presumed intractability provides a
fundamental starting point for the construction of provably secure cryptographic
schemes, shown in the seminal works of Ajtai [Ajt96] and Regev [Reg05].
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Unfortunately, all cryptographic schemes relying on the hardness of those lat-
tice problems inherently suffer from large keys and slow computation times, be-
ing quadratic in the security parameter. In order to improve efficiency, problems
on structured lattices have been introduced, e.g., [Mic02,LM06,PR06,SSTX09,
LPR10, LS15]. The most popular setting is to consider OK-modules of rank r,
where OK is the ring of integers of some number field K of degree d. By ap-
plying the d different field embeddings from K to C, any OK-module of rank r
is mapped to a lattice of rank d · r. Those lattices inherit the module structure
(i.e., closed with respect to scalar multiplication by ring elements) and are called
module lattices. If the module rank equals 1, they are called ideal lattices.

Many structured lattice assumptions, such as Ring-LWE [SSTX09, LPR10],
NTRU [HPS98] or Module-LWE [LS15] can be solved with an SVP solver in
module lattices of small rank (≥ 2). This motivates the study of the hardness
of SVP in module lattices. To start tackling this problem, many algorithms
have focused on the special case of solving SVP in rank-1 modules, that is in
ideals. This restricted problem is denoted by Id-SVP. While solving Id-SVP
is not known to break any of the three lattice assumptions mentioned above,
studying this (potentially easier) problem can be seen as a first step to better
understand the hardness behind algebraically structured lattices. Another mo-
tivation for studying Id-SVP comes from the fact that the first hardness result
for Ring-LWE was a reduction from worst-case Id-SVP [SSTX09,LPR10]. This
reduction only provides a lower bound on the hardness of Ring-LWE, and we
have today a stronger reduction, from worst-case SVP in modules of rank ≥ 2,
for some more restricted regime of parameters of Ring-LWE [AD17]. Still, even if
an efficient algorithm for Id-SVP would not have a direct impact on the security
of Ring-LWE, it would make the reduction from Id-SVP vacuous, and hence let
some interesting regime of Ring-LWE without lower bound security guarantees.

Even though most of the lattice-based cryptographic schemes are not known
to reduce to SVP in ideal lattices (but in module lattices of rank ≥ 2), there
are a few counter-examples. They can be found among the first constructions
of FHE schemes by Gentry [Gen09] or, as we will see below, in the constructions
based on the partial Vandermonde knapsack problem [HPS+14] (also known as
the partial Fourier recovery problem).

Hardness of Id-SVP. The hardness of Id-SVP has attracted a lot of work in
recent years. On the one hand, some works have proven worst-case to average-
case reductions for problems in ideal lattices [Gen09, dBDPW20]. They proved
that there exist distributions over the set of ideal lattices such that an ideal
chosen from this distribution is “as hard as possible”. More formally, if one can
solve Id-SVP for such random lattices with non-negligible probability, then one
can solve Id-SVP in any ideal lattice.

On the other hand, several works have shown weaknesses of Id-SVP for spe-
cific choices of ideals or parameters. Cramer et al. [CDPR16] showed that Id-SVP
can be solved in quantum polynomial time for principal ideals (i.e., ideals gener-
ated by a single ring element) of cyclotomic fields, when the generator is sampled
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from a Gaussian distribution. It is also known that the relaxed variant of Id-SVP
with a large approximation factor ≈ 2

√
d can be solved in quantum polynomial

time in cyclotomic fields of degree d [CDW21]. In 2021, Pan et al. [PXWC21]
showed that, for some prime ideals with a lot of symmetries (in Galois number
fields), the Id-SVP problem can be solved classically in polynomial time, with a
polynomial approximation factor. This was extended by Porter et al. [PML21,
Theorem 3] to a larger class of ideals, whose characterization is harder to state
and relies on factoring properties of the ideal, as well as its algebraic norm.

Finally, there is a line of work targeting Id-SVP for all ideals of all number
fields, for various approximation factors [PHS19,BR20,BLNR21]. However, the
algorithms require an exponential-time pre-processing, and are at the moment
no better than lattice reduction algorithms that work on unstructured lattices
(e.g. BKZ).

Partial Vandermonde Knapsack. In the late 90’s, Hoffman et al. [HKJL+00]
patented a method for user identification and digital signatures based on the dif-
ficulty of recovering a constrained polynomial from partial information. After-
wards, the partial information was specified as a partial list of the polynomial’s
Fourier transform resulting in a signature scheme called PASS Sign [HPS+14].
The constraint regarding the polynomial was to choose its coefficients uniformly
at random over a bounded set. Lu et al. [LZA18] moved from the Fourier trans-
form (evaluation at all roots of unity) over cyclic rings to the Vandermonde
transform (evaluation only at the primitive roots of unity) over cyclotomic rings.

The hardness assumption that underlies PASS Sign, as given in [LZA18], is
the following. Let q be a prime and let m be an integer such that there exists
a primitive m-th root of unity in the quotient ring Zq := Z/qZ. In this case,
there exist exactly d = φ(m) such primitive roots {ωj}1≤j≤d, where φ is Euler’s
totient function. Further, let g(X) be a polynomial of degree less than d hav-
ing small integer coefficients. Its Vandermonde transform V(g) ∈ Zdq is defined
as g(ωj)1≤j≤d mod q. For a subset Ω ⊆ {1, . . . , d} of size t, its partial Vander-
monde transform VΩ(g) ∈ Ztq is given by g(ωj)j∈Ω . The partial Vandermonde
knapsack problem (PV-Knap) asks, given VΩ(g), to recover g(X).3

As observed by Boudgoust et al. [BSS22, Bou21], recovering a short poly-
nomial while having access only to a partial list of its Vandermonde trans-
form can be seen as a problem over an ideal lattice. More precisely, in the
mathematical setting above, we know that the ideal generated by q in the m-
th cyclotomic ring OK = Z[X]/Φm(X) completely splits into d prime ide-
als, where Φm(X) denotes the m-th cyclotomic polynomial.4 More precisely,

it yields qOK =
∏d
j=1 pj , where pj = qOK + (X − ωj)OK . Providing the evalu-

ations g(ωj)j∈Ω corresponds to specifying the coset h := g mod IΩ with respect
to the ideal IΩ :=

∏
j∈Ω pj . Hence, PV-Knap essentially requires to recover g

(with small coefficients) given h, which yields a problem over ideal lattices.

3 In this paper, we only consider regimes where the solution to this problem is unique.
4 For the sake of simplicity, we focus on cyclotomic fields in the introduction but stress

that PV-Knap can be defined over any number field.
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Contributions. The results of this work can be divided into three different
parts. First, we show in Section 3 that Id-SVP can be solved efficiently for ideal
lattices with a lot of symmetries, generalizing the results of [PXWC21,PML21].
We then show in Section 4 that there exist bad instances of PV-Knap, that
are easy to solve using the algorithm above. Last, we present the results of
our implemented attacks against different parameter sets and design choices
for PV-Knap proposed in the literature (Section 5).

Contribution 1. In [PXWC21], the authors identified a class of “bad ideal lat-
tices”, i.e., ideal lattices in which Id-SVP can be solved efficiently with a polyno-
mial approximation factor: prime ideals in Galois number fields that are above a
prime of Q splitting into many prime factors. This result was later extended to
a larger class of ideals (not necessarily prime) in [PML21, Theorem 3]. However,
the characterization of the bad ideal lattices of [PML21] is significantly more
complex than the one in [PXWC21], and depends on the algebraic norm of the
ideal, as well as some hard to compute quantities, related to the ideal’s prime
decomposition. In this work, we improve upon those results in two ways:

1. we obtain a very simple sufficient condition for an ideal to be a bad ideal;
2. the class of bad ideals that we obtain from this simple condition contains

the ones of [PXWC21] and [PML21], while being strictly larger.

We observe that the condition “a prime ideal is above a prime of Q splitting
into many prime factors” from [PXWC21] can be rephrased more simply as a
condition on the prime ideal having many symmetries (this observation was also
made in [PML21]). By symmetry we mean here that the prime ideal is fixed (as
a set) when applying an automorphism of the number field K in which the ideal
lives. With this, we are able to generalize the result of [PXWC21] to any ideal
(modulo a small condition on their algebraic norm) in any number field (not
necessarily Galois).

Overall, we obtain the following result (informally stated here, see Theo-
rem 3.1 for a formal statement): one can solve Id-SVP in an ideal lattice I in
time roughly exp(d/nI), where d is the degree of the number field K and nI is the
number of automorphisms of K that fix I as a set (this is an integer between 1
and d). If I has no symmetries, then nI = 1 (I is always fixed by the identity),
and we recover the run times of standard lattice reduction algorithms. This re-
sult can also be extended to approximation variants of Id-SVP, leading to an
algorithm with approximation factor γ ≥ 1 and time roughly exp(d/(nI ·log(γ))).

Testing whether an ideal I is fixed by an automorphism τ of K can be done
efficiently if we have a description of τ and a basis of I. Contrary to previous
works, this does not require any knowledge about the factorization of the ideal I.
Hence, our characterization of bad ideals can be easily checked and may be useful
to cryptographers introducing new assumptions related to ideal lattices.

We note that [PML21] also provides at the bottom of p.14 a simplified con-
dition for their result, which does not require the knowledge of the factorization
of I, but still depends on its algebraic norm. This simplified condition however
is quite loose, and our simple condition above captures more ideals. This is for
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instance the case for ideals I of norm ≥ 2d which have many symmetries but
whose prime factors have individually very few symmetries: our condition shows
that these ideals are bad, whereas the condition of [PML21] does not capture
them. Looking ahead, this special family of ideals is exactly the one arising when
we transform a PV-Knap instance into an Id-SVP instance.

The fact that Id-SVP is easier to solve in lattices fixed by automorphisms
of K is not very surprising. Indeed, we know that an element of K fixed by some
automorphisms is actually an element from a subfield of K of smaller dimension.
The same holds for ideals: an ideal I fixed by nI automorphisms can be seen as an
ideal in a subfield L of K (this formulation requires some care, it is made formal
in Lemma 3.3, which is the main new technical material of this contribution),
whose degree is exactly d/nI (the more automorphisms, the smaller the degree
of L). When looking for a short vector in I, one can consider I as an ideal of L
instead of K, i.e., a lattice of smaller dimension d/nI .

Finally, we remark that the results of [PXWC21,PML21] in all Galois fields
are only mathematical results characterizing bad ideals and not algorithms. Both
works then used this mathematical result to provide an Id-SVP algorithm, but
they did so only in cyclotomic number fields. Generalizing the algorithm to
other number fields was left as an open problem in [PXWC21, Remark 1]. In this
work, we provide both the mathematical result (Theorem 3.2) and the algorithm
(Theorem 3.1) for all number fields.

We would like to stress again that our algorithm only solves specific instances
of Id-SVP. Hence, it does not have any implications to the hardness of structured
problems such as Ring-SIS or Ring-LWE, as their hardness is based on the worst-
case hardness of Id-SVP, and the reductions are only one-way.

Contribution 2. We now explain how the algorithm above can be used to solve
some particular instances of PV-Knap in polynomial time. Recall that PV-Knap
asks to recover g ∈ OK of small coefficients given g mod IΩ for the ideal IΩ .
Note that it is easy to find a g′ ∈ OK of unbounded coefficients such that g′ =
g mod IΩ . Thus, solving PV-Knap essentially requires to find the (unique) ele-
ment h′ ∈ IΩ that is “close” to g′, that is g′ − h′ = g. When interpreting the
ideal IΩ as an ideal lattice, this yields an instance of the bounded distance de-
coding problem (BDD), as we show in Section 4.1. We then argue in Section 4.2
that BDD in any ideal I reduces to SVP in its inverse ideal I−1. To do so, we
first use Babai’s rounding algorithm to reduce BDD in I to SIVP in its dual I∨.
Then, we use that for ideal lattices SIVP reduces to SVP and that we can go
from the dual I∨ to the inverse I−1. All lattice problems are considered with
respect to an approximation factor that we specify for general number fields in
Lemma 4.1. We provide simplified parameter conditions for power-of-two and
prime cyclotomics (Corollary 4.2 and 4.3). We conclude this part by provid-
ing in Section 4.3 concrete choices of Ω for which we obtain a polynomial time
algorithm that solves PV-Knap in IΩ (using the results from Section 3).

Contribution 3. As a third contribution, we implemented the algorithm of Sec-
tion 3 in SageMath and used the observations of Section 4 to solve PV-Knap over
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cyclotomic fields for different choices of Ω. Globally, we tested our attack for two
different strategies on how to select Ω. In the first scenario, the set Ω is chosen in
an advantageous way (for the attacker) to make the related PV-Knap problem
easy. More concretely, we choose Ω so that IΩ is stable by many automor-
phisms of the underlying number field K. Our experimental results confirm our
asymptotic results from Section 4. Applied to different parameter sets that were
proposed in the literature [HPS+14,LZA18], we can solve PV-Knap in few min-
utes or even in few seconds. In the second scenario, we study the case where Ω is
chosen at random. For random Ω, the ideal IΩ is with overwhelming probability
not stable by any non-trivial subgroup of the Galois group of K. Thus, one might
think that our algorithm won’t improve the cryptanalysis of PV-Knap in this
case. Perhaps surprisingly, we can still use our algorithm to distinguish PV-Knap
instances from random instances with non-negligible probability. The main idea
is to forget some of the i’s in the set Ω. In general, reducing the size of Ω makes
the problem harder, since our target BDD instance lies now in a denser lattice.
However, by carefully discarding some elements of Ω, we may hope to obtain
a subset Ω′ such that IΩ′ is stable by some non-trivial automorphism, hence
reducing the dimension of the ideals by some (small) factor. Overall, we observe
that for all sets of parameters that we considered, there is a non-negligible prob-
ability to sample a random Ω for which one can reduce the dimension of the
lattice problem by a factor 2. Finally, we run a full distinguishing attack on the
smaller parameter set of [LZA18], which was supposed to provide 128 bits of
security. Using the model of [MW18] for bit-security, we show that this set of
parameters actually provides at most 87 bits of security against distinguishing
attackers. We describe all results of our experiments in more details in Section 5.

Implications to cryptography.

Id-SVP algorithm. As explained above, our Id-SVP algorithm only provides im-
provement compared to standard lattice reduction algorithms if the ideal I is
fixed by at least one non-trivial automorphism of K. This is a strong require-
ment on the ideal, and we expect that random ideals do not usually satisfy this
condition (for most of the natural distributions on ideals, such as uniform ideals
of norm bounded by some bound B). We note however that choosing ideal lat-
tices with a lot of symmetries may be tempting for cryptographic constructions,
as this may lead to faster algorithms. We see our results as a warning to cryp-
tographers: one should not use ideal lattices with symmetries. The exhibition of
bad instances of PV-Knap is an illustration of such misuse of ideal lattices.

Summing up, we believe that cryptographers willing to introduce new as-
sumptions based on Id-SVP should follow the following guidelines:

1. check if the scheme can be modified such that the underlying rank increases
from 1 to 2 in order to rely on Mod-SVP instead of Id-SVP;

2. if not possible, use random ideals sampled from one of the distributions for
which we have a worst-case to average-case reduction [Gen09,dBDPW20];
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3. if also not possible, then avoid the known bad ideals: ideals generated by
an element sampled from a Gaussian distribution in a cyclotomic number
field [CDPR16, CDW21] or ideals fixed by some non-trivial automorphism
of the number field (this work);

4. in both cases, do not rely on the hardness of Id-SVP for approximation

factors larger than 2
√
d in cyclotomic fields, with d the degree of the number

field [CDW21].

PV-Knap attacks. As described above, PV-Knap was first studied in the context
of the signature scheme PASS Sign [HPS+14, LZA18]. Its key generation algo-
rithm constructs an instance of PV-Knap (over either cyclic or cyclotomic rings),
where the secret key is a ternary polynomial and the public key is given by a
partial list of its Fourier/Vandermonde coefficients. Hence, solving the search
variant of such PV-Knap instances translates to secret key recovery attacks
against PASS Sign. In 2015, Hoffstein and Silverman [HS15] designed a public
key encryption scheme called PASS Encrypt whose mathematical building blocks
resemble those of PASS Sign. Later, the scheme was slightly modified in order
to provide a proof of security with respect to concretely defined hardness as-
sumptions by Boudgoust et al. [BSS22], accessible via one of the author’s thesis
manuscript [Bou21, Ch. 5+7]. In both variants, the key generation algorithms are
the same as for PASS Sign, and thus, solving PV-Knap similarly leads to a secret
key recovery attack against PASS Encrypt. Doröz et al. [DHSS20] used PASS Sign
to design a signature scheme offering public aggregation of signatures indepen-
dently issued from different users on different messages, called MMSA(TK). An
attacker who is able to recover the secret key of a given ”challenge” public key
clearly violates the security notion used for aggregate signatures.

We would like to highlight again that our attacks on PV-Knap only impact
some specific choices of the set Ω, or decrease the lattice dimension by a fac-
tor 2 when Ω is randomly chosen. Hence, they can be prevented by choosing Ω
carefully (for instance randomly) and possibly increasing the dimension slightly.

2 Preliminaries

Vectors and matrices are written respectively in bold small letters and bold
capital letters. Given a vector v in Rn or in Cn, we denote ‖v‖ its Euclidean
norm (or Hermitian norm if v has complex coordinates) and ‖v‖∞ its infinity
norm. For a matrix M, we write MT for its transposed matrix. By default, we
consider matrices with column vectors.

2.1 Number fields

In this section we recall some definitions and properties about number fields
and Galois theory that are used in the article. More information can be found
in [Mar77, Chapters 2-4 and Appendix B].
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A number field K is a field of the form K = Q[X]/f(X), where f(X) is
irreducible over Q. The degree of K is its dimension as a Q-vector space, which
is equal to the degree of f (hence, it is always finite). In this article, K and L
always refer to number fields, with K of degree d. When L ⊆ K, we say that K
is a field extension of L and write K/L. We let [K : L] denote the degree of
the extension, that is the dimension of K as an L-vector space. The degree of a
tower of extensions K/L/M is multiplicative, i.e., [K : M ] = [K : L] · [L : M ].

Canonical embedding. For a number field K of degree d, we let σ1, · · · , σd de-
note the embeddings of K in C. Using those, we define the canonical embedding
of K as ΣK : K → Cd, where x 7→ (σ1(x), · · · , σd(x))T . The trace TrK : K → Q
is defined as the sum of the embeddings, i.e., for any x ∈ K, we have TrK(x) =∑d
j=1 σj(x). Note that if K/L/Q is a tower of number fields, then any element x

of L is also an element of K, and we can consider both ΣK(x) and ΣL(x). These
two vectors are related, since we know (see for instance [Mar77, Theorem 50])
that every complex embedding of L extends to exactly [K : L] complex embed-
dings of K. Hence, the coordinates of ΣK(x) are the same as the ones of ΣL(x),
repeated [K : L] times each. From this, we see that

‖ΣK(x)‖ =
√

[K : L] · ‖ΣL(v)‖. (2.1)

Galois theory. The automorphism group of a field extension K/L, denoted
by AutL(K), is the set of allK-automorphisms τ such that τ(x) = x for all x ∈ L.
The number of such automorphisms is always at most the degree of the field
extension, that is |AutL(K)| ≤ [K : L].

Definition 2.1 (Fixed fields). Given a field extension K/L and a subgroup H
of AutL(K), the fixed field of H is the subfield KH of K defined by KH = {x ∈
K | τ(x) = x , ∀τ ∈ H}. This fields contains L (i.e., we have K/KH/L).

The extension K/L is said to be Galois if and only if |AutL(K)| = [K : L].5

In this case, we can also use the notation Gal(K/L) to refer to the automor-
phism group AutL(K), and we call it the Galois group of the extension. When
the extension K/L is Galois, Galois theory tells us that there is a one to one
correspondence between subgroups of the Galois group Gal(K/L) and subfields
of K containing L (see [Mar77, Theorem 55]). This correspondence is given by
the maps H ⊆ Gal(K/L) 7→ KH and L ⊂ K ′ ⊆ K 7→ AutK′(K).

Lemma 2.2 ( [Lan02, Theorem 1.8, Chapter 6]). Let K/L be an exten-
sion (not necessarily Galois). Then, for any subgroup H of AutL(K), the exten-
sion K/KH is Galois and Gal(K/KH) = H.

5 This is not the standard definition, see for instance [Mar77, Theorem 52] for a proof
that this is an equivalent definition.
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Ring of integers and discriminant. For a number field K = Q[X]/f(X),
we write OK its ring of integer, that is the subset of elements of K that are
roots of a monic integer polynomial. It can be shown that OK is a free Z-
module of rank d, where d is the degree of the number field. In other words,
there exists a basis r1, . . . , rd ∈ OK such that every element in OK can be
uniquely represented as an integer linear combination of those vectors. Often,
we assume the knowledge of a short basis r1, . . . , rd of OK , where the shortness
is measured with respect to the canonical embedding ΣK . To ease notations,
we define the constant C∞K = maxj ‖ΣK(rj)‖∞, which is used in Section 4. It
always holds Z[X]/f(X) ⊆ OK and for some number fields it also holds OK ⊆
Z[X]/f(X) (e.g. for cyclotomic fields, see below). Note that being an integer is
a property of the element, that does not depends on the number field. Hence,
if K and L are two number fields with L ⊆ K, then we have that OL = OK ∩L.

The (absolute value of the) discriminant of a number field K is defined
as ∆K = |det(σi(rj))i,j |2, where (rj) is any basis of OK . Given a tower of

number fields K/L/Q, it holds that ∆K ≥ ∆[K:L]
L (cf. [Mar77, Exercise 23]).

Product of sets. Let X and Y be two subsets of the same field K (so that we
can add and multiply their elements). We define the product of X and Y by

X · Y = {
r∑
i=1

xiyi | r ≥ 0, xi ∈ X, yi ∈ Y }.

Note that this product is well defined for any sets X and Y , and not only ideals.
This is useful when we consider ideals of subfields, which are not necessarily ideals
in the larger field. The product of two sets enjoys commutative and associative
properties: X · Y = Y ·X and (X · Y ) · Z = X · (Y · Z).

Ideals. An integral ideal I of a number field K is a subgroup of OK such
that I · OK = I. A fractional ideal J ⊂ OK is a set of the form J = 1/D · I,
where D ∈ Z>0 and I is an integral ideal. By default, we use the word “ideal”
to refer to fractional ideals, and we specify “integral ideal” when we restrict
ourselves to ideals contained in OK . For α ∈ K, we denote by α·OK = {α·x |x ∈
OK} the ideal generated by α.

The product of two ideals (using the product of sets defined above) is also
an ideal. The set of all non zero ideals forms a group with this product, i.e., for
any non-zero ideal I, there exists an ideal I−1 such that I ·I−1 = OK . The norm
over K of an integral ideal I is defined as NK(I) = |OK/I|, and the norm of a
fractional ideal J = 1/D · I (with I integral) is defined as NK(J) = 1/Dd ·N (I).
The norm function is multiplicative, that is NK(I ·J) = NK(I) ·NK(J) for every
integral ideals I and J of K.

We say that an integral ideal I divides another integral ideal J , denoted
by I|J , if there exists some integral ideal I ′ such that J = I ·I ′. This is equivalent
to J ⊆ I (see [Mar77, Corollary 3, Theorem 15]).
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Proposition 2.3. Given a tower of number fields K/L/Q, the following holds:

(1) If I is an integral ideal of K, then I ∩OL = I ∩ L is an integral ideal of L.
(2) If J is an integral ideal of L, then J ·OK is an integral ideal of K.
(3) If J1, J2 are integral ideals of L, then (J1 ·OK) · (J2 ·OK) = (J1 · J2) ·OK .
(4) If J is an integral ideal of L, then NK(J ·OK) = NL(J)[K:L].

Proof. The first two items of the proposition immediately follow from the def-
inition of an integral ideal. The third point is implied by the properties of set
multiplication stated above (and the fact that OK · OK = OK). Finally, the
fourth point is proven for instance in [Mar77, Theorem 22, point (b)]. ut

We define the dual of an ideal I by I∨ = {x ∈ K : TrK(xy) ∈ Z , ∀y ∈ I}.
For any ideal I, its dual and inverse ideal are related to each other via the dual
of the corresponding ring of integers, i.e., I∨ = I−1O∨K (see for instance [Con]).
In the case where the ring of integers OK is of the form OK = Z[X]/f(X) for
some irreducible polynomial f , we have O∨K = f ′(X)−1 ·OK .

The following definition introduces the notion of decomposition group and
decomposition field of an ideal. These notions are usually only defined for prime
ideals (see for instance [Mar77, Chapter 4]), but we generalize the terminology
to any ideal, since this is needed for the rest of the article.

Definition 2.4. Let K be a number field and I be an ideal of K. The de-
composition group of I is the subgroup HI of AutQ(K) defined by HI = {τ ∈
AutQ(K) | τ(I) = I}.6 The decomposition field of I, denoted by KI , if the fixed
field of HI (cf. Definition 2.1).

Prime ideals. A non-zero integral ideal p of a number field K is said to be
prime if it is maximal, i.e., it is different from OK and the only ideals that contain
it are itself and OK . Any non-zero integral ideal I in a number field K admits a
unique decomposition into prime ideals I =

∏
p prime pαp , where αp ≥ 0.

In this article, we are interested in moving prime ideals from a field to a
subfield and vice versa. This relates to the terminology of primes lying above or
below another prime, as defined in the following lemma.

Lemma 2.5 ( [Mar77, Theorem 19]). Let K/L/Q be a tower of number
fields. Let p be a prime ideal of K and q be a prime ideal of L. The following
conditions are equivalent:

(1) p ∩ L = q and (2) p|(q ·OK).

When these conditions hold, we say that p lies above q, or that q lies below p.

Lemma 2.6 ( [Mar77, Theorem 20]). Every prime ideal p of K lies above
exactly one prime ideal of L. Every prime ideal q of L lies below at least one
prime ideal of K.

6 Note that the equality τ(I) = I means that the two sets are equal, but it does not
mean that all the elements of I are fixed by τ .

10



If L = Q, this lemma implies that any prime ideal p of K lies over exactly
one rational prime q ∈ Z. It then holds that NK(p) = qr for some r ∈ {1, · · · , d}.

Let p be a prime of K and let q be the unique prime of L below p. We say
that p is ramified in K/L if pα|(q ·OK) for some exponent α ≥ 2 (by Lemma 2.5,
we know that α ≥ 1). The largest integer α such that pα|(q · OK) is called the
ramification index of p in K/L. In this article, we are mostly interested in prime
ideals that are not ramified. This is the most frequent case, since only a finite
number of prime ideals are ramified in K/L (cf. [Mar77, Cor. 3 after Thm. 24]).

Lemma 2.7. If a prime ideal p of K is unramified in K/Q, then it is also
unramified in K/L for all subfields L of K containing Q.

Proof. Since p is unramified in K/Q, by definition, it only appears once in the
prime decomposition of (p ∩ Q) · OK . Moreover, since L contains Q, we know
that (p∩Q) ·OK ⊂ (p∩L) ·OK , i.e., (p∩L) ·OK divides (p∩Q) ·OK . This means
that p may appear at most once in the prime decomposition of (p ∩ L) · OK ,
i.e., p is unramified in K/L. ut

This observation enables us to discard all possible ramified ideals in any subfield
of K, by discarding the ones that are ramified in K/Q. Moreover, we know that
if a prime p is ramified in K/Q, then it is above some q ∈ Q that divides ∆K .

Lemma 2.8 ( [Mar77, Thm. 23]). Let K/L be Galois. If p is a prime ideal
of K over a prime ideal q of L, then for any τ ∈ Gal(K/L), the ideal τ(p) is also
a prime ideal of K over q. Conversely, for any two prime ideals p and p′ of K
over the same prime q of L, there exists a τ ∈ Gal(K/L) such that τ(p) = p′.

Cyclotomic fields. Cyclotomic fields form a special class of number fields.
For some integer m ≥ 2, the m-th cyclotomic field can be described as K =
Q[X]/Φm(X), where its defining polynomial Φm(X) is the m-th cyclotomic poly-
nomial. Its degree equals deg(Φm(X)) = φ(m), where φ(·) is Euler’s totient func-
tion. If K = Q[X]/Φm(X) is a cyclotomic field, then (1, X, . . . ,Xφ(m)−1) forms
a basis of OK , also called the power basis (cf. [Was82, Theorem 2.6]). In other
words, OK = Z[X]/Φm(X) and we can set the constant C∞K from above as 1.

All cyclotomic fields are Galois and their Galois group is abelian (cf. [Mar77,
Corollary 2, Theorem 3]). The following lemma holds for any finite abelian group.
We instantiate it directly with Gal(K/Q).

Lemma 2.9. Let K be the m-th cyclotomic number field. For every r|φ(m),
there is a subgroup H of AutQ(K) of cardinality r.

Proof. Since AutQ(K) is a finite abelian group of cardinality φ(m), it can be
decomposed into AutQ(K) '

∏
p|φ(m)Gp, where Gp is a group of cardinality pαp

and φ(m) =
∏
p p

αp . In each p-groupGp, there is a subgroup of cardinality pβp for
any βp ≤ αp. Taking the product of these subgroups, one can create a subgroup
of AutQ(K) of any cardinality dividing φ(m). ut
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The discriminant of the m-th cyclotomic field K is ∆K = mφ(m)∏
p|m pφ(m)/(p−1) ≤

mφ(m) (cf. [Was82, Prop. 2.7]). For m a power of 2, it simplifies to ∆K =
φ(m)φ(m).

2.2 Lattices

For a lattice L, we denote λ1(L) its first minimum, i.e., λ1(L) = minv∈L\{0} ‖v‖.
The determinant of L is given by det(L) =

√
|det(BT ·B)| where B is any basis

of L. Minkowski’s theorem states that for any lattice L of rank n, it holds
that λ1(L) ≤

√
n · det(L)1/n. We use the notation SpanR(L) to refer to the real

vector space spanned by the vectors of L. Further, we define the dual lattice
of L as L∨ = {x ∈ SpanR(L) : 〈x, y〉 ∈ Z ∀ y ∈ L}. If B is a basis of L,
then B∨ = (BT )−1 is a basis of L∨. This implies that det(L∨) = 1/ det(L).

Ideal lattices. When we embed an ideal I of K into Cd using the canonical
embedding, the resulting set ΣK(I) is a lattice of rank d, called an ideal lattice.
The determinant of the ideal lattice ΣK(I) is det(ΣK(I)) = NK(I) ·

√
∆K .

The duality notions of ideals and lattices are closely related. Indeed, it holds
that ΣK(I)∨ = ΣK(I∨), where · denotes the complex conjugation and L :=
{x |x ∈ L} for any lattice L ⊂ Cd. From this, we see that

det(ΣK(I−1)) = det(ΣK(I)∨) ·∆K = det(ΣK(I∨)) ·∆K . (2.2)

In the case of ideal lattices, the minimum of a lattice is closely related to the
normalized algebraic norm of the ideal

√
d · NK(I)1/d ≤ λ1(ΣK(I)) ≤ ∆1/(2d)

K ·
√
d · NK(I)1/d, (2.3)

where the first inequality comes from the arithmetic-geometric means inequality
applied to a shortest vector of ΣK(I) and the second is Minkowski’s theorem.

Algorithmic problems over ideal lattices. In this work, we are interested
in three algorithmic problems that we state over ideal lattices: the shortest vec-
tor problem (SVP), the shortest independent vector problem (SIVP) and the
bounded distance decoding (BDD) problem, all three in their so-called Her-
mite variant. Whereas in the original formulation those problems are defined
with respect to the minimum λ1 of a lattice L, their Hermite variant phrases
them with respect to the determinant det(L) of the lattice. As we explained
above, for ideal lattices both quantities are closely related and only differ by

a factor ∆
1/(2d)
K (Equation 2.3). One of the advantages when working with the

Hermite variant is that the quantity det(L) is easier to compute than the quan-
tity λ1(L). The three problems are defined as follows.

Definition 2.10 (γ-Id-HSVPK). Let γ ≥ 1 and K be a number field of degree d
with ring of integers OK . The γ-Id-HSVPK problem asks, given as input an
ideal I of OK , to find a non-zero element v ∈ I such that

‖ΣK(v)‖ ≤ γ · det(ΣK(I))1/d.
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This problem always has a solution as long as γ ≥
√
d. There exist in

the literature different algorithms for solving Id-HSVPK . One is the BKZ al-
gorithm [SE94], which works for all lattices. The run time of (a variant of) this
algorithm was formally studied in [HPS11], achieving the following complexity.

Lemma 2.11 ( [HPS11, Theorem 1]). There is a classical probabilistic al-
gorithm that takes as input a basis BL ∈ Qn of a lattice L of rank n, a pa-
rameter γ ∈ [

√
n, 2n], and solves γ-HSVP in L in time poly(n, size(BL)) ·

2O(n log(n)/ log(γ)).

There exist also special algorithms for Id-HSVP, relying on the algebraic prop-
erties of the ideals to find short vectors more efficiently. More details about these
algorithms may be found in Appendix A (we don’t use them in this article).

Definition 2.12 (γ-Id-HSIVPK). Let γ ≥ 1 and K be a number field of degree d
with ring of integers OK . The γ-Id-HSIVPK problem asks, given as input an
ideal I of OK , to output d linearly independent vectors b1, . . . ,bd ∈ ΣK(I) such
that maxj ‖bj‖ ≤ γ · det(ΣK(I))1/d.

The Hermite variant of the BDD problem over ideal lattices has no official
name in the literature yet, we simply call it Hermite Ideal BDD (or Id-HBDD).

Definition 2.13 (worst-case γ-Id-HBDDK). For γ > 2∆
1/2d
K /

√
d, K a num-

ber field of degree d with ring of integers OK and I an ideal of OK , the worst-
case γ-Id-HBDDK is the following. Given as input any t ∈ SpanR(ΣK(I)) with
the promise that t = v + e with v ∈ ΣK(I) and ‖e‖ ≤ 1/γ · det(ΣK(I))1/d, the
problem asks to output v.

Note that the constraint γ > 2∆
1/2d
K /

√
d ensures that there is a unique v ∈

ΣK(I) with ‖v−t‖ ≤ 1/γ ·det(ΣK(I))1/d ≤ 1/2·λ1(ΣK(I)), using Equation 2.3.
Hence, the Id-HBDD problem is well defined.7 The terminology “worst-case”
means that we ask an algorithm to be able to solve the problem for all choices
of input t that satisfy the promise.

2.3 Representation and size of algebraic objects

Given a rational number z = x/y ∈ Q with x and y coprime integers, we denote
by size(z) the quantity log2 |x| + log2 |y|. Up to a bit of sign, this corresponds
to the bit-length needed to represent z. For a matrix M = (zij)i,j over Q,
its size(M) corresponds to the sum of size(zij) over all its entries zij .

Given a number field K of degree d, we often need to assume the knowledge
of a basis matrix BK of its ring of integers OK . This basis consists of all the
(floating points approximations of the) complex vectors ΣK(ri), where (ri)i ∈
7 For arbitrary Euclidean lattices, it is much harder to give concrete conditions which

ensure a unique solution for HBDD. This is why we think the definition of this
problem only makes sense in the ideal setting.
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OdK forms a Z-basis ofOK . We use the notation size(BK) = maxi,j(log |(BK)i,j |),
where (BK)i,j are the coefficients of BK .

Once the ri’s are fixed, every element x of K can be represented as a rational
vector (x1, · · · , xd), such that x =

∑
i xiri. This gives us an exact representation

for the elements of K, in the basis (ri)i. Note that an element x is in OK if and
only if the vector (x1, · · · , xd) is in Zd. For x ∈ K, we let size(x) denote the size
of the vector (x1, · · · , xd) ∈ Qd, as defined above (note that this depends on the
choice of the ri’s, which are assumed to be fixed once and for all).

An ideal I of K is represent by a Z-basis (b1, · · · , bd) ∈ Kd (i.e., I =
{
∑
i xibi |xi ∈ Z}). Every element bi ∈ K in the basis is represented by a vector

in Qd, as explained in the previous paragraph. We call basis of I the matrix BI

whose columns are the vectors corresponding to the bi’s. This is a matrix in Qd×d
(and in Zd×d if I is integral), and we use the notation size(BI) as defined above.

An automorphism τ ∈ AutQ(K) is represented by a d× d matrix Mτ whose
coefficients are such that τ(rj) =

∑
i(Mτ )i,jri (i.e., the j-th column of Mτ

corresponds to the coordinates of τ(rj) in the basis (ri)i). Since τ(x) is an
algebraic integer if x is, then Mτ has integer coefficients. We let size(τ) denote
the size of the integral d× d matrix Mτ , as defined above.

2.4 The Partial Vandermonde Knapsack Problem

The partial Vandermonde knapsack problem (PV-Knap) was first introduced by
Hoffstein et al. [HPS+14]8 and later reformulated over number fields by Lu et
al. [LZA18]. As observed by Boudgoust [Bou21, Sec. 5.2], the problem can be
phrased as a problem over ideal lattices. We use this formulation in the following.
For completeness, we provide an explanation why both, the original and the ideal
formulation, are equivalent in Appendix B.

Let K be a number field of degree d with ring of integers OK . Further,
let q be a prime integer such that the ideal generated by q splits in exactly d
different prime ideals, i.e., qOK =

∏d
j=1 pj , where pj is a prime ideal of norm q.

For t ≤ d, we define Pt = {Ω ⊆ {1, . . . , d} : |Ω| = t}. For any Ω ∈ Pt, we
set IΩ :=

∏
j∈Ω pj , yielding an ideal of norm qt.

Definition 2.14 (PV-Knap). Let K,OK , d, q and t be as above. Fix Ω ∈ Pt
and let ψ be a distribution over OK such that maxa←ψ ||ΣK(a)|| ≤ B for some

positive real B fulfilling 2B <
√
d · qt/d. Sample a ← ψ. Given b = a mod IΩ,

the partial Vandermonde knapsack problem PV-KnapΩ,ψ asks to find a.

The constraint 2B <
√
d · qt/d ensures that there is a unique a in the support

of ψ such that b = a mod IΩ . By Eq. 2.3, we know that the minimum of ΣK(IΩ)
with respect to the Euclidean norm is bounded from below by

√
d · N (IΩ)1/d =√

d · qt/d. If there were two solutions a 6= a′ ∈ OK such that a = a′ mod IΩ , then
the element a − a′ would lie in IΩ and its Euclidean norm with respect to the
canonical embedding would be bounded above by 2B <

√
d ·qt/d ≤ λ1(ΣK(IΩ)),

leading to a contradiction. Hence, the PV-Knap problem is well defined.

8 Even though they originally called it the partial Fourier recovery problem.
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We can also define a decision variant of PV-Knap in the natural way. Given Ω
and b+IΩ , one has to decide whether b was defined as in the problem’s definition
above or if it was sampled uniformly at random.

Whereas in the above definition PV-Knap is defined over OK , the prob-
lem is in some works (e.g. [HPS+14, HS15, DHSS20]) defined over the cyclic
ring Z[X]/(XN − 1) for some prime integer N . We recall its concrete formu-
lation in Appendix B. Note that those rings are closely connected to prime
cyclotomic number fields as the polynomial XN − 1 factors into two particular
irreducible polynomials. More precisely, we have XN − 1 = (X − 1) ·ΦN (X) and
thus there exists an injective ring morphism from Z[X]/(XN − 1) to Z[X]/(X−
1)×Z[X]/ΦN (X). Using this morphism, one can transform a PV-Knap instance
over the cyclic ring into a PV-Knap instance over Z[X]/ΦN (X), i.e., the ring of
integers of a cyclotomic fields. A solution to PV-Knap in Z[X]/ΦN (X) can then
be lifted back to Z[X]/(XN−1) by guessing the last coordinate in Z[X]/(X−1).
Hence, even though the results of Section 4 are formulated for number fields, they
also apply to the original parameter setting of [HPS+14].

In our definition, the boundB is with respect to the canonical embeddingΣK ,
whereas in the former works, it was with respect to the coefficient embedding. In
most of the number fields used in lattice-based cryptography, we know how to go
from one embedding to another. For instance, for the m-th cyclotomic field we
obtain a bound B in the canonical embedding by multiplying a bound B′ in the
coefficient embedding by the factor

√
m. A prominent choice in [LZA18,HPS+14]

is B′ = 1, which yields B =
√
m. In the case of power-of-two cyclotomics this

bound can be tightened to B =
√
d where d = m/2.

The definition we present doesn’t specify how to choose Ω, which we ex-
ploit in Section 4 when finding bad choices of Ω. This follows the same design
choice as [HPS+14,HS15,DHSS20]. Other works [LZA18,BSS22,Bou21] decided
to sample Ω uniformly at random over the set Pt, which has an important effect
on the performance of our attacks as we elaborate later in Section 5.

3 Easy Instances of Ideal-SVP

The objective of this section is to prove the following theorem, which gives a
simple and sufficient condition under which the Id-HSVPK problem is easy in
an ideal lattice. The condition requires the ideal I to have no ramified prime
factors. By Lemma 2.7, this is the case if the ideal’s algebraic norm is coprime
with the discriminant of K. Hence, the condition can be verified easily, without
computing the prime factorization of the ideal.

Theorem 3.1. Let K be a number field of degree d and I be an integral ideal
of K whose prime factors are not ramified in K/Q. There is an algorithm that
takes as input a basis BK of OK , a representation G of AutQ(K), a basis BI

of I and a parameter γ ≥ 2
√
d and solves γ-Id-HSVPK in I in classical time

exp
(
O
( d · log(d)

nI · log(γ/
√
nI)

))
· poly(size(BI), size(BK), size(G)),
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where nI := |HI | is the number of K-automorphisms that fix I as a set.

3.1 Reducing the ideal in a subfield

In this section, we ignore the representation of the mathematical objects, and
concentrate on the following mathematical result. It states that if an ideal is
fixed by a sufficiently large group of automorphisms, then one can find a short
vector of it by looking for short vectors of its intersection with a subfield of
smaller dimension. Hence, we can reduce the dimension of the problem.

Theorem 3.2. Let K be a number field and I be an integral ideal of K whose
prime factors are not ramified in K/Q. Let KI ⊆ K be the decomposition field
of I (see Def. 2.4). We write d = [K : Q] and dI = [KI : Q], and we let γ ≥ 1.

Then, any v ∈ I ∩KI which is a solution to γ-Id-HSVPKI in I ∩KI is also
a solution to γ′-Id-HSVPK in I, where

γ′ = γ ·
√
d/dI .

This generalizes Theorem 4 of [PXWC21] to non-prime ideals I, and to num-
ber fields that are not necessarily Galois. The latter is easily obtained from
the observation that the extension K/KI is always Galois, even if K/Q is not
(Lemma 2.2). The generalization to non-prime ideals requires more work. The
main difficulty of this generalization lies in proving the following lemma.

Lemma 3.3. Let K/L be a Galois extension of number fields. Let I be an in-
tegral ideal of K whose prime factors are not ramified in K/L. If σ(I) = I for
all σ ∈ Gal(K/L), then it holds that

I = (I ∩OL) ·OK .

Intuitively, this lemma means that when intersecting the ideal I with the
subfield L, one loses no information on I, since it can be recovered simply by
multiplying by OK again. This conveys the intuition that the short vectors of I
should also be contained into the intersection I ∩OL.

Proof. Note that the inclusion I ⊇ (I ∩ OL) · OK always holds, even if I is
divisible by ramified primes, or if σ(I) 6= I for some σ ∈ Gal(K/L). However, in
the general case, this inclusion is usually not an equality: the set (I ∩OL) ·OK
can be much sparser than I, hence losing information about I. In the rest of this
proof, we focus on proving the reverse inclusion I ⊆ (I ∩OL) ·OK .

First, we group the prime factors of I into groups of primes that are all
above the same prime in OL. In other words, we write I =

∏
q prime of OL

Iq,
where Iq =

∏
pi prime of OK above q p

αi
i .

Let us fix a prime ideal q in OL, which does not ramify in OK (recall that we
required that the prime factors of I are not ramified in K/L). Since q does not
ramify, we know that q ·OK = p1 · · · pr for some distinct prime ideals pi of OK .

Next, since K/L is Galois, we know that Gal(K/L) acts transitively on the pi,
i.e., for every indices i, j, there is some σ ∈ Gal(K/L) such that σ(pi) = pj . Using
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that σ(I) = I for all σ ∈ Gal(K/L) and that the prime decomposition of an ideal
is unique, we conclude that all the pi appear with the same exponent in the prime
decomposition of I. Hence, Iq =

∏r
i=1 p

αq

i = (qOK)αq , for some αq ≥ 0.
Summing up, we can write I as a product I =

∏
i(qi · OK)αi , for some

prime ideals qi of OL and αi ≥ 1. We see here that the condition σ(I) = I for
all σ ∈ Gal(K/L) (and the fact that I is not divisible by any ramified prime)
implies the natural intuition that I is an ideal of OL, lifted in OK .

Using this equation, let us now prove that I ∩ OL =
∏
i q
αi
i . The inclu-

sion
∏
i q
αi
i ⊆ I ∩OL follows from∏

i

qαii =
∏
i

(qi ·OL)αi ⊆
∏
i

(qi ·OK)αi = I.

Since I∩OL is an ideal of OL and we have seen that
∏
i q
αi
i ⊆ I∩OL, i.e., (I∩

OL)|
∏
i q
αi
i , we know that (I ∩OL) =

∏
i q
βi
i for some βi ≤ αi. Multiplying this

equation by OK we obtain

(I ∩OL) ·OK = (
∏
i

qβii ) ·OK =
∏
i

(qi ·OK)βi .

We have already seen that (I ∩OL) ·OK ⊆ I. Hence we obtain
∏
i(qi ·OK)βi ⊆∏

i(qi · OK)αi , which holds only if βi = αi (since βi ≤ αi). We then conclude
that (I ∩OL) =

∏
i q
αi
i as desired.

Finally, multiplying this equation by OK , we obtain

(I ∩OL) ·OK = (
∏
i

qαii ) ·OK =
∏
i

(qi ·OK)αi = I,

as desired. ut

With this lemma at hand, we are now ready to prove Theorem 3.2. This
proof follows almost directly the one of Theorem 4 of [PXWC21].

Proof (Proof of Theorem 3.2). Let v ∈ I ∩ KI be a solution to γ-Id-HSVPKI ,
that is, v is non-zero and satisfies

‖ΣKI (v)‖ ≤ γ ·∆1/(2dI)
KI

· NKI (I ∩KI)
1/dI .

We want to show that ΣK(v) is also a short non-zero vector of the ideal
lattice ΣK(I). Clearly, v is non-zero and lies in I, hence we focus on its euclidean
norm. Since v ∈ KI , we know that the coordinates of ΣK(v) are the same as the
ones of ΣKI (v), repeated d/dI times each. Hence we have ‖ΣK(v)‖ =

√
d/dI ·

‖ΣKI (v)‖ (cf. Equation (2.1)). We know from preliminaries that ∆
1/(2dI)
KI

≤
∆

1/(2d)
K . It remains to upper bound NKI (I ∩KI)

1/dI .
Let us apply Lemma 3.3 to L = KI . To see that we can indeed apply the

lemma, note that K/KI is Galois thanks to Lemma 2.2. Note also that the prime
factors of I are not ramified in K/Q by assumption, hence, thanks to Lemma 2.7,
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they are also not ramified in K/KI . Finally, note that by definition of KI , it
holds that I is fixed by all automorphisms of AutKI (K). We can then apply
Lemma 3.3 and use item (4) of Proposition 2.3 to obtain

NK(I) = NK((I ∩OKI ) ·OK) = NKI (I ∩OKI )d/dI = NKI (I ∩KI)
d/dI ,

where we used the fact that I is integral and so I ∩KI = I ∩OKI .
Combining everything, we finally obtain

‖ΣK(v)‖ =
√
d/dI · ‖ΣKI (v)‖ ≤ γ ·

√
d/dI ·∆1/(2dI)

KI
· NKI (I ∩KI)

1/dI

≤ γ ·
√
d/dI ·∆1/(2d)

K · NK(I)1/d

= γ′ ·∆1/(2d)
K · NK(I)1/d.

ut

3.2 Proof of Theorem 3.1

We are now ready to prove Theorem 3.1. The algorithm to solve Id-HSVPK
in I is described in Algorithm 3.1. It computes the intersection of I with KI , in
order to reduce the dimension of the lattice, solves Id-HSVPKI in this lattice of
smaller dimension, and then uses Theorem 3.2 to claim that the vector it founds
is indeed a solution to Id-HSVPK in I. The proof below shows its correctness,
specifies its run time and the size of the objects that are manipulated.

Algorithm 3.1 Solving Id-HSVPK in an easy ideal I

Input: A basis of OK , the group of endomorphisms AutQ(K), an ideal I without
ramified prime factors, a parameter γ ≥

√
d

Output: A solution to γ-Id-HSVPK in I
1: HI = {}
2: for τ ∈ AutQ(K) do
3: Compute a basis of τ(I).
4: if τ(I) = I then
5: Add τ to HI .
6: end if
7: end for
8: Compute a basis of KI , the subfield of K fixed by HI .
9: Compute a basis of J = I ∩KI

10: Solve γ′-Id-HSVPKI in J with γ′ = γ/
√
|HI |, to obtain an element x ∈ J

11: return x

Proof (Proof of Theorem 3.1).
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Correctness. Since I has no ramified prime factors, we know from Theorem 3.2
that the element x obtained by solving γ′-Id-HSVPKI in I∩KI is also a solution
to (γ′ ·

√
d/dI)-Id-HSVPK in I. Using the fact that K/KI is a Galois extension,

we know that |HI | = |Gal(K/KI)| = [K : KI ] = d/dI . Hence, by choice of γ′,
we obtain that γ′ ·

√
d/dI = γ. We conclude that x is indeed a solution to γ-

Id-HSVPK in I as desired.

Run time. Observe that the for loop of the algorithm runs at most |AutQ(K)| ≤
[K : Q] = d times. At each iteration of the loop, we need to compute a basis
of τ(I). Recall that we know a basis (x1, · · · , xd) of I, where the elements xi
are represented by their integral vector in the known basis BK = (r1, · · · , rd)
of OK . Recall that the automorphisms τ of AutQ(K) are linear transforms that
are represented by a integral matrices. Hence, to compute a basis of τ(I), it is
sufficient to multiply the matrix corresponding to τ with the basis matrix of I.
This is a multiplication of two integral matrices of dimension d, which can be
performed in time polynomial in d and in the bit-size of the entry of the two
bases. Testing the equality τ(I) = I can be done by testing whether each vector
of the basis of τ(I) is in the integer span of the basis of I and conversely. This
is again polynomial in d and the bit-size of the entries of the two bases.

Let us now consider the computation of a basis of KI . This is a real subspace
of K of dimension dI = d/|HI |. This subspace is defined by a collection of linear
equations τ(x) = x for all τ ∈ HI . Hence, one can compute a basis of this
subspace by computing the kernel (over Q) of a matrix with dimension |HI | × d
and whose coefficients are integers of bit-size polynomial in the input bit size.
This can be done in time polynomial in d and in the bit-size of the coefficients
of the matrices corresponding to the automorphisms τ .

Finally, the intersection of a lattice with a rational vector space can be per-
formed in polynomial time (cf. Lemma A.1), and so the basis of J = I ∩KI can
be computed efficiently.

Once J is computed, we run an Id-HSVPKI solver on it. To do so, we use the
BKZ algorithm for which we have concrete run time bounds (cf. Lemma 2.11).
This algorithm forgets about the ideal structure of the lattice and simply re-
quires as input a basis of the lattice ΣKI (J). In order to obtain such a basis, we
can multiply the basis of J (over (r1, · · · , rd)) by the matrix BK formed by the
(known) embeddings ΣK(r1), · · · , ΣK(rd). This gives us a basis of ΣK(J). In
order to obtain a basis of ΣKI (J), we then simply remove the multiple coordi-
nates that appear in ΣK(J). These operations can be performed in polynomial
time. The BKZ algorithm with parameter γ′ then runs in time poly(input size) ·
2O(dI log(dI)/ log(γ

′)), since the lattice ΣKI (J) has rank dI . Note that we used the
fact that γ ≥

√
d, so that γ′ ≥

√
dI and hence we can indeed apply Lemma 2.11

with parameter γ′. Note also that since γ ≥ 2
√
d, we have γ′ = γ/

√
|HI | ≥ 2,

hence log(γ′) is not zero and we can indeed divide by it. ut

In the proof of Theorem 3.1, we decided to use the BKZ algorithm to solve
the Id-HSVP instance in J , which enables us to have concrete values for the run
time of the algorithm in the theorem statement. One might want to use here
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another Id-HSVP algorithm instead of BKZ. However, among the three classes
of algorithms mentioned in Section 2.3 and in Appendix A that solve Id-HSVP,
it seems that only the BKZ algorithm can be used easily here. Indeed, the solver
from [CDW17,CDW21] only works for cyclotomic fields. In our case, even if we
restrict to K being cyclotomic, its subfield KI may not be cyclotomic, so we
cannot always use this solver. In the case of the solver from [PHS19], it requires
an exponential pre-processing on the number field. This might be a reasonable
assumption when the number field is fixed, but in our case the number field KI

depends on the input ideal I. Hence we would need to perform the pre-processing
every time, which would be worse than just running the BKZ algorithm.

4 Easy Instances of Partial Vandermonde Knapsack

In this section, we explain how one can reduce the problem of recovering the
secret element of a PV-Knap instance to the problem of finding a short vector
in the ideal lattice I−1Ω , depending on Ω. We conclude the section by remarking
that, for some choices of the set Ω, the ideal I−1Ω is stabilized by a large subgroup
of the automorphism group of K, leading to an efficient SVP solver in I−1Ω , and
hence to an efficient attack against PV-Knap (for these specific choices of Ω).

4.1 PV-Knap as an Instance of Ideal Hermite BDD

Recall the definition of the partial Vandermonde knapsack problem (PV-Knap)
as introduced in Section 2.4 and the definitions of some algorithmic problems over
ideal lattices (Id-HSVP, Id-HSIVP, Id-HBDD) as introduced in Section 2.2. Let ψ
denote a B-bounded distribution over the ring of integers OK with respect to
the canonical embedding and the Euclidean norm, i.e., maxa←ψ ||ΣK(a)|| ≤ B.
Further, let b = a mod IΩ be an instance of PV-KnapΩ,ψ. Recall that IΩ =∏
j∈Ω pj where the pj come from the prime ideal factorization of the ideal qOK

and Ω ⊆ {1, . . . , d} with |Ω| = t. It follows from the definition that this is exactly
an instance of γ1-Id-HBDDK for the ideal lattice IΩ , with

γ1 =
det(ΣK(IΩ))1/d

B
=
qt/d ·∆1/(2d)

K

B
.

4.2 Reduction from Ideal Hermite BDD to Ideal Hermite SVP in
the Inverse Ideal

We now show a sequence of reductions that overall reduce Id-HBDD for an
ideal I to Id-HSVP in its inverse ideal I−1.

Lemma 4.1. Let K = Q[x]/f(X) be a number field of degree d and discrimi-
nant ∆K with f(X) its defining polynomial and let (r1, . . . , rd) be a known basis
of OK . Let γ1, γ4 > 0 be such that

γ1 > γ4 · 2∆1/d
K · C∞K ,
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where C∞K = maxj ‖ΣK(rj)‖∞. For any fractional ideal I in K, there is a (deter-
ministic) polynomial-time reduction from γ1-Id-HBDDK in I to γ4-Id-HSVPK
in I−1.

If in addition OK = Z[X]/f(X), then the γ1 can even be as small as

γ1 > γ4 · 2∆1/d
K · ‖ΣK(1/f ′(X))‖∞ · C∞K .

(Note that this improves upon the previous bound only if ‖ΣK(1/f ′(X))‖∞ < 1.)

In the case of power-of-two and prime cyclotomics, the parameter conditions
simplify to the following.

Corollary 4.2. Let K be the m-th cyclotomic number field, where m is a power
of two, of degree d = m/2. There is an efficient reduction from γ1-Id-HBDDK

in I to γ4-Id-HSVPK in I−1, as long as

γ1 > 2γ4.

Proof. Using the power basis implies C∞K = 1 for all cyclotomic fields and

for power-of-two cyclotomics it yields ∆
1/d
K = d. Further, OK = Z[X]/f(X)

with f(X) = Xd − 1 and thus f ′(X) = d ·Xd−1, completing the proof. ut

Corollary 4.3. Let K be the m-th cyclotomic number field, where m ≥ 2 is a
prime, of degree d = m− 1. There is an efficient reduction from γ1-Id-HBDDK

in I to γ4-Id-HSVPK in I−1, as long as

γ1 > 4γ4.

Proof. Again, the power basis leads to C∞K = 1 and for prime cyclotomics it

yields
√
m ≤ ∆

1/d
K ≤ m. Furthermore, OK = Z[X]/f(X) with f(X) = Xm−1

X−1

and thus f ′(X) = mXm−1·(X−1)−(Xm−1)
(X−1)2 = mXm−1

X−1 (since Xm = 1 by definition),

leading to ‖ΣK(1/f ′(X))‖∞ ≤ 2
m and thus completing the proof. ut

We prove Lemma 4.1 in the following three steps.

Step 1: From Id-HBDD in I to Id-HSIVP in I∨. This reduction is well-
known for BDD and SIVP in their standard formulation and works for any
lattice, not only for ideal lattices. It corresponds to solving BDD in a lattice L
by using the so-called Babai’s rounding algorithm [Bab86], whose performance
can be assessed by looking at the size of the vectors of the dual basis of L∨

(see for instance [CDPR16, Claim 2.1]). For completeness, we detail out how
to proceed for the Hermite variant, and quantify the loss in the approximation
factor for this variant in the following.

Lemma 4.4 (Id-HBDD to Id-HSIVP). Let I be a fractional ideal of a number
field K of degree d. There is a (deterministic) polynomial-time reduction from γ1-
Id-HBDDK in I to γ2-Id-HSIVPK in I∨, for any 2γ2 < γ1.
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Proof. Let I be an ideal lattice and let t ∈ SpanR(ΣK(I)) be an instance of γ1-
Id-HBDDK , with the promise that t = v + e with v ∈ ΣK(I) and ‖e‖ ≤
1/γ1 · det(ΣK(I))1/d. Further, assume that we are able to solve γ2-Id-HSIVPK
in the dual ideal I∨, i.e., we obtain d linearly independent vectors b∨j ∈ ΣK(I∨)

for j ∈ {1, . . . , d} such that maxj ‖b∨j ‖ ≤ γ2 · det(ΣK(I∨))1/d.

Recall that ΣK(I)∨ = ΣK(I∨), hence the vectors b∨j are in ΣK(I)∨ (and
have the same euclidean norm as the b∨j ). For every j, by the definition of the

dual lattice, the inner product 〈b∨j , t〉 belongs to Z + cj , where

|cj | ≤ ‖b∨j ‖ · ‖e‖ ≤ γ2/γ1 · det(ΣK(I∨))1/d · det(ΣK(I))1/d ≤ γ2/γ1 < 1/2.

Hence, one can round 〈b∨j , t〉 to the nearest integer to recover 〈b∨j ,v〉. Doing
this for all j’s, we can then recover v by linear algebra.

We note again that this procedure, while expressed via the dual and in Her-
mite forms, is simply Babai’s rounding algorithm performed with the basis (bj)j
of ΣK(I),9 defined as the dual basis of (b∨j )j . ut

Step 2: From Id-HSIVP in I∨ to Id-HSVP in I∨. This reduction step is
special to ideal lattices, as it uses the fact that in the ideal case one short vector
is enough to generate a set of linearly independent short vectors.

Lemma 4.5 (Id-HSIVP to Id-HSVP). Let I be a fractional ideal of a number
field K of degree d. Furthermore, let r1, . . . , rd ∈ OK be a known basis of OK .
There is a (deterministic) polynomial-time reduction from γ2-Id-HSIVPK in I∨

to γ3-Id-HSVPK in I∨, where γ2 = C∞K · γ3 and C∞K = maxj ‖ΣK(rj)‖∞.

Proof. Assume that we are able to solve γ3-Id-HSVPK for the ideal I∨, i.e., we
obtain an element x ∈ I∨ of norm ‖ΣK(x)‖ ≤ γ3 · det(ΣK(I∨))1/d. Since I∨

is an ideal and since we know a basis (ri)i of OK , we can transform this single
short element into d linearly independent ones: ri · x ∈ I∨, for i = 1 to d. These
elements satisfy

‖ΣK(ri · x)‖ ≤ ‖ΣK(ri)‖∞ · ‖ΣK(x)‖ ≤ C∞K · γ3 · det(ΣK(I∨))1/d.

This solves γ2-HSIVP in I∨. ut

For a given number field K, the constant C∞K is determined by the quality of
a short basis for the ring of integers OK with respect to the infinity norm that
we are able to compute. Note that for cyclotomic fields, we know how to find a
basis of infinity norm 1 (the power basis) and thus in this case γ2 = γ3.

9 If (b∨
j )j is not a basis of Σk(I∨), it might be that (bj)j is only a basis of a slightly

denser lattice containing ΣK(I). However, the constraints on the parameters imply
that t is still a BDD instance in this denser lattice, with a solution in ΣK(I), hence
this does not impact the reasoning.
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Step 3: From Id-HSVP in I∨ to Id-HSVP in I−1. In the last step, we go
from the dual to the inverse ideal. This step is motivated from the fact that the
shape of IΩ coming from an instance of PV-Knap is very similar to the shape
of its inverse I−1Ω = 1

q IΩc .

Lemma 4.6 (Id-HSVP in I∨ to Id-HSVP in I−1). Let I be a fractional ideal
of a number field K = Q[x]/f(X) of degree d and discriminant ∆K with f(X) its
defining polynomial. There is an efficient reduction from γ3-Id-HSIVPK in I∨

to γ4-Id-HSVPK in I−1, for any γ3, γ4 > 0 such that γ3 = γ4 ·∆1/d
K .

Furthermore, if OK = Z[X]/f(X), the reduction also holds for any γ3, γ4 > 0

such that γ3 = γ4 ·∆1/d
K · ‖ΣK(1/f ′(X))‖∞.

Proof. Assume that we are able to solve γ4-Id-HSVPK for the ideal I−1, i.e.,
we obtain an element x ∈ I−1 of norm ‖ΣK(x)‖ ≤ γ4 · det(ΣK(I−1))1/d. By
the definition of the inverse and dual of I, it yields that I−1 ⊆ I∨ and thus the
short vector ΣK(x) is already an element of the ideal lattice ∈ ΣK(I∨). As it
yields that det(I−1) = ∆K · det(I∨) (Equation 2.2), this vector solves γ4 ·∆K-
Id-HSVPK in I∨, which proves the first part of the lemma.

Assume now that OK = Z[X]/f(X) for some irreducible polynomial f(X).
In this specific case, it holds that I∨ = I−1 · O∨K with O∨K = 1/f ′(X) · OK .
Thus, we can multiply x by the element 1/f ′(X) and still obtain an element
in I∨. Overall, we obtain a vector ΣK(x · 1/f ′(X)) whose norm is bounded

above by γ4 ·∆1/d
K · ‖ΣK(1/f ′(ζ))‖∞ · det(ΣK(I∨))1/d, which proves the second

part of the lemma. ut

4.3 Bad Choices of Ω

We now elaborate on how the above results lead to polynomial-time attacks
against PV-Knap for some special choices of Ω. In the following, we restrict
ourselves to number fields K that are cyclotomic with a conductor m which is
either a power of two or a prime integer. These are the number fields used in
the literature on PV-Knap, and restricting to these number fields simplifies our
attack. Recall that we write d = φ(m) for the degree of K.

Let q, t, B and Ω ∈ Pt be PV-Knap parameters satisfying qt/d ≥ 8 ·B (note
that this condition is slightly stronger than the condition required in Defini-
tion 2.14 of PV-Knap for the problem to be well defined).

Combining Theorem 3.1 and Corollaries 4.2 and 4.3, we obtain a solver
for PV-Knap that runs in classical time

exp

(
O

(
d log(d)

|HI−1
Ω
| log(γ4/|HI−1

Ω
|)

))
· poly (d, log q) , (4.1)

where

γ4 =
qt/d
√
d

4B
≥ 2
√
d.
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The last inequality comes from our lower bound on qt/d and is required to apply
Thm. 3.1. Recall that for an ideal I the integer |HI | denotes the number of K-
automorphisms that fix I as a set. By definition all ideals IΩ are unramified.

In the rest of this section, we show that if t ≥ d/2, then there are choices of Ω
that make |HI−1

Ω
| linear in the degree d of the number field, hence leading to

polynomial-time attacks against PV-Knap for this choice of Ω. We also explain
how the result degrades for smaller choices of t.

Special structure of IΩ. First of all, we observe that an automorphism τ ∈
AutQ(K) fixes a fractional ideal I if and only if it fixes its inverse I−1. Hence, we
only focus here on the group of automorphisms HIΩ fixing IΩ , instead of HI−1

Ω
.

Recall that IΩ has a special structure, it is equal to
∏
i∈Ω pi, where the pi’s

are all distinct prime ideals above some fully splitting prime q. Recall also that
cyclotomic fields are Galois, hence we can apply Lemma 2.8, which implies that

{pi | 1 ≤ i ≤ d} = {τ(p1) | τ ∈ AutQ(K)},

where p1 is any of the prime ideals above q. Let us fix such a prime ideal p1.
From the equation above, we know that for any subgroup H ⊆ AutQ(K), there
exists a set ΩH ⊂ {1, . . . , d} with |ΩH | = |H| such that

{τ(p1) | τ ∈ H} = {pi | i ∈ ΩH}.

Note that the set ΩH also depends on the choice of p1, but this choice has no
impact on our attack, hence we do not mention it in the notation.

By definition of ΩH , it holds that IΩH =
∏
i∈ΩH pi =

∏
τ∈H τ(p1) is fixed

by H. The same equation also shows that IΩH is not fixed by any strictly larger
group of automorphisms containing H.

To conclude, we have a way, given any subgroup H of AutQ(K), to construct
a subset ΩH ∈ {1, · · · , d} such that |ΩH | = |H| and HIΩH

= H.

Subgroups of AutQ(K) of the desired size. Recall that the set Ω of the PV-Knap
instance has to have size t. If there exists a subgroup H of AutQ(K) with
size t, then the previous paragraph shows that one can find bad sets Ω of size t
with |HIΩ | = t. This leads to an attack against PV-Knap for those bad sets Ω
whose run time is exp

(
O
(
d
t

))
· poly (d, log q). It is polynomial if t = Ω(d), as is

usually the case in PV-Knap parameter sets (see for instance Section 5).
If there is no subgroup H of AutQ(K) of size t, one can choose a subgroup H

of maximal cardinality, subject to |H| ≤ t. This provides a set Ω′ = ΩH of
cardinality |H| ≤ t such that IΩ′ is fixed by H. This set Ω′ does not have the
desired size. However, we observe that one can always transform a PV-Knap
instance with respect to Ω into a PV-Knap instance with respect to Ω′ for
any Ω′ ⊆ Ω. This is done by “forgetting” the value of a mod pi for the i’s
in Ω \ Ω′. Another way to phrase this is to observe that if Ω′ ⊂ Ω, then IΩ
is a sublattice of IΩ′ . Hence, we can view any BDD instance in IΩ as a BDD
instance in IΩ′ , provided that the volume of ideal IΩ′ is not too small (so that
the BDD instance is still close to a unique point of the ideal IΩ′).
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This shows that, even when there are no subgroups H of AutQ(K) with
size t, one can find bad sets Ω of size t containing a subset Ω′ fixed by some
subgroup H ⊆ AutQ(K) of cardinality

t0 = max(|H| : H subgroup of AutQ(K) and |H| ≤ t).

If qt0/d ≥ 8·B, we can solve PV-Knap for Ω in time exp
(
O
(
d
t0

))
·poly (d, log q).

Finally, let us estimate the quantity t0. We know from Lem. 2.9 that AutQ(K)
contains subgroups of any order dividing φ(m). Hence, one can take

t0 = max(r : r|φ(m) and r ≤ t}.

In the case of power-of-two cyclotomic fields, this means that we always
have t0 ≥ t/2. Hence, if t = Ω(d), there always exist bad sets Ω for which the
attack runs in polynomial time (provided that qt/(2d) ≥ 8 ·B).

In the case of prime conductors m, we know that φ(m) = d is odd, hence
if t ≥ d/2, then we have t0 ≥ d/2 and there also exist bad sets Ω for which the
attack runs in polynomial time.

5 Experimental Results

We implemented the attack described in Section 4 in SageMath [The20] to solve
easy instances of PV-Knap over cyclotomic fields. The code is available at https:
//github.com/apelletm/easy-PV-knap.

We tested our attack in two significantly different scenarios. In the first one,
the set Ω of the PV-Knap instance is fixed to make the problem easy (i.e., by
choosingΩ such that IΩ is stable by a lot of automorphisms ofK, cf. Section 4.3).
In the second scenario, we consider randomly chosen sets Ω.

Our results show that the easy cases are indeed easy: if Ω is badly chosen,
one can solve PV-Knap (in both its search and decision versions) in a few sec-
onds. Perhaps surprisingly, we observe that our attack can also be beneficial for
randomly chosen sets Ω, for the decision variant of PV-Knap.

Generation of PV-Knap instances. We decided to generate PV-Knap instances
whose parameters are as suggested in [HPS+14] and [LZA18]. These parameters
are summarized in Table 1 below. All number fields are cyclotomic, m is the
conductor of the cyclotomic field K, d is the degree of K, t = |Ω| is the size of Ω
and q is a rational prime that fully splits in K. The last line of the table contains
the security estimates provided in [HPS+14,LZA18] for these parameters.

As explained above, we consider two types of PV-Knap instances. The first
type is what we call worst-case instances, where we choose the set Ω so that the
ideal IΩ is stable by many automorphisms of the number field K. For this case,
the user can choose the size of the subgroup of AutQ(K) fixing IΩ .

The second type of instances we generate are what we call random instances.
In this case, the set Ω is sampled uniformly at random among all the subsets
of {1, . . . , d} of size t.
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LZA 1 LZA 2 HPSSW 1 HPSSW 2 HPSSW 3 HPSSW 4

m 1024 2048 433 577 769 1153

d 512 1024 432 576 768 1152

t 256 512 200 280 386 600

q 65537 65537 775937 743177 1047379 968521

estimated 128 128 � 62 � 80 < 100 ≤ 130
bit security

Table 1. Parameter sets used for the attack

Regarding historical choices, [LZA18] suggested taking the set Ω uniformly
at random, while [HPS+14] seems to assume that Ω can be chosen arbitrarily
(and fixed once and for all). Here, we consider all sets of parameters in both
regimes where Ω is arbitrary or uniformly chosen.

In both cases, the secret element a and public element b were computed
in the same way: we sample a ∈ OK uniformly with coefficients in {−1, 0, 1}
(note that we consider the coefficient embedding of a here, to be consistent
with the way PV-Knap instances are described in [HPS+14, LZA18]). We then
set b = a mod IΩ . 10

Worst-case instances of Ω. In these experiments, we choose Ω so that IΩ is
stabilized by a large subset of AutQ(K), as explained in Section 4.3. Note that
for the HPSSW parameter sets, we do not have subgroups of AutQ(K) of size
exactly t. Hence, we use the technique described above: we take t0 = max(r :
r|φ(m) and r ≤ t}, a bad set Ω′ fixed by a subgroup of order t0, and run the
attack with this set Ω′.

In Table 2 below, we summarize some of the parameters related to the attack.
Note that the quantity t0 is always equal to either d/2 or d/3, hence we are in
a regime where the lattice reduction step can be performed in dimension 2 or 3.
Recall that the quantity B is an upper bound on the size of ‖ΣK(a)‖. In our
case, since a has ternary coefficients, this is upper bounded by

√
d.

Recall that our attack from Section 4.3 was proven to work when qt0/d ≥
8B. This condition is not always satisfied for our parameter sets, however, we
observed that in practice, the attack works for all parameter sets, even when
the condition was not satisfied. This is not so surprising since the condition is a
sufficient condition for the attack to provably work, but not a necessary one.

For each set of parameters described in Table 1, we performed 20 tests of
our search and decision attacks, for an optimal set Ω (optimal for the attack,
i.e., containing a subset Ω′ fixed by a group of automorphisms of size t0). The
search and decision attacks both succeeded with probability 1 on all cases. They

10 For the case of HPSSW parameters, the generation of a is slightly different, in
order to be consistent with the specifications of [HPS+14]. They consider PV-Knap
instances over the cyclic ring Z[X]/(Xm−1) instead of OK . For this specific case, we
generate a with ternary coefficients in the ring Z[X]/(Xm − 1), and then reduce it
modulo Φm(X) in order to map it to OK and continue the attack in OK , cf. Sec. 2.4.
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LZA 1 LZA 2 HPSSW 1 HPSSW 2 HPSSW 3 HPSSW 4

t 256 512 200 280 386 600

t0 256 512 144 192 384 576

qt0/d 256.0 256.0 91.9 90.6 1023.4 984.1

8 ·B 181.0 256 166.3 192.2 221.8 271.6

Table 2. Some quantities related to the attack

took between 5 seconds for the smallest sets of parameters and 2 minutes for the
largest ones, on a personal laptop (the timings are for performing the 20 tests,
but the short vector in I−1Ω is computed only once).

For the large sets of parameters LZA 2 and HPSSW 4, we also tried the
attack with not so optimal sets Ω: we chose Ω so that IΩ was stable by a subset
of AutQ(K) of size 16, instead of the optimal subsets of size 512 and 576 respec-
tively.11 This means that the SVP instance we had to solve was in dimension 64
and 72 respectively (instead of dimension 2). Even in this less favorable scenario,
the search attack succeeded with probability 1 over the 20 tests, and it ran in 2
minutes and 4 minutes respectively. Note that recovering the secret a already
solves the decision variant of PV-Knap as well.

Our conclusion is that the easy instances of PV-Knap that we identified are
really easy (solved in less than a few minutes on a personal laptop), even for
number fields of large degree and concrete parameter sets, and even when the
condition qt0/d ≥ 8B · d3/2 is not satisfied. Hence, the choice of the set Ω should
absolutely not be given to the attacker.

This worst-case attack can be considered to break (at least partially) the
PV-Knap settings suggested in [HPS+14], since it wasn’t specified how the set Ω
should be chosen. For [LZA18], the authors require Ω to be uniformly sampled,
hence the worst-case attack cannot be considered to break their settings.

Random choices of Ω: estimating the cost of lattice attacks. We now consider
the cases where the set Ω is chosen uniformly at random among all sets of
size t. In this situation, it is very unlikely that the ideal IΩ is stable by any
non trivial subgroup of the Galois group. Even for a subgroup of order 2, the
probability that IΩ is stable by this subgroup is roughly equal to 1/2t. Indeed,
let τ ∈ AutQ(K) be an element of order 2 (i.e., τ(τ(x)) = x for all x). The
ideal IΩ is stable by τ if and only if, for every i ∈ Ω, we have j ∈ Ω where j
is such that pj = τ(pi). Since Ω is chosen uniformly at random, the probability
that j ∈ Ω is roughly 1/2.

Even though IΩ is very unlikely to be stabilized by a non trivial subgroup
of AutQ(K), we can still try to apply our attack here. The idea is always the
same: we can forget some of the i’s in Ω. As we have already seen, reducing the

11 Note that here, we do not reduce the size of Ω below t0: we take Ω as the union
of multiple sets Ω′, each one of size 16 such that IΩ′ is fixed by a subgroup H
of AutQ(K) of size 16 (the same H for all the Ω′).
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size of Ω by forgetting some of the i’s makes the problem harder, since our target
is a BDD instance in a denser lattice, and at some point the solution will not
even be unique anymore. On the other hand, by discarding some of the elements
of Ω in a carefully chosen way, we may hope to obtain a subset Ω′ such that IΩ′

is stable by some non trivial subgroup of AutQ(K).

Our objective is then to reduce Ω to some subset Ω′ sufficiently large such
that b is still a BDD instance in IΩ′ , but with IΩ′ stabilized by a subgroup
of AutQ(K) as large as possible. The objective of our experiments in this para-
graph was to estimate by how much one can hope to reduce the lattice dimension
by using this technique. In other words, what is the largest subset of AutQ(K)
that stabilizes a sufficiently large subset Ω′ of Ω (so that the problem is still
well defined with Ω′)?

To estimate this quantity, we proceed in two steps. We first estimate the
minimal size of Ω′ that we can allow for the distinguishing attack to succeed.
This is done experimentally, by estimating the size B of a shortest vector in qI−1Ω′

for Ω′ of a given length (note that the volume of qI−1Ω′ is equal to qd−|Ω
′| ·∆1/2

K ,
which only depends on the size of Ω′ and not the actual choice of Ω′). We then
compute a short element v of length B and experimentally try to distinguish
between v ·a mod q with a uniformly distributed modulo q and v ·a mod q with a
randomly chosen with ternary coefficients (if v is sufficiently small, we expect
that v · a mod q has more coefficients < q/4 when a is ternary than when a is
uniform). This gives us an (experimental) lower bound on the size of Ω′ we can
take in order to distinguish PV-Knap instances from random elements, with a
not too small advantage.

Once this lower bound t0 on the size of Ω′ is computed, we compute the
largest subset of AutQ(K) stabilizing a subset Ω′ of Ω of size at least t0. We
do that for different random choices of Ω, and compute the probability (over
the choice of Ω) that there exists a subset Ω′ of Ω of size at least t0 and such
that IΩ′ is stabilized by a subgroup of AutQ(K) of order 1, 2, 3, . . . .

We observe that, most of the time, there does not exist a subset Ω′ with
sufficiently large size and stabilized by a non-trivial subgroup of AutQ(K). In
these cases, we cannot use our attack to lower the dimension of the lattices.
However, in some cases, we were able to find a sufficiently large set Ω′ stabilized
by a subgroup of AutQ(K) of order 2. In this case, one can reduce the dimension
of the lattice in which to solve SVP by a factor 2. In Table 3 below, we show
the empirical probability that Ω contains a large enough subset Ω′ stabilized by
a subgroup of order k of AutQ(K), for k = 1 and k = 2 (we never observed a
larger k experimentally).

We can see that for all parameter sets, there is a non-negligible probability
to sample a random Ω that contains a good subset Ω′ allowing to reduce the
dimension of the lattice problem by a factor 2. Hence, by sampling many ran-
dom PV-Knap instance, one can hope to obtain an easier than expected instance
in a few trials (between 3 and 2500 trials depending on the parameter sets).

The fact that the probability to find a good subset Ω′ increases when the
dimension increases in the HPSSW parameter sets might seem surprising at first.
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LZA 1 LZA 2 HPSSW 1 HPSSW 2 HPSSW 3 HPSSW 4

Subgroup of AutQ(K) 0.86 0.9996 0.98 0.94 0.55 0.65
of size 1

Subgroup of AutQ(K) 0.14 0.0004 0.02 0.06 0.45 0.35
of size 2

Table 3. Probability to find a good subset Ω′ in a random Ω

We believe that the explanation comes from the choice of t, which is < d/2 for
HPSSW 1 and HPSSW 2 and is > d/2 for HPSSW 3 and HPSSW 4. The larger t,
the easier it is to find a not too small subset that has some nice stabilizing
properties. We also note that the probability to find a good set Ω seems to
vary significantly with the choice of t, and with our estimate of t0 (the minimal
size of Ω′ that we can allow). Running the same computation with a different
random seed might produce significantly different probabilities. For this reason,
the numbers in Table 3 are to be taken as order of magnitudes, and not precise
estimates of the success probability.

We conclude that, even when the set Ω is chosen uniformly at random, there
is some non-negligible probability that one can reduce the dimension of the
lattice in which to solve SVP by a factor 2. This might significantly improve the
run time of the attack, since the cost of SVP increases exponentially with the
dimension of the lattice. Hence, one should be careful when choosing parameter
sets for the PV-Knap problem.

Random choices of Ω: full distinguishing attack. Finally, we also ran the full
distinguishing attack on the parameter set LZA 1, which was supposed to pro-
vide 128 bits of security.

We implemented the strategy described above: we sampled 3000 random
PV-Knap instances, and kept the one whose setΩ contained the largest subsetΩ′

stabilized by a subgroup of AutQ(K) of order 2. We then ran BKZ with block
size ≤ 50 in the lattice qI−1Ω′ to obtain a sufficiently short element v. This took
time roughly 11 hours on a personal laptop. We then estimated empirically the
probability success of our distinguishing attack given this short element v and
random BDD targets b.

We concluded that our short vector v allows us to distinguish uniform tar-
gets b from PV-Knap ones with advantage at least 0.0005. We computed this
advantage using 106 samples, to make sure that the advantage gap we com-
puted was significant (Hoeffding’s bound guarantees that our advantage is at
least 0.0005, expect with probability at most 0.01). Overall, taking into account
the fact that our attack chooses the best Ω among 3000 choices, this means
that our distinguishing advantage is at least 3000−1 · 0.0005 ≥ 2−23, for a run
time of less than 12 hours on a personal laptop with a 1.8 GHz processor, hence
amounting to ≤ 247 bit-operations. It was suggested in [MW18] to define the
bit-security of a distinguishing problem as log2(T/ε2), where ε is the distin-
guishing advantage of the attacker and T is its time (or, in our case, its number
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of bit-operations). Our attack hence shows that the parameter set LZA 1 enjoys
at most 47 + 2 · 23 = 93 bits of security, which is significantly smaller than the
expected 128 bits of security. We note however that this does not fully invalidate
the claim made in [LZA18], since the 128 bit-security is claimed against search
attackers, and not distinguishing attackers.

We could also increase the advantage of our attack a bit more, by spending
more time on the lattice reduction phase, in order to obtain an even shorter
element v. We did so with BKZ with block-size 55 and obtained an attack with
advantage roughly 3000−1 · 0.0044 ≥ 2−20, for a total time ≤ 20 hours. This
reduces the security of the parameter set LZA 1 even further to ≤ 87 bits of
security (against distinguishing attackers).

This attack shows that the security estimate provided in [LZA18] for the
first set of parameters is overestimated for distinguishing attackers, even when
the set Ω is chosen uniformly at random. We expect that the other estimates
provided in [LZA18] and [HPS+14] might also be overestimated, even though it
might not be possible to actually run the full attack in a few hours on a laptop.
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CDW21. Ronald Cramer, Léo Ducas, and Benjamin Wesolowski. Mildly short vec-
tors in cyclotomic ideal lattices in quantum polynomial time. Journal of
the ACM (JACM), 68(2):1–26, 2021.

Coh13. Henri Cohen. A course in computational algebraic number theory, volume
138. Springer Science & Business Media, 2013.

Con. Keith Conrad. The different ideal. https://kconrad.math.uconn.edu/

blurbs/gradnumthy/different.pdf, last accessed on 16.02.2022.
dBDPW20. K. de Boer, L. Ducas, A. Pellet-Mary, and B. Wesolowski. Random self-

reducibility of Ideal-SVP via Arakelov random walks. In CRYPTO, 2020.
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tions for module lattices. Des. Codes Cryptogr., 75(3):565–599, 2015.

LZA18. Xingye Lu, Zhenfei Zhang, and Man Ho Au. Practical signatures from the
partial fourier recovery problem revisited: A provably-secure and gaussian-
distributed construction. In ACISP, volume 10946 of Lecture Notes in
Computer Science, pages 813–820. Springer, 2018.

31

https://kconrad.math.uconn.edu/blurbs/gradnumthy/different.pdf
https://kconrad.math.uconn.edu/blurbs/gradnumthy/different.pdf
http://crypto.stanford.edu/craig


Mar77. Daniel A Marcus. Number fields, volume 2. Springer, 1977.
Mic02. Daniele Micciancio. Generalized compact knapsacks, cyclic lattices, and

efficient one-way functions from worst-case complexity assumptions. In
FOCS, pages 356–365. IEEE Computer Society, 2002.

MW18. Daniele Micciancio and Michael Walter. On the bit security of crypto-
graphic primitives. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 3–28. Springer, 2018.

PHS19. Alice Pellet-Mary, Guillaume Hanrot, and Damien Stehlé. Approx-svp in
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Appendix A Additional Preliminaries

A.1 Easy algorithmic problems on lattices

Lemma A.1. Given a rational basis BL of a lattice L which lives in a vector
space E ⊆ Qm, and a basis BF of a sub-space F of E, one can compute a basis
of the lattice L ∩ F in time polynomial in m, size(BL) and size(BF ).

Proof. First, compute a basis BF⊥ of the subspace F⊥ orthogonal to F . By
Gauss pivoting, this can be done in time polynomial in m and size(BF ). This
basis is such that a vector x ∈ E is in F if and only if BF⊥ · x = 0. Recall
that x is in the lattice L if and only if there exist some integer vector y such
that x = BL · y. Hence, to compute the vectors x ∈ L ∩ F , it is equivalent
to compute the integer vectors y such that BF⊥ · BL · y = 0. This means we
want to find all integer solutions to a rational linear system. Since the system
is homogeneous, we can multiply it by its common denominator to obtain an
integral linear system. Then, computing the integral kernel of an integral matrix
can be performed in polynomial time by computing its Hermite normal form, as
described for instance in [Coh13, Algorithm 2.4.10]. ut

A.2 Algorithms for Id-HSVP

We discuss here two algorithms that exploit the algebraic structure of ideal
lattices in order to find short vectors in them (for the canonical embedding ΣK).

In the special case of ideal lattices of a cyclotomic number fieldsK of degree d,
one can use the algorithm of [CDW17, CDW21]. The algorithm was described
only for prime power cyclotomic fields in [CDW17], and then generalized to any
cyclotomic field in [CDW21]. This is a heuristic and quantum algorithm, that
takes as input a basis BK of OK and a basis BI of an ideal I. It solves γ-
Id-HSVPK in I in quantum polynomial time for some approximation factor γ =
exp(
√
d · log(d)O(1)).

In the case of ideal lattices in any number field K, one could also use the
algorithm of [PHS19]. This algorithm is heuristic and consists in an offline phase,
that only depends on the number field K, followed by an online phase that
depends on both K and the ideal I. When the discriminant of the number field
is not too large (for instance for cyclotomic fields), the online phase performs
heuristically better than the BKZ algorithm. The offline phase however requires
a time 2O(d) which is asymptotically the same as the time required by the BKZ
algorithm for the smallest approximation factor γ. Hence, when considering the
run time of both the offline and the online phase, this algorithm is never better
than the BKZ algorithm. Variants of this algorithm are known [BR20], which
have better practical run times, but the same asymptotic complexity (no better
than BKZ).
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Appendix B Partial Vandermonde Knapsack Version 2

Let K = Q[X]/(f(X)) be a number field of degree d with ring of integers OK
of the form Z[X]/f(X)). Further, let q be a prime such that f(X) completely

splits into d linear factors modulo q, i.e., f(X) =
∏d
j=1(X−ωj), where ωj ∈ Zq.

For the case of K being the m-th cyclotomic field, this is the case for every
prime q such that q = 1 mod m.

By the Kummer-Dedekind theorem we simultaneously obtain the factoriza-
tion of the ideal generated by q into prime ideals over OK . It yields qOK =∏d
j=1 pj , where pj = qOK + (X − ωj)OK .
The (discrete) Vandermonde transform of any field element g(X) ∈ K is

defined as the evaluation of g(X) at the roots ωj given by the factorization
of f(X), i.e., V(g(X)) = g(ωj)1≤j≤d ∈ Zdq . For t ≤ d, we set Pt = {Ω ⊆
{1, . . . , d} : |Ω| = t} and Ωc = {1, . . . , d} \ Ω. We define the partial Vander-
monde transform as VΩ(g(X)) = g(ωj)j∈Ω ∈ Ztq and the complement partial

Vandermonde transform as VΩc(g(X)) = g(ωj)j∈Ωc ∈ Zd−tq .

Definition B.1 (PV-Knap Version 2). Let K,OK , d, q and t be as above.
Fix Ω ∈ Pt and let ψ be a distribution over OK such that maxg←ψ ||ΣK(g)|| ≤ B
for some positive real B fulfilling 2B <

√
d · qt/d. Sample g(X)← ψ. Given h :=

VΩ(g(X)) ∈ Ztq, the partial Vandermonde knapsack problem PV-KnapΩ,ψ asks
to find g(X).

Note that the partial Vandermonde transform of g(X) with respect to the
set Ω is zero modulo q if and only if g(X) lies in the ideal IΩ :=

∏
j∈Ω pj , as

defined in Section 2.4. More precisely,

IΩ = {g(X) ∈ OK : VΩ(g(X)) = 0 mod q}.

Thus, for a given ring element g(X) of small norm, the partial Vandermonde
transform VΩ(g(X)) mod q is a way to specify the coset g(X) + IΩ , leading to
the equivalence of Definition 2.14 and Definition B.1.

Partial Vandermonde Learning With Errors. Boudgoust et al. [BSS22, Bou21]
introduce a dual problem to PV-Knap that they call partial Vandermonde learn-
ing with errors (PV-LWE). The duality connection is similar as the one between
the standard Knapsack and LWE problems. They prove that both problems are
equivalent to each other for power-of-two cyclotomic fields [Bou21, Sec. 5.3].
Hence, our attacks against PV-Knap also apply to PV-Knap in this case.

Partial Fourier Recovery Problem. As mentioned in the introduction and in the
preliminaries, in some works the problem is defined via the Fourier transform
instead of the Vandermonde transform and called the Partial Fourier Recovery
problem [HPS+14, HS15, DHSS20]. For completeness, we provide its concrete
formulation here as well.

Let N and q be primes, such that there exists a primitive N -th root of
unity modulo q, denoted by ω. Further, consider the ring of polynomials R :=
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Z[X]/(XN−1). For any polynomial g(X) ∈ R, we define the Fourier transform as
its evaluation at all the powers of ω (i.e., evaluation at all N -th roots of unity).
More precisely, F(g(X)) = g(ωj)j∈0,...,N−1. Similarly as above, we can define
the partial Fourier transform by restricting it to a subset Ω ⊆ {0, . . . , N − 1} of
size t ≤ N which we denote by FΩ(g(X)) = g(ωj)j∈Ω .

Definition B.2 (Partial Fourier Recovery). Let R,N, q and t as above.
Fix Ω and let ψ be a distribution over R providing polynomials with coefficients
of small norm. Sample g(X) ← ψ. Given FΩ(g(X)) ∈ Ztq, the Partial Fourier
Recovery problem asks to find g(X).

A current choice of ψ is the uniform distribution over ternary polynomials,
i.e., polynomials with coefficients in {−1, 0, 1}.
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