
HAL Id: hal-03789401
https://hal.science/hal-03789401v1

Submitted on 27 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Behavior-Based Consumption Profiles for the
Approximation of the Energy Consumption of Services
Jorge Andrés Larracoechea, Philippe Roose, Sergio Ilarri, Yudith Cardinale,

Sébastien Laborie, Olga Paulina Vara

To cite this version:
Jorge Andrés Larracoechea, Philippe Roose, Sergio Ilarri, Yudith Cardinale, Sébastien Laborie, et al..
Behavior-Based Consumption Profiles for the Approximation of the Energy Consumption of Services.
INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS DEVELOPMENT (ISD 2022),
Aug 2022, Cluj-Napoca, Romania. �hal-03789401�

https://hal.science/hal-03789401v1
https://hal.archives-ouvertes.fr

30TH INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS DEVELOPMENT (ISD2022 CLUJ-NAPOCA, ROMANIA)

Behavior-Based Consumption Profiles for the Approximation of the
Energy Consumption of Services

Jorge Andrés Larracoechea
LIUPPA / E2S – Université de Pau et des Pays de l’Adour
Anglet, France jorge-andres.larracoechea@etud.univ-pau.fr

Philippe Roose
LIUPPA / E2S – Université de Pau et des Pays de l’Adour
Anglet, France Philippe.Roose@iutbayonne.univ-pau.fr

Sergio Ilarri
Instituto de Investigación en Ingeniería de Aragón / I3A – Universidad de Zaragoza
Zaragoza, Spain silarri@unizar.es

Yudith Cardinale
Dpto. de Computación y T.I – Universidad Simón Bolívar
Caracas, Venezuela ycardinale@usb.ve

Sébastien Laborie
LIUPPA / E2S – Université de Pau et des Pays de l’Adour
Anglet, France sebastien.laborie@iutbayonne.univ-pau.fr

Olga Paulina Vara
Universidad Popular Autónoma del Estado de Puebla
Puebla, México olgapaulina.vara@upaep.edu.mx

Abstract

Regardless of the improvements in the efficiency of energy consumption of information and
communication technology, energy consumption will forever be a requisite for software exe-
cution. Consequently, researchers have promoted the development of green and sustainable
software with new development methods and tools. These, however, have been adopted with
limited success due to technicalities and specific language/platform requirements. In this paper
we introduce a portion of our Behavior-Based Consumption Profiles (BBCP). A platform and
language agnostic software behavior profiling approach, aimed at estimating the energy con-
sumption of software from the analysis and design phases of the Software Development Life
Cycle (SDLC). The profiles, in a JSON format, contain properties whose values provide and
control specific descriptions of the software’s behavior. Throughout the paper, these properties
and their underlying mechanics are explained from a perspective of software services, to con-
clude with an experiment where a real-world service is profiled and its BBCP is simulated to
obtain its behavior.

Keywords: SOA, Green Software, Sustainability, Software Profiling, Software Engineering

1. Introduction
Even if the optimization of information and communication technology (ICT) has resulted in
an increasingly frugal software execution, software will always be responsible for the energy
expended to achieve a computational result. Due to it, the researchers in the field of ICT have
segmented the construction of frugal software into a new branch of studies named Green Soft-

LARRACOECHEA ET AL. BEHAVIOR-BASED CONSUMPTION PROFILES FOR ENERGY CONSUMPTION OF SERVICES

ware Development (GSD). In a previous contribution [9], we provided a brief literature review
of the existing tools and methods for the management and assessment of the energy consump-
tion of software, from a perspective of SOA (service-oriented architectures) and taking GSD
into account. In the aforementioned contribution, we concluded that the existing approaches
back, overall, the development and maintenance stages of the Software Development Life Cycle
(SDLC), leaving software architects and designers unsupported during the initial stages of it.

This conclusion motivated us to extend our contribution with further research on the ap-
proaches available for software behavior modelling, making a strong emphasis on GSD and
focusing on service-like units of software. The conclusions of this extended study are available
in [8], and they are the following: (1) most of the existing tools and methods available cater to
specific platforms and frameworks, making their adoption cumbersome. (2) There is a research
gap between the initial stages (analysis and design) of the SDLC and the later stages of it, as
none of the approaches exist within a complete GSD methodology that bridges them. (3) Despite
a previous proof of unawareness [12], the audience targeted by these approaches is increasingly
aware of software’s energy consumption [5], but the adoption of the existing tools and methods
is hindered by their steep learning curve. In the same paper we proposed a set of properties,
most of them qualitative, that constitute what we named a Behavior-Based Consumption Profile
(BBCP). The purpose of the BBCP is to describe the amount of hardware resources a unit of
software consumes, based on how and when the software is used.

We concluded the paper by recognizing several challenges, some of them being: (1) a logic
for interpreting the properties of the BBCP and generating a behavior with them, (2) success-
fully approximating a resource consumption from the behavior and (3) the development of a
tool that facilitates the creation and interpretation of BBCPs, so that a representative resource
consumption can be translated into a final energy consumption per profile.

In the spirit of solving the first challenge, the objectives of this paper are the following:
(1) introduce and define the first parts of the BBCP and (2) explain how they work together
to provide a behavior. Due to the limited extent of this paper, we have restrained the content
covering the first objective to only 15 out of 43 properties. The properties presented in this
paper define a temporal frame and how it evolves, as it establishes when a behavior (or lack of)
occurs. Without the features presented here, our approach would lack a temporal plane where
hardware consumption can be evaluated. Throughout the paper, we will look at software from a
perspective of services: a unit of software responsible for a business function [4].

In Section 2 we discuss the existing approaches dedicated to the description of software’s
behavior, in Section 3 we introduce a set of the elements of our BBCP approach as well as their
mechanics. In Section 4 we create a profile after a real-world example of a service, we assess
its behavior in Section 5, and discuss the integration of our BBCP approach into green software
development methodologies in Section 6, closing the paper with a discussion on future work
and our final conclusions in Section 7.

2. Related Work
Studies on the behavior of software and the behavior with software are not new in the field
of computer science. On one hand, several examples of the latter include taking into account
human personality profiles to generate believable bot behaviors [14], prototyping intelligent
systems that adapt their behavior to match the profile of the user [1] and the simulation of
real user behavior on the internet using machine learning techniques [10]. On the other hand,
several examples of the former include studying the behavior of component-based software
in embedded systems according to different signal flows [6], characterizing profiles with the
behavior of an application and its resources in heterogeneous environments [11] and the creation
of behavioral profiles built on UML (Unified Modeling Language) that specify the behavioral
rules of their architecture [7].

ISD2022 ROMANIA

Most of these works make use of a common technique: profiling. Profiling allows re-
searchers to study a specific part of a subject by taking its descriptive elements and charac-
terizing a profile with them. This, in turn, allows them to deepen their knowledge of the subject
without dealing with its full complexity. For instance, in [11] application’s behavioral profiles
are characterized by a task processing capacity in quantifiable dimensions, such as the RAM and
the storage usage. In [7], the application’s behavioral profile takes place in the form of UML
stereotypes that allow the authors to trace the application’s interactions in an environment. Other
approaches aim at modeling the behavior of services with their own language, aimed specifically
at behavioral dependencies [17].

These works, however, fail to address some aspects that concern the assessment of energy
consumption from a model of the software’s behavior. Even though the execution traces and
signal flows can be taken into account for the behavior of software components, a global and
granular view of the system is required to model the impact that the evolution of the behavior can
cause on its energy consumption. Sequence diagrams are helpful for understanding the behavior
of an application and its interactions with the surrounding elements, but they do not provide
a description of a diachronic behavior that includes elements of uncertainty, such as Human-
Provided Services [15], where people can be actors that affect a system’s behavior. Finally, we
could not find any software behavior modeling language that interprets behavior as a source of
energy consumption.

In addition to the previous observations, we defined several needs that our BBCP approach
has to address to fully emulate the behavior of a service and how its environment affects it: (1)
define the intensity of the usage of a service (how much the service is used) and include a con-
trolled variability, representative of external factors such as HPS or business related constraints.
(2) Constrain the usage of a service to account for and prevent edge cases, such as its over and
under use. (3) Define multiple time frames when the behavior of the service should shift. (4)
Determine how the behavior mutates during specific time frames, to study how the diachronic
behavior of services affects their energy usage. (5) Have a declaration of the operations that
the service executes, what they represent and the requirements that need to be met before they
take place. (6) The operations declared must also provide a declaration of the hardware they
consume, so that operations can be identified as a source of energy consumption. (7) Be able
to declare triggers, inputs and outputs per operation, so that the dependencies among them can
be managed as execution paths, and later studied as energy relationships where data can play a
mayor role.

The fulfilment of these needs is crucial, as it will allow software designers and system ar-
chitects to develop an expectation of how an application and its parts will behave from the
conception phase, and independently of the type of service (or any other unit of software). The
approximation of the energy consumption will give them the give designers and architects a
better understanding of how the software should be shaped in order to reduce their impact on
the consumption of resources and, therefore, the energy consumption. In a direct relation to
these needs, we have concluded that our profile should be characterized by the requirements in
Table 1.

Now that the requirements for our profile have been established, we will continue the pa-
per in the following Section 3 presenting the first 15 properties of our BBCP, as well as the
mechanics they contribute with in compliance to the requirements specified above.

3. Elements of the Behavior Based Consumption Profile
The Behavior-Based Consumption Profile is, simply put, a collection of properties with individ-
ual roles and rules, whose purpose is emulating the behavior of software and how its environ-
ment affects its behavior. These properties, are distributed in 7 main categories that match the
requirements explained in Section 2. Due to the restricted length of this contribution, we will

LARRACOECHEA ET AL. BEHAVIOR-BASED CONSUMPTION PROFILES FOR ENERGY CONSUMPTION OF SERVICES

Table 1. Requirements taken into account to characterize our profiles

Requirement Name Description

1 Usage

Provide a mechanic that defines isochronal points in time when
the use of a service can be decided, and add a stochastic approach
to it that provokes uncertainty, so that external factors such as
Human-Provided Services (HPS)[15] can be taken into account.

2 Run constraints Provide constraints that enforce run time policies, affecting the
future usage of a profile.

3 Expectations Provide a format that defines expectations and collections of
time frames at different scopes, such as days and hours.

4 Variability
Provide sets of values that, during valid expectations, override
or mutate the values responsible for controlling the behavior of
the service.

5 Operations
Provide a solution for declaring as many operations as needed
within the profile, as well as the requirements needed to
execute them.

6 Hardware consumption Allow for a quantitative representation of hardware consumption
per operation.

7 Dependency management Allow the definition of elements within the profile that express
parameter I/O, operation triggers and relationships among operations

limit this section to the explanation of the properties in categories 1 through 3. As we previously
mentioned, the remaining properties that address requirements 4 through 7 will be introduced
in a future contribution. To ease the process of locating each of the properties, a table with rela-
tional graphs that explain the order (place within the BBCP) is available in Figure 4 (Appendix
A), while Table 3 (Appendix A) provides the value type, format and possible values for each
property.

3.1. Requirement 1: Usage

The first category, usage, groups properties that describe the most basic behavior that the profile
will exhibit: the shift between its main states, run and stop. The run state represents the active
use of the profile and the stop state the opposite. The shift between these two states is managed
with evaluations. Evaluations are isochronal points (points at regular intervals) in time when
the shift is decided. They are defined with the property Profile Evaluation Rate (PER), (row 1
of Table 3). Its value, in Hz, provides the frequency at which evaluations are spread throughout
an indefinite amount of time.

Take, as an example, a service that recollects the video feed of a camera each 10 minutes.
A PER representative of this basic behavior would have a value equal to 0.016 Hz. As stated in
Table 1, this category is not complete without including a stochastic solution to model uncer-
tainty. Run base probability (row 2 of Table 3) creates with its value a simple variation in the
behavior of the profile. During an evaluation, the chance for the profile to enter a run state is
evaluated against this probability if and only if the profile is in a stop state. Stop base probability
(row 3 of Table 3) represents a specific probability for the profile to switch to a stop state when
the profile is evaluated under a run state. Continuing the previous example, a movement sensor
could be responsible for triggering the recollection of the camera feed. To model this external
uncertainty, we can set a PER = 1 Hz, a run base probability = 0.3 representative of a sensor
activation, and a stop base probability = 0.5 representative of a lack of sensor activation.

Even though these properties begin to build a behavior that meets the needs of requirement
1, edge cases ant time related constraints still need to be taken into account, as we described in
requirement 2.

3.2. Requirement 2: Run Constraints

The properties in this category is enforce time policies by limiting the time a profile spends
in a run state. They are located within the run constraints category, or row 2 of Figure 4. In

ISD2022 ROMANIA

difference to the previous properties, the restrictions set by run constraints are independent of
evaluations. The first property, minimum run time (row 4 of Table 3), locks the profile in a run
state until its duration reaches the value of this property.

Maximum run time (row 5 of Table 3) limits the maximum duration per run to its value. With
it, the profile is switched immediately to a stop state when the duration of a single run surpasses
the maximum run time. Going back to the video feed recollection service example, we could
set a minimum run time = 300 seconds and a maximum run time = 600 seconds. In this way,
the video recollection would be active for at least 5 minutes and a maximum of 10 continuous
minutes at most per run. In this example, we have constrained the simplest edge cases to prevent
the under and over use of a profile. There are, however, other use cases that need to be taken
into account to allow other time-related constraints that alter the behavior to be expressed.

For instance, a service could have a limited quota of time that it can spend in an active state
throughout a period of time. The property quota (row 6 of Table 3) is responsible for it, as it
limits the total accumulated run time of a profile, independently of how many times the profile
enters a run state. Once a profile’s accumulated run time reaches this value, it is immediately
switched to a stop state and the profile’s evaluation is suspended. We call this mechanic a
“depleted quota". In our example, we could set a quota for video feed recollection equal to
7200 seconds. Therefore, the profile could spend a total of 7200 accumulated seconds of run
time before depleting its quota. In order to replenish a depleted quota, the Cooldown (row 7 of
Table 3) property defines the total time the profile should suspend its evaluations. To illustrate
this pair of properties, let us consider a video streaming service inside of an application of the
like of Netflix. As an example, a free user account could be assigned a quota of 3600 seconds
for streaming and a cooldown of 3600 seconds. As we can see, the flexibility of the properties
in this category allows us to consider functional and non-functional requirements alike.

Now that we have explained how the properties above restrict the run time of a profile,
further detail should be employed to fully satisfy requirement 3, as time frames constraint the
feasibility of every mechanic described so far.

3.3. Requirement 3: Expectations

The properties in this category are responsible for expectations. Expectations are collections of
time frames and time frames are bounded periods of time when specific shifts in behavior occur.
In the BBCP, 2 different definitions of time frames exist: cycles and events (rows 3 through 5 of
Figure 4). Cycles, as the name states, are responsible for dictating isochronal cyclic shifts in the
behavior through time. For example, a cycle could shift the behavior of a profile every weekend
for each week. Events, however, are single unrepeatable shifts in the behavior; for example, a
specific date in time. The multiplicity of expectations allows multiple cycles and events to exist
per profile. The contents of cycles and events continue in the following sub-sections.

Cycles

There are 2 properties that complete the definition of a cycle: scale and days. Scale (row 10 of
Table 3) is responsible for setting a bound of days within cycles can be defined. For example,
setting the scale equal to 7 would imply that time for the cycle is counted in sets of 7 days. The
Days (row 9 of Table 3) property is used to precise a selection or range of days of the scale when
the cycle is valid. Revisiting our streaming service example, if we set a scale equal to 7, one
selection of days could represent the weekends: [6-7] and another selection the rest of the week:
[1-5]. Therefore, we could precise a general shift in behavior depending on the day of the week.

LARRACOECHEA ET AL. BEHAVIOR-BASED CONSUMPTION PROFILES FOR ENERGY CONSUMPTION OF SERVICES

Events

Events consist of three basic properties: scale, initial day and ending day. The Scale property
(row 10 of Table 3) sets an absolute reference of time for the event to take place. For example,
setting the scale to 365 would define a year of reference for events to take place. The Initial
day (row 11 of Table 3) property defines a specific number of day in which the time frame for
the event is started. The ending day, as the name implies, sets the number of day in which the
event is finished. Going back to our example, events could mark specific shifts in the behavior
of the streaming service during new content release. For instance, if we consider a scale equal
to 30, we could have 2 different events for content release, one with an initial date on day 14
and ending date on day 15, and another one with an initial date on day 29 and an ending date on
day 30.

Even though at this point we are able to create bounds of days, we still need to refine our time
frames by creating a selection at our second level of granularity: hours. In order to achieve this,
we distributed these properties into their own instanceable sub-category: timed expectations, as
seen in row 5 of Figure 4.

Timed Expectations

Timed expectations define a shift in the profile’s behavior in an hourly basis, as we previously
defined in requirement 3. The multiplicity of this set of properties allows us do define several
instances of it per event and per cycle. The time range property (row 13 of Table 3) allows
the bounding of time within a specific selection of single hours or ranges of hours. Once a
time range has been selected, the first property to shift the behavior of the profile during it is
the profile evaluation rate override (similar to row 1 of Table 3). This property overrides with
its value the original PER, increasing or decreasing the frequency of the evaluations. The run
probability override property (row 14 of Table 3) overrides the profile’s run base probability
with its value, while the stop probability override (row 15 of Table 3) does the same to the
profile’s stop base probability.

In the following section, we will present an example of a BBCP we created to showcase how
these and the previous properties we explained aggregate to a final representation of behavior.

4. BBCP Example
In order to provide a useful example of how each set of properties of the BBCP translate into
a specific behavior, we decided to profile a service that plays a major role in a Video Game
Streaming Application (VGSA). A VGSA is a video game execution application consisting of
a cloud computing architecture. In it, a constant exchange of data between the cloud and the
client takes place. The cloud (a computer cluster in the network) receives peripheral data input
from the client and performs graphics processing tasks with it. The cloud, in turn, provides the
client with the video and audio data that the client uses in turn as an input. This sequence is
perpetuated in a constant feedback loop until the user quits the application.

We chose this application due to its increased adoption and its reliance on human behav-
ior, as big technology and software development companies such as Google (Stadia), Nvidia
(GeForce Now) and Sony (PS Now) compete to put their infrastructures at the consumers’ dis-
posal to through their own VGSA, lifting the hardware requirements from the consumers. Even
though this application can be decomposed into several services, the service we will profile is
the game stream service, responsible for the feedback loop between the client and the cloud
after a game is selected off a catalogue of available games. Furthermore, we will profile the
constrained usage that a “free" user (a trial account) would generate on the service by using run
constraints.

The data fragments required to characterize our profile are the following: (1) a video frame

ISD2022 ROMANIA

rate, (2) time restrictions based on the type of user and, due to the nature of these applications
where the usage is dictated by the users, (3) data on the service usage throughout the day.

The video frame rate relies greatly on the available network bandwidth the user has at his
disposal [2]. We selected a value equal to 60 frames per second in order to model ideal network
conditions on the user’s side, but the profile consist of a variable PER to simulate a spotty
network. This was achieved by overriding the PER at different time ranges. For the second
data fragment, time restrictions, we chose a quota equal to 1 hour. This limit was selected
after the restriction of the “free" user account in Nvidia’s VGSA, GeForce Now. We added
a cooldown equal to 1 hour to deliberately constraint the profile further, and observe how the
mechanic restricts the total run time. For the final data fragment, service usage throughout time,
we consulted the total active users throughout a week’s day and a weekend’s day for the most
played game at the time. This information was obtained from Steam Charts [16], a website that
analyses the usage data of the most popular online digital games distribution platform, Steam,
owned by Valve. The plots of both of the samples are available in Figure 5 and Figure 6, where,
the X axis represents the change in time and the Y axis the amount of active concurrent players.

These 3 basic fragments of data allowed us to charaterize a BBCP, available in its JSON
format below:

{"Usage": {
"profile evaluation rate": "60",
"run base probability": "0.5",
"stop base probability": "0.5",
"Run constraints": {

"minimum run time": "600",
"maximum run time":"3600",
"quota": "3600",
"cooldown":"3600"

}},
"Expectations": {

"Cycles": [{
"scale":"7",
"days":"[1-5]",
"Timed expectations": [{"time range": "[0-8]",

"profile evaluation rate override":"60",
"run probability override": "0.1",
"stop probability override": "0.9"

},{"time range": "[8-16]",
"profile evaluation rate override":"45",
"run probability override": "0.3",
"stop probability override": "0.7"},{
"time range": "[16-23]",
"profile evaluation rate override":"30",
"run probability override": "0.9",
"stop probability override": "0.1"}]},{

"scale":"7",
"days":"[6-7]",
"Timed expectations": [{"time range": "[0-8]",

"profile evaluation rate override":"60",
"run probability override": "0.3",
"stop probability override": "0.7"

},{"time range": "[8-12]",
"profile evaluation rate override":"50",
"run probability override": "0.5",
"stop probability override": "0.3"},
{"time range": "[12-23]",
"profile evaluation rate override":"45",

LARRACOECHEA ET AL. BEHAVIOR-BASED CONSUMPTION PROFILES FOR ENERGY CONSUMPTION OF SERVICES

"run probability override": "0.9",
"stop probability override": "0.1"}]}]}

}

5. Results
We created a system model constituted by the properties and mechanics presented during sec-
tion 3. The objective of this experiment was to prove that the sample of the properties of the
BBCP presented in this paper can aggregate to an expected behavior constrained by well defined
frames of time. The simulator we used to model our system is Insight Maker, a "general-purpose
web-based simulation and modeling tool" [3]. We chose Insight Maker due to its low learning
curve, high flexibility, collaborative features, support of system dynamics and, last but not least,
free and open source nature. The resulting model for our experiment is accessible through the
following URL: https://insightmaker.com/edit/3Rf21SBOHcAntcT3nPojDa
/access. Our model was fed with the JSON format of the profile in section 4. We decided
to scale down the PER of our example to 1/100 of the original value to maintain a good per-
formance during the simulation. After making sure that the simulation executed correctly, we
sampled a day of the first cycle.

Fig. 1. A chart of the quota and cooldown con-
straints’ values over time

Fig. 2. A chart of timed expectations entering
into effect at their specific time ranges

The analysis of the behavior in this sample can be divided into 3 main observations: re-
spected constraints, matched expectations, and final run time obtained. In Figure 1, we can
observe how the quota and cooldown behaviors match the current run time of Figure 7. Further-
more, the run time is never less than 600 seconds long unless the quota is depleted, or more than
3600 seconds (per run instance or accumulated run). The constrains are, therefore, respected
with success. In Figure 2, evidence for the success of the profile’s expectations is observed. The
main state probabilities as well as the profile’s PER are altered through time, in accordance to
the time range of each timed expectation of the profile. Finally, an accumulated run time equal
to 43200 seconds is obtained.

5.1. Brief Discussion

As it can be seen in the current run time of Figure 7, the state of the profile is constantly
switched without spending a significant amount of time in a stop state, resulting in a high ac-
cumulated run time. We are aware that this behavior juxtaposes the profile’s frame rate with
the necessity of emulating the users’ behavior as a HPS. This paradigm is solved with a “shell"
profile: a profile that provides a complementary behavior to a rich (completely modeled) profile.
A shell profile with a less intense PER (high frequency over time) could trigger the profile in

https://insightmaker.com/edit/3Rf21SBOHcAntcT3nPojDa/access
https://insightmaker.com/edit/3Rf21SBOHcAntcT3nPojDa/access

ISD2022 ROMANIA

section 4, increasing the fidelity of the behavior. The elements responsible for the solution of
this paradigm will be disseminated in a future contribution.

6. A Design Methodology with BBCP
With the example above, we demonstrate that characterizing the properties presented here re-
quires a reduced amount of knowledge on the behavior of the user and the behavior of the
service, as well as optional business rules that can reflect non-functional requirements that af-
fect the consumption of a service. We envision the BBCP as an approach that, in the near future,
could be incorporated during the analysis and conception phases of the SDLC.

Further development of our approach could provide full-stack green software development
methodologies such as the one proposed in[13] with continuous support along the later stages
of the SDLC, where BBCPs generated along the analysis and design phases are carried on and
re-assessed at each step of the SDLC, as seen in Figure 3. This, in turn, will evolve our BBCP
approach into a exchangeable format of behavior and categorization of energy consumption that
enables systems to adapt to frugal configurations preemptively in self-adaptive systems.

Fig. 3. The model of the inclusion of our approach within the SDLC

7. Conclusions and Future Work
In this paper, we presented 15 out of the 43 properties that constitute a Behavior-Based Con-
sumption Profile. We achieved this by explaining each of their characteristics and mechanics,
as well as their categorical distribution. We also provided an example where we analyzed and
profiled a specific service from a real world video game streaming application, showcasing our
approach and obtaining an expected behavior with it. Even though we believe that our approach
is a step towards sustainable software and systems design, as well as the democratization of
GSD, there are several research directions that are still missing to incorporate it into a green
software development methodology.

The profiling process described above is too conceptual and cumbersome to be adopted with-
out a tool that assists our future users in the process of characterizing a BBCP. In addition to this,
the remaining 28 properties responsible for the requirements 4 through 7 and a final estimation
of energy consumption still require dissemination among the scientific community. Finally, our
approach as a whole still requires validation. We will address, in a future contribution, these re-
search directions towards a cohesive support for green software design and development along
the SDLC.

LARRACOECHEA ET AL. BEHAVIOR-BASED CONSUMPTION PROFILES FOR ENERGY CONSUMPTION OF SERVICES

Acknowledgements
This research has been supported by the project PID2020-113037RB-I00/AEI/10.13039/501100-
011033 and the Government of Aragon (Group Reference T64_20R, COSMOS research group).

References
1. Benton, S., Altemeyer, B., Manning, B.: Behavioural Prototyping: Making Interac-

tive and Intelligent Systems Meaningful for the User. In: 2010 International Confer-
ence on Intelligent Networking and Collaborative Systems. pp. 319–322 (Nov 2010).
https://doi.org/10.1109/INCOS.2010.51

2. Di Domenico, A., Perna, G., Trevisan, M., Vassio, L., Giordano, D.: A network anal-
ysis on cloud gaming: Stadia, GeForce Now and PSNow. Network 1(3), 247–260 (Oct
2021). https://doi.org/10.3390/network1030015, http://arxiv.org/abs/2012
.06774, arXiv: 2012.06774

3. Fortmann-Roe, S.: Insight Maker: A general-purpose tool for web-based model-
ing & simulation. Simulation Modelling Practice and Theory 47, 28–45 (Sep 2014).
https://doi.org/10.1016/j.simpat.2014.03.013

4. IBM: SOA vs. Microservices: What’s the Difference?
https://www.ibm.com/cloud/blog/soa-vs-microservices (May 2021), accessed: 2022-
04-17

5. Jagroep, E., Broekman, J., van der Werf, J.M.E.M., Brinkkemper, S., Lago, P., Blom, L.,
van Vliet, R.: Awakening awareness on energy consumption in software engineering.
In: Proceedings of the 39th International Conference on Software Engineering: Soft-
ware Engineering in Society Track. pp. 76–85. ICSE-SEIS ’17, IEEE Press, Buenos
Aires, Argentina (May 2017). https://doi.org/10.1109/ICSE-SEIS.2017.10, https:
//doi.org/10.1109/ICSE-SEIS.2017.10

6. Kim, J.E., Kapoor, R., Herrmann, M., Haerdtlein, J., Grzeschniok, F., Lutz, P.: Soft-
ware Behavior Description of Real-Time Embedded Systems in Component Based
Software Development. In: 2008 11th IEEE International Symposium on Object and
Component-Oriented Real-Time Distributed Computing (ISORC). pp. 307–311 (May
2008). https://doi.org/10.1109/ISORC.2008.69

7. Koskinen, J., Kettunen, M., Systä, T.: Behavioral profiles-a way to model and vali-
date program behavior. Software: Practice and Experience 40(8), 701–733 (May 2010).
https://doi.org/10.1002/spe.977

8. Larracoechea, J., Roose, P., Ilarri, S., Cardinale, Y., Laborie, S., González, M.: Towards
Services Profiling for Energy Management in Service-oriented Architectures. In: 17th
International Conference on Web Information Systems and Technologies. pp. 209–216
(Jan 2022)

9. Larracoechea, J.A., Roose, P., Illari, S., Laborie, S., Cardinale, y., Gonzalez, M.J.:
Modeling Energy Consumption in SOA: Requirements and Current Status. In: Atelier
“Évolution Des SI” (INFORSID 2021). Dijon, France (Jun 2021)

10. Niu, X., Liu, H., Xin, G., Huang, J., Li, B.: User Application Behavior Se-
quence Generation. In: 2020 IEEE International Conference on Advances in Elec-
trical Engineering and Computer Applications(AEECA). pp. 466–469 (Aug 2020).
https://doi.org/10.1109/AEECA49918.2020.9213508

11. Östberg, P.O.: A Model for Simulation of Application and Resource Behavior in
Heterogeneous Distributed Computing Environments. In: SIMULTECH. pp. 144–151
(2012)

12. Pang, C., Hindle, A., Adams, B., Hassan, A.E.: What Do Programmers Know
about Software Energy Consumption? IEEE Software 33, 1–1 (Jan 2015).

http://arxiv.org/abs/2012.06774
http://arxiv.org/abs/2012.06774
https://doi.org/10.1109/ICSE-SEIS.2017.10
https://doi.org/10.1109/ICSE-SEIS.2017.10

ISD2022 ROMANIA

https://doi.org/10.1109/MS.2015.83
13. Roose, P., Sergio, I., Larracoechea, J.A., Cardinale, Y., Laborie, S.: Towards an inte-

grated full-stack green software development methodology. In: 29th International Con-
ference on Information Systems Development (Sep 2021)

14. Rosenthal, C., Congdon, C.B.: Personality profiles for generating believable bot behav-
iors. In: 2012 IEEE Conference on Computational Intelligence and Games (CIG). pp.
124–131 (Sep 2012). https://doi.org/10.1109/CIG.2012.6374147

15. Schall, D., Truong, H.L., Dustdar, S.: Unifying Human and Software Services
in Web-Scale Collaborations. Internet Computing, IEEE 12, 62–68 (Jun 2008).
https://doi.org/10.1109/MIC.2008.66

16. SteamCharts: Steam charts - counter-stike global offensive.
https://steamcharts.com/app/730#48h (2022), accessed: 2022-04-15

17. Zaha, J.M., Barros, A., Dumas, M., ter Hofstede, A.: Let’s Dance: A Language
for Service Behavior Modeling. In: Meersman, R., Tari, Z. (eds.) On the Move
to Meaningful Internet Systems 2006: CoopIS, DOA, GADA, and ODBASE. pp.
145–162. Lecture Notes in Computer Science, Springer, Berlin, Heidelberg (2006).
https://doi.org/10.1007/11914853_10

Appendix A

Fig. 4. The BBCP properties and their order

LARRACOECHEA ET AL. BEHAVIOR-BASED CONSUMPTION PROFILES FOR ENERGY CONSUMPTION OF SERVICES

Table 2. The most valuable concepts we elaborated on throughout Section 3

Name Description
Behavior Explains when and how the service uses resources.

Time frame A bounded period of time where actions are constrained;
a temporal description of behavior.

Expectations Collections of predefined time frames.
Timed expectations A collection of time frames bounded by hours.

Cycles
A collection of cyclic time frames bounded
by days, with a variable scale and instances of timed
expectations and run constraints.

Events A collection of well bounded, non cyclic time frames
bounded by days; with instances of timed expectations.

Table 3. The BBCP properties and their constraints

Row Name Numeric Range Possible values
1 Profile Evaluation Rate x x ≥ 0 in Hz, if x = 0 the property is ignored.
2 Run Base Probability x 0 ≤ X ≤ 1
3 Stop Base Probability x 0 ≤ X ≤ 1
4 Minimum run time x x ≥ 0 in seconds, if x = 0 the property is ignored.
5 Maximum run time x x ≥ 0 in seconds, if x = 0 the property is ignored.
6 Quota x x ≥ 0 in seconds, if x = 0 the property is ignored.
7 Cooldown x x ≥ 0 in seconds, if x = 0 the property is ignored.
8 Countdown x x ≥ 0 in seconds, if x = 0 the property is ignored.
9 Days x Ranges: [1-7] Selections and ranges: [1-3,6]

10 Scale x x > 0 in days.
11 Initial day x x ≥ 0 if x = 0 the property is ignored.
12 End day x x ≥ 0 if x = 0 the property is ignored.
13 Time range x Ranges: [1-12] Selections and ranges: [1-12,17]
14 Run probability override x 0 ≤ X ≤ 1
15 Stop probability override x 0 ≤ X ≤ 1

Fig. 5. Week’s day concurrent users of the top
game at the time

Fig. 6. Weekend’s day concurrent users of the
top game at the time

Fig. 7. Chart of the total time the profile spent in a run state, as well as per time per run

	Introduction
	Related Work
	Elements of the Behavior Based Consumption Profile
	Requirement 1: Usage
	Requirement 2: Run Constraints
	Requirement 3: Expectations
	Cycles
	Events
	Timed Expectations

	BBCP Example
	Results
	Brief Discussion

	A Design Methodology with BBCP
	Conclusions and Future Work

