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Abstract
We give a new construction of Lie groupoids which is particularly well
adapted to the generalization of holonomy groupoids to singular foliations.
Given a family of local Lie groupoids on open sets of a smooth manifold M ,
satisfying some hypothesis, we construct a Lie groupoid which contains the
whole family. This construction involves a new way of considering (local)
Morita equivalences, not only as equivalence relations but also as generalized
isomorphisms. In particular we prove that almost injective Lie algebroids
are integrable.

Introduction

To any regular foliation is associated its holonomy groupoid. This
groupoid was introduced in the topological context by C. Ehresmann
[14], and later the differentiable case was done independently by J.
Pradines and H.E. Winkelnkemper [25, 32]. It is the smallest Lie grou-
poid whose orbits are the leaves of the foliation [23], and every regular
foliation is given by the action of its holonomy groupoid on its space of
units.

The holonomy Lie groupoid of a foliation has been the starting point
of several studies. A. Connes used it to define the Von Neumann algebra
and the C∗-algebra of a foliation [8]; A. Haefliger pointed out that,
considered up to a suitable equivalence, the holonomy groupoid defines
the transverse structure of the foliation [16]; it plays a crucial role in the
index theory for foliations which was developed by A. Connes and G.
Skandalis [10] as well as for the definition of the transverse fundamental
class of a foliation [9]. See [7] for a complete bibliography on this subject.
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468 claire debord

On the other hand symplectic geometry and control theory have
focused attention on foliations generated by families of vector fields.
These foliations were introduced independently by P. Stefan and H.J.
Sussman and are usually called Stefan foliations [28, 29]. By definition,
a Stefan foliation F on a manifold M is the partition of M by the
integral manifolds of a completely integrable differentiable distribution
on M . In such foliations the dimension of the leaves can change. Our
study concerns the Stefan foliations for which the union of leaves of
maximal dimension is a dense open subset of the underlying manifold,
these foliations are called almost regular.

There are plenty of examples of Stefan foliations: orbits of a Lie
group action, faces of a manifold with corners, symplectic foliation of a
Poisson manifold, etc. Thus it is a natural question to extend the notion
of holonomy Lie groupoid to such foliations, it is the first step toward
getting transverse invariants, to compute a C∗-algebra or to do index
theory. This paper is devoted to the study of this question. Precisely
the question we answer is: given an almost regular foliation how can
one find a Lie groupoid which induces the foliation on its space of units
and which is the smallest in some way?

The first idea is to define holonomy for Stefan foliations. This has
already been done under some hypothesis by M. Baeur and P. Dazord
[2, 12]. But this process involves loss of information. For example the
holonomy group of any singular leaf reduced to a single point will always
vanish and so we will miss information to compute a Lie groupoid. In
[25], J. Pradines constructs the holonomy groupoid from the local trans-
verse isomorphisms, that is the diffeomorphisms between small transver-
sals to the foliation. This method also fails in the singular case because
we lose local triviality of the foliation as well as the notion of small
transversals.

We are looking at Lie groupoids which are “the smallest in some
way”. In other word we do not want unnecessary isotropy. This leads us
to consider a special case of Lie groupoids namely the quasi-graphoids. A
quasi-graphoid has the property that the foliation it induces on its units
space is almost regular. Furthermore, restricted to the regular part, it
is isomorphic to the usual holonomy groupoid of the corresponding reg-
ular foliation. So these groupoids are good candidates to be holonomy
groupoids of almost regular foliations.

On the other hand, we remark that the problem of finding a Lie
groupoid associated to a singular foliation F on a manifold M has two
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aspects:

The local problem which is to find for each point x of M a (local) Lie
groupoid associated to the foliation induced by F on a neighborhood
of x. This problem is obvious for the regular foliations. Since the
equivalence relation to be on the same leaf is locally regular in this case,
one can just take the graph of this regular equivalence relation over
each distinguished open set. When the (singular) foliation is defined
by an almost injective Lie algebroid over M , that is a Lie algebroid
whose anchor is injective when restricted to a dense open subset of M ,
this problem reduced to the local integration of the algebroid. This has
already been done in detail by the author in [13].

The global problem which consists in finding a Lie groupoid on M made
from these (local) groupoids. Even in the regular case, this aspect is
more difficult to understand because holonomy is involved.

However, the study of the regular case gives rise to the following
remark. Suppose that (M,F) is a regular foliation and take a cover
of M by distinguished open sets. All the open sets of this cover are
equipped with a simple foliation and these foliations fit together to give
(M,F). In the same way, to each of these open sets, the graph of the
corresponding regular equivalence relation is associated and these Lie
groupoids fit together to generate the holonomy groupoid of (M,F), de-
noted Hol(M,F). The first step was to understand how these groupoids
fit together. The conclusion of this study is the following:

If γ is an element of Hol(M,F) whose source is x and range is
y, let U0 (resp. U1) be a distinguished neighborhood of x (resp. y),
T0 (resp. T1) be a small transversal passing through x (resp. y) and
G0 (resp. G1) the holonomy groupoid of the simple foliation (U0,F|U0)
(resp. (U1,F|U1)). Then the data of γ is equivalent to:

- The holonomy class of a path c tangent to the foliation, starting
at x and ending at y (usual construction [32]).

- The germ at x of a diffeomorphism from T0 to T1 (J. Pradines’
construction [25]).

- The germ of a Morita equivalence between G0 and G1 (defined
here in Section 3).

The transverse isomorphism mentioned above will just be the holon-
omy isomorphism associated to the path c. Morita equivalence between
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two groupoids was defined by M. Hilsum and G. Skandalis [17] to be
generalized isomorphisms between the orbit spaces of the groupoids.
Here, by construction, the orbit space of Gi is naturally isomorphic to
Ti, i = 0, 1.

This new approach will be very useful, because even if the notion
of holonomy classes of paths tangent to the foliation and transverse
isomorphisms can’t be defined for almost regular foliations, the notion
of Morita equivalence remains.

Finally the construction of a Lie holonomy groupoid of an almost
regular foliation can be decomposed in two steps. The first step is a
construction of a generalized atlas of the foliation. This “atlas” will
be made up of local Lie groupoids. The existence of such an atlas
will replace the local triviality of the foliation. The second step is the
construction of a Lie groupoid associated to such an atlas using (local)
Morita equivalences.

This paper is organized as follows:

In Section 1 we recall briefly the definition of Stefan foliations.
In Section 2 we study quasi-graphoids and we define the general

atlases of a foliation.
In Section 3 we first extend the notion of Morita equivalence to local

groupoids. Next we show that given a generalized atlas, the set of local
Morita equivalence between elements of this atlas behaves almost like a
pseudo-group of local diffeomorphisms. We finish by defining the germ
of a Morita equivalence, and we construct the groupoids of the germs
of the elements of the pseudo-group.

In the last section we apply the obtained results to almost regular
foliations, and we give several examples.

I want to address special thanks to Georges Skandalis for his relevant
suggestions.

1. Singular foliations

A generalized distribution D = ∪x∈MDx ⊂ TM on a smooth mani-
fold M is smooth when for each (x, v) ∈ Dx, there exists a smooth local
tangent vector field X on M such that:

x ∈ Dom(X), X(x) = (x, v) and ∀y ∈ Dom(X), X(y) ∈ Dy.

It is integrable when for all x ∈ M , there exists an integral manifold
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passing through x, that is, an immersed submanifold Fx of M such that
x belongs to Fx and TyFy = Dy for all y ∈ Fx.

The maximal connected integral manifolds of an integrable differ-
entiable distribution D on the manifold M define a partition F of M .
Such a partition is what we call a Stefan foliation on the manifold M
[28]. The elements of the partition are called the leaves. Contrary to
the regular case the dimension of the leaves may change. A leaf which
is not of dimension equal to max

x∈M
(dim Dx) is singular and it is regular

otherwise. Because of the rank lower semi-continuity the dimension of
the leaves increases around a singular leaf.

When the union M0 of the leaves of maximal dimension is a dense
open subset of M we say that the Stefan foliation (M,F) is almost
regular. In this case, the foliation F restricted to M0 is a regular foli-
ation denoted by (M0,F0) and called the maximal regular subfoliation
of (M,F).

Examples.

1. A regular foliation is a Stefan foliation.
2. The partition of a manifold M into the orbits of a differentiable
action of a Lie group on M is a Stefan foliation.
3. The integral manifolds of an involutive family of tangent vector fields
on a manifold M which is locally of finite type are the leaves of a Stefan
foliation [29].
4. Let N be a manifold equipped with two regular foliations F1 and F2

where F1 is a subfoliation of F2 (that is every leaf of F1 lies on a leaf
of F2). Then F1 × {0} and F2 × {t} for t &= 0 defines an almost regular
foliation on M × R.
5. We recall that an quartering on a manifold M is the data of a finite
family {Vi, i ∈ I} of codimension 1 submanifolds of M such that for
all J ⊂ I, the family of the inclusions of the Vj , j ∈ J is transverse
[19]. The faces of a quartering on M are the leaves of an almost regular
foliation.
6. Recall that a Lie algebroid A = (p : A → TM, [ , ]A) on a smooth
manifold M is a vector bundle A → M equipped with a bracket [ , ]A :
Γ(A) × Γ(A) → Γ(A) on the module of sections of A together with a
morphism of fiber bundles p : A → TM from A to the tangent bundle
TM of M called the anchor, such that:
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i) The bracket [ , ]A is R-bilinear, antisymmetric and satisfies to the
Jacobi identity.

ii) [X, fY ]A = f [X, Y ]A + p(X)(f)Y for all X, Y ∈ Γ(A) and f a
smooth function of M .

iii) p([X, Y ]A) = [p(X), p(Y )] for all X, Y ∈ Γ(A).

The distribution defined by p(A) on M is involutive and locally of
finite type, so it is integrable [29]. The corresponding Stefan foliation
on M is said to be defined by the Lie algebroid A.

Suppose now that G
s
⇒
r

M is a Lie groupoid on the manifold M

having s as source map and r as range map.
Recall that if x belongs to M the orbit of G passing through x is the

set

{y ∈ M | ∃γ ∈ G such that s(γ) = x and r(γ) = y} = r(s−1(x)).

We denote by AG the Lie algebroid of G and by FG the corresponding
foliation on M . The leaves of the Stefan foliation FG are the connected
components of the orbits of G. Thus the action of the Lie groupoid G
on its space of units M defines a Stefan foliation.

2. Quasi-graphoids

These groupoids have been introduced independently by J. Renault
[27] who called them essentially principal groupoids and by B. Bigonnet
[3] under the name of quasi-graphoids. We will see that quasi-graphoids
have the good properties to be holonomy groupoids of almost regular fo-
liations. We recall their definition, and we complete B. Bigonnet’s work
by the study of their properties which leads to a geometric justification
of this choice.

2.1 Definition and properties

Recall that a manifold S equipped with two submersions a and b onto a
manifold B is called a graph over B. If (a′, b′) : S′ → B × B is another
graph over B, a morphism of graphs from S to S′ is a smooth map
ϕ : S → S′ such that a′ ◦ ϕ = a and b′ ◦ f = b [26].
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Definition-Proposition 1 ([3]). Let G
s
⇒
r

G(0) be a Lie groupoid

over G(0), s its domain map, r its range map and u : G(0) −→ G the
units inclusion. The two following assertions are equivalent:

1. If ν : V −→ G is a local section of s then

r ◦ ν = 1V if and only if ν = u|V .

2. If N is a manifold, f and g are two smooth maps from N to G
such that:

i) s ◦ f = s ◦ g and r ◦ f = r ◦ g.

ii) One of the maps s ◦ f and r ◦ f is a submersion.

Then f = g.

A quasi-graphoid is a Lie groupoid which satisfies these equivalent
properties.

In other words G is a quasi-graphoid when for any graph S over G(0)

there exists at most one morphism of graphs from S to G.

Examples.

1. The holonomy groupoid of a regular foliation is a quasi-graphoid.
2. If H × M → M is a differentiable action of a Lie group H on a
manifold M such that there is a saturated dense open subset of M over
which the action is free, the groupoid of the action is a quasi-graphoid.

One can remark that the algebraic structure of a quasi-graphoid is
fixed by the source and range maps. More precisely if G

s
⇒
r

G(0) is a

quasi-graphoid then:

– The inverse map is the unique smooth map i : G → G such that
s ◦ i = r and r ◦ i = s.

– The product is the unique smooth map

p : G(2) = {(γ, η) ∈ G × G | s(γ) = r(η)} → G

such that s ◦ p = s ◦ pr2 and r ◦ p = r ◦ pr1 where pr1 (resp. pr2)
is the projection onto the first (resp. second) factor.
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In the same way, let G⇒B and H⇒B be two Lie groupoids having
the same units and ϕ : G → H a morphism of graphs. If H is a quasi-
graphoid then a morphism of graphs from G to H has to be a morphism
of Lie groupoids.

An other important property of quasi-graphoids is that a local mor-
phism of graphs to a quasi-graphoid is always extendible.

Proposition 1. Let G
sG

⇒
rG

B and H
sH

⇒
rH

B be two Lie groupoids

having the same units space and ϕ : V → G a smooth map from a
neighborhood of B in H to G which satisfies sH◦ϕ = sG and rH◦ϕ = rG.

If H is s-connected and G is a quasi-graphoid then there exists a
unique morphism of Lie groupoid ϕ̃ : H → G such that the restriction
of ϕ̃ to V is equal to ϕ.

Proof. We have already noticed that if ϕ extends to a smooth mor-
phism of graphs ϕ̃ then ϕ̃ will be a morphism of Lie groupoid. The
definition of quasi-graphoids implies that such a morphism must be
unique. So it remains to show that ϕ extends to a smooth morphism of
graphs.

Recall that a local section ν of sH is said to be admissible when
rH ◦ ν is a local diffeomorphism of the space of units. When ν1 and ν2
are two local admissible sections such that rH(ν2(dom(ν2))) ⊂ dom(ν1)
we denote by ν1 ·ν2 the local admissible section which sends x ∈ dom(ν2)
onto the product ν1(rH(ν2(x))) · ν2(x).

If γ is an element of H then, because H is s-connected, one can find
a neighborhood O of sH(γ) in B and local admissible sections ν1, . . . , νn
such that the image of each νi is a subset of V , the map ν1 · ν2 · · · νn is
defined on O and ν1·ν2 · · · νn(sH(γ)) = γ. Thus for each νi, the map ϕ◦νi
is an admissible local section of G and the product ϕ(ν1)·ϕ(ν2) · · ·ϕ(νn)
is defined.

Let U be a neighborhood of sH(γ) in H such that U ⊂ V and
U ∩ B = O. Then the following map

h : U −→ H
η ,→ ν1 · ν2 · · · νn(rH(η)) · η

gives rise to a diffeomorphism from U onto a neighborhood W of γ in
H. We define the morphism of graphs

ϕ̃W : W −→ G
h(η) ,→ ϕ(ν1) · ϕ(ν2) · · ·ϕ(νn)(rH(η)) · η .
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By repeating this process we obtain an open covering {Wi}i∈I of H and
for each i ∈ I, a morphism of graphs ϕ̃i : Wi → G. Because G is a
quasi-graphoid, ϕ̃i and ϕ̃j must coincide on Wi ∩ Wj . Thus the map
ϕ̃ : H → G defined by ϕ̃ = ϕ̃i on Wi is a morphism of graphs. By
uniqueness the restriction of ϕ̃ to V is equal to ϕ. q.e.d.

Notice that if ϕ is a diffeomorphism onto its image and if G and H
are two s-connected quasi-graphoids then ϕ̃ is an isomorphism of Lie
groupoids.

Corollary 1. Two s-connected quasi-graphoids having the same
space of units are isomorphic if and only if their Lie algebroids are
isomorphic.

Proof. Suppose that G and H are two s-connected quasi-graphoids
having the same space of units B such that their Lie algebroids AG
and AH are isomorphic. Then using the exponential map [18, Prop.
4.12, p. 136], one can easily construct a covering {Wi}i∈I of B in G
and for all i ∈ I a morphism of graphs ϕi : Wi → H which integrates
the isomorphism from AG onto AH. Because H is a quasi-graphoid
ϕi and ϕj must coincide on Wi ∩ Wj . Thus we obtain in this way a
local isomorphism of graphs from G onto H. Using Proposition 1 we
conclude that G and H are isomorphic. q.e.d.

The next proposition shows that quasi-graphoids are closely related
to almost regular foliations.

Proposition 2. Let G
s
⇒
r

G(0) be a quasi-graphoid, (G(0),FG)

the singular foliation induced by G on G(0) and AG = (p : AG →
TG(0), [ , ]) the Lie algebroid of G.

The following assertions hold:

1. The anchor p is almost injective, that is the set

G(0)
0 = {x ∈ G(0) | px : AGx → TxG(0) is infective }

is a dense open subset of G(0).

2. The foliation (G(0),FG) is almost regular.

3. The restriction of the s-connected component Gc of G to the reg-
ular part G(0)

0 is the holonomy groupoid of the maximal regular
subfoliation of FG denoted by Hol(G(0)

0 ,FG|G(0)
0

).
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Proof. 1. The rank lower semi-continuity implies that G(0)
0 is an

open subset of G(0).
Let U be an open set of G(0), the rank lower semi-continuity implies

that there is a non empty open subset V of U over which the rank of
p is maximal. We can consider the fiber bundle ker(p|V ) over V . We
have to check that ker(p|V ) = V × {0}.

Let X be a local section of ker(p|V ). According to [18] (prop. 4.1
p 126), for all x0 ∈ V , there is an open neighborhood Vx0 ⊂ V of x0,
an ε > 0 and a (unique) smooth family of local sections Exp(tX) of s
defined on Vx0 for |t| < ε such that {r ◦Exp(tX) : Vx0 → M} is the one
parameter group of local transformations associated to the local vector
field p(X) over Vx0 and

d

dt
Exp(tX)|0 = X.

Since p(X) = 0 we get that r ◦ Exp(tX) = 1Vx0
for all t such that

|t| < ε. Then, G being a quasi-graphoid, we obtain that for all such t,
Exp(tX) = u|Vx0

, where u is the unit map of G. So X = 0.
2. An immediate consequence of p being almost injective is that the

image by p of the restriction of AG to G(0)
0 is an involutive distribution

on G(0)
0 . So it induces a regular foliation. In other words the restriction

of FG to G(0)
0 is regular.

3. The Lie algebroid of the restriction of Gc to G(0)
0 is equal to the

restriction of AG to G(0)
0 and so it is isomorphic to the tangent space of

the regular foliation (G(0)
0 ,FG|G(0)

0
). Furthermore the tangent space of

the regular foliation (G(0)
0 ,FG|G(0)

0
) is the Lie algebroid of the holonomy

groupoid of (G(0)
0 ,FG|G(0)

0
). Finally, the restriction of Gc to G(0)

0 and

Hol(G(0)
0 ,FG|G(0)

0
) are two s-connected quasi-graphoids having isomor-

phic Lie algebroids, so by the previous corollary they are isomorphic as
well. q.e.d.

2.2 Local quasi-graphoids

We are going to present here the local version of quasi-graphoids. First,
we need to recall the notion of local Lie groupoid which is due to Van
Est [15].

A local Lie groupoid is given by:
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– Two smooth manifolds L and L(0) and an embedding u : L(0) → L.
The manifold L(0) must be Hausdorff, it is called the set of units.
We usually identify L(0) with its image by u in L.

– Two surjective submersions: L
s
⇒
r
L(0) called the range and source

map, they must satisfy s ◦ u = r ◦ u = id.

– A smooth involution

L −→ L
γ ,→ γ−1

called the inverse map. It satisfies s(γ−1) = r(γ) for γ ∈ L.

– An open subset D2L of L(2) = {(γ1, γ2) ∈ L × L | s(γ1) = r(γ2)}
called the set of composable pairs and a smooth local product:

D2L −→ L
(γ1, γ2) ,→ γ1 · γ2

.

The following properties must be fulfilled:

s(γ1 · γ2) = s(γ2) and r(γ1 · γ2) = r(γ1) when the product γ1 · γ2
is defined.

For all γ ∈ L the products r(γ) · γ, γ · s(γ), γ · γ−1 and γ−1 · γ are
defined and respectively equal to γ, γ, r(γ) and s(γ).

If the product γ1 · γ2 is defined then so is the product γ−1
2 · γ−1

1
and (γ1 · γ2)−1 = γ−1

2 · γ−1
1 .

If the products γ1 · γ2, γ2 · γ3 and (γ1 · γ2) · γ3 are defined then so
is the product γ1 · (γ2 · γ3) and (γ1 · γ2) · γ3 = γ1 · (γ2 · γ3).

The only difference between groupoids and local groupoids is that in
the second case the condition s(γ1) = r(γ2) is necessary for the product
γ1.γ2 to exist but not sufficient. The product is defined as soon as γ1
and γ2 are “small enough”, that is “close enough” from units.

Notations Let L
s
⇒
r

L(0) be a (local) Lie groupoid and denote by

p : D2L → L the product of L.
– If O is a subset of L(0) we denote by

LO = s−1(O), LO = r−1(O) and L|O = LO
O = s−1(O) ∩ r−1(O).
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– If V is an open subset of L such that V ∩ L(0) = L(0)
V &= ∅, we denote

by V + the set {γ ∈ V | γ−1 ∈ V }.
We define L(V ) = V +∩s−1(L(0)

V )∩r−1(L(0)
V ) and the set of compos-

able pairs of L(V ) by D2L(V ) = p−1(L(V )) ∩ L(V ) × L(V ). Then we

define the restriction of L to V to be the local Lie groupoid L(V )
s
⇒
r
L(0)

V .

So to any open subset V of L which encounter L(0) on L(0)
V we thereby

associate an open sub local Lie groupoid of L admitting L(0)
V as space

of units.
In particular if O is an open subset of L(0), L|O

s
⇒
r

O is a local Lie

groupoid also called the restriction of L to O when there is no risk of
confusion.

As for Lie groupoid there is a natural notion of graphs morphism
and local graphs morphism between two local Lie groupoids having the
same space of units.

In particular two (local) Lie groupoids L
s
⇒
r

L(0) and L′
s′

⇒
r′

L′(0) such

that L(0) ∩L′(0) &= ∅ are locally isomorphic as graphs if there is a neigh-
borhood V of L(0) ∩ L′(0) in L, a neighborhood V ′ of L(0) ∩ L′(0) in L′

and a diffeomorphism ϕ : V → V ′ such that s′ ◦ ϕ = s and r′ ◦ ϕ = r.
This also means that there is a restriction of L containing L(0) ∩ L′(0)

and a restriction of L′ containing L(0) ∩ L′(0) which are two isomorphic
graphs.

Definition 1. A local quasi-graphoid is a local Lie groupoid L ⇒
L(0), having the property that for all manifolds S equipped with two
submersions a and b onto L(0), there exists at most one morphism of
graphs from S to L.

Remark 1.
1. Let L

s
⇒
r
L(0) be a local quasi-graphoid. If D is an open subset of L(2)

there exists at most one smooth map p : D → L such that s◦p = s◦pr2
and r◦p = r◦pr1. So there exists a maximal open subset D2

maxL of L(2)

which is the domain of a smooth map p which satisfies s ◦ p = s ◦ pr2
and r ◦ p = r ◦pr1. We call D2

maxL the maximal set of composable pairs.
We shall always consider local quasi-graphoids equipped with the

maximal set of composable pairs, and thus we shall not have to specify
what is this set as soon as we know that a local product is defined on a
neighborhood of {(γ, γ−1) | γ ∈ L} in L(2).
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2. As for quasi-graphoids a (local) morphism of graphs from a local Lie
groupoid to a local quasi-graphoid is a (local) morphism of groupoid.
3. Local quasi-graphoids are stable under restriction.

4. If L
s
⇒
r

L(0) is a local Lie groupoid and x belongs to L(0) we define

the orbit of L passing through x to be the set
{y ∈ L(0) | ∃γ1, . . . , γn ∈ L ; s(γ1) = x, r(γ1) = s(γ2),

. . . , r(γn−1) = s(γn), r(γn) = y}.
As for quasi-graphoids the Lie algebroid of a local quasi-graphoid

is almost injective, and its orbits are the leaves of an almost regular
foliation.

In the local context, there is a proposition similar to the Definition-
Proposition 1:

Proposition 3. Let L⇒L(0) be a local Lie groupoid. The following
assertions are equivalent:

1. L is locally isomorphic as graph to a local Lie groupoid L′⇒L(0)

having the property that the only local smooth section of both the
source s′ and the range r′ is the inclusion of units.

2. L is locally isomorphic as graph to a local quasi-graphoid.

Proof. A local quasi-graphoid has the property that the only local
section of both the source and the range map is the unit map. So 2
implies 1.

Suppose that there is an isomorphism of graphs from V ′ onto V
where V ′ (resp. V ) is an open subset of L′ (resp. L) containing L(0).

Because D2L contains {(γ, γ−1) | γ ∈ L}, one can find an open
neighborhood W of L(0) in L such that:

– W = W−1 where W−1 := {γ−1 | γ ∈ W}.

– W × W ∩ L(2) ⊂ D2L.

– The image of the local product of L restricted to W ×W ∩L(2) is
contained in V .

W inherits from L a structure of local Lie groupoid. Moreover W and
L are obviously locally isomorphic as graphs.

Let S be a manifold equipped with two submersions a, b onto L(0)

and f1, f2 be two morphisms of graphs from S to W .
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If σ : U → S is a local section of a we define

ν : U → W
x ,→ (f1(σ(x)))−1 · f2(σ(x))

Then ν is a section of both the source s and the range r. Thus ν is the
unit map and so f1 ◦ σ = f2 ◦ σ. By repeating this process for any local
section of a we show that f1 = f2. Thus W is a local quasi-graphoid.

q.e.d.

2.3 Generalized Atlas

These “atlases” which are made up with local Lie groupoids are defined
to replace in the case of singular foliation the atlases by distinguished
charts of regular foliations. With such an atlas, we shall be able to do so
without local triviality of the foliation and then compute a Lie groupoid
associated to it.

Definition 2. Let M be a smooth manifold. A generalized atlas
on M is a set U = {Li

si

⇒
ri

Oi}i∈I , where:

– {Oi}i∈I is a covering of M by open subsets.

– For all i ∈ I, Li

si

⇒
ri

Oi is a local quasi-graphoid over Oi.

The following gluing condition must be fulfilled:

For all i, j ∈ I, there is a local graphs isomorphism from Li onto Lj ,
that is an open subset Hj

i (resp.H i
j) of Li (resp. Lj) which contains

Oi ∩ Oj and an isomorphism of graphs ϕji : Hj
i −→ H i

j .

Remark 2.
1. Because we are dealing with local quasi-graphoids the graphs iso-
morphisms ϕji are unique. So there exists a maximal open subset of Li

containing Oi ∩Oj which is the domain of a morphism of graphs to Lj .
We will always suppose that the domain Hj

i of ϕji is maximal.

2. Because the Li are local quasi-graphoids the following equations are
fulfilled when i, j, k belong to I:

i) ϕki = ϕkj ◦ ϕji when restricted to Hj
i ∩ Hk

i ∩ ϕ−1
ji (Hk

j ).

ii) ϕ−1
ji = ϕij .
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We will say that two generalized atlases U and V on the manifold
M are equivalent when U ∪ V is again a generalized atlas on M . The
generalized atlas U on M is stable under restriction if for any element
L ⇒ O of U and any open subset V of L which encounter O the restric-
tion of L to V is an element of U . Any generalized atlas is equivalent
to a generalized atlas which is stable under restriction.

If L ⇒ L(0) is a local quasi-graphoid and {Oi}i∈I an open covering
of L(0) then {L|Oi}i∈I defines a generalized atlas on L(0). Two different
coverings of L(0) will give rise to two equivalent atlases by this process.
Conversely, let U = {Li

si

⇒
ri

Oi}i∈I be a generalized atlas on a manifold

M . Remark 2 above implies that the relation ∼ defined on
⊔

i∈I Li by:

(γ, i) ∼ (η, j) ⇔
{

(γ, i) ∈ Hj
i and (η, j) ∈ H i

j

ϕji(γ) = η ,

is a regular equivalence relation. Let us denote by L the quotient man-
ifold of

⊔
i∈I Li by this relation. There is a unique structure of local

quasi-graphoid on L with units space M such that for all i ∈ I, Li is
a sub local Lie groupoid of G. Moreover, the atlases U and {L} are
equivalent.

In conclusion, generalized atlases and local quasi-graphoids are two
equivalent notions. In particular, a generalized atlas on a manifold M
defines naturally an almost regular foliation on M .

Given an almost regular foliation F on a manifold M , we will say
that a generalized atlas on M is a a generalized atlas for F when it
defines F .

Examples

1. Regular foliation: Let F be a regular foliation on a manifold M
and {Oi}i∈I a covering of M by distinguished charts. The foliation Fi

induced by F on Oi is such that its space of leaves Oi/Fi is a manifold.
In other words the equivalence relation on Oi defined by being on the
same leaf of Fi is regular. Thus the graph of this equivalence relation,
Gi = {(x, y) ∈ Oi × Oi | x and y are on the same leaf of Fi} ⇒ Oi is a
quasi-graphoid.

The family {Gi}i∈I is a generalized atlas for F .

2. Local almost free action of a Lie group: Let (M,F) be a
singular foliation defined by a symmetric local action of a Lie group H
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on M [22]. We suppose that there is a dense open subset M0 of M on
which the action is free. We define M !locH to be the local Lie groupoid

M !loc H := D
s!
⇒
r!

M,

where:
– D ⊂ H × M is the domain of the local action.
– The inclusion of units is given by x ,→ (1H , x).
– If (h, x) belongs to D then its source is s!(h, x) = x and its range

is r!(h, x) = h · x.
– The local product is defined on

D2(M !loc H) = {((h, x), (g, y)) ∈ D ×D | x = g · y , (hg, y) ∈ D} by

(h, g · y) · (g, y) = (hg, y).

One can easily check that M !loc H is a local quasi-graphoid which
defines F , thus {M !loc H} is a generalized atlas for F .

3. Codimension 1 submanifold: Let M be a manifold and N be a
submanifold of codimension 1 of M . We define FN to be the foliation
on M whose leaves are N and the connected components of M \ N .

Let O be an open subset of M such that O∩N &= ∅ and fO : O → R
be a smooth map such that dfOx &= 0 for all x in O ∩ N and O ∩ N =
f−1

O (0). The following map is regular:

Φ : O × O × R+
∗ −→ R

(z, y,λ) ,→ λfO(z) − fO(y) .

Thus Φ−1(0) is a submanifold of O × O × R+
∗ and we define:

GO = Φ−1(0) = {(z, y,λ) ∈ O × O × R+
∗ | λfO(z) = fO(y)}

sO

⇒
rO

O

where:

– The inclusion of units is the map x ,→ (x, x, 1).

– The source and range maps are given by sO(z, y,λ) = y and
rO(z, y,λ) = z.

– The product is defined on GO(2) by (x, y,λ) · (y, t, µ) = (x, t,λµ).
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One can find a family {Oi}i∈I of open subsets of M such that:

– For all i ∈ I, Oi ∩ N &= ∅ and Oi is equipped with a map fOi :
Oi → R as above.

– N ⊂ ∪i∈IOi.

Let (M \N) " (M \N) be the subset of (M \N)×(M \N) made of
pairs of points which are on the same connected component of M \ N .
Equipped with the usual pair groupoid structure (M \ N) " (M \ N)
becomes a quasi-graphoid over M \ N .

The set {(M \ N) " (M \ N)} ∪ {GOi , i ∈ I} is a generalized atlas
for the foliation FN .

4. Let N be a manifold equipped with two regular foliations F1 and F2

where F1 is a subfoliation of F2. Let F be the foliation on M = N ×R
defined by F1 × {0} and F2 × {t} for t &= 0. We construct a generalized
atlas for (M,F) in the following way.

Let U be an open subset of N and Γ = {X1, . . . , Xk+q} a family of
vector fields defined on U such that:

– Γ is a basis over U of local sections of TF2, the tangent bundle of
F2.

– Γ′ = {X1, . . . , Xk} is a basis over U of local sections of TF1.

– [Xi, Xj ] = 0 for all i, j.

Thus we have a free local action ϕU : DU ⊂ U × Rk × Rq → U of
Rk × Rq on U such that for (x, t, ξ) in DU the points x and ϕU (x, t, ξ)
belong to the same leaf of F2 and the points x and ϕU (x, t, 0) belong
to the same leaf of F1. Such a local action is said to be compatible with
the foliations F1 and F2. Let εU > 0 be a real number such that for all
λ ∈ R, |λ| < εU we have that (y, t,λξ) belongs to DU when (y, t, ξ) is in
DU .

Then we define the local quasi-graphoid

LU = DU×] − εU , εU [
sU

⇒
rU

U×] − εU , εU [

as follows:

– The inclusion of units is the map (y,λ) ,→ (y, 0, 0,λ).
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– The source and range maps are defined by sU (y, t, q,λ) = (y,λ)
and rU (y, t, ξ,λ) = (ϕ(y, t,λξ),λ).

– The inverse is defined by (y, t, ξ,λ)−1 = (ϕ(y, t,λξ),−t,−ξ,λ).

– The product is given by

(ϕ(y, t1,λξ1), t2, ξ2,λ) · (y, t1, ξ1,λ) = (y, t1 + t2, ξ1 + ξ2,λ)

whenever it makes sense.

Let {(Ui,ϕi)}i∈I be such that {Ui}i∈I is an open covering of N and
ϕi is a local action of Rk × Rq on Ui compatible with the foliations F1

and F2.
Let G = H2×R∗ ⇒ N×R∗ be the product groupoid of the holonomy

groupoid H2 of F2 and the trivial groupoid R∗
id
⇒
id

R∗.

One can prove that the set {G}∪ {LUi}i∈I is a generalized atlas for
the foliation F .

5. Almost injective Lie algebroid: A Lie algebroid A = (p :
A → TM, [ , ]) over a manifold M is said to be almost injective when
its anchor p is injective in restriction to a dense open subset of M . In
other words the anchor p induces an injective morphism from the set of
smooth local sections of A onto the set of smooth local tangent vector
fields over M . Such a Lie algebroid defines on M an almost regular
foliation FA. We have shown in [13] how such an algebroid integrates
into a local quasi-graphoid. Here is a brief review of this construction.

Let O be an open subset of M , {Y1, . . . , Yk} a local basis of sections
of A defined on O and Xi = p(Yi) the corresponding tangent vector field
on M . For simplicity, we suppose that the tangent vector fields Xi are
complete, and we denote by ϕt

i the flow of Xi.
According to [13], there exist an open subset LO of O × Rk and a

local quasi-graphoid structure on LO

LO
s
⇒
r

O

such that:
–The unit map is

u : O −→ LO ⊂ O × Rk

x ,→ (x, 0) .
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–The source and range maps are defined by:

s : LO −→ O
(x, t1, . . . , tk) ,→ x

r : LO −→ O
(x, t1, . . . , tk) ,→ ϕt1

1 ◦ . . . ◦ ϕtk
k (x)

.

With the help of a local trivialisation of the bundle A we construct in
this way a generalized atlas UA of FA. Moreover up to local equivalence
of generalized atlases, the generalized atlas UA only depends on A.

Of course any of the previous examples are particular cases of this
example.

3. Pseudo-group of local Morita isomorphisms and associated
groupoids

In the first part of this section we extend the notion of Morita equiv-
alence between Lie groupoids to local Lie groupoids. The following defi-
nitions are nearly the same as those encountered in [10, 16, 17]. Actions
of local groupoids cannot be defined globally so the usual definitions
do not make sense in this case, and we have to take some care when
extending these definitions to the local context.

In the second part, we show that the set of local Morita equivalences
between the elements of a generalized atlas behaves as a pseudo-group
of local diffeomorphisms. We finish this section by the construction of
a Lie groupoid associated to such a pseudo-group.

3.1 Local Morita isomorphisms

Definition 3. Let Z be a manifold, a : Z → L(0) be a smooth map
and L

s
⇒
r
L(0) be a local Lie groupoid:

L(0).

Z L

!!

"
"

""#
r sa

Let DΨ be an open subset of the fiber product

Z ×a,r L = {(z, γ) ∈ Z × L ; a(z) = r(γ)}.
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A right local action of L on Z with domain DΨ is a surjective smooth
map Ψ : DΨ −→ Z denoted by Ψ(z, γ) = z ∗ γ, which satisfies the
following properties:

1. For all (z, γ) ∈ DΨ we have the equality a(z ∗ γ) = s(γ).

2. If (z, γ1) belongs to DΨ, and if the product γ1.γ2 is defined, then
if one of the following expression (z ∗ γ1) ∗ γ2 or z ∗ (γ1 · γ2) is
defined, so is the other one and they are equal.

3. For all z ∈ Z, (z, a(z)) belongs to DΨ and z ∗ a(z) = z.

We will say that the local action is free when z ∗ γ = z implies that
γ belongs to L(0).

We will say that the local action is locally proper if all z ∈ Z has an
open neighborhood Vz such that the map Υ : DΨ −→ Z ×Z defined by
Υ(z, γ) = (z, z ∗ γ) is proper when restricted to DΨ ∩Υ−1(Vz × Vz).

We define left local actions in the same way.

Remark. A free local action of the local Lie groupoid L ⇒ L(0) on
the manifold Z induces a regular foliation on Z denoted by FL,Z . The
leaf of FL,Z passing trough a point z0 of Z is the orbit of z0 for the local
action. In other words it is the set

{z ∈ Z | ∃ γ1, . . . , γn ∈ L such that z = (· · · ((z0 ∗ γ1) ∗ γ2) · · · ) ∗ γn}.

The tangent space of this foliation can be defined in the following way.
Let Ψ : DΨ −→ Z be the local action and pr1 : DΨ −→ Z the projection
onto the first factor. We define F = ker(Tpr1) ⊂ TDΨ to be the kernel
of the differential of pr1. One can check that the image TΨ(F ) of F by
the differential of Ψ is an involutive subbundle of TZ. Thus TΨ(F ) is
the tangent bundle of a regular foliation FL,Z on Z.

Let L0 ⇒ O0 and L1 ⇒ O1 be two local Lie groupoids. A local
generalized isomorphism f from L0 to L1 is defined by its graph:

O1 O0 .

L1 Zf L0

!! !!

$
$

$
$%

&
&

&
&'

r1 s1 r0 s0bf af

The graph is a smooth manifold Zf equipped with two surjective
submersions (bf , af ) : Zf → O1 × O0 in addition with a left local,
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locally proper, free action of L1 and a right local, locally proper, free
action of L0. Moreover the following properties must be fulfilled:

1. For all γ0 ∈ L0, z ∈ Zf and γ1 ∈ L1 such that γ1 ∗ z and z ∗ γ0 are
defined we have that af (γ1 ∗ z) = af (z), bf (z ∗ γ0) = bf (z), and
if one of the following expressions (γ1 ∗ z) ∗ γ0 or γ1 ∗ (z ∗ γ0) is
defined, so is the other one and they are equal.

2. For all z ∈ Zf , there is an open neighborhood Vz of z in Zf such
that the action of L0 (resp. L1) is transitive on the fibers of bf

(resp. af ) restricted to Vz. In this case Vz/L0 and Vz/L1 make
sense and af (resp. bf ) induces a diffeomorphism from Vz/L1 to
af (Vz) (resp. from Vz/L0 to bf (Vz)).

Two such graphs (bf , af ) : Zf → O1×O0 and (bg, ag) : Zg → O1×O0

are equivalent if there exists an isomorphism of graphs from Zf onto Zg

which intertwines the actions of L0 and L1.

Definition 4. A local Morita isomorphism f from L0 onto L1 is an
equivalence class of local generalized isomorphisms.

It will be denoted by f : L1 " L0 and each of its representatives
will be called a graph for f .

Examples.

1. Let T and N be two manifolds and consider the trivial Lie groupoids
T ⇒ T and N ⇒ N having the identity map as source and range maps.
A diffeomorphism f : T → N induces a local Morita isomorphism from
T onto N for which (pr1, pr2) : Zf = {(f(x), x) | x ∈ T} → N × T is a
graph. In this trivial case any local Morita isomorphism is of this type.

2. Let L ⇒ L(0) be a local Lie groupoid of source s and range r and T
a closed embedded submanifold of L(0) which encounters all the orbits.
The manifold LT

T = s−1(T )∩r−1(T ) inherits from L a structure of local
Lie groupoid over T . Then (r, s) : LT = s−1(T ) → L(0) × T is a graph
of a local Morita isomorphism from LT

T onto L, the action being right
and left multiplication.

3. Let (M,F) be a regular foliation. Take two distinguished open sets
Ui 1 Pi × Ti where Pi is a plaque and Ti a transversal, i = 0, 1. Let
Gi ⇒ Ui be the graph of the regular equivalence relation induced by F
on Ui.
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Combining the two previous examples one can show that there is
a bijection between the set of Morita equivalences between G0 and G1

and the diffeomorphisms from T0 onto T1.

We will be especially interested in local Morita isomorphisms be-
tween local quasi-graphoids. In this situation we have the following
lemma:

Lemma 1. Let L0 ⇒ O0 and L1 ⇒ O1 be two local Lie groupoids,
f : L1 " L0 a local Morita isomorphism and (bf , af ) : Zf → O1 ×O0 a
graph for f . Let z be a point of Zf .

If L0 or L1 is a local quasi-graphoid there is an open neighborhood
Vz of z in Zf such that for any graph (bS , aS) : S → O1 × O0 there is
at most one morphism of graphs from S onto Vz.

Proof. Let Vz be a neighborhood of z such that bf induces a diffeo-
morphism between Vz/L0 and bf (Vz). Let (bS , aS) : S → O1 × O0 be a
graph and suppose that there exist two smooth maps Φ0, Φ1 : S → Vz

such that af ◦ Φ0 = aS = af ◦ Φ1 and bf ◦ Φ0 = bS = bf ◦ Φ1.
Then we consider the two following differentiable maps:

Ψ : S → L0 , x ,→ γ such that Φ0(x) = Φ1(x) ∗ γ,
Ψ′ : S → L0 , x ,→ aS(x),

which satisfy s0 ◦Ψ = s0 ◦Ψ′ = aS and r0 ◦Ψ = r0 ◦Ψ′ = aS .
If L0 is a local quasi-graphoid there is at most one morphism of

graphs from (as, as) : S → O0 × O0 to (r0, s0) : L0 → O0 × O0. Thus
Ψ = Ψ′ and so Φ0 = Φ1. q.e.d.

Let (bf , af ) : Zf → O1 × O0 and (bg, ag) : Zg → O1 × O0 be the
graphs of two local Morita isomorphisms f and g between two local
quasi-graphoids L0 and L1. The previous lemma implies that if there
is an isomorphism of graphs from Zf onto Zg then it must intertwine
the actions. So in this case, the local Morita isomorphisms f and g are
equal.

This lemma will play a crucial role in the following for the definition
of a smooth structure on the set of germs of local Morita isomorphisms.

3.2 The local pseudo-group structure

Local Morita isomorphisms are going to replace transverse isomorphisms
in the construction of the holonomy groupoid. So we have to define
identity, composition, inversion and restriction for them.
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In the following L0⇒O0 and L1⇒O1 are two local Lie groupoids.
We suppose that we have a local Morita isomorphism f : L1 " L0 and
we take a graph (bf , af ) : Zf → O1 × O0 for f .

Identity: Let s0 and r0 be respectively the source and range maps
of L0. We denote by IdL0 : L0 " L0 the local Morita isomorphism
represented by the graph ZIdL0

= L0, aIdL = s0 and bIdL = r0, the two
actions being right and left multiplication. This local Morita isomor-
phism is called the identity.

Inversion: Let Zf−1 = Zf , af−1 = bf and bf−1 = af . We consider
the right local action of L1 on Zf−1 (resp. the left local action of L0 on
Zf−1) which is defined by Ψ1(z, γ1) = γ−1

1 ∗z (resp. Ψ0(γ0, z) = z ∗γ−1
0 ).

Equipped with these actions, (bf−1 , af−1) : Zf−1 → O0 × O1 is a graph
of the local Morita isomorphism f−1 : L0 " L1 called the inverse of f .

Restriction: Let H0 (resp. H1) be an open sub local groupoid of L0

(resp. L1) and V be an open subset of Zf such that af (V ) is the set of
units of H0 and bf (V ) is the set of units of H1. The restriction of f to
H0, H1 and V is the local Morita isomorphism from H0 onto H1 which
admits as graph the restriction (bf , af )| : V → bf (V ) × af (V ) with the
local action induced by L0 and L1. We denote it by f |H1,V,H0 : H1 " H0.

Local composition: Let g : L2 " L1 be another local Morita isomor-
phism admitting the following graph (bg, ag) : Zg → O2 ×O1, where O2

is the set of units of L2:

O2 O1 O0 .

L2 Zg L1 Zf L0

!! !! !!

$
$

$
$%

&
&

&
&'

$
$

$
$%

&
&

&
&'

r1 s1 r0 s0r2 s2 bg ag bf af

We consider the fiber product

Zg ×O1 Zf = {(z1, z2) ∈ Zg × Zf | ag(z1) = bf (z2)}.

We define a right local free action of L1 on Zg ×O1 Zf in the following
way: Ψ(z1, z2, γ) = (z1 ∗ γ, γ−1 ∗ z2) when (z1, z2) belongs to Zg ×O1 Zf

and γ ∈ L1 is such that z1 ∗ γ and γ−1 ∗ z2 exist. This action defines a
regular foliation FL1 on Zg ×O1 Zf .

The local Morita isomorphisms f and g are called composable if
the equivalence relation induced by the foliation FL1 on Zg ×O1 Zf is
regular, that is the space of leaves of FL1 is a manifold. In this case
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we denote this space of leaves by Zg◦f := Zg ×O1 Zf/FL1 . The maps
af ◦ pr2 : Zg ×O1 Zf → O0 and bg ◦ pr1 : Zg ×O1 Zf → O2 induce on the
quotient space the maps ag◦f : Zg◦f → O0 and bg◦f : Zg◦f → O2. Finally
with the obvious local actions of L0 on the right and L2 on the left,
(bg◦f , ag◦f ) : Zg◦f → O2×O0 is the graph of a local Morita isomorphism
called the composition of g and f and denoted by g ◦ f : L2 " L0.

In the general case the foliation FL1 is regular and so it is locally
trivial. Thus, by restricting f and g, one can make a composition of g
and f which depends of the restrictions. Contrary to the case of local
diffeomorphisms there is not a better restriction for the composition of
local Morita isomorphism. Therefore we talk about local composition.

One must remark that for any point (z1, z2) of Zg ×O1 Zf , one can
find an open sub local groupoid H1 of L1, an open neighborhood V1 of z1

and an open neighborhood V2 of z2 such that the restrictions f |H1,V1,L0

and g|L2,V2,H1 are composable.

The previous operations are really an inverse and a composition
when you look at them locally. More precisely one can check the fol-
lowing proposition:

Proposition 4. Let f : L1 " L0 be a local Morita isomorphism
from L0 ⇒ O0 onto L1 ⇒ O1 for which (bf , af ) : Zf → O1 × O0 is a
graph. Let z be a point in Zf . The following assertions are fulfilled:

1. There exists an open sub local groupoid H0 of L0 with O0 as space
of units and an open sub local groupoid H1 of L1 with O1 as space
of units such that:

IdH1 ◦ f |H1,Zf ,H0 = f |H1,Zf ,H0 ◦ IdH0 = f |H1,Zf ,H0 .

2. There exist an open neighborhood Vz of z in Zf , an open sub local
groupoid H ′

0 of L0 with af (Vz) as space of units and an open sub
local groupoid H ′

1 of L1 with bf (Vz) as space of units such that:

f |H′
1,Vz ,H′

0
◦ (f |H′

1,Vz ,H′
0
)−1 = IdH′

1
,

(f |H′
1,Vz ,H′

0
)−1 ◦ f |H′

1,Vz ,H′
0

= IdH′
0
.

Definition 5. We will say that we have a local pseudo-group of
local Morita isomorphisms on the smooth manifold M when we have a
generalized atlas U on M stable under restriction together with a set
IU of local Morita isomorphisms between elements of U such that:
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– “Identity” is in IU , that is for all L ⇒ O in U , IdL : L " L is in
IU .

– IU is stable under inversion, local composition and restriction.

3.3 Associated groupoid

A generalized atlas U on a smooth manifold M or equivalently a local
quasi-graphoid over M induces a generalized atlas Ũ stable under re-
striction on M . Then we can consider the local pseudo-group of local
Morita isomorphisms between local quasi-graphoids which constitute Ũ .
We are going to associate to such a local pseudo-group the Lie groupoid
of its germs as it is usually done for a pseudo-group of local diffeomor-
phisms. To do this we start by defining the germ of a local Morita
isomorphism between two local quasi-graphoids.

Let L0 ⇒ O0 and L1 ⇒ O1 be two local quasi-graphoids. We
suppose that f : L1 " L0 and g : L1 " L0 are two local Morita
isomorphisms and we take a graph (bf , af ) : Zf → O1 × O0 for f and a
graph (bg, ag) : Zg → O1 × O0 for g. We consider an element γf of Zf

and γg of Zg.
We will say that the germ of f in γf is equal to the germ of g

in γg and we will denote it by [f ]γf = [g]γg if there exists an open
neighborhood Vγf of γf in Zf , an open neighborhood Vγg of γg in Zg

and an isomorphism of graphs φ : Vγf −→ Vγg which sends γf onto γg.
One can show that the equality [f ]γf = [g]γg implies that there

exists an open sub local quasi-graphoid H0 of L0, an open sub local
quasi-graphoid H1 of L1, an open neighborhood Vγf of γf in Zf and an
open neighborhood Vγg of γg in Zg such that f |H1,Vγf ,H0 = g|H1,Vγg ,H0 .

In the general case it may happen that f : L1 " L0 and g : L′
1 " L′

0

are local Morita isomorphisms between different local quasi-graphoids.
When Li ⇒ Oi and L′

i ⇒ O′
i are locally isomorphic we can consider

L̃i ⇒ Oi ∩ O′
i the maximal open sub quasi-graphoid of both Li and L′

i,
i = 0, 1. Then we can look at the restrictions f |L̃1,Zf ,L̃0

and g|L̃1,Zf ,L̃0

and use the previous definition of germ.
The gluing condition of generalized atlases ensures that we are always in
the case just mentioned when we are dealing with a local pseudo-group
of local Morita isomorphisms.

From now on U = {Li

si

⇒
ri

Oi}i∈I is a generalized atlas stable under
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restriction on a smooth manifold M and IU is the pseudo-group of local
Morita isomorphisms between elements of U .

Proposition 5. The set of germs of elements of IU , denoted by
GIU , is naturally endowed with a smooth manifold structure. For this
structure M is an embedded submanifold of GIU .

Proof. Let [f ]γ ∈ GIU , f : L1 " L0 be one of its representatives
which admits Zf as graph and γ ∈ Zf . Lemma 1 ensures the local
injectivity of the map

Zf −→ GIU
η ,→ [f ]η

.

This allows us to provide GIU with a smooth structure.
The following map is an embedding of the manifold M in the man-

ifold GIU :
M −→ GIU
x ,→ [IdL]x

where L is a map over x which means that L is an element of U and x
a unit of L. q.e.d.

Now we can define the Lie groupoid associated to the generalized
atlas U . We deduce the following theorem:

Theorem 1. With the following structural maps GIU is a Lie
groupoid over M :

– Source and range:

s : GIU −→ M
[f : L1 " L0]z ,→ af (z)

r : GIU −→ M
[f : L1 " L0]z ,→ bf (z)

where (bf , af ) : Zf → O1 × O0 is a graph for f and z belongs to
Zf .

– Inverse:
[f : L1 " L0]−1

z = [f−1 : L0 " L1]z.

– Product: Let [f : L1 " L0]z and [g : L2 " L1]t be two elements
of GIU . Let’s take a graph (bf , af ) : Zf → O1 × O0 for f and a
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graph (bg, ag) : Zg → O2 ×O1 for g such that z belongs to Zf and
t belongs to Zg. We suppose that ag(t) = bf (z). Then

[g : L2 " L1]t · [f : L1 " L0]z = [g ◦ f : L2 " L0](t,z).

– Units:
M −→ GIU
x ,→ [IdL]x

where L is a map over x.

Moreover GIU
s
⇒
r

M is a quasi-graphoid.

Proof. The only point which is not obvious is that GIU is a quasi-
graphoid. To see this let O be an open subset of M and ν : O → GIU a
smooth local section of both s and r. By restricting O if necessary we
can suppose that there exists an element L

s0

⇒
r0

O of U and a local Morita

isomorphism f : L " L for which (bf , af ) : L → O × O is a graph and
such that the image of ν is a subset of {[f ]γ | γ ∈ Zf}. Then there is a
unique smooth map ν̃ : O → Zf such that:

i) For all x ∈ O we have that ν(x) = [f ]ν̃(x).

ii) af ◦ ν̃ = bf ◦ ν̃ = 1O.

The map γ ,→ γ ∗ ν̃(s0(γ)) induces a local isomorphism of graphs
from L to Zf . So there is a neighborhood W of O in L such that

[IdL]γ = [f ]ϕ(γ) for all γ in W.

In particular if x belongs to O we get [IdL]x = [f ]ϕ(x) = [f ]ν̃(x) = ν(x).
So ν is the inclusion of units. q.e.d.

Remark.
1. If L ⇒ M is a local quasi-graphoid let UL be the corresponding
generalized atlas stable under restriction of M , that is UL contains L
and all its restriction. The biggest quasi-graphoid over M which admits
L as a sub local Lie groupoid is GIUL. If moreover L is s-connected,
the smallest quasi-graphoid over M which admits L as a sub local Lie
groupoid is the s-connected component of GIUL.

2. If we take V to be the set of all local quasi-graphoids over open
subsets of M and IV the pseudo-group of local Morita isomorphisms
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between elements of V, an analogous construction gives rise to a Lie
groupoid GIV ⇒ GV which is isomorphic to the universal convector of
J. Pradines and B. Bigonnet [3, 26, 4].

Recall that an almost injective Lie algebroid is a Lie algebroid for
which the anchor is injective when restricted to a dense open subset of
the base space. The local integration of almost injective Lie algebroid
[13] ensures that given an almost injective Lie algebroid on a smooth
manifold M there exists a local quasi-graphoid L over M which inte-
grates A. One can consider the maximal generalized atlas corresponding
to L and then uses the previous theorem to compute a Lie groupoid G
on M . Of course the Lie algebroid of G is equal to the Lie algebroid of
L that is A. Finally we obtain:

Theorem 2. Every almost injective Lie algebroid is integrable.

In [24], J. Pradines asserted that, as for Lie algebras, every Lie al-
gebroid integrates into a Lie groupoid. In fact this assertion, named
Lie’s third theorem for Lie algebroid is false. This was pointed out by a
counter example given by P. Molino and R. Almeida in [1]. Since that
time lots of work has been done around this problem. For example K.
Mackenzie has found obstructions to integrability of transitive Lie alge-
broids [18], fundamental examples have been studied by A. Weinstein
especially in relation with Poisson manifolds [30, 31] and more recently
V. Nistor has studied integrability of Lie algebroids over stratified man-
ifolds [21]. A part of this subject is discussed in the book of A. Cannas
da Silva and A. Weinstein [6].

During the writing of this paper, a very interesting preprint of M.
Crainic and R.L. Fernandes appeared [11]. They give a necessary and
sufficient condition for the integrability of Lie algebroids. In particular,
they recover the previous theorem.

4. Holonomy groupoid of an almost regular foliation

In this section, we apply the results obtained previously to almost
regular foliations. We end with several examples.

The study of quasi-graphoids enables us to propose a reasonable
definition of holonomy groupoid for an almost regular foliation:

Definition 6. Let (M,F) be an almost regular foliation. A holon-
omy groupoid of (M,F) is an s-connected quasi-graphoid G having M
as space of units and such that the orbits of G are the leaves of F .



holonomy groupoids 495

Proposition 2 ensures that this definition coincides with the usual
one in the case of a regular foliation.

If F is an almost regular foliation on a smooth manifold M such
that the regular leaves are of dimension k then an obvious necessary
condition for the existence of an holonomy groupoid for F is that F
can be defined by an almost injective Lie algebroid A, that is A is of
dimension k. The previous results ensure that this condition is also
sufficient. Finally we have the following theorem:

Theorem 3. Let (M,F) be an almost regular foliation and k denote
the dimension of the regular leaves. There exists an holonomy groupoid
for (M,F) if and only if one of the following equivalent assertions is
fulfilled:

1. F can be defined by a quasi-graphoid with space of units M .

2. There exists a generalized atlas for F or equivalently F can be
defined by a local quasi-graphoid over M .

3. F can be defined by a Lie algebroid of dimension k over M .

One must remark that for an almost regular foliation (M,F) there
exist as many holonomy groupoids as there are maximal generalized
atlases or as there are almost regular Lie algebroids over M which define
F . Nevertheless some foliations admit a better holonomy groupoid.
More precisely we will say that G is the universal holonomy groupoid
of (M,F) if for any other holonomy groupoid H of (M,F) there is a
morphism of Lie groupoids from H to G. One can check that this is
equivalent to the fact that for any almost regular Lie algebroid A which
defines F there is a morphism of Lie algebroids from A to AG, the Lie
algebroid of G. In such a situation we say that the Lie algebroid AG is
extremal for F . A particular case of extremal algebroid for a foliation F
is when the anchor of A induces an isomorphism between the module of
local smooth sections of A and the module of local vector fields tangent
to the foliation F .

In conclusion if (M,F) is an almost regular foliation it satisfies one
of the three following properties:

i) The foliation (M,F) does not possess any holonomy groupoid,
or equivalently F cannot be defined by an almost injective Lie
algebroid.
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ii) The foliation (M,F) possesses a holonomy groupoid but not a
universal one: that is F can be defined by an almost injective Lie
algebroid, but there is no extremal Lie algebroid for F .

iii) The foliation (M,F) possesses an universal holonomy groupoid,
or in other words F is defined by an extremal Lie algebroid.

We finish this paper by giving examples of each of these cases.

Examples.

1. Regular foliation: If F is a regular foliation on the manifold
M then the tangent bundle TF of F equipped with the inclusion as
anchor is the unique almost regular Lie algebroid which defines F . In
this case the foliation admits a unique holonomy groupoid: Hol(M,F).
The uniqueness of the holonomy groupoid is a characteristic property
of a regular foliation.

2. Almost free action of a Lie group: Let (M,FH) be a singular
foliation defined by an almost free action of a connected Lie group H
on M . We denote by Φ : H × M → M the action and by H the Lie
algebra of H.

Let p : M ×H → TM be the map defines by p : (x, v) ,→ TΦ(x, v)
where TΦ(x, v) denotes the evaluation at (x, 0, 1H , v) ∈ TxM ×T1H H of
the differential of Φ. The set AH = M ×H is naturally endowed with
a structure of Lie algebroid over M whose anchor is p. This algebroid
is almost injective and defines FH .

The crossed product groupoid M ! H ⇒ M integrates A and is a
holonomy groupoid for FH . This groupoid is not universal in general.

3. Concentric spheres: Let F be the foliation of R3 by concentric
spheres and O be the singular leaf. Because the 2 sphere is not paral-
lelizable there exists no Lie algebroid of dimension 2 which defines F .
Thus such a foliation has no holonomy groupoid.

More generally a foliation F on a manifold M which is locally the
foliation by concentric spheres of dimension different from 1, 3 and 7
has no holonomy groupoid [5].

4. Submanifold: Let M be a manifold of dimension m and N
a submanifold of M of dimension n < m. We define FN to be the
foliation on M whose leaves are N and the connected components of
M \ N .
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Codimension 1 submanifold: We have already seen in section 2
how to construct a generalized atlas for FN . The holonomy groupoid
we obtain using this atlas is a particular case of groupoids related to the
notion of explosion of manifolds which where constructed for the study
of manifolds with corners [19, 20, 31].

In the simple case where M = N × R we define

p : AN := TM 1 TN × TR → TM 1 TN × TR
(x, v; t,λ) ,→ (x, v; t, t.λ).

There is a unique structure of Lie algebroid on AN whose anchor is p.
This Lie algebroid is an almost injective Lie algebroid which defines FN ,
moreover it is extremal. The corresponding groupoid is

G = N × N × R × R+
∗ ⇒ N × R

obtained by making the product of the pair groupoid over N with the
groupoid of the action of R+

∗ on R by multiplication.

The point: Suppose now that M is a manifold of dimension n ≥ 2
and let N be a point of M . Let f : M → R be a smooth function which
vanishes only at N . We consider

pf : Af := TM → TM
(x, v) ,→ (x, f(x)v).

There is a unique structure of Lie algebroid on Af whose anchor is f .
Moreover Af is almost injective and it defines FN . Thus FN admits
holonomy groupoids.

Let A be a Lie algebroid which defines FN . The anchor of A induces
a smooth map P : U → Mn(R), where U is a neighborhood of N in M ,
such that P (N) = 0 and P (x) is invertible for x &= N .

If A is extremal then the map P must be such that for all smooth
function f : U → R which vanishes only at N , the map from U \{N} to
Mn(R) definined by x ,→ f(x)P−1(x) can be smoothly extended to U .
Such a map P does not exist, so there are no extremal Lie algebroids
and no universal holonomy groupoids for FN .

5. Composed foliation: Let M be a manifold equipped with two
regular foliations F1 and F2 where F1 is a subfoliation of F2 and let F
be the foliation on M × R defined by F1 × {0} and F2 × {t} for t &= 0.

Let G1 (resp. G2) be the holonomy groupoid of F1 (resp. F2) and
ϕ : G1 → G2 the immersion induced by the inclusion of F1 into F2.
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We take a Euclidean metric on TF2 and we denote by N = (TF1)⊥

the orthogonal bundle of TF1 in TF2. Then TF2 can be identified with
TF1 ⊕ N . We equip A = (TF1 ⊕ N) × R with the unique structure of
Lie algebroid over M × R whose anchor is:

p : A := (TF1 ⊕ N) × R → T (M × R) = TM × TR
(v1, v2, t) ,→ (v1 + tv2, (t, 0)).

This Lie algebroid is almost injective, it defines F and it is extremal for
F . The corresponding Lie groupoid is the normal groupoid of ϕ defined
by M. Hilsum and G. Skandalis[17]. More precisely there is an action
of G1 on N = TF2/TF1, the normal bundle of the inclusion of TF1 in
TF2.

Thus G1 ×M N = {(γ, X) ∈ G1 ×N | X ∈ Nr(γ)} is equipped with
a groupoid structure:

(γ1, X1) · (γ2, X2) = (X1 + γ1(X2), γ1γ2)

when (γi, Xi) ∈ G1 ×M N and r(γ2) = s(γ1). At the set level, the
normal groupoid of ϕ is the union groupoid

G2 × R∗ ∪ (G1 ×M N ) × {0} ⇒ M × R.

An extreme case is when F1 is the foliation of M by the points and F2

is the foliation of M with M as unique leaf. In this case we recover the
tangent groupoid of M of A. Connes [7].
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Université Paris VII-Denis Diderot, 1998.

[20] V. Nistor, A. Weinstein & P. Xu, Pseudodifferential operators on differential
goupoids, Pacific J. Math. 189(1) (1999) 117-152.

[21] V. Nistor, Groupoids and the integration of Lie algebroids, J. Math. Soc. Japan
52 (2000) 847-868.

[22] R.S. Palais, A global formulation of the Lie Theory of transformations groups,
Memoirs Amer. Math. Soc. 22 (1957).

[23] J. Phillips, The holonomic imperative and the homotopy groupoid of a foliated
manifold, Rocky Mountain J. of Math. 17(1) (1987) 151-165.



500 claire debord
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