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non-resonant quadratic terms. The aim of the present 
study is thus to explain the effect of the non-resonant 
quadratic terms on the dynamics. To that purpose, 
the normal form up to the third order is used, since 
the effect of the non-resonant quadratic terms will be 
transferred into the resonant cubic terms. Analytical 
solutions are detailed using a second-order mutli-
ple scale expansion. A thorough investigation of the 
backbone curves, their stability and bifurcation, and 
the link to the forced–damped solutions, is detailed, 
showing in particular interesting features that had not 
been addressed in earlier studies. Finally, the satura-
tion effect is investigated, and it is shown how to cor-
rect the detuning effect of the cubic terms thanks to 
a specific tuning of non-resonant quadratic terms and 
resonant cubic terms. This choice, derived analyti-
cally, is shown to extend the validity of the saturation 
effect to larger amplitudes, which can thus be used 
in all applications where this effect is needed e.g. for 
control.

Keywords Nonlinear modes · Backbone curves · 
Forced response · Invariant manifolds · Quadratic 
coupling · Normal form · Saturation phenomenon · 
Second order multiple scale expansion

1 Introduction

The vibratory behaviour of nonlinear systems can be 
very complex as compared to linear ones, showing, 

Abstract This article considers the nonlinear 
dynamics of coupled oscillators featuring strong 
coupling in 1:2 internal resonance. In forced oscil-
lations, this particular interaction is the source of 
energy exchange, leading to a particular shape of the 
response curves, as well as quasi-periodic responses 
and a saturation phenomenon. These main features 
are embedded in the simplest system which considers 
only the two resonant quadratic monomials conveying 
the 1:2 internal resonance, since they are the proemi-
nent source allowing one to explain these phenomena. 
However, it has been shown recently that those fea-
tures can be substantially modified by the presence of 
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in particular, a dependence of its characteristic fre-
quencies upon the amplitude, bifurcations associated 
to stable and unstable solutions, periodic response 
with rich harmonics content as well as more complex 
quasi-periodic and chaotic responses  [1–3]. Those 
phenomena are often related to strong nonlinear cou-
plings between the degrees of freedom (DOFs) of the 
system, leading to energy exchanges between them. 
Important couplings are generally fostered by particu-
lar relationships between the characteristic frequen-
cies, leading to the important concept of internal res-
onance (IR) in vibration theory [4]; but other kind of 
couplings might also appear for systems with widely 
spaced frequencies [5].

The specific case of a 1:2 internal resonance is met 
when two nonlinear oscillators have their eigen-fre-
quencies �1 and �2 such that �2 ≃ 2�1 . This case has 
been the subject of numerous studies in the past, see 
e.g. [1, 4, 6–9]. In general, the 1:2 case is studied by 
considering only the quadratic terms and more spe-
cifically the two resonant monomials that are respon-
sible of the strong coupling between the two oscil-
lators, see e.g.  [1, 10] for the simplified equations 
(normal form) to use for such case, as well as  [11, 
12] for general discussion on the normal form and
the resonant monomials. The dynamics of such quad-
ratically coupled nonlinear oscillators display a rich 
behaviour with two families of backbone curves [10, 
13], appearance of quasi-periodic behaviour [1], and 
analytic expression of the locus of Neimark–Sacker 
bifurcation [10].

A particularly interesting feature of systems with 
1:2 internal resonance is the saturation effect that is 
observed in the forced response, when the external 
excitation frequency � is in the vicinity of the second 
mode: � ≃ �2 . As shown for example in [1], once the 
coupling is effective, then the amplitude of the second 
mode stays constant for increasing forcing amplitude, 
while the amplitude of the first mode (not excited by 
the load) increases, meaning that all the energy, input 
to the second oscillator, is transferred to the first. This 
saturation effect is important and can be used with the 
purpose of controlling the amplitude of the second 
mode, enforcing its saturation to a maximum ampli-
tude. Successful applications have been reported for 
example in [14–16].

Recently, it has been shown both theoretically and 
experimentally in [17, 18] that the non-resonant quad-
ratic terms play an important role in the saturation 

effect if one goes to moderately large amplitude. Con-
sequently, a fine tuning of a vibration absorber based 
on the saturation effect needs to properly address not 
only the resonant quadratic terms, but also the non-
resonant ones, in order to obtain a comfortable range 
of amplitude where the saturation effect is effective. 
The aim of this paper is to reconsider theoretically the 
effect of these non-resonant quadratic terms on the 
dynamics of the system with 1:2 internal resonance, 
in order to extend the amplitude range of the satura-
tion effect.

Numerous analytical methods have been proposed 
in the past in order to derive approximate solutions 
to nonlinear vibration problems thanks to asymptotic 
expansions. In this realm, the normal form approach 
is particularly appealing since it conveys very impor-
tant meaning related to nonlinear resonances [11, 12, 
19, 20], derives the simplest form of the dynamics, 
and expresses its skeleton [21, 22]. It can also be used 
for model order reduction, see e.g.  [23–25], and has 
a strong relationship with the parametrisation method 
of invariant manifold, see e.g. [26, 27], such that the 
normal form dictates the reduced dynamics on an 
invariant manifold and can be used for building ex-
nihilo models  [11]. In this contribution, the normal 
form is used to analyze the dynamics of the system 
with 1:2 internal resonance. Interestingly, whereas 
general formulations for deriving real normal forms 
of coupled oscillators are derived in [11, 23], they are 
restricted to the case without internal resonance. The 
computation of the normal form, up to the cubic term, 
with a 1:2 internal resonance, needs thus a particular 
development. A first aim of this paper is thus to make 
this derivation and gives the expression of the normal 
form with 1:2 resonance up to cubic order.

The second aim of the paper is to analyze the 
nonlinear dynamics of the system with 1:2 internal 
resonance up to cubic terms. Recent studies derived 
important results about the topology of the solutions 
in the unforced conservative case (nonlinear modes/
backbone curves) [10, 13]. These results will be here 
enlarged to the next order by analyzing the effects of 
the cubic terms. In the normal form derivation, the 
non-resonant quadratic coefficients are reported to 
the cubic order, in the trivially resonant terms. Hence, 
their effect can be tracked and analyzed. The last aim 
of the study is thus to show how the non-resonant 
quadratic terms have important effects on the nonlin-
ear dynamics and more particularly on the saturation 



effect. At last, it is shown analytically how to tune 
non-resonant quadratic terms and resonant cubic 
ones, in order to extend the amplitude validity region 
where the saturation effect is particularly efficient.

2  Equations of motion, normal form and multiple 
scales solution

The starting point is a conservative two DOFs system 
with smooth nonlinearities, in the form of a Taylor 
expansion up to the third order: 

 In the above system, (X1(t),X2(t)) are the displace-
ments of the two DOFs at time t, ⋅̇ = d ⋅ ∕dt is the 
time derivative, and (gk

ij
, hk

ijl
) , i, j, l, k = 1, 2 are the 

coefficients of the quadratic and cubic terms. This 
kind of system is encountered in many fields of phys-
ics and engineering [2, 4] and especially when reduc-
ing the dynamics of curved thin mechanical structures 
such as shells and arches, the curvature being respon-
sible of the appearance of the quadratic 
terms [27–29]. Here, all possible quadratic and cubic 
terms are considered, without restriction on their val-
ues. In particular, the case for which Eq.  (1) derive 
from a potential leads to known relationships between 
some of the coefficients, such that finally, only nine 
free coefficients remains in this case, which is 
recalled in "Appendix A", see also e.g. [2, 30]. Note 
however that this specific case is not considered here 
for the sake of generality, and also because in some of 
the targeted applications, the nonlinear terms are arti-
ficially created; see e.g. the case of electronic circuits 
for vibration control applications [17, 31].

2.1  Real normal form up to the third order with a 
second-order resonance

The aim of this section is to derive the normal form 
of Eq.  (1) up to cubic terms, in the specific case 
where a 1:2 internal resonance exists between the two 
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eigenfrequencies of the problem, such that the rela-
tionship �2 ≈ 2�1 holds. The theory of normal form 
has been used for a long time for vibratory problems, 
in order to simplify as much as possible the dynami-
cal system under study by cancelling all the non-
resonant monomials thanks to a nonlinear change of 
coordinates, see e.g. [19, 21, 32, 33]. It has also been 
used in the context of model order reduction to under-
line the link with nonlinear normal modes (NNMs), 
defined as invariant manifolds in phase space  [11, 
23, 27]. Importantly, different styles of normal form 
exist due to the non-uniqueness of the solutions of the 
homological equations, and the freedom of choosing 
one solution or another leads to the idea of free func-
tions, as explained for example in [22, 34].

Focusing on the case of vibratory problems where 
the eigenspectrum is composed of pairs of complex 
conjugate eigenvalues, three main different styles of 
normal forms can be distinguished. The first one is 
the complex normal form, as first introduced in [19], 
which is closer to the formulas used in the dynamical 
system community, see e.g. [21, 33, 35]. The second 
one is the real normal form introduced in [20, 34, 36], 
which allows one to retrieve more easily oscillator 
equations. The third one is a full real normal form, 
first introduced in [11, 23], where the oscillator form 
of the equations is strongly enforced throughout the 
calculation, imposing the variables to stay homoge-
neous to a displacement and a velocity. Further com-
ments on these different normal forms can also be 
found in  [37], in the context of the parameterisation 
method for invariant manifolds. In this article, this 
third normal form will be used to simplify Eq. (1).

A generic calculation, up to cubic order, and 
including detailed analytical formulas for all the 
coefficients of the nonlinear mappings and normal 
form, has already been provided in [11, 38] for con-
servative problems, and in [12, 23] for assemblies of 
damped nonlinear oscillators. However, this calcu-
lation is led to the case where no internal resonance 
exists between the eigenfrequencies of the problem. 
In the case where a second-order internal resonance 
exist, like the 1:2 resonance considered here, the cal-
culation needs to be adapted. In particular, the cubic 
terms need to be recomputed to take into account the 
resonant monomials of second order that are due to 
the 1:2 resonance. In turn, these resonant terms will 
modify some coefficients used for the change of coor-
dinates, and some of the cubic terms of the normal 



form. The aim of this section is thus to enlarge the 
general results provided in  [11] to the case of a 1:2 
resonance.

For the sake of conciseness, only the result of this 
calculation is given here in the main text. The inter-
ested reader can find the full demonstration and the 
complete calculation in "Appendix B". The real nor-
mal form of Eq.  (1), up to cubic order, with a 1:2 
internal resonance between the two eigenfrequencies 
( �2 ≈ 2�1 ), reads: 

 In these equations, (R1,R2) are the normal coordi-
nates, homogeneous to a displacement. These new 
coordinates are nonlinearly related to the original 
ones thanks to an identity-tangent nonlinear map-
ping. For completeness, the nonlinear change of 
coordinate needs to consider both the displacements 
(original displacement with Xp coordinate and normal 
displacement with Rp , p=1,2) and the velocities, here 
written as Yp = Ẋp for the original coordinates, and 
Sp = Ṙp for the normal ones. The nonlinear mappings 
read, for p=1,2: 

 The expressions of all the introduced coefficients in 
Eq. (3) are given in "Appendix B", following the gen-
eral formulas given in [11]. In Eq. (2), only the reso-
nant monomials are present. Due to the 1:2 internal 
resonance, only two quadratic monomials are present, 
instead of the six in the original Eq.  (1). Due to the 
asymptotic nature of the normal form calculation, 
which eliminates the non-resonant terms order by 
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order, the coefficients of the cubic terms are modified 
by the appearance of Ap

ijk
 , Bp

ijk
 , Dp

ijk
 and Ep

ijk
 . The first 

two coefficients Ap

ijk
 and Bp

ijk
 have already been con-

sidered in [11], and their expressions read: 

 One can note in particular that these two coefficients 
appear due to the elimination of the non-resonant 
quadratic terms, hence they involve only quadratic 
original gp

ij
 coefficients, with the coefficients of the 

quadratic part of the nonlinear mappings: ap
jk

 and bp
jk

 . 
The last two terms, Dp

ijk
 and Ep

ijk
 , are new as compared 

to the general results presented in [11], and their pres-
ence is only due to the existence of the 1:2 internal 
resonance and the two resonant quadratic monomials 
in the normal form. Their expressions write: 

 The remainder of the paper consists in analyzing the 
solutions of the normal form of the system with 1:2 
internal resonance and up to cubic terms, Eq. (2). A 
particular emphasis will be set to understand the 
effect of the non-resonant quadratic monomials on 
the dynamical characteristics of the system. Note that 
these non-resonant monomials have been cancelled in 
Eq. (2). However, the associated coefficients gp

ij
 inter-

vene in the cubic terms, and will thus have an impor-
tant effect on backbone curves and frequency 
response functions. The analysis will be done using a 
multiple scales solution up to the second-order to take 
the cubic terms into account.

2.2  Multiple scales solution: modulation equations

In this section, an approximate analytical solution of 
the normal form system (2), using the multiple scales 
method (MSM), is proposed. Analytical solutions of 
1:2 internally resonant problems have been proposed 
in many instances, for example, with the MSM for 
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first and second-order developments [1, 39]. They are, 
however, generally restricted to the case with forcing 
and damping, and cubic terms are generally not taken 
into account. Besides, the study of the backbones for 
free vibration problems has been only recently con-
sidered, see e.g.  [10, 13], but still without consider-
ing the cubic terms. The main aim of the develop-
ment proposed here is to extend these latter results 
by including the effect of cubic terms, in the presence 
of 2:1 internal resonance. For other types of internal 
resonance, such as 1:1 internal resonance, one can 
refer to [40], where detailed second-order MSM deri-
vations are established to obtain the free solution of 
Eq. (1), considering all the quadratic and cubic terms.

Eq.  (2) are first rewritten by introducing a small 
bookkeeping parameter � in order to scale the differ-
ent nonlinear terms as: 

 where the coefficients �k , k = 1,… 10 have been sim-
ply introduced from Eq. (2), see Eq. (50) in "Appen-
dix C" for their detailed expressions.

The second-order expansion using MSM requires 
the definition of three time scales T0 = t , T1 = �t , and 
T2 = �2t . Following the method (see "Appendix  C" 
for details), the free solution is approximated as: 

 where a1 , a2 , �1 and �2 are real functions of the slow 
time scales only (T1, T2) . The nearness of the inter-
nal resonance condition leads to define the internal 
detuning parameter � as:

The complete derivation is reported in "Appendix C" 
for the sake of brevity. Solvability conditions are 
obtained by eliminating resonant terms both at orders 
� and �2 , leading respectively to two sets of equations 
of the form D1A = … and D2A = … for each of the 
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slow time scales (where D1 and D2 refers to a partial 
derivative with respect to T1 and T2 ). These two sets 
of equations can be recombined using the so-called 
reconstitution method [39, 41], yielding:

for any complex amplitude A(T1, T2) . After some 
algebra, detailed in "Appendix  C", one obtains the 
following slow time scale modulation equations: 

 where

Note that these recombined equations now explicitly 
depend on both quadratic terms, via the (�1, �2) coef-
ficients; and cubic terms, via the newly introduced 
coefficients �k , k = 1,… 4 , which read: 

 On can remark as a particular feature that the coeffi-
cients �5 and �8 do not appear in the above Λi expres-
sions, even though they are associated to resonant 
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cubic monomials in the real normal form. The MSM 
expansion shows that their effect is seen from the next 
order of development. As a matter of fact, real nor-
mal form differs from complex normal form, is less 
symmetric, and produces more resonant monomials. 
Also, the MSM expansion, using complex notations, 
implicitly relies on the complex normal form, and 
expresses the resonant monomials through the solv-
ability condition. Hence it can be concluded that the 
monomials associated with �5 and �8 are resonant for 
the real normal form, but not for the complex normal 
form, explaining the fact that they disappear when 
one writes down the modulation equation with the 
MSM.

Since �p explicitly depends on the slow time scale 
T1 , the system defined by Eqs. (10a–10d) is not auton-
omous. Then, it is convenient to combine the phase 
Eqs. (10c,10d) with (11) to obtain:

in which dT1∕dt = � has been used. Consequently, 
one obtains two equivalent autonomous systems, 
being, respectively Eqs.  (10a, 10b, 10c)–(13) in 
term of variables (a1, a2, �1, �p) and Eqs.  (10a, 10b, 
10d)–(13) in term of variables (a1, a2, �2, �p) . This 
generic four-dimensional dynamical system will be 
reduced to a three-dimensional one in the next sec-
tion, in the particular case of stationary solutions. 
One must also remark that Eqs. (10c, 10d) (and con-
sequently Eq.  (13)) are valid only if a1, a2 ≠ 0 since 
they result from Eqs. (62c, 62d) divided respectively 
by a1 and a2.

Now that the modulation equations have been 
derived, the focus will be on analyzing their solu-
tions. Before proceeding in the next section, it is 
worth underlining that the quadratic terms in Eq. (62) 
are the same as those reported in [10], obtained with 
a first-order MSM solution, hence highlighting how 
the results presented here will extend earlier deriva-
tions. Another important point, discussed in "Appen-
dix C and E", is that these modulation equations are 
slightly different from those obtained in previous 
studies, see e.g. Eqs.  (175–178) of  [39], in which a 

(13)

�̇�p = 𝜀𝜎 +

(

𝜀𝛽1a2

2𝜔1

[

1 +
𝜀𝜎

2𝜔2

]

−
𝜀𝛽2a

2

1

4a2𝜔2

[

1 −
𝜀𝜎

2𝜔2

]

)

cos 𝛾p

+ 𝜀2

(

Λ3a
2

1
+ Λ4a

2

2

8𝜔2

−
Λ1a

2

2
+ Λ2a

2

1

4𝜔1

)

,

similar problem is considered through a second-order 
MSM solution. The discrepancies are the conse-
quence of the different assumptions used in the MSM 
process. In particular, alternative derivations, as those 
presented in  [39], have been deeply analyzed and 
compared to the ones presented here, and "Appen-
dix  E" is completely devoted to these calculations, 
which clearly show that the retained assumptions lead 
to better results as compared to reference numerical 
solutions, justifying our final choice.

2.3  Branches of stationary solutions

Integrating the modulation Eq. (10) can lead to vari-
ous free vibration solutions, depending on the four 
initial conditions R1(0) , R2(0) , Ṙ1(0) , Ṙ2(0) . Restrict-
ing ourselves to solutions that are stationary in ampli-
tude, i.e. such that da1∕dt = da2∕dt = 0 , imposes a 
stringent condition on the phase �p , since non trivial 
solutions are obtained when sin �p = 0 , which implies 
that �p is also stationary, with value �p = k� with 
k ∈ ℤ and cos �p = p with p = ±1.

Then, because a1 , a2 and �p are constants, one 
obtains three conditions. The second member of 
Eq. (10c, 10d) are constants, which leads to the first 
two: 

where �1 and �2 are integration constants and the 
coefficients Γk , k = 1,… 6 are functions of the sys-
tem’s parameters. Their expression naturally appear 
in the modulation equations in the process of the 
MSM, see "Appendix C" for details, and their explicit 
expressions read: 

 Finally, the third condition is the following relation-
ship between a1 and a2 , obtained with Eqs. (11), (14a, 
14b):

(14a)
�̇�1 = �̃�1 = Γ1 p a2 + Γ2a

2

1
+ Γ3a

2

2
⇒ 𝜃1(t) = �̃�1t + 𝜙1;

(14b)

�̇�2 = �̃�2 = Γ4 p
a2
1

a2
+ Γ5a

2

1
+ Γ6a

2

2
⇒ 𝜃2(t) = �̃�2t + 𝜙2,

(15a)Γ1 =
��1

4�1

[

1 +
��

2�1

]

, Γ4 =
��2

4�2

[

1 −
��

2�2

]

,

(15b)Γ2 = −
�2Λ2

8�1

, Γ3 = −
�2Λ1

8�1

, Γ5 = −
�2Λ3

8�2

, Γ6 = −
�2Λ4

8�2

.



Then, eliminating (�1, �2) in Eqs  (7a, 7b) with 
Eqs. (14a–14b), one obtains: 

 where the nonlinear frequencies are functions of the 
amplitudes as follows: 

One can notice that the obtained solutions are fam-
ilies of periodic orbits, with frequencies �nl1 and �nl2 
depending on the amplitudes a1 and a2 . The frequency 
dependence upon amplitudes given in Eq.  (18) 
defines the two backbone curves of the coupled solu-
tions of the system. In phase space, the corresponding 
families of periodic orbits lie on invariant manifolds 
known as a Lyapunov Subcenter Manifold (LSM) in 
this conservative case  [27]. This LSM is univocally 
defined as a nonlinear mode (NNM) in vibration the-
ory [11, 12, 27, 42, 43].

Based on the above developments, several solu-
tions can be found:

• The trivial solution a1 = a2 = 0;
• An uncoupled solution with (a1 ≠ 0, a2 = 0) , 

denoted as the U1-mode. Eq.  (62d) shows that
a2 = 0 ⇒ a1 = 0 so that this U1-mode is not
admissible1. Going back to the initial system (6),
this result is natural since a quadratic invariance
breaking term �2R2

1
 is present in the second equa-

tion. Consequently, the U1-mode does not exist as
a possible solution of the system.

• An uncoupled solution with (a1 = 0, a2 ≠ 0) , 
denoted as the U2-mode. This solution is possible

(16)�̇�p = 2�̃�1 − �̃�2 + 𝜀𝜎 = 0 ⇒ a2
1
=

(2𝜔1 − 𝜔2)a2 + 2Γ1p a
2

2
+ (2Γ3 − Γ6)a

3

2

Γ4 p + (Γ5 − 2Γ2)a2
.

(17a)R1(t) = a1 cos
(

�nl1t + �1

)

+ O(�),

(17b)R2(t) = a2 cos
(

�nl2t + �2

)

+ O(�),

(18a)�nl1 = �1 + Γ1 p a2 + Γ2a
2

1
+ Γ3a

2

2
,

(18b)�nl2 = �2 + Γ4 p
a2
1

a2
+ Γ5a

2

1
+ Γ6a

2

2
.

and corresponds to the single mode vibration of 
the second mode. Since it is dictated by a nonlin-
ear oscillator, on can easily derives the uncoupled 
backbone curve of the U2-mode from Eq. (18b) as 

 The backbone curve of the U2-mode, obtained 
by imposing R1 = 0 in the second equation of the 
initial system (6b), has thus a hardening/softening 
behaviour dictated by the sign of Γ6.

• a coupled solution with (a1 ≠ 0, a2 ≠ 0) , denoted 
as C− mode. In this case, the fact that �p is a con-
stant, see Eq.  (16), shows that the oscillations of
the two DOFs are locked, in frequency and phase:

 as well as in amplitude since a1 is a function of a2 
thanks to Eq. (16). At this stage, one must remem-
ber that two values for cos �p = p = ±1 are admis-
sible, leading to two distinct coupled modes: the 
C+ mode, with p = 1 , k even and the C− mode, 
with p = −1 , k odd. An interesting consequence 
of the locking is the shape of those C+ and C− 
modes in the configuration space (R1,R2) . Using 
Eq. (20) in Eqs. (17a, 17b), one obtains: 

 from which one easily shows that: 

 The two above equations show that the two modes 
have the shape of parabolas in the space (R1,R2) , 
as shown in Fig. 1, a result that has already been 
underlined in  [10], but using a first-order MSM 
on a quadratic system. Analogous results on the 
topology of coupled modes were also obtained 
in the case of 1:1 internal resonance, where the 
modes were denoted, depending on their shape 
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(20)�nl1 = �nl2∕2, �1 = (�2 + k�)∕2,
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2
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+ O(�),
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R
2

1

a
2

1
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1 One cannot use directly Eq.  (14b), since it is valid only if 
a1, a2 ≠ 0



in the configuration space, as “normal mode” and 
“elliptic mode” [44, 45].

The main difference in the results reported here, 
as compared, for example, to the recent ones on the 
backbone curves derived in [10], lies in the fact that 
cubic terms are taken into account thanks to the nor-
mal form approach and the second-order MSM. The 
main consequence is that the backbone curve of the 
U2-mode has a curvature and is not a straight line 
anymore, because of the cubic term. In the same con-
text, the coupled backbones of the C+ and C− modes 
will show a curvature, a feature that was not present 
in [10].

2.4  Existence conditions and branching of the 
coupled solution

This section is devoted to the derivation of results on 
the existing conditions of the C+ and C− modes and 
their branching to the U2-mode. Only the mathemati-
cal derivations are given, illustrative examples being 
postponed to Sect.  3.1 where a special emphasis on 
the topology of the bifurcated solutions will be given.

Starting with the uncoupled solution (U2-mode), 

one easily observes that there are no restriction that 
might give rise to a condition of existence. The 

discussion can thus focus on the case of the coupled 
C+ and C− modes. A simple condition is derived 
by imposing that the expression of a2

1
 in Eq.  (16) 

must be positive. For the ease of the discussion, let 
us first consider the simplified case of the first-order 
MSM solution, already analyzed in [10]. This case 
is obtained by dropping all �2 terms in Eq.  (15), 
leading to Γ1 = ��1∕(4�1) , Γ4 = ��2∕(4�2) and 
Γ2 = Γ3 = Γ5 = Γ6 = 0 . The positive sign of a2

1
 from 

Eq. (16) depends on the signs of �1 and �2 , leading to 
the two following conditions that enforces a2

1
≥ 0:

with

Hence in this simplified case, −p�0 appears as the 
unique root where a2

1
 vanishes in Eq.  (16). Since 

we can consider a2 > 0 without loss of generality, 
the coupled backbones exist only if �1 and �2 share 
the same sign, and one of the coupled backbones 
is defined for a2 ≥ 0 whereas the other exists for 
a2 ≥ |�0| (reminding that p = ±1 ). In this latter case, 
a2 = |�0| leads to a1 = 0 and to �nl2 = �2 , which 
means that one of the coupled backbones emerges 
from the uncoupled U2-mode backbone curve (which 
is in this simplified case the vertical line �nl2 = �2 ) at 
a non zero amplitude a2 = |�0| . In the special case of 
� = 0 , both backbones emerge at a vanishing ampli-
tude, and from the x-axis (referring to the frequency) 
at the same point as �2 = 2�1.

Let us now analyze the more difficult present case 
of the solutions at second order. In this case, the situ-
ation is less straightforward since it depends on all six 
nonzero Γk coefficients. Requiring that a2

1
 is positive 

in Eq. (16) leads to the following condition:

where L(a2) is the product of the numerator and 
denominator of the right-hand side of Eq.  (16). The 
roots of the polynomial L(a2) are:

(23)
sign�1 = sign�2 ⇒ a2 ≥ −p�0;

sign�1 ≠ sign�2 ⇒ a2 ≤ −p�0,

(24)�0 =
2�1 − �2

2Γ1

=
2�1(2�1 − �2)

��1
=

2�1�

�1
.

(25)L(a2) ≡ a2

[

(2�1 − �2) + 2Γ1 p a2 + (2Γ3 − Γ6)a
2

2

][

Γ4 p + (Γ5 − 2Γ2)a2

]

≥ 0,

(a) (b)

Fig. 1  Parabolic Modes of the coupled solutions in the config-
uration plane ( R1(t) , R2(t) ). a the C+ mode and b the C− mode



in addition to the vanishing solution. The two roots 
�2,3 are important since they come from the numerator 
of a2

1
 , such that they nullify a1 ( a2 = �2,3 ⇒ a1 = 0 ). 

In comparison to the above considered first-order 
MSM results, the three roots �1,2,3 are obtained 
instead of the single root −p�0 . Note that, as long as � 
is small, the second-order MSM solution is a correc-
tion to the first-order, and thus should not change the 
situation drastically. In particular, in the spirit of per-
turbative reasoning based on the leading orders, one 
can easily assume that Γ2 , Γ3 , Γ5 , and Γ6 are small. 
Consequently, since the denominators 2Γ2 − Γ5 and 
Γ6 − 2Γ3 are small, one of the two roots, either �2 or 
�3 , should be close to −p�0 , whereas the two others, 
either �2 or �3 in addition to �1 , are far from −p�0 in 
absolute value. As a consequence, we can conjecture 
by perturbative reasoning that the starting point of 
the coupled backbone curves in the plane ( �nl2, a2 ) 
admits an amplitude of �2 (or �3 ) and represents a 
branching point from the uncoupled backbone curves.

To illustrate the above reasoning, we assume 
an equal value for all cubic coefficients �i = � , 
∀i = 1,… 10 to control the amount of cubic terms 
with a single parameter. Then, Fig.  2 shows the 

(26)�1 =
Γ4p

2Γ2 − Γ5

, �2,3 =
1

Γ6 − 2Γ3

[

Γ1p ±

√

Γ2

1
+ (2�1 − �2)(Γ6 − 2Γ3)

]

,

(a) (b)

Fig. 2  Behaviour of the roots �2,3 as function of the cubic � 
coefficient taken with equal values for simplicity ( � = �k ∀k ) 
and with �1 = �2 = 1 . Solid lines refers to the C+ mode with 
p = 1 , while dashed lines refers to the C− mode with p = −1 . 
The red and blue lines denote respectively the case with 

� = 0.001 and � = 0.01 . The black line denotes −p�0 . (a) case 
of a negative detuning with �2 = 2 and �1 = 0.975 , (b) case of 
a positive detuning with �2 = 2 and �1 = 1.025 . (Color figure 
online)

evolution of the roots �2,3 from Eq.  (26), and −p�0 , 
from Eq.  (24) as a function of � for two different 
values of � and two different values of the detun-
ing. It clearly shows that the new roots �2,3 of the 
second-order analysis emerge from the root −p�0 of 
the first-order analysis, hence validating the above 
perturbative reasoning. This will be further illus-
trated in Figs.  3 and 4 in the next section, showing 
undoubtedly that the coupled backbone that starts at 
a non-zero-amplitude branches from the uncoupled 
U2 mode. With a calculation, this can be verified by 
substituting a2 from the numerator of Eq. (16), which 
defines �2,3 , in (18a), to obtain Eq. (19).

Note that in the special case of � = 0 ( �2 = 2�1 ), 
�1 is given by Eq. (26) and the two roots reads:

With the same reasoning, since Γ6 − 2Γ3 is small 
with respect to Γ1 , �0 = 0 is replaced here by �2,3 = 0 , 
showing that the branching point between the 
U2-mode and the coupled-mode backbones appears 
at a2 = 0.

(27)�2,3 = 0 or
2pΓ1

Γ6 − 2Γ3

,



All these results complement and extend those 
given in  [10]. In particular, the fact that the branch 
point of the coupled backbones lies on the uncoupled 
one was not demonstrated in [10]. Moreover, we have 
shown here that the result extends when considering 
the cubic terms. The main difference is that under 
such assumption, the backbone curve of the U2-mode 
is now curved (thanks to the cubic term). However, 
the branching point of the C+/C− solution remains 
on the same uncoupled backbone.

2.5  Stability of the coupled C+ and C− solutions

The stability of the solutions requires computing the 
eigenvalues of the Jacobian of the modulation equa-
tions. For the ease of the solution, it appears more 
convenient to compute this Jacobian for the underly-
ing three-dimensional autonomous system obtained 
from the two amplitude Eqs.  (10a, 10b), comple-
mented with the angular Eq. (13) (see "Appendix C" 
for the calculation details). Since there is no damp-
ing in the system, the stability is assessed if the 

eigenvalues are either zero or purely imaginary, lead-
ing to a neutrally stable fixed point [4].

In the case of the coupled C+ and C− solutions, 
the Jacobian is written in "Appendix D" and leads to 
the eigenvalues:

with

In the most general case of arbitrary coefficients Γk , 
assessing the sign of the radicand is difficult. More 
simple reasoning can be conducted with a perturba-
tive approach, as in the previous section. Indeed, if � 
is small, then Γ2,3,5,6 are also small with respect to Γ1,4 
. Consequently at first-order (thus coinciding with the 
solution analyzed in [10]), the eigenvalues simplifies 
to �2,3 ≃ ±a1

√

−Γ2

4
a2
1
∕a2

2
− 4Γ1Γ4 . If �1 and �2 share 

the same sign, it is also the case for Γ1 and Γ4 and one 

(28)�1 = 0, �2,3 = ±a1

√

√

√

√�a2 − Γ2

4

a2
1

a2
2

− 4Γ1Γ4,

(29)� = 2Γ4 p (Γ6 − 2Γ3) + 2Γ1 p (2Γ2 − Γ5).

(a) (b) (c)

(d) (e) (f)

Fig. 3  Backbone curves of the system in the specific case 
where only the quadratic resonant terms are considered such 
that g1

12
= g2

11
= 1 , while the other nonlinear coefficients are 

zero. Three different detunings are analyzed: � = −0.05 (first 
column), � = 0 (second column), and � = 0.05 (third column). 
Comparison between the second-order MSM result (dash-

dotted) and the reference numerical solution directly obtained 
from the normal form (2a–d) (solid line with circle markers). 
Coupled solutions, C+ mode and C− mode, are plotted in blue 
and red, respectively. The uncoupled solution (U2 mode) is 
plotted in green with solid and dotted lines denote the stable 
and unstable solutions, respectively. (Color figure online)



concludes that �2,3 are purely imaginary. The coupled 
solutions C+ and C− are then stable.

Following the same reasoning as in the previous 
section, the second-order solution can be assessed as 
a perturbation of the first-order, and one can conclude 
that for small amplitudes, the coupled backbones will 
thus be stable. Note that following these branches of 
the solution to higher amplitudes, then the stability 
might change, leading to secondary bifurcations and 
loss of stability of the coupled solutions. This is left 
for further study and outside the scope of the present 
analytical development.

2.6  Stability of the uncoupled U2 solution

In the case of the uncoupled U2 solution, the situa-
tion is more intricate since the modulation Eqs. (10a, 
10b), (13) in the polar form lead to a singular Jaco-
bian. In fact, a1 = 0 for the U2-mode, which means 
that �1 and thus �p are not properly defined. One 
has then to use a Cartesian form of the modulation 

equations that is written in "Appendix D". In the case 
of the U2 solution, the eigenvalues of the Jacobian of 
the modulation equations read (see Eq. (80)):

where N(a2, p) = (2�1 − �2)∕2 + pΓ1a2 + (Γ3 − Γ6∕2)a
2

2
 . 

Notice that the zeros of N(a2, p) in term of a2 are 
�2,3 introduced in Sect.  2.4 and that 2a2N(a2, p) is 
precisely the numerator of a2

1
 in Eq.  (16). Conse-

quently, the value a2 = �2,3 makes �2,3 = 0 , which 
immediately proves that there is a change of stability 
of the U2-mode at the branching points between the 
U2-mode and the C+/C− modes, depending on the 
sign of 2�1 − �2 and of p = ±1.

Then, assessing the sign of N(a2, p) seems difficult 
in the general case of arbitrary values of Γ1,3,6 but, as 
done before, we refer to the first-order MSM solution. 
In this case, Γ3 = Γ6 = 0 and the eigenvalues reads:

(30)�1 = 0, �2,3 = ±
√

−N(a2, 1)N(a2,−1),

(a) (b) (c)

(d) (e) (f)

Fig. 4  Backbone curves of the system with quad-
ratic and cubic terms considered: g1

12
= g2

11
= 1 , 

g1
11

= g1
22

= g2
12

= g2
22

= 0.5 , and hp
ijk

= 0.1 for i, j, k, and 
p = 1, 2 . Three different detunings are considered: � = −0.05 
(first column), � = 0 (second column), and � = 0.05 (third 
column). Comparison between the second-order MSM result 
(dash-dotted) and the reference numerical solution directly 

obtained from the original Eqs. (2a–d) (solid line for stable 
solution, dotted line for unstable solution, with circle markers 
on both types of numerical solutions). Coupled solutions, C+ 
mode and C− mode, are plotted in blue and red, respectively. 
The uncoupled solution (U2 mode) is plotted in green with 
solid and dotted lines denote the stable and unstable solutions, 
respectively. (Color figure online)



in which the radicand is negative if 0 < a2 < |𝜁0| and 
is positive if a2 > |𝜁0| , with �0 defined in Eq.  (24). 
Consequently, in the case of the first-order MSM 
solution, the U2-mode is stable for a2 below the 
branching point with the coupled mode, and is unsta-
ble above. The branching point between the U2 and 
the C+/C− modes is consequently a supercritical 
pitchfork bifurcation. In the general case for which 
Γ3,6 are non-zero, one can use the perturbative reason-
ing, based on the fact that the coefficients of the sec-
ond-order are small and that we are evaluating locally 
the loss of stability at the branching point (which is 
for small amplitudes). Then, one can conclude that 
the above findings are still valid with �0 replaced by 
�2,3 (see Fig. 2).

In the special case without detuning, � = 0 
( �2 = 2�1 ), Eq. (30) predicts that

Using the same reasoning as in Sect. 2.4, the radicand 
of the square root is positive, showing that the eigen-
value are real for all a2 > 0 . Consequently in this case 
without detuning, the U2-mode branch is fully unsta-
ble, which is in agreement with the location of the 
branch point at a2 = 0.

3  Backbone curves, frequency response functions 
and invariant manifolds

3.1  Backbone curves

The aim of this section is to illustrate the previous 
findings on the topology of the solution branches 
(backbone curves). A special emphasis is set on 
showing the changes brought by taking into account 
the cubic terms in the normal form system (2a-d), as 
compared to the results given by considering only the 
quadratic resonant monomials, in order to illustrate 
the effects of the non-resonant quadratic terms. In all 
the results shown, the second-order MSM solution 
is used, either by setting to non-zero values only g1

12
 

and g2
11

 , or by considering all the coefficients appear-
ing in (2a–d). The second-order MSM solution is also 
compared to a reference numerical solution obtained 

(31)�2,3 = ±

√

Γ2

1
a2
2
−

(2�1 − �2)
2

4

(32)�2,3 = ±a2

√

4Γ2

1
− (2Γ3 − Γ6)

2a2
2

/

2.

with a continuation procedure. The continuation of 
periodic orbits is realized thanks to the harmonic bal-
ance method (HBM), and the asymptotic numerical 
method, as implemented in the open code Manlab, 
which also computes stability [46–48].

The two selected cases are shown respectively in 
Figs.  3 and 4, depicting the three backbones of the 
system analyzed in the previous section, for various 
values of the parameters. The uncoupled, U2-mode, 
with a1 = 0, a2 ≠ 0 is shown in green, while the two 
coupled C+ and C− modes are in blue and red.

Figure  3 shows the special case where only the 
resonant quadratic monomials have been selected 
( g1

12
= g2

11
= 1 ), while all other coefficients have 

been set to zero. The system thus reduces to the 
one studied in  [10], with the distinctive feature that 
a second-order MSM solution is still at hand. Since 
no cubic terms are present, the uncoupled back-
bone degenerates to a straight vertical line. The cou-
pled C+ and C− modes share the properties already 
underlined in  [10, 13]. For a negative detuning, the 
C− mode emerges at zero amplitude for �nl = 2�1 , 
while the C+ mode emerges at a non-zero a2 ampli-
tude, at �nl = �2 . The situation is reversed for posi-
tive detuning, the C+ mode starting with zero ampli-
tude at �nl = 2�1 and the C− mode branching from 
the uncoupled solution with a non-zero amplitude. 
For a perfectly tuned system, � = 0 , �2 = 2�1 and all 
branches start at zero amplitude.

The main novelties, as compared to the previ-
ous studies, are twofold. First the analysis clearly 
shows that the non-vanishing branch point is exactly 
on the uncoupled U2-mode, starting either at ampli-
tude a2 = �3 for negative detuning, or a2 = �2 for 
𝜎 > 0 . Second, since a second-order MSM result is 
shown here, one can observe that the coupled C+/
C− branches show an important curvature in the 
(�nl, a2) plane, which was not the case in the previ-
ously shown results using first-order MSM.

Figure 4 shows the more general case where cubic 
terms are taken into account in the normal form. 
More specifically, the values have been set to: 
g1
12

= g2
11

= 1 , g1
11

= g1
22

= g2
12

= g2
22

= 0.5 , and 
h
p

ijk
= 0.1 for i, j, k, and p = 1, 2 . As a main conse-

quence, the uncoupled U2 backbone is now curved, 
due to the presence of the non-vanishing Γ6 coeffi-
cient, see Eq.  (19). With the selected values, Γ6 < 0 
and consequently, the U2-mode shows a softening 



behaviour. Interestingly, and as shown in the previous 
section, the non-zero branch point of the C+ mode, 
for a negative detuning, is located at a2 = �3 , exactly 
on the backbone of the uncoupled solution. The same 
applies for positive detuning, the C− mode branching 
from the U2 backbone at amplitude a2 = �2 . Since 
non-zero cubic terms are now present, the shape of 
the coupled C+/C− backbones shows a much more 
important curvature, seen in particular in the plane 
(�nl, a1) where the branches of C+ solution first 
increases and then decreases.

The comparison between the second-order MSM 
and the reference numerical solution shows a very 
good agreement, even in very adverse conditions as 
the one shown in Fig.  4. Also, the stability analysis 
led in the previous section is very well recovered by 
the numerical solution, validating the perturbative 
reasoning. In particular, U2-mode is seen to lose sta-
bility at the supercritical pitchfork bifurcation point 
as analyzed, where the coupled solution emerges. 
Also, the stability of the coupled solution is found 
to be in line with the analytical results, since stable 
solutions are retrieved for small amplitudes. Interest-
ingly, the numerical solution shows that the coupled 
branch can lose stability for higher amplitudes, as 
expected from the analysis following the remarks at 
the end of Sect.  2.5. Note that in Figs.  3 and 4, the 
stability of the analytical solution is not addressed at 
high amplitudes.

As a conclusion to this section, the numerical 
simulations shown in Figs. 3 and 4 show that the sec-
ond-order MSM solution presented in Sect. 2.2 is in 
excellent agreement with a reference numerical solu-
tion, both for the quantitative shape of the backbone 
curves and their stability. Indeed, some discrepancies 
between the analytical and numerical solutions are 
observed, especially the response of the C+ backbone 
in Fig. 4 d,e,f due to the approximate nature of MSM 
at high amplitudes that can be corrected by taking 
into account higher expansion orders.

3.2  Forced oscillations: normal form validity and 
link to the free solutions

This section is devoted to the link between the back-
bone curves and the forced–damped response of the 
system, as well as to assess the validity of the nor-
mal form transform, Eq. (2), in comparison with the 
dynamical solutions given by the original equations 

(1). Since the normal transformation relies on an 
asymptotic development up to the third order, one 
needs to assess that the assumption is valid in the 
range of amplitudes used in the present analysis. In 
this section, only numerical results will be used, and 
the second-order MSM solution will not be employed 
anymore. The numerical solutions are derived thanks 
to the continuation of periodic orbits with the soft-
ware Manlab.

The forced–damped frequency response functions 
will be considered for the original system by adding 
two linear damping terms 2𝜉1𝜔1Ẋ1 and 2𝜉2𝜔2Ẋ2 to 
(1a, 1b) where �1 and �2 are the damping coefficients. 
The forcing will be considered only on the upper-
frequency mode, thus a harmonic force F cos�t is 
added to Eq.  (1b), where F and � are, respectively, 
the forcing amplitude and the driving frequency. For 
the normal form system, Eqs. (6a, 6b) are used, and 
damping and forcing are added in the same manner. 
This constitutes an assumption, which holds as long 
as small values of damping and forcing are consid-
ered, which will be the case here. If too large values 
of the damping are to be considered, then the nor-
mal form calculations need to address the damping 
within the calculations, as shown for example in [23, 
37]. Also, for too large values of the forcing, a non-
autonomous version of the normal transform must be 
derived, see for example [49]. For the range of ampli-
tudes investigated in this contribution, the first-order 
assumption on the damping and forcing is sufficient, 
and one might consider high-order terms only if 
larger amplitudes had to be taken into account.

In order to represent the amplitude of the 
forced–damped solutions, and by analogy with the 
first-order MSM solution (see e.g. [17]), X1(t) and 
X2(t) are expressed as: 

 where “OH” means other harmonics of smaller 
amplitude, �1 and �2 are the phase angles and X11∕2 
and X21 are respectively the amplitudes of the leading 
harmonics of X1(t) and X2(t) . In this solution, X2(t) is 
the directly excited degree of freedom that oscillates 
at the driving frequency � and X1(t) gains energy 
through the internal resonance coupling and oscillates 

(33a)X1(t) = X11∕2 cos

(

�

2
t −

�1 + �2

2

)

+ OH

(33b)X2(t) = X21 cos(�t − �2) + OH



at the subharmonic �∕2 . For the solution obtained 
from the normal form, Eqs.  (6a, 6b), (R1(t),R2(t)) 
are back transferred to the physical coordinates 
(X1(t),X2(t)) with the nonlinear mapping (3a, 3b), and 
then the amplitude of the first harmonic is selected for 
representation.

The comparison between the forced responses of 
both systems is shown in Fig. 5 for positive, negative, 
and zero values of � . It is observed that the forced 
solution develops according to the backbone curves 
of the C+ and C− modes. Namely, the two peaks 
appearing in the forced response of X1 and X2 lie in 
the vicinity of the backbone curves. The comparison 
also shows a very good match between the forced 
responses of X1 and X2 , and the two systems (normal 
form versus initial system) predict a Neimark–Sacker 
bifurcation along the coupled branch for � = 0.05 

leading to quasi-periodic solutions. A small mis-
match can be observed at larger amplitudes between 
the two solutions, and it appears to be more salient on 
the backbone curves than on the forced-damped solu-
tions, meaning that the validity range of the normal 
form approximation is more limited in this specific 
case by the third-order truncation than by the assump-
tions made on damping and forcing.

A last point worth investigation when comparing 
free and forced-damped solutions, is the point of coin-
cidence of the two solutions, since it has a significant 
practical application for observing phase resonance 
in experiments. A phase resonance occurs when, for 
a particular driving frequency � , the forcing term 
exactly cancels the damping, such that the oscillator 
behaves as if it was in undamped free oscillations, see 
e.g. [50] for a discussion of the general case, [51] for 

(a) (b)

(d) (e) (f)

Fig. 5  Frequency response of the fundamental harmonic 
amplitude X21 of X2(t) (the first row) and the subharmonic 
amplitude X11∕2 of X1(t) (the second row) for F = 0.01 (the 
lighter color) and F = 0.02 (the darker color). The plots are 
done for g1

11
= g1

12
= g2

11
= 1 , g1

22
= g2

12
= g2

22
= 0.03 , all the 

cubic terms hp
ijk

= 0.3 , �1 = 0.007,  and   �2 = 0.01 . The first, 
second, and third column are the results for � = −0.05 , � = 0 , 
and � = 0.05 , respectively. Comparison between numerical 
solutions obtained from the original system (blue solid lines 

with circle markers) and the third-order real normal form 
(green solid lines). Backbone curves are plotted respectively 
in blue dashed lines (original system) and green dashed lines 
(normal form). The uncoupled free and forced solutions are 
plotted in orange and black, respectively (solid line for sta-
ble solutions and dotted lines for unstable). The star symbol 
denotes the bifurcation point from which coupled solution 
emerges from the U2 backbone. ”QP” denotes the quasi-peri-
odic regime that emerges between two Neimark–Sacker bifur-
cation points. (Color figure online)



application to a single DOF problem, and [45] for two 
cubic oscillators in 1:1 internal resonance.

In the above simulations, since the forcing term 
is added only to the second oscillator (Eq. 1b), it can 
only cancel the damping term 2𝜉2𝜔2Ẋ2 of the second 
oscillator, and not the one of the first oscillator. We 
then conclude that a phase resonance is not possible 
here without adding a forcing term also to the first 
oscillator (Eq. 1a). This is further illustrated with the 
three-dimensional views of Fig  6, in which one can 
see in the insets that the forced response do not inter-
sect the backbone curves, since they lie in distinct 3D 
planes. A limit condition for a phase resonance would 
be to have no damping in the first oscillator ( �1 = 0 ). 
Those results can be verified by comparing Eqs. (33a, 
33b) and (17a, 17b), which shows that the phase 
resonance can be obtained only with �1 = k� , which 
is possible only if �1 = 0 and �2 = �∕2 (see the first-
order MSM solution of [17]), the latter result being 
consistant with a phase resonance of the second oscil-
lator. These results might have very important practi-
cal applications if one is interested in applying phase 
resonance on an experimental system displaying 1:2 
internal resonance.

3.3  Periodic orbits and 3D manifolds

This section is devoted to illustrating the geometry of 
the nonlinear modes of the system, viewed as periodic 

orbits and invariant Lyapunov subcenter manifolds in 
phase space. The validity limit of the normal form 
is also addressed by highlighting the departure of 
the computed manifolds, following the presentation 
shown in [52].

Families of periodic orbits in the undamped 
case, following the backbone curves, are numeri-
cally computed with the continuation method. 
Fig.  7 shows the obtained results for the initial sys-
tem, given by Eqs.  (1a, 1b). It can be observed that 
the C+ and C− modes have similar shapes, up to a 
change X2 ↦ −X2 , which is consistent with the 
parabolic shapes of the periodic orbits in the (X1,X2) 
plane, as shown in Fig. 1. Note that the phase space 
(X1,X2, Ẋ1, Ẋ2) is four-dimensional, while the mani-
folds are two-dimensional. In order to represent them, 
two different projections in three-dimensional spaces 
are given in Fig.  7a, b, for the perfectly tuned case 
with � = 0 . As shown in Sect. 3.1, if � = 0 , the back-
bone curves of both C+ and C− modes emerge from 
zero X1 = X2 = 0 amplitude, a result consistent with 
the birth of the manifold at the origin of the phase 
space in this case. On the other hand, if � ≠ 0 , one of 
the modes branches from the U2-mode with a pitch-
fork bifurcation, which corresponds to the black orbit 
shown in Fig. 7c.

About this branching, a remark is worth to be 
raised: since the pitchfork is supercritical (see 
Sects.  2.5 and 2.6), after the bifurcation, two stable 

Fig. 6  Three dimensional view, in the space (�,X11∕2,X21) , 
of the forced response and the backbone curves, analogous 
to Fig.  5 with � = 0 . The uncoupled and coupled forced 
responses are in green and orange, respectively, whereas the 
C+ and C− backbone curves are in blue and red, respectively. 

The unstable parts are shown in dashed lines. (a) and (b) show 
different view angles of the same plot to clarify the 3D repre-
sentation. The zooms are selected to highlight that the free and 
forced solution branches do not cross each other. (Color figure 
online)



coupled branches are observed. In fact, those two 
solutions correspond to the two possible values of k 
for each C+ or C− coupled mode in Eq.  (21a). For 
the C+ mode (resp. the C− mode), k must be even 
(resp. odd) and k = 0 and k = 2 (resp. k = 1 and 
k = 3 ) give two different periodic orbits that have the 
same shape in the phase space (so as the correspond-
ing manifolds), but differ because of a � phase shift 
in X1(t).

The validity limit of the third-order real normal 
form approximation can also be ascertained graphi-
cally by comparing the invariant manifolds of the 
initial system, Eq. (1a, 1b), with those obtained with 
the normal form, as given in Eq.  (2). Fig.  8 shows 
the invariant manifolds of the C+ and C− nonlin-
ear modes computed by numerical continuation 
with Manlab. On the one hand, the periodic orbits 
(X1(t),X2(t)) of the initial system (1a, 1b) are shown in 
orange color. On the other hand, the third-order nor-
mal form of Eq.  (2) is used to compute the periodic 
orbits (R1(t),R2(t)) , which are transformed back to the 
initial coordinates using the nonlinear mapping  (3a, 
3b), shown in green. One can observe that the third-
order solution suggests an excellent approximation of 
the reference solution for small amplitudes, consistent 
with the backbones curves shown in Fig. 5. At higher 
amplitudes, the third-order manifold departs from the 
reference solution, in which qualitative changes in the 
solution are observed. One can note in particular, for 
the case considered, that the folding of the original 

manifold shown in Fig.  8d is missed by the third-
order approximation. Higher-orders are then needed 
to recover the folding, as shown for example in [37].

4  Recovering the saturation phenomenon

A well-known feature of a system presenting 1:2 
resonance is the saturation phenomenon, as recalled 
in the introduction. This saturation effect is very well 
described for coupled oscillators including only the 
resonant quadratic monomials, i.e. the terms with 
coefficients g1

12
 and g2

11
 in the initial system (1a, 1b), 

and gave rise to numerous descriptions and applica-
tions in the past, see e.g.  [1, 14–16] and references 
therein. The saturation effect exists when the system 
is forced in the vicinity of the high-frequency mode 
�2 . After a threshold corresponding to the loss of 
stability of the uncoupled U2-mode, the coupled 
solution appears, and is characterized by a constant 
amplitude for X2 when the amplitude of the forcing 
is increased, meaning that all the energy is trans-
ferred to the first oscillator. In terms of the frequency-
response functions, this corresponds to the fact that 
the coupled branch shows a minimum in the vicinity 
of � ≃ �2 , which can be interpreted as an anti-reso-
nance. This case is illustrated in Figs. 9a and 10, for 
the resonant excitation considered in Sect.  3.2, for 
which the amplitude X21 of the H1 harmonics of X2(t) 
shows a valley-like shape, with a minimum around 

Fig. 7  Three-dimensional phase space representation of the 
invariant manifolds (LSM, families of periodic orbits/nonlin-
ear modes) of the initial system given by Eqs.  (1a, 1b), com-
puted by numerical continuation. Parameter values selected as 
in Fig. 5a, b C+ and C− modes, respectively in blue and red, 
for the perfectly tuned case with � = 0 such that �2 = 2�1 . (a) 
Representation in ( X1 , Ẋ1 , X2 ) space, (b) in ( X2 , Ẋ2 , X1 ) space. 

(c) case with a negative detuning, � = −0.05 . The manifold 
in green is the U2-mode (uncoupled solution), which shows a 
branch point with the C+ mode (in blue). The orbit for which 
branching is occuring at the pitchfork bifurcation is highlighted 
in black. A black point shows the origin of the phase space. 
(Color figure online)



� = �2 = 2 , whose amplitude is almost independ-
ent of the forcing (F is multiplied by a factor 3 in 
the plot). Consequently, locking the frequency of the 
excitation around the minimum of X21 and increasing 
the amplitude F leads to no increase of X21 and thus 
its saturation.

However, if non-resonant quadratic terms are 
present in (1a, 1b), it has been observed in [17, 18] 
that this saturation phenomenon is much less effi-
cient, mainly because the anti-resonance is shifted as 
the excitation increases. Consequently, if one locks 
the driving frequency at a given value, then X21 at 
this particular frequency will depend on the driving 
amplitude F, thus severely mitigating the saturation 
phenomenon. The effect of the non-resonant terms is 

illustrated in Figs. 9b and 10, with a shift of the anti-
resonance toward the low frequencies and a symme-
try breaking of the shape of the response curves.

Considering, as explained in Sect.  3.1, that the 
main effect of both the quadratic non-resonant terms 
and the cubic ones is to bend the response curves, one 
could think of using intentionally some cubic terms to 
cancel the bending of the response curves brought by 
the quadratic terms, using the analytical free solution 
of the normal form of Sect. 2.2. This idea shares some 
common points with the one developed in [53], where 
the nonlinearity is also intentionally tuned in order to 
create a nonlinear vibration absorber that extends the 
so-called den Hartog’s equal peak method.

Fig. 8  Invariant manifolds corresponding to the C+ and 
C− nonlinear modes of the system, with the parameters of 
Fig.  5, in the case � = 0 ⇔ �2 = 2�1 . Comparison between 
the numerical solution of the initial system  (1a, 1b) (orange, 
periodic orbits computed with numerical continuation) and the 
one from the third order normal form of Eq.  (2) (green, peri-
odic orbits computed with numerical continuation and back 
transformed with the nonlinear mapping  (3a, 3b)). First row: 

C+ mode, second row: C− mode. First column, space ( X1 , Ẋ1 , 
X2 ); second column, space ( X2 , Ẋ2 , X1 ). The parameters are: 
g1
11

= g1
12

= g2
11

= 1 , g1
22

= g2
12

= g2
22

= 0.03 , and all the cubic 
terms hp

ijk
= 0.1 . The view angle is different in the first and sec-

ond row for clarity reason. A black point shows the origin of 
the phase space. (Color figure online)



(a) (b) (c)

(d) (f)(e)

Fig. 9  Frequency response of the fundamental harmonic 
amplitude X21 of X2(t) (the first row) and the subharmonic 
amplitude X11∕2 of X1(t) (the second row) for several excita-
tion levels, computed numerically with Manlab in the case 
� = 0 (i.e. �2 = 2�1 ). The first column: only the quadratic 
resonant terms are considered ( g1

12
= g2

11
= 1 ). The second 

column: all the quadratic terms are considered with null cubic 
terms ( g1

11
= g1

12
= g2

11
= 1 , g1

22
= g2

12
= g2

22
= 0.1 ). Third 

column: all the quadratic terms are considered with the cubic 
terms are set based on (34a–34d). The damping coefficients 
are �1 = 0.007 and �2 = 0.01 . The uncoupled forced solution is 
plotted in black and the coupled solutions are plotted in green 
and blue. The dotted and solid lines denote the stable and 
unstable solutions, respectively. The dashed lines denotes the 
coupled free solution. (Color figure online)

Fig. 10  Fundamental harmonic amplitude X21 of X2(t) as 
a function of the excitation level F, computed numerically 
with a continuation method, in the perfectly tuned case � = 0 
(i.e. �2 = 2�1 ), and for an external excitation frequency 
� = �2 , corresponding to the cases of Fig. 9. Black line: lin-
ear response with all nonlinear terms cancelled; blue line: only 

the quadratic resonant terms are considered (Fig. 9a); red line: 
all the quadratic terms are considered with null cubic terms 
(Fig.  9b); green line: same quadratic terms with the tuned 
cubic terms of Eqs. (34a–34d) (Fig. 9c). The solid and dotted 
lines denote the stable and unstable solutions, respectively. 
(Color figure online)



In order to do so, the idea is to select the values of 
the cubic coefficients hp

ijk
 in order to cancel the effect 

of the quadratic non resonant terms g1
11

 , g1
22

 , g2
12

 , g2
22

 
in the coefficients Γ2,3,5,6 , such that the backbone 
curve of Eqs. (18a, 18b) degenerate to those obtained 
if only the quadratic resonant terms were present. 
Using the complete expressions of the Γ coefficients 
as reported in the "Appendix C", Eqs. (67b, 67c, 67e, 
67f), the following tuning rule expresses the cubic 
nonlinear coefficients as function of the quadratic 
non-resonant ones, as: 

 Note that only the resonant cubic terms are the 
parameters to be controlled. The other cubic terms are 
not considered since they are eliminated in the nor-
mal form derivation process, in which it is assumed 
that such terms have a negligible effect at the third 
order. To catch the effect of such terms, one has to 
continue the derivation up to the fourth order, which 
is not considered in this study.

To validate the proposed technique, Fig.  9c con-
siders the resonant excitation of Sect.  3.2 with the 
cubic coefficients set as suggested in Eqs. (34a–34d). 
One observes that this leads first to a lock of the anti-
resonance point as the excitation level increases and 
secondly to response curves with a more symmetric 
shape, as compared to Fig.  9b where the cubic cor-
rection terms are not included. In addition, one can 
see that for the first two excitation levels, the fre-
quency response is almost identical to that of Fig. 9a, 
which shows the simplified version of (1a, 1b) where 
only the quadratic resonant terms are considered. 
Differences are finally observed when going up to 
very large amplitudes, which are due to higher-order 
effects (quintic, ..) that are not taken into account in 
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the analytics. As a final result, Fig. 10 shows that the 
present tuning of the cubic terms perfectly cancels the 
effect of the non-resonant quadratic terms, obtaining 
a perfect saturation phenomenon, up to comfortable 
amplitudes for an experimental application, and that 
significantly enhanced the saturation effect obtained 
by considering only the resonant quadratic terms. In 
the numerical example considered here, the green 
and the blue curves almost perfectly match up to an 
amplitude 23 times the threshold forcing level.

5  Conclusion

In this article, the second-order effect of the quad-
ratic non-resonant terms, and the cubic terms, of two 
oscillators featuring 1:2 internal resonance has been 
investigated. A special emphasis has been put on the 
topology of the solution branches for free vibrations 
(backbone curves) and forced–damped response. The 
conjugated effect of the non-resonant quadratic terms 
and the cubic terms, appearing in the same order of 
expansion in the normal form approach, has been 
analyzed with a second-order multiple scales expan-
sion. The overall topology in terms of instabilities, 
bifurcation, and branching is not deeply modified 
as compared to a first-order analysis; since the most 
important features of the 1:2 internal resonance are 
driven by the resonant quadratic terms. However, 
important quantitative features have been deeply ana-
lyzed, complementing already published results on 
the same problem, which were limited to a first-order 
development [10, 13].

In the course of the development, numerous inter-
esting results have been derived. The complete ana-
lytical derivation of the real normal form for a prob-
lem featuring 1:2 internal resonance, and up to the 
third order, has been shown, complementing the 
results given in [11, 38] where the assumptions of no 
internal resonance were retained. The topology of the 
invariant manifolds linked to the backbone curves/
nonlinear modes of the system with 1:2 internal res-
onance has also been investigated. In particular, the 
fact that the branch point of the coupled solution is 
along the uncoupled U2-mode, hence complement-
ing the bifurcation portrait of the conservative prob-
lem, has been highlighted. The validity domain of the 
normal form transform, in both free and forced vibra-
tions, is also assessed by comparisons to numerical 



solutions. Finally, the connection between the free 
and the forced responses of the system has been ana-
lyzed, with possible future applications in phase reso-
nance testing of structures with internal resonances 
[45, 51].

The main application of the analysis presented 
herein is the improvement of the saturation effect, 
typical of systems featuring 1:2 internal resonance, 
and that has already attracted attention in the past in 
order to design an effective method for passive vibra-
tion control. In particular, the simulations show that 
when the vibration amplitudes increase, cubic non-
linearities cannot be neglected anymore, resulting in 
numerous effects that have been analyzed with the 
present developments, in particular the bending of 
all backbone curves (uncoupled and coupled). Due to 
the combined effects of quadratic non-resonant and 
cubic terms, the overall symmetry of the response is 
broken, the shape of the frequency response curves 
is importantly modified, and the minimum of the 
coupled branch, denoted as a sort of anti-resonance, 
depends strongly on the amplitude, thus destroy-
ing the perfectness of the saturation effect. A tuning 
methodology, involving quadratic non-resonant terms 
and cubic terms, has thus been proposed in order to 
recover this saturation effect and enlarge its range of 
validity, by giving back a more symmetric shape to 
the frequency response functions.
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A Relationships between nonlinear coefficients

This appendix details the known relationships exist-
ing between the coefficients of the monomials given 
in Eq. (1) when the internal force is assumed to derive 
from a potential. In such case, the potential energy is 
a quartic function whose general expression reads:
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The internal forces are found by deriving this expres-
sion with respect to X1 and X2 , which leads to the fol-
lowing relationships between the coefficients: 

B Detailed calculation of the normal form

This appendix is devoted to the complete presenta-
tion of the calculations needed to arrive at the nor-
mal form given in Eq.  (2), starting from the origi-
nal set of two coupled nonlinear oscillators, Eq.  (1). 
The calculation follows the general guidelines given 
in  [11, 38], and is adapted here to take into account 
the additional condition given by the presence of a 
1:2 internal resonance between the two eigenfrequen-
cies of the system. This resonance condition being 
on the second-order terms will have consequences 
on the calculation of the cubic terms, which needs to 
be properly tracked. Since the normal form calcula-
tion is sequential in nature, the first step consists in 
processing the quadratic terms. To that purpose, let us 
truncate Eq. (1) at the second-order of the nonlinear-
ity, and rewrite them as a first-order problem in time, 
in order to make clearly appear the contributions due 
to the two independent variables displacement and 
velocity: 
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 A quadratic, indentity-tangent, nonlinear change of 
coordinates, is first introduced in order to cancel as 
much as possible the nonlinear terms in Eq.  (37). 
New variables ( Ui , Vi ) are introduced as: 

 In these equations, the introduced coefficients ap
ij
 , bp

ij
 , 

and �p
ij
 , for i, j, p=1, 2; are unknowns and will be set 

according to the idea of canceling non-resonant 
monomials in the equations of motion. To that pur-
pose, Eq. (38) are differentiated with respect to time 
and introduced in  (37). Identification of the same 
monomials leads to the values of the coefficients that 
can be used. Let us first recall the general solution 
reported in [11, 38] for the case where no internal res-
onance exists between �1 and �2 . One obtains:

In the case of the 1:2 internal resonance condition 
(i.e., �2 ≈ 2�1 ), it appears that the coefficients a1

12
 , 

b1
12

 , �1
12

 , �1
21

 , a2
11

 , b2
11

 , and �2
11

 are singular since their 

(38a)
X1 = U1 + a

1

11
U

2

1
+ a

1

12
U1U2 + a

1

22
U

2

2

+ b
1

11
V
2

1
+ b

1

12
V1V2 + b

1

22
V
2

2
,

(38b)
Y1 = V1 + �1

11
U1V1 + �1

12
U1V2 + �1

21
U2V1 + �1

22
U2V2,

(38c)
X2 = U2 + a

2

11
U

2

1
+ a

2

12
U1U2 + a

2

22
U

2

2

+ b
2

11
V
2

1
+ b

2

12
V1V2 + b

2

22
V
2

2
,

(38d)
Y2 = V2 + �2

11
U1V1 + �2

12
U1V2 + �2

21
U2V1 + �2

22
U2V2.

(39)

a1
11

=
−g1

11

3�2
1

, b1
11

=
−2g1

11

3�4
1

, �1
11

=
2g1

11

3�2
1

, �1
21

=
g1
12

4�2
1
− �2

2

,

a1
12

=
g1
12

�2
2
− 4�2

1

, b1
12

=
2g2

12

�2
2
(�2

2
− 4�2

1
)
, �1

12
=

g1
12
(2�2

1
− �2

2
)

�2
2
(4�2

1
− �2

2
)
, �2

21
=

g2
12
(�2

1
− 2�2

2
)

�2
1
(�2

1
− 4�2

2
)
,

a1
22

=
g1
22
(2�2

2
− �2

1
)

�2
1
(�2

1
− 4�2

2
)
, b1

22
=

2g1
22

�2
1
(�2

1
− 4�2

2
)
, �1

22
=

2g1
22

4�2
2
− �2

1

,

a2
11

=
g2
11
(�2

2
− 2�2

1
)

�2
2
(4�2

1
− �2

2
)
, b2

11
=

2g2
11

�2
2
(�2

2
− 4�2

1
)
, �2

11
=

2g2
11

4�2
1
− �2

2

,

a2
12

=
g2
12

�2
1
− 4�2

2

, b2
12

=
2g2

12

�2
1
(�2

1
− 4�2

2
)
, �2

12
=

g2
12

4�2
2
− �2

1

,

a2
22

=
−g2

22

3�2
2

, b2
22

=
−2g2

22

3�4
2

, �2
22

=
2g2

22

3�2
2

.

denominators contains the term (�2 − 2�1) . In such 
case, the remedy is to set all these coefficients to zero. 
The coefficients used in Eq.  (3) in the main text are 
thus those given in Eq.  (39), except for the singular 
ones that are replaced by:

As a consequence, the associated resonant second-
order monomials, which are here g1

12
X1X2 and g2

11
X2
1
 , 

cannot be eliminated from the normal form, in con-
trary to the other four quadratic terms. After this first 
step, one is thus able to write the normal form of 
the problem with 1:2 resonance, up to the quadratic 
terms, as: 

 The next step of the calculation is to rewrite Eq (41) 
up to the cubic terms. Besides the original cubic 
terms with coefficients hp

ijk
 , present in Eq  (1), new 

cubic terms will appear due to the nonlinear nature of 
the change of coordinates, where products involving 
linear and quadratic terms will produce new cubic 

(40)a1
12

= b1
12

= �1
12

= �1
21

= a2
11

= b2
11

= �2
11

= 0.

(41a)U̇1 = V1 + O(U3
i
,V3

i
),

(41b)V̇1 = −𝜔2
1
U1 − g1

12
U1U2 + O(U3

i
,V3

i
),

(41c)U̇2 = V2 + O(U3
i
,V3

i
),

(41d)V̇2 = −𝜔2
2
U2 − g2

11
U2

1
+ O(U3

i
,V3

i
).



terms. Let us first focus on the processing of these 
new terms. In the calculation, the derivatives of 
Eq.  (38) with respect to time need to be computed. 
The derivative of quadratic terms (e.g. V2

1
 ) makes 

appear products involving the time derivative ( 2V1V̇1 
in this case). To eliminate time, one can simply use 
Eq. (41), such that, up to order four, one can write for 
the monomial considered as an example: 
V1V̇1 = −𝜔2

1
U1V1 − g1

12
U1U2V1 + O(U4

i
,V4

i
) , hence 

making appear the new expected cubic terms. Repeat-
ing this procedure for the four equations, and using 
Eq.  (40) to simplify the expressions, one easily 
arrives at: 

 Note that the obtained cubic terms in (42) are solely 
due to the presence of the 1:2 internal resonance con-
dition. Importantly, those terms were not present in 
the previous calculations shown in [11, 38], led under 
the specific assumption of no internal resonance. This 
means that the general guidelines provided in [11, 38] 
to derive the normal form can be followed, provided 
the changes underlined here to take correctly into 
account a 1:2 resonance.

At this stage, one can observe that the first and 
third lines, Eqs. (42a)–(42c), are not as simple as they 
were at the starting point, see e.g. Eq. (37), underlin-
ing a simple link between displacement and velocity. 
To recover this and obtain a more convenient expres-
sion of (42a)-(42c), one can define W1 and W2 as: 

(42a)U̇1 = V1+2b
1
11
g1
12
U1U2V1 + 2b1

22
g2
11
U2

1
V2,

(42b)
V̇1 = −𝜔2

1
U1 − g1

12
U1U2+𝛾

1
11
g1
12
U2

1
U2 + 𝛾1

22
g2
11
U2

1
U2,

(42c)
U̇2 = V2+b

2
12
g1
12
U1U2V2 + b2

12
g2
11
V1U

2
1
+ 2b2

22
g2
11
U2

1
V2,

(42d)
V̇2 = −𝜔2

2
U2 − g2

11
U2

1
+𝛾2

12
g2
11
U3

1
+ 𝛾2

21
g1
12
U1U

2
2
+ 𝛾2

22
g2
11
U2

1
U2.

 such that the system (42) can be rewritten as: 

 As mentioned earlier, Eq.  (44) refer to the problem 
up to cubic nonlinearity where only the terms added 
by the presence of the 1:2 resonance have been 
tracked. We are now in the position of rewriting the 
complete system up to the third order, on which the 
next step of the normal transform could be applied by 
vanishing the non-resonant cubic monomials thanks 
to a third-order nonlinear change of coordinates. To 
that purpose, one simply needs to track the cubic 
terms coming from the original system with hp

ijk
 coef-

ficients, and those created by the quadratic nonlinear 
change of coordinate and appearing without the sec-
ond-order internal resonance. This leads to the fol-
lowing equations: 

(43a)W1 = V1 + 2b1
11
g1
12
U1U2V1 + 2b1

22
g2
11
U2

1
V2,

(43b)
W2 = V2 + b2

12
g1
12
U1U2V2 + b2

12
g2
11
V1U

2
1
+ 2b2

22
g2
11
U2

1
V2,

(44a)U̇1 = W1,

(44b)

Ẇ1 = −𝜔2
1
U1 − g1

12
U1U2 + 𝛾1

11
g1
12
U2

1
U2

+ 𝛾1
22
g2
11
U2

1
U2 + 2b1

11
g1
12
(W2

1
U2

+ U1W2W1 − U2
1
U2𝜔

2
1
) + 2b1

22
g2
11
(2U1W1W2 − U2

1
U2𝜔

2
2
)

+ O(U4
i
,W4

i
),

(44c)U̇2 = W2,

(44d)

Ẇ2 = −𝜔2
2
U2 − g2

11
U2

1
+ 𝛾2

12
g2
11
U3

1

+ 𝛾2
21
g1
12
U1U

2
2
+ 𝛾2

22
g2
11
U2

1
U2

+ b2
12
g1
12
(W1U2W2 + U1W

2
2
− U1U

2
2
𝜔2
2
)

+ b2
12
g2
11
(−𝜔2

1
U3

1
+ 2U1W

2
1
)

+ 2b2
22
g2
11
(2U1W1W2 − U2

1
U2𝜔

2
2
) + O(U4

i
,W4

i
).

(45a)U̇1 = W1,

(45b)

Ẇ1 = −𝜔2
1
U1 − g1

12
U1U2 − (h1

111
+ A1

111
)U3

1
− (h1

112
+ A1

112
− D1

112
)U2

1
U2

− (h1
122

+ A1
122

)U1U
2
2
− (h1

222
+ A1

222
)U3

2
− B1

111
U1W

2
1
− B1

122
U1W

2
2

− (B1
112

− E1
112

)U1W1W2 − (B1
211

− E1
211

)U2W
2
1
− B1

212
U2W1W2

− B1
222

U2W
2
2
+ O(U4

i
,W4

i
),



 In these equations, the coefficients Ap

ijk
 and Bp

ijk
 , with 

i, j, k, p = 1, 2 ; are the same as those already reported 
in [11, 38], meaning that they arise from the compu-
tation of the non internally resonant case. Their gen-
eral expressions are the same as reported in [11, 38] 
and read: 

 As compared to the case without internal resonance, 
one can note that the general expression is exactly 
similar, but one has just to take care that due to the 
1:2 resonance, some of the ap

ij
 , bp

ij
 , �p

ij
 coefficients van-

ish following Eq. (40).
On the other hand, the coefficients Dp

ijk
 and Ep

ijk
 , 

with i, j, k, p = 1, 2 , comes from Eq. (45), and are only 
due to the presence of the 1:2 internal resonance. 
They read:

(45c)U̇2 = W2,

(45d)

Ẇ2 = −𝜔2
2
U2 − g2

11
U2

1
− (h2

111
+ A2

111
− D2

111
)U3

1
− (h2

112
+ A2

112
− D2

112
)U2

1
U2

− (h2
122

+ A2
122

− D2
122

)U1U
2
2
− (h2

222
+ A2

222
)U3

2
− (B2

111
− E2

111
)U1W

2
1

− (B2
122

− E2
122

)U1W
2
2
− (B2

112
− E2

112
)U1W1W2 − B2

211
U2W

2
1

− (B2
212

− E2
212

)U2W1W2 − B2
222

U2W
2
2
+ O(U4

i
,W4

i
).

(46a)A
p

ijk
=

N
∑

l≥i

g
p

il
al
jk
+

N
∑

l≤i

g
p

li
al
jk
,

(46b)B
p

ijk
=

N
∑

l≥i

g
p

il
bl
jk
+

N
∑

l≤i

g
p

li
bl
jk
.

(47)

D1
112

= �1
11
g1
12
+ �1

22
g2
11
− 2b1

11
g1
12
�2
1
− 2b1

22
g2
11
�2
2
,

D2
111

= �2
12
g2
11
− b2

12
g2
11
�2
1
,

D2
112

= �2
22
g2
11
− 2b2

22
g2
11
�2
2
,

D2
122

= �2
21
g1
12
− b2

12
g1
12
�2
2
,

E1
112

= 2b1
11
g1
12
+ 4b1

22
g2
11
,

E1
211

= 2b1
11
g1
12
,

E2
111

= 2b2
12
g2
11
,

E2
122

= b2
12
g1
12
,

E2
112

= 4b2
22
g2
11
,

E2
212

= b2
12
g1
12
.

The last step of the computation of the real normal 
form up to cubic terms consists of applying a third-

order nonlinear change of coordinates in order to 
cancel all non-resonant cubic monomials in (45). As 
already noted, for example, in [11, 12, 38], the main 
difference with second-order is the presence of trivial 
resonances at the cubic order. Due to the fact that the 
eigenspectrum is composed of pairs of purely imagi-
nary complex conjugate numbers, trivial resonances 
are always fulfilled at third order so that numerous 
monomials cannot be cancelled whatever the values 
of the eigenvalues. This is in contrast to quadratic 
terms where, in case of no second-order internal reso-
nance, all the terms can be cancelled by the change 
of coordinate. Here the procedure simply follows the 
general guidelines given in [11, 12, 38]. The nonlin-
ear change of coordinates is introduced as: 

 To derive the expressions of the unknown coeffi-
cients rp

ijk
 , up

ijk
 , �p

ijk
 , and �p

ijk
 , with i, j, k, p = 1,… , 2 ; 

introduced in Eq.  (48), one has to differentiate (48) 
with respect to time and report in the equations of 
motion, Eq.   (45). Identifying the monomials term-
by-term leads to explicit expressions for the 
unknowns, some of them being set directly to zero 
because of the trivial resonances. Interestingly, this 
step of the calculation exactly follows the guidelines 
already provided in  [11, 12, 38]. Hence the general 
formula can be simply used without changes.

After this calculation, most of the cubic monomi-
als present in Eq. (45) can be cancelled by the nonlin-
ear change of coordinates, the only remaining being 
linked to trivial resonances. Finally, the normal form, 
up to the third order, and with the 1:2 internal reso-
nance taken into account, reads: 

(48a)Up = Rp +

N
∑

i=1

N
∑

j≥i

N
∑

k≥j

r
p

ijk
RiRjRk +

N
∑

i=1

N
∑

j=1

N
∑

k≥j

u
p

ijk
RiSjSk,

(48b)

Wp = U̇p = Sp +

N
∑

i=1

N
∑

j≥i

N
∑

k≥j

𝜇
p

ijk
SiSjSk +

N
∑

i=1

N
∑

j=1

N
∑

k≥j

v
p

ijk
SiRjRk .



 One can note that the normal form is equivalent to 
that obtained in [11], except for the additional terms 
E2
112

 and D2
112

 , which comes as a direct consequence 
of keeping the resonant quadratic terms due to the 1:2 
internal resonance.

C Detailed calculation of the Multiple scales 
solution

In this section, we develop the application of the sec-
ond-order MSM to Eq.  (2). The starting point is the 
system given by Eq. (6), that makes appear the scaled 
following coefficients: 

(49a)Ṙ1 =S1,

(49b)

Ṡ1 = − 𝜔2
1
R1 − g1

12
R1R2 − (h1

111
+ A1

111
)R3

1
− (h1

122
+ A1

122
)R1R

2
2

− B1
111

R1S
2
1
− B1

122
R1S

2
2
− B1

212
R2S1S2,

(49c)Ṙ2 =S2,

(49d)

Ṡ2 = − 𝜔2

2
R2 − g2

11
R2

1
− (h2

112
+ A2

112
− D2

112
)R2

1
R2 − (h2

222
+ A2

222
)R3

2

− (B2

112
− E2

112
)R1S1S2 − B2

211
R2S

2

1
− B2

222
R2S

2

2
.

(50a)g1
12

= ��1, g2
11

= ��2,

(50b)

h1
111

+ A1
111

= �2�1, h1
122

+ A1
122

= �2�2,

B1
111

= �2�3, B1
122

= �2�4, B1
212

= �2�5,

(50c)
h
2

112
+ A

2

112
− D

2

112
= �2�6,

h
2

222
+ A

2

222
= �2�7, B

2

112
− E

2

112
= �2�8,

The unknowns R1(t) and R2(t) of Eq.  (6) are 
expanded in powers of � as: 

 In addition, the first and second derivatives with 
respect to the initial time t are expressed as: 

 where Dn ≡ �∕�Tn . Substituting Eq.  (51) in (6), 
using (52) and equating the coefficients of like pow-
ers of � yields:

• At order �0 : 

• At order � : 

• At order �2 : 

(50d)B2
211

= �2�9, B2
222

= �2�10.

(51a)
R1(t;�) = r10(T0, T1, T2) + �r11(T0, T1, T2) + �2r12(T0, T1, T2) + O(�3),

(51b)
R2(t;�) = r20(T0, T1, T2) + �r21(T0, T1, T2) + �2r22(T0, T1, T2) + O(�3).

(52a)
d

dt
= D0 + �D1 + �2D2 + O(�3),

(52b)

d2

dt2
= D2

0
+ 2�D0D1 + �2(D2

1
+ 2D0D2) + O(�3),

(53a)D2
0
r10 + �2

1
r10 = 0,

(53b)D2
0
r20 + �2

2
r20 = 0.

(54a)D2
0
r11 + �2

1
r11 = −2D0D1r10 − �1r10r20,

(54b)D2
0
r21 + �2

2
r21 = −2D0D1r20 − �2r

2
10
.

(55a)
D2

0
r12 + �2

1
r12 = −2D0D1r11 − 2D0D2r10 − D2

1
r10 − �1r10r21

− �2r11r20 − �1r
3
10
− �2r10r

2
20
− �3r10(D0r10)

2 − �4r10(D0r20)
2

− �5r20D0r10D0r20,



The solutions of (53a, 53b) are expressed as: 

 where cc stands for the complex conjugate. Upon 

substituting (56) in (54), the elimination of the reso-
nant terms yield the following solvability condition: 

 where the internal detuning is �� = 2�1 − �2 , 
already introduced by Eq.  (8) in the main text to 
quantify the nearness of �2 to 2�1 . With the elimina-
tion of the resonant terms, Eq. (54) are rewritten as: 

 The solutions of Eq. (58) can be expressed as: 

 Note that in the latter equations, both homogeneous 
and particular solutions have been taken into account, 

(55b)
D2

0
r22 + �2

2
r22 = −2D0D1r21 − 2D0D2r20 − D2

1
r20 − 2�2r10r11

− �6r
2
10
r20 − �7r

3
20
− �8r10D0r10D0r20 − �9r20(D0r10)

2

− �10r20(D0r20)
2.

(56a)r10 = A1(T1, T2)e
i�1T0 + cc,

(56b)r20 = A2(T1, T2)e
i�2T0 + cc,

(57a)D1A1 =
i𝛽1Ā1A2

2𝜔1

e−i𝜎T1 ,

(57b)D1A2 =
i�2A

2
1

2�2

ei�T1 ,

(58a)D2
0
r11 + �2

1
r11 = −�1A1A2e

i(�1+�2)T0 + cc,

(58b)D2
0
r21 + 𝜔2

2
r21 = −2𝛽2A1Ā1.

(59a)r11 = B1e
i�1T0 +

�1A1A2

�2(2�1 + �2)
ei(�1+�2)t + cc,

(59b)r21 = B2e
i𝜔2T0 −

𝛽2A1Ā1

𝜔2
2

+ cc.

hence explaining that two terms are present. Indeed, 
homogeneous solutions to (58) leads to the first terms 
with coefficients Bi(T1, T2) , i = 1, 2 ; while the par-
ticular solutions give rise to the other two terms.

The modulation equations at order �2 can now be 
constructed by substituting Eqs.  (59),  (57) and  (56) 
in (55). By canceling the resonant terms, one obtains 
the solvability condition at this order as: 

 with the coefficients Λk defined in the main text by 
Eq. (12a–12d).

The present second-order MSM has the peculiarity 
of the treatment of the homogeneous solution intro-
duced at order � (terms of coefficients Bi in Eq. (59)). 
To derive a solution, one has to find the complex 
amplitudes (A1,A2,B1,B2) , requiring eight real num-
bers, whereas the system has two DOFs and thus only 
four initial conditions. As a consequence, one has 
to find four real additional relationships to close the 
problem. In [54, §4.1] and [1, §2.3.1], considering a 
free Duffing equation, it is shown with a straightfor-
ward expansion that it is equivalent to: (i) consider 
the homogeneous solution of the order � system and 
compute its redundant complex amplitude at the 
end of the process by considering the initial condi-
tions; and (ii) simply discard the homogeneous solu-
tion. In [55, §6.2.1], the MSM, up to second-order, is 
applied to a Duffing equation using method (ii), since 
much less algebra is involved. This issue is precisely 
the subject of  [39], in which second-order MSM is 
applied to several forced one DOFs examples and 
the free vibration of the 2-DOFs system considered 
here, Eq.  (6), but without cubic terms. It is shown 

(60a)
2i𝜔1D2A1 = Λ1A1A2Ā2 + Λ2A

2

1
Ā1

− 𝜎
𝛽1Ā1A2

2𝜔1

e−i𝜎T1 −
[

2i𝜔1D1B1 + (𝛽1Ā1B2 + 𝛽2A2B̄1)e
−i𝜎T1

]

,

(60b)

2i𝜔2D2A2 = Λ3A1A2Ā1 + Λ4A
2

2
Ā2

+ 𝜎
𝛽2A

2

1

2𝜔2

ei𝜎T1 −
[

2i𝜔1D1B2 + 2𝛽2A1B1e
i𝜎T1

]

,



that better solutions, as compared to those obtained 
by other perturbation methods, are obtained by con-
sidering a non-zero homogeneous solution and by 
computing it using conditions based on physical con-
siderations. In particular, the system  (6) is assumed 
to derive from a potential energy (with the relations 
on quadratic and cubic coefficients given in "Appen-
dix  A") and the Bi complex amplitudes are selected 
as functions of Ai , such that the modulation equa-
tions (60) also derives from a potential. This method 
is tested in "Appendix  E" for our system. However, 
it seems to us that this approach is not consistent in 

our case since our initial system (6) does not neces-
sarily derive from a potential. Consequently, as done 
for the free Duffing equation in [55, §6.2.1], we pro-
pose here to simply cancel the homogeneous solution 
( B1 = B2 = 0 ). It is shown in "Appendix E" that the 
obtained solution is more accurate at large amplitude, 
compared to a numerical reference simulation. It must 
also be noted that in [39], a solution with B1 = B2 = 0 
and D2

1
Ai = 0 (which leads to cancel also the terms in 

the second members of Eq. (60) proportional to � ) is 
proposed, as well as in [8, 56, 57] for the same system 
in forced vibrations. Our solution is slightly differ-
ent as we only enforce B1 = B2 = 0 and we compute 
D2

1
Ai with Eq. (57).
Another issue is the treatment of the two time 

scales T1 and T2 since our initial ordinary differential 
equations (ODEs) (6) have been replaced by partial 
differential equations (57),(60) as functions of the two 
time scales (T1, T2) . For simple systems like a free 
Duffing oscillator, it is possible to exactly integrate 
them (see [55, §6.2.1]). However, we prefer here 
recombining them in a single ODE using the chain 
rule (52a) (also called the reconstitution method [39, 
41]), as given by Eq. (9).

The complex-valued amplitudes A1(T1, T2) , 
A2(T1, T2) are expressed in polar form as follows:

Then, by substituting those equations in Eqs.  (57), 
(60) and by using Eq.  (9), the separation of the real 
and imaginary parts yields to: 

 It is convenient to rewrite the above equations as: 

 where

and

Those coefficients can be rewritten as function of the 
initial parameters of the system as 

(61)Ak(T1, T2) =
1

2
ak(T1, T2)e

i�k(T1,T2), k = 1, 2.

(62a)ȧ1 =
𝜀𝛽1a1a2

4𝜔1

[

1 +
𝜀𝜎

2𝜔1

]

sin (2𝜃1 − 𝜃2 + 𝜎T1),

(62b)ȧ2 = −
𝜀𝛽2a

2
1

4𝜔2

[

1 −
𝜀𝜎

2𝜔2

]

sin (2𝜃1 − 𝜃2 + 𝜎T1),

(62c)a1�̇�1 =
𝜀𝛽1a1a2

4𝜔1

[

1 +
𝜀𝜎

2𝜔1

]

cos (2𝜃1 − 𝜃2 + 𝜎T1) − 𝜀2
Λ1a1a

2

2
+ Λ2a

3

1

8𝜔1

,

(62d)a2�̇�2 =
𝜀𝛽2a

2

1

4𝜔2

[

1 −
𝜀𝜎

2𝜔2

]

cos (2𝜃1 − 𝜃2 + 𝜎T1) − 𝜀2
Λ3a

2

1
a2 + Λ4a

3

2

8𝜔2

.

(63a)ȧ1 = Γ1a1a2 sin 𝛾p,

(63b)ȧ2 = −Γ4a
2

1
sin 𝛾p,

(63c)a1�̇�1 = Γ1a1a2 cos 𝛾p + Γ2a
3

1
+ Γ3a1a

2

2
,

(63d)a2�̇�2 = Γ4a
2

1
cos 𝛾p + Γ5a

2

1
a2 + Γ6a

3

2
.

(64)�p = 2�1 − �2 + �T1,

(65)Γ1 =
��1

4�1

[

1 +
��

2�1

]

, Γ4 =
��2

4�2

[

1 −
��

2�2

]

,

(66)

Γ2 = −
�2Λ2

8�1

, Γ3 = −
�2Λ1

8�1

, Γ5 = −
�2Λ3

8�2

, Γ6 = −
�2Λ4

8�2

.



 Using Eq. (64) with (63c,d) to eliminate �1 or �2 , one 
has:

D Stability details

The Jacobian of the modulation equations in polar 
coordinates (63a, 63b),(68) reads:

(67a)Γ1 =
g1
12
(4�1 − �2)

8�2

1

,

(67b)

Γ2 =
1

8�1

[

3h1
111

−

(

2

�2

2

+
1

4�1�2

)

g1
12
g2
11
−

10
(

g1
11

)2

3�2

1

]

,

(67c)
Γ3 =

1

8�1

[

2h1
122

+
16�2

2
− 4�2

1

�2

1
(�2

1
− 4�2

2
)
g1
11
g1
22

−
2g1

12
g2
22

�2

2

+

(

1

4�2

1

+
1

�2(2�1 + �2)

)

(

g1
12

)2
+

4g1
22
g2
12

�2

1
− 4�2

2

]

,

(67d)Γ4 =
g2
11
(3�2 − 2�1)

8�2

2

,

(67e)

Γ5 =
1

8�2

[

2h2
112

+
2

�2

1
− 4�2

2

(

g2
12

)2
−

4g2
11
g2
22

3�2

2

+

(

2

�2(2�1 + �2)
−

1

2�1�2

)

g1
12
g2
11
−

2g1
11
g2
12

�2

1

]

,

(67f)

Γ6 =
1

8�2

[

3h2
222

+
8�2

2
− 3�2

1

�2

1
(�2

1
− 4�2

2
)
g1
22
g2
12
−

10
(

g2
22

)2

3�2

2

]

,

(68)�̇�p = 2𝜔1 − 𝜔2 +

(

2Γ1a2 − Γ4

a2
1

a2

)

cos 𝛾p + (2Γ2 − Γ5)a
2

1
+ (2Γ3 − Γ6)a

2

2

with

For the coupled solutions C+ or C−, sin �p = 0 and 
cos �p = p , which leads to:

(69)J =

⎛

⎜

⎜

⎝

Γ1a2 sin �p Γ1a1 sin �p Γ1a1a2 cos �p
−2Γ4a1 sin �p 0 − Γ4a

2

1
cos �p

J31 J32 J33

⎞

⎟

⎟

⎠

(70)J31 = −2Γ4

a1

a2
cos �p + 2(2Γ2 − Γ5)a1,

(71)J32 =

(

2Γ1 +
Γ4a

2

1

a2
2

)

cos �p + 2(2Γ3 − Γ6)a2,

(72)J33 = −

(

2Γ1a2 −
Γ4a

2

1

a2

)

sin �p.

(73)J =

⎛

⎜

⎜

⎝

0 0 J13
0 0 J23
J31 J32 0

⎞

⎟

⎟

⎠

with

To assess the stability of the uncoupled U2 solution, 
the modulation equations must be rewritten under a 
Cartesian form. To do so, according to [4, 31], we 
define:

(74)J13 = Γ1pa1a2, J23 = −Γ4pa
2

1
, J31 = −2Γ4p

a1

a2

+ 2(2Γ2 − Γ5)a1, J32 = 2Γ1p +
Γ4a

2

1

a
2

2

p + 2(2Γ3 − Γ6)a2.

(75)
p1 = a1 cos

(

�p∕2
)

, q1 = a1 sin
(

�p∕2
)

, p2 = a2.



Differentiating p1 , q1 and p2 with respect to t, one 
obtains:

Then, replacing in the above equations ȧ1 , ȧ2 and �̇�p 
by their values in the polar modulation equations (63) 
and (68), using basic trigonometric identities and 
the definitions (75) of p1 , q1 and p2 , one replaces the 
modulation equations (63) and (68) by: 

 Computing the Jacobian J of the above modulation 
equations and imposing a1 = 0 ⇒ p1 = q1 = 0 for 
the uncoupled U2 solution, one obtains:

with

where a2 = p2 by definition. Its eigenvalues are thus:

E MSM with homogeneous solution and enforced 
Lagrangian

We consider here the approach of [39] that considers 
the homogeneous solutions in Eq.  (59) and enforces 
the modulation Eq.  (60) to derive from a potential. 
This is obtained by enforcing:

(76)ṗ1 = ȧ1 cos(𝛾p∕2) − a1�̇�p∕2 sin(𝛾p∕2), q̇1 = ȧ1 sin(𝛾p∕2) + a1�̇�p∕2 cos(𝛾p∕2), ṗ2 = ȧ2.

(77a)ṗ1 = Γ1p2q1 +
Γ4

2

q1

p2

(

p2
1
− q2

1

)

−

(

Γ3 −
Γ6

2

)

p2
2
q1 −

(

Γ2 −
Γ5

2

)

q1
(

p2
1
+ q2

1

)

−
1

2
(2𝜔1 − 𝜔2)q1,

(77b)q̇1 = Γ1p1p2 −
Γ4

2

p1

p2
(p2

1
− q2

1
) +

(

Γ3 −
Γ6

2

)

p1p
2

2
+

(

Γ2 −
Γ5

2

)

p1(p
2

1
+ q2

1
) +

1

2
(2𝜔1 − 𝜔2)p1,

(77c)ṗ2 = −2Γ4p1q1.

(78)J =

⎛

⎜

⎜

⎝

0 J12 0

J21 0 0

0 0 0

⎞

⎟

⎟

⎠

(79)J12 = −(2�1 − �2)∕2 + Γ1a2 − (Γ3 − Γ6∕2)a
2

2
, J21 = (2�1 − �2)∕2 + Γ1a2 + (Γ3 − Γ6∕2)a

2

2
,

(80)�1 = 0, �2,3 = ±
√

J12J21

(81)
2i�1D1B1 + D2

1
A1 = 0, 2i�1D1B2 + D2

1
A2 = 0,

or 

 One can note that upon substituting (82) in (60), all 
the terms related to B1 and B2 in addition to the terms 
multiplied by � will be eliminated. We arrive at the 
following modulation equations: 

 with 

(82a)B1 =
−𝛽1

4𝜔2
1

A2Ā1e
−i𝜎T1 + cc,

(82b)B2 =
−�2

4�2
2

A2
1
ei�T1 + cc.

(83a)2i𝜔1D2A1 = Λ�
1
A1A2Ā2 + Λ�

2
A2

1
Ā1,

(83b)2i𝜔2D2A2 = Λ�
3
A1A2Ā1 + Λ�

4
A2

2
Ā2,

(84a)

Λ�
1
= �2

1

[

1

4�2

1

−
1

�2(2�1 + �2)

]

− 2�4�
2

2
− 2�2,

(84b)Λ�
2
=

9�1�2

4�2

2

− �3�
2

1
− 3�1,

(84c)

Λ�
3
= 2�1�2

[

1

4�2

1

−
1

�2(2�1 + �2)

]

− 2�6 − 2�9�
2

1
,



 Note that coefficients Λ�
k
 are different than the Λk in 

Eq.  (60). In addition, one can note that the modula-
tion equations in (83a, b) don’t derive from a poten-
tial since Λ�

1
≠ Λ�

3
 even if it is the case for the ini-

tial system (i.e., by setting g1
12

= 2g2
11

 , g2
12

= 2g1
22

 , 

h1
122

= h2
112

 , h2
122

= 3h1
222

 and h1
112

= 3h2
111

 ). This can 

be analyzed by realizing that if one considers the ini-

tial system (1a, 1b) to derivee from a potential, it is 
not necessarily the case for the normal form system 
(2a, 2b) which relies on a truncation from an asymp-
totic development. In particular, if one neglects all 
the cubic terms from ((2a, 2b), one obtains the same 
results as in [39] where the Lagrangian is enforced.

Following the same procedure in Sect.  2.2, the 
modulation equations are expressed in the polar form 
as: 

(84d)Λ�
4
= −3�7 − �10�

2

2
.

 and the autonomous version is obtained by combin-
ing (85c, 85d) with Eq. (11), yielding:

(85a)
da1

dt
=
��1a1a2

4�1

sin �p,

(85b)
da2

dt
= −

��2a
2
1

4�2

sin �p,

(85c)
d�1

dt
=
��1a2

4�1

cos �p − �2
Λ�

1
a2
2
+ Λ�

2
a2
1

8�1

,

(85d)
d�2

dt
=
��2a

2

1

4�2a2
cos �p − �2

Λ�
3
a2
1
+ Λ�

4
a2
2

8�2

,

ω2 2ω1
ω2 2ω1 ω2 = 2ω1

(a) (b) (c)

(d) (e) (f)

Fig. 11  Comparison between the analytical results of the two 
approaches presented in (18a, b) and (87a, b) with the numeri-
cal results computed with Manlab. Only the quadratic resonant 
terms are considered such that g1

12
= g2

11
= 1 with the other 

nonlinear coefficients are set to zero. The backbones are plot-
ted in the planes ( a1 , �nl2 ) and ( a2 , �nl2 ) in the first and second 

row, respectively. The first, second, and third column are the 
results for � = −0.07 , � = 0 , � = 0.07 , respectively. The ana-
lytical results for the C+ and C− modes are plotted in blue and 
red, respectively. The dotted and solid lines are results of (87) 
and (18), respectively. The Manlab results are shown in black 
for the C+ and C− modes. (Color figure online)



Using the same procedure in Sect.  2.2, we can find 
the expressions governing the relation between a1 
and a2 in addition to the expressions of the nonlinear 
modes �nl1 and �nl2 , as: 

 where 

(86)

d�p

dt
=�� + �

(

�1a2

2�1

−
�2a

2

1

4a2�2

)

cos �p

+ �2

(

Λ�
3
a2
1
+ Λ�

4
a2
2

8�2

−
Λ�

1
a2
2
+ Λ�

2
a2
1

4�1

)

.

(87a)a2
1
=

(2�1 − �2)a2 + 2Γ�
1
a2
2
+ (2Γ�

3
− Γ�

6
)a3

2

Γ�
4
+ (Γ�

5
− 2Γ�

2
)a2

,

(87b)�nl1 = �1 + Γ�
1
a2 + Γ�

2
a2
1
+ Γ�

3
a2
2
,

(87c)�nl2 = �2 + Γ�
4

a2
1

a2
+ Γ�

5
a2
1
+ Γ�

6
a2
2
,

(88a)Γ�
1
= p

g1
12

4�1

,

(88b)Γ�
2
=

1

8�1

[

3h1
111

−
9

4�2

2

g1
12
g2
11
−

10

3�2

1

(

g1
11

)2

]

,

(88c)

Γ�
3
=

1

8�1

[

2h1
122

+

(

16�2

2
− 4�2

1

�2

1
(�2

1
− 4�2

2
)

)

g1
11
g1
22
−

2g1
12
g2
22

�2

2

+

(

1

�2(2�1 + �2)
−

1

4�2

1

)

(

g1
12

)2
+

4g1
22
g2
12

�2

1
− 4�2

2

]

,

(88d)Γ�
4
= p

g2
11

4�2

,

(88e)

Γ�
5
=

1

8�2

[

2h2
112

+

(

2

�2

1
− 4�2

2

)

(

g2
12

)2
−

4g2
11
g2
22

3�2

2

+

(

2

�2(2�1 − �2)
−

1

4�2

1

)

g1
12
g2
11
−

2g1
11
g2
12

�2

1

]

,

(88f)Γ�
6
=

1

8�2

[

3h2
222

+

(

8�2

2
− 3�2

1

�2

1
(�2

1
− 4�2

2
)

)

g1
22
g2
12

−
10

(

g2
22

)2

3�2

2

]

,

 Note that the relation �nl2 = 2�nl1 is still satisfied. In 
addition, the solution of R1(t) and R2(t) illustrates the 
same locking properties in the amplitudes and phase 
angles illustrated in Section 2.2.

A comparison is shown in Fig.  11 between the 
analytical results governing the backbone curves of 
both approaches presented in (18a, 18b) and (87b, 
87c), with the numerical solution computed with the 
continuation method implemented in Manlab, which 
is considered as our reference solution. The plots are 
done for positive, negative, and zero values of � to 
underline the effect of the additional term appearing 
in (60a, 60b). Both results match with the numerical 
solution at low amplitudes. However, at higher ampli-
tudes, the first approach used in Sect.  2.2 suggests 
more accurate results as compared to the numerical 
ones, especially for the C+ mode. Namely, the sec-
ond approach that leads to the results in (87b, 87c) 
shows a kind of softening behavior associated with 
the response of the C+ mode at high amplitudes.

References

1. Nayfeh A, Mook D (1979) Nonlinear Oscillations, In:
Pure and applied mathematics. A Wiley Series of Texts,
Monographs and Tracts, Wiley

2. Thomsen JJ (2003) Vibrations and stability. Advanced
theory, analysis and tools, 2nd edn. Springer, Berlin,
Heidelberg

3. Strogatz S (2014) Nonlinear dynamics and chaos, with
applications to physics, biology, chemistry and engineer-
ing, 2nd edn. Westview Press, New-York

4. Nayfeh AH (2000) Nonlinear interactions: analytical,
computational, and experimental methods. Wiley

5. Nayfeh SA, Nayfeh AH (1993) Nonlinear intercations
between two widely spaced modes: external excitation. Int
J Bifurc Chaos 3(2):417–427

6. Nayfeh AH, Mook DT, Marshall LR (1973) Nonlin-
ear coupling of pitch and roll modes in ship motions. J
Hydronaut 7(4):145–152

7. Miles JW (1984) Resonantly forced motion of two quad-
ratically coupled oscillators. Phys D 13:247–260

8. Lee CL, Perkins NC (1992) Nonlinear oscillations of sus-
pended cables containing a two-to-one internal resonance.
Nonlinear Dyn 3:465–490

9. Tien WM, Namachchivaya NS, Bajaj AK (1994) Non-
linear dynamics of a shallow arch under periodic excita-
tion, I : 1:2 internal resonance. Int J Non-linear Mech
29(3):349–366

 10. Gobat G, Guillot L, Frangi A, Cochelin B, Touzé C
(2021) Backbone curves, Neimark–Sacker boundaries and
appearance of quasi-periodicity in nonlinear oscillators:
application to 1:2 internal resonance and frequency combs
in MEMS. Meccanica 56:1937–1969



 11. Touzé C, Thomas O, Chaigne A (2004) Hardening/sof-
tening behaviour in non-linear oscillations of structural
systems using non-linear normal modes. J Sound Vib
273(1–2):77–101

 12. Touzé C (2014) Normal form theory and nonlinear normal
modes: theoretical settings and applications. In: Kerschen
G (ed) Modal analysis of nonlinear mechanical systems,
vol 555. Springer Series CISM courses and lectures, New
York, pp 75–160

 13. Lenci S, Clementi F, Kloda L, Warminski J, Rega G
(2021) Longitudinal-transversal internal resonances in
Timoshenko beams with an axial elastic boundary condi-
tion. Nonlinear Dyn 103:3489–3513

 14. Oueini SS, Nayfeh AH, Pratt JR (1998) A nonlinear
vibration absorber for flexible structures. Nonlinear Dyn
15:259–282

 15. Pai PF, Rommel B, Schulz MJ (2000) Dynamics regu-
lation of a Skew cantilever plate Using PZT Patches
and Saturation Phenomenon. J Intell Mater Syst Struct
11:642–655

 16. Wood HG, Roman A, Hanna JA (2018) The satura-
tion bifurcation in coupled oscillators. Phys Lett A
382:1968–1972

 17. Shami ZA, Giraud-Audine C, Thomas O (2022) A nonlin-
ear piezoelectric shunt absorber with a 2:1 internal reso-
nance: Theory. Mech Syst Sig Process 170:108768

 18. Shami ZA, Giraud-Audine C, Thomas O (2022) A non-
linear piezoelectric shunt absorber with 2:1 internal reso-
nance: experimental proof of concept. Smart Materials
and Structures. online

 19. Jézéquel L, Lamarque CH (1991) Analysis of non-linear
dynamical systems by the normal form theory. J Sound
Vib 149(3):429–459

 20. Neild SA, Champneys AR, Wagg DJ, Hill TL, Camma-
rano A (2015) The use of normal forms for analysing non-
linear mechanical vibrations. Proc R Soc A 373:20140404

 21. Murdock J (2003) Normal forms and unfoldings for local
dynamical systems. Springer Monographs in Mathemat-
ics, New-York

 22. Kahn PB, Zarmi Y (2014) Nonlinear dynamics: explora-
tion through normal forms. Over Books on Physics

 23. Touzé C, Amabili M (2006) Nonlinear normal modes for
damped geometrically nonlinear systems: application to
reduced-order modelling of harmonically forced struc-
tures. J Sound Vib 298:958–981

 24. Vizzaccaro A, Shen Y, Salles L, Blahoš J, Touzé C (2021)
Direct computation of nonlinear mapping via normal
form for reduced-order models of finite element nonlinear
structures. Comput Methods Appl Mech Eng 384:113957

 25. Opreni A, Vizzaccaro A, Frangi A, Touzé C (2021) Model
order reduction based on direct normal form: application
to large finite element MEMS structures featuring internal
resonance. Nonlinear Dyn 105:1237–1272

 26. Haro A, Canadell M, Figueras J-L, Luque A, Mondelo
J-M (2016) The parameterization method for invariant
manifolds. Springer, From rigorous results to effective
computations. Switzerland

 27. Touzé C, Vizzaccaro A, Thomas O (2021) Model order
reduction methods for geometrically nonlinear struc-
tures: a review of nonlinear techniques. Nonlinear Dyn
105:1141–1190

 28. Amabili M (2008) Nonlinear vibrations and stability of
shells and plates. Cambridge University Press

 29. Thomas O, Touzé C, Chaigne A (2005) Non-linear vibra-
tions of free-edge thin spherical shells: modal interaction
rules and 1:1:2 internal resonance. Int J Solids Struct
42(11–12):3339–3373

 30. Muravyov AA, Rizzi SA (2003) Determination of non-
linear stiffness with application to random vibration
of geometrically nonlinear structures. Comput Struct
81(15):1513–1523

 31. Pai PF, Wen B, Naser AS, Schultz MJ (1998) Structural
vibration control using PZT patches and non-linear phe-
nomena. J Sound Vib 215(2):273–296

 32. Leung A, Zhang Q (1998) Complex normal form for
strongly non-linear vibration system exemplified by Duff-
ing: van der Pol equation. J Sound Vib 213(5):907–914

 33. Elphick C, Iooss G, Tirapegui E (1987) Normal form
reduction for time-periodically driven differential equa-
tions. Phys Lett A 120(9):459–463

 34. Wagg DJ (2022) Normal form transformations for struc-
tural dynamics: an introduction for linear and nonlinear
systems. J Struct Dyn 1

 35. Iooss G, Adelmayer M (1998) Topics in bifurcation the-
ory. World Scientific

 36. Neild SA, wagg DJ (2011) Applying the method of nor-
mal forms to second-order nonlinear vibration problems.
Proc R Soc A 467:1141–1163

 37. Vizzaccaro A, Opreni A, Salles L, Frangi A, Touzé C
(2021) High order direct parametrisation of invariant
manifolds for model order reduction of finite element
structures: application to large amplitude vibrations
and uncovering of a folding point. Nonlinear Dynamics.
submitted

 38. Touzé C (2003) A normal form approach for non-linear
normal modes, tech. rep., Publications du LMA, numéro
156, (ISSN: 1159-0947, ISBN: 2-909669-20-3)

 39. Nayfeh AH (2005) Resolving controversies in the applica-
tion of the method of multiple scales and the generalized
method of averaging. Nonlinear Dyn 40:61–102

 40. Clementi F, Lenci S, Rega G (2020) 1:1 internal reso-
nance in a two d.o.f. complete system: A comprehensive
analysis and its possible exploitation for design. Meccan-
ica 55:1309–1332

 41. Luongo A, Paolone A (1999) On the reconstitution prob-
lem in the multiple time-scale method. Nonlinear Dyn
19:133–156

 42. Rosenberg RM (1962) The normal modes of nonlinear
n-degree-of-freedom systems. J Appl Mech 29:7–14

 43. Kerschen G, Peeters M, Golinval JC, Vakakis AF (2009)
Non-linear normal modes, part I: a useful framework
for the structural dynamicist. Mech Syst Sign rocess
23(1):170–194

 44. Manevitch AI, Manevitch LI (2003) Free oscillations in
conservative and dissipative symmetric cubic two-degree-
of-freedom systems with closed natural frequencies. Mec-
canica 38(3):335–348

 45. Givois A, Tan JJ, Touzé C, Thomas O (2020) Backbone
curves of coupled cubic oscillators in one-to-one inter-
nal resonance: bifurcation scenario, measurements and
parameter identification. Meccanica 55:481–503



 46. Guillot L, Lazarus A, Thomas O, Vergez C, Cochelin B
(2018) Manlab 4.0: an interactive path-following and
bifurcation analysis software. tech. rep., Laboratoire de
Mécanique et d’Acoustique, CNRS, http:// manlab. lma. 
cnrs- mrs. fr

 47. Guillot L, Cochelin B, Vergez C (2019) A Taylor series-
based continuation method for solutions of dynamical sys-
tems. Nonlinear Dyn 98:2827–2845

 48. Guillot L, Lazarus A, Thomas O, Vergez C, Cochelin B
(2020) A purely frequency based Floquet-Hill formula-
tion for the efficient stability computation of periodic
solutions of ordinary differential systems. J Comput Phys
416:109477

 49. Opreni A, Vizzaccaro A, Touzé C, Frangi A (2022) High
order direct parametrisation of invariant manifolds for
model order reduction of finite element structures: appli-
cation to generic forcing terms and parametrically excited
systems. Nonlinear Dynamics, submitted

 50. Peeters M, Kerschen G, Golinval JC (2011) Dynamic test-
ing of nonlinear vibrating structures using nonlinear nor-
mal modes. J Sound Vib 220(3):486–509

 51. Denis V, Jossic M, Giraud-Audine C, Chomette B,
Renault A, Thomas O (2018) Identification of nonlinear
modes using phase-locked-loop experimental continuation
and normal form. Mech Syst Sign Process 106:430–452

 52. Lamarque C-H, Touzé C, Thomas O (2012) An upper
bound for validity limits of asymptotic analytical

approaches based on normal form theory. Nonlinear Dyn 
70:1931–1949

 53. Habib G, Detroux T, Viguié R, Kerschen G (2015) Non-
linear generalization of den Hartog’s equal-peak method.
Mech Syst Sign Process 52–53:17–28

 54. Nayfeh AH (1993) Introduction to perturbation tech-
niques, 1st edn. Wiley Classics Library, Wiley-VCH

 55. Nayfeh AH (1973) Perturbation methods. Wiley
 56. Benedettini F, Rega G, Alaggio R (1995) Non-linear

oscillations of a four-degree-of-freedom model of a sus-
pended cable under multiple internal resonance condi-
tions. J Sound Vib 182(5):775–798

 57. Pan R, Davies HG (1996) Responses of a non-linearly
coupled pitch-roll ship model under harmonic excitation.
Nonlinear Dyn 9:349–368

Publisher’s Note Springer Nature remains neutral with regard 
to jurisdictional claims in published maps and institutional 
affiliations.

Springer Nature or its licensor holds exclusive rights to this 
article under a publishing agreement with the author(s) or other 
rightsholder(s); author self-archiving of the accepted manuscript 
version of this article is solely governed by the terms of such 
publishing agreement and applicable law.

http://manlab.lma.cnrs-mrs.fr
http://manlab.lma.cnrs-mrs.fr

	Nonlinear dynamics of coupled oscillators in 1:2 internal resonance: effects of the non-resonant quadratic terms and recovery of the saturation effect
	Abstract 
	1 Introduction
	2 Equations of motion, normal form and multiple scales solution
	2.1 Real normal form up to the third order with a second-order resonance
	2.2 Multiple scales solution: modulation equations
	2.3 Branches of stationary solutions
	2.4 Existence conditions and branching of the coupled solution
	2.5 Stability of the coupled C+ and C− solutions
	2.6 Stability of the uncoupled U2 solution

	3 Backbone curves, frequency response functions and invariant manifolds
	3.1 Backbone curves
	3.2 Forced oscillations: normal form validity and link to the free solutions
	3.3 Periodic orbits and 3D manifolds

	4 Recovering the saturation phenomenon
	5 Conclusion
	Acknowledgements 
	References




