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A comparison of robustness and performance of linear and
nonlinear Lanchester dampers

Mohammad Vakilinejad · Aurélien Grolet ·
Olivier Thomas

Abstract In this paper, we study and compare perfor-
mance and robustness of linear and nonlinear Lanch-
ester dampers. The linear Lanchester damper consists
of a small mass attached to a primary system through
a linear dashpot, whereas the nonlinear Lanchester
damper is linked to the primary mass through dry fric-
tion forces. In each case, we propose a semi-analytical
method for computing the frequency response, for dif-
ferent values of the design parameters, in order to eval-
uate the performance and robustness of the two kinds
of damper. Overall, it is shown that linear Lanchester
dampers perform better than nonlinear damper both
in terms of attenuation and robustness. Moreover, the
nonlinear frequency response curves, that include the
intrinsic non-smooth nature of the friction force, may
serve as reference curve for further numerical studies.

Keywords Vibration damping · Lanchester damper ·
Dry friction · Non-smooth dynamical systems ·
Semi-analytical method · Performance · Robustness

1 Introduction

In the engineering and industrial world, a lot of systems
are subjected to oscillatory forces which in turn give
birth to vibrations. Most of the time, those vibrations
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are an inconvenience and one often wants to reduce the
amplitude of vibration to aminimum. Several strategies
(active or passive) can be used to suppress or at least
reduce the vibration amplitude.

Active methods contain sensors, actuators and con-
trol units and require energy sources. These meth-
ods possess excellent properties and efficiencies, but
involve complexities in the design of sensors and actu-
ators (piezoelectric, electromagnetic, hydraulic…) as
well as in the controllers [1], require energy supply
and may be unstable, which may not be suitable for
many applications. Passive or semi passive techniques
such as electromechanical shunts share the same fea-
tures with the advantage of being intrinsically passive
most of the time [2–4].

Passivemethods, on the other hand, are composed of
basic mechanical elements. They are designed to affect
the vibration behavior of a system by either chang-
ing the key overall structural properties such as reso-
nance / antiresonance frequencies or by adding auxil-
iary energy dissipation elements. Viscoelastic elements
[5,6], tuned mass dampers [7] and Lanchester dampers
[8] are among the most known passive methods.

Tuned mass damper has a wide range of applica-
tion. They consist of a small mass being attached to
the primary system through well designed stiffness and
viscous damper. Several tuning strategies are at hand (
[7,9]) to find optimal values for the stiffness and damp-
ing element of the absorber. For rotating machiner-
ies, analogous devices such as pendulum absorbers
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tuned on a particular excitation frequency can also be
used [10,11]. Tuned mass damper performs well at the
design point but are not very robust, and linear Lanch-
ester damper appears to be superior with relation to
robustness. The same results hold for their electrome-
chanical analogs [3,12].

A linear Lanchester damper is simply a tuned mass
damper without the stiffness, i.e., it consists of a small
mass linked to the primary structure only through a vis-
cous dashpot [13]. In application, it is usually used for
rotating systems (e.g., thermal engines), where it con-
sists of a flywheel, generally shaped as a ring, free to
rotate within a casing filled with a fluid with high vis-
cosity, for example, a silicon-based oil [14]. However,
due to inconveniences regardingmaintenance and seal-
ing, another type of damper, which has been proposed
by Lanchester in [15], is used as an alternative in many
applications. The latter uses dry friction forces, instead
of viscous effects, to dissipate energy and thus reduce
vibration levels.

The use of friction force to reduce vibration level
is well established, for example, in turbo machinery,
where compressor or turbine blades are linked to the
disk through dovetail joints which generates friction
[16]. In the case of blisks (monobloc bladed disk), a
friction ring can be used to reduce the vibration ampli-
tude [17]. Friction rings, inserted in special grooves in
train wheels, are also used to reduce the railway squeal
noise [18,19]. In the remaining of the paper, the Lanch-
ester damper with viscous effect will be referred to as a
linear Lanchester damper, and the absorber based on
dry friction force will be referred to as a nonlinear
Lanchester damper, due to the nonlinear non-smooth
nature of the Coulomb friction.

Historically, the case of dry friction seems to have
been studied before the case of linear viscous damp-
ing. Its effect on the motion of a single degree of free-
dom system has been studied in 1931 by Den Har-
tog [20]. Some years before, the same author con-
sidered nonlinear Lanchester dampers including a dry
friction element, with a fairly thorough work [21].
Due to the lack of modern computation and sen-
sor devices, the authors had to involve simplifying
assumptions and their contribution and results were
pioneering for long. Their simplifying assumptions
include constant phase difference of 90 ◦ between the
input torque and the primary system displacement, no
counter effect of the damper-flywheels on the motion
profile in the steady state situation and more impor-

tantly, lack of damping effect in the primary system.
More recently, the results presented in [21] were recon-
sidered by removing assumptions over the phase dif-
ference between the input torque and system displace-
ment and pure sinusoidalmotion profile for the primary
system by Ye in [22]. In their work, they showed that
for an undamped primary system, the results derived
from the energy approach involving all the simpli-
fying assumptions by Den Hartog [21] were close
enough to the exact values. In parallel, the case of
the Lanchester damper with a linear viscous element,
more simple because of its pure linear transfer function,
has been considered and optimized by several works
[13,23,24].

In this paper, we aim to compare the two kinds of
Lanchester absorbers (linear and nonlinear). In Sect. 2,
a linear Lanchester damper is considered. We first
propose an analytical approximation of the attenu-
ation, which is used to derive an approximation of
the optimal design parameters for the absorber. Then,
those results are validated using a numerical approach
allowing to find the “exact” optimal value for the
design parameters. The section ends by the study of
the attenuation and robustness of such a linear Lanch-
ester absorber. Section 3 is dedicated to the study
of a nonlinear Lanchester absorber. We use a semi-
analytical approach similar to the one proposed in
[20] to compute the frequency response of the sys-
tem. Then, the optimal design parameters are obtained
through numerical simulation. Finally, the attenuation
and robustness of nonlinear damper are studied. Sec-
tion 4 is devoted to the comparison between the two
kinds of dampers. The paper ends with some conclud-
ing remarks.

2 Linear Lanchester damper

In this part, one focuses on a primary structure coupled
to a linear Lanchester damper. A single mode approxi-
mation is considered for the primary structure so that it
can be represented by a single degree of freedom with
modal characteristics M , k and c1 [25]. In order to sim-
plify the presentation, a translational system is consid-
ered here. The overall schematic of a such a system
is shown in Fig. 1. The characteristics of the absorber
device are m and c2.



Fig. 1 Schematics of a linear Lanchester absorber connected to
a primary system of mass M

2.1 Governing equations

UsingNewton’s law, one can derive the set of equations
governing the motion of the system in Fig. 1, given as:

Mẍ1 + c1 ẋ1 + kx1 − c2(ẋ2 − ẋ1) = F(t), (1a)

mẍ2 − c2(ẋ1 − ẋ2) = 0. (1b)

The relative displacement xd between the absorber and
the primary structure is defined as:

xd = x2 − x1.

Using the relative displacement, Eqs. (1a) and (1b) can
be rewritten as:

(1 + μ)ẍ1 + μẍd + 2ξω1 ẋ1 + ω1
2x1 = F(t)

M
, (2a)

ẍ1 + ẍd + ζ ẋd = 0, (2b)

where the new parameters ω1, ξ , ζ and μ are given by:

ω1 =
√

k

M
, ξ = c1

2
√
kM

, ζ = c2
m

, μ = m

M
. (3)

Parameters ω1, ξ , μ and ζ are, respectively, the natural
frequency and the damping ratio of the primary system,
the mass ratio and damping coefficient of the linear
Lanchester absorber.

Finally, we consider a harmonic excitation F(t) =
F sin(�t), we introduce a non-dimensional time t̄ and
a non-dimensional displacements x̄i defined as follows
(for i = 1, 2):

t̄ = ω1t, x̄i = kxi
F

. (4)

Substituting the previous parameters into the equation
of motion results in the following non-dimensional
form for the equation of motion:

(1 + μ) ¨̄x1 + μ ¨̄xd + 2ξ ˙̄x1 + x̄1 = sin(ωt̄), (5a)
¨̄x1 + ¨̄xd + λ ˙̄xd = 0, (5b)

withω being the non-dimensional excitation frequency
and λ being the non-dimensional damping coefficient
of the absorber, defined as follows:

ω = �

ω1
, λ = ζ

ω1
= c2

mω1
. (6)

The non-dimensional Eqs. (5a) and (5b) show that there
is only three independent design parameters (μ, λ and
ξ ). Applying Fourier transform to Eqs. (5a) and (5b)
results in the definition of frequency response function
(FRF) H (between the displacement of the primary
structure and the excitation) under non-dimensional
form, given as:

H(ω) = ˆ̄x1(ω)

1

= λ + iω

λ − ω2
(
2ξ + λ(1 + μ)

) + iω(1 + 2ξλ − ω2)
,

(7)

where ◦̂(ω) is the Fourier transform of ◦(t) and i2 =
−1.

As an example, the surface representing the modu-
lus |H(ω)| as a function of the frequency for different
damping values of the absorber is shown in Fig. 2. One
can see that for every value of λ (damping), there is
a corresponding frequency for which |H | is maximum
(resonance point). One can also see that the maximum
of the FRF have a minimum along the λ axis. In other
words, there exists an optimal damping ratio (λopt) for
which the resonance amplitude of the FRF is minimum
(among all other possible FRF). This value creates a
saddle point on the |H(ω)| surface.

2.2 Attenuation of the linear Lanchester damper

Let us start by introducing our efficiency metric. In the
remaining of this paper, in the samemanner than in [3],



Fig. 2 Surface of modulus |H(ω)| for a primary system with
parameters ξ = 0.01 and μ = 0.1

the efficiency of the dampers will be characterized by a
quantity referred to as the attenuation (in dB), defined
as the ratio of the maximum amplitude of the FRF of
a system without damper (λ = 0) over the maximum
amplitude of the FRF of a system with optimal damper
(λ = λopt):

AdB = 20 log

⎡
⎣ max

ω
(|H(ω)|λ=0)

max
ω

(|H(ω)|λ=λopt )

⎤
⎦ . (8)

A graphical interpretation of AdB is depicted on the
right hand side of Fig. 3.

2.2.1 Analytical approximation of the attenuation AdB

For a givenmass ratioμ, theFRFcurves of x1 are shown
in Fig. 3 for different values of λ. When there is no
damping for the primary system (ξ = 0), one observes
the remarkable property that all the FRF curves go
through one particular point (denoted F on Fig. 3) [13].

To obtain an approximation of AdB, the first step is
to find the crossing frequency ωc (corresponding to the
abscissa of point F on Fig. 3). For this, one can use
the two FRF related to λ = 0 (i.e., no absorber) and
λ = ∞ (i.e., absorber stuck to the primary mass), the
frequency ωc being defined as:

|H(ωc)|λ=0 = |H(ωc)|λ=∞. (9)

Using Eq. (7) and solving the previous equation for ωc

gives:

ωc =
√

2

2 + μ
. (10)

The second step in deriving an expression for AdB is to
find the optimal value of λ. When ξ = 0, the optimal
value of λ is the one for which the maximum of the
FRF happens for ω = ωc (i.e the maximum of the FRF
is located exactly at point F). This can be translated
into the following condition:

∂|H(ω)|
∂ω

∣∣∣∣
ω=ωc

= 0. (11)

Solving the previous equation for λ gives an approxi-
mation for the optimal damping value (when ξ = 0):

λest =
√

2

(1 + μ)(2 + μ)
, (12)

which is in agreement with the results presented in [13]
and [23].
To compute AdB in the general case (ξ �= 0), we will
assume that the optimal value of λ given in Eq. (12) is
still valid even if ξ �= 0. Also, we assume that themaxi-
mumof the related FRF still happens forω = ωc. Thus,
the term maxω(|H(ω)|λ=λopt ) in Eq. (8) is approxi-
mated by |H(ωc)|λ=λest . Substituting the results of
Eqs. (10) and (12) into Eq. (7), one gets:

|H(ωc)|λ = λ2est

= (2 + μ)5/2

8
√
2μξ

√
(1 + μ)+8ξ2(2 + μ)3/2+μ2

√
2 + μ

.

(13)

When λ = 0 and ξ ≤ √
2/2, Eq. (7) gives the max-

imum amplitude of the response (at resonance) of a
single degree of freedom with damping and without
any additional mass (no absorber):

max
ω

(|H(ω)|2λ=0) = 1

4ξ2(1 − ξ2)
. (14)

Using Eqs. (13) and (14), an approximation of the
attenuation AdB is finally given by:

AdB ≈ 10 log

8
√
2μξ

√
(1 + μ) + 8ξ2(2 + μ)3/2 + μ2√2 + μ

4ξ2(1 − ξ2)(2 + μ)5/2
.

(15)



Fig. 3 Example of FRF for an undamped primary system (left, ξ = 0) and for a damped primary system (right, ξ = 0.01). In the
undamped case (left panel), point F represents the common point belonging to all FRF

2.2.2 Direct numerical method for computing AdB

In the previous section, we derived an approximated
expression λest for the optimal design parameter λopt.
Another way of finding the optimal parameter is simply
to find the coordinates of the saddle point of the surface
response of the FRF (see Fig. 2). Those coordinates can
be obtained by solving the following two equations for
ω and λ:

∂|H |
∂ω

= 0,
∂|H |
∂λ

= 0. (16)

Computing the derivatives in Eq. (16) leads to the fol-
lowing equations:

2ω6 + Aω4 + Bω2 + C = 0, (17)

Dλ2 + Eλ − F = 0, (18)

with:

A = ((1 + μ)2 + 3)λ2 + 4ξμλ + 2(2ξ2 − 1),

D = 2ξ,

B = 2(1 + μ)2λ4 + 8ξμλ3 + 4(2ξ2 − 1)λ2,

E = −2(2 + μ)ω2 + 2,

C = 2(2ξ2 − (1 + μ))λ4,

F = 2ξω2.

The system of Eqs. (17–18) can be solved numer-
ically using classical root finding algorithm (e.g.,
Newton–Raphson algorithm) to yield the optimal val-
ues of the damping coefficient λopt. Figure 4 depicts
λopt and λest as function of the mass ratio for different
values of ξ . We recall that the value of λest is indepen-
dent of the parameter ξ ; therefore, there is only one
curve for different values of the primary damping ratio
ξ . Two important conclusions are drawn from Fig. 4.
First, one can see that the approximated method for the
design parameter λest, presented in the previous sec-
tion, is reliable, especially for low primary damping (ξ
small). Second, using a first-order Taylor expansion of
Eq. (12), one obtains an approximation of the optimal
parameter as a function of the mass ratio μ given by:

λest ≈ 1 − 3

4
μ (19)

In addition, a similar first-order analysis can be given
forλopt basedon the results of Fig. 5.When ξ ∈ [0, 0.1]
and when μ ∈ [0, 0.2], the parameter λopt can be
approximated (at first order in (ξ, μ), within 2% of
accuracy) by the following:



Fig. 4 Values of estimated
damping ratio λopt and
optimal damping ratio λest
as a function of the mass
ratio μ for different primary
damping ratio ξ [see
Eq. (3)]

λest ≈ 1 − 3

4
μ − ξ (20)

Figure 5 depicts the modulus of the FRF |H(ω)| for
several values of λ and for different damping values
of the primary system ξ . One sees that the solution to
Eqs. (17–18) actually provides an optimal value for the
parameter λopt, since the associated FRF (purple curve
in Fig. 5) has the lowest maximum amplitude.

Figure 6 depicts the comparison between the exact
value of AdB, computed by the numerical method, and
its estimated value obtained in the previous section. It
can be seen that the analytical approximation of AdB

in Eq. (12) is accurate for all values of ξ up to at least
ξ = 0.1.

2.3 Robustness of the linear damper

In order to study the robustness of the absorber, we
define another property, denoted A∗

dB, which is essen-
tially the same as AdB [see Eq. (8)] except that it is not
computed necessarily with the optimal value of λ. Fig-
ure7 shows the value of A∗

dB for a reasonable interval
of λ around the optimum point λopt. For a given mass
ratio, the changes in A∗

dB are bigger for systems hav-
ing low primary damping ratio. Also, for fixed primary
damping, system with lower mass ratios has smaller
changes in AdB.

Properties of the viscous element in the system may
be subjected to change during its lifetime. However,
referring to Fig. 8, one see that a 20% variation of the

λ parameter around its optimal values results in an
attenuation decrease of about 2% in the worst case (for
ξ = 10−4). In other cases (ξ = 10−3, 10−2, 10−1),
the attenuation drop is less than 0.85%. Therefore, one
can consider that small changes in λ will not cause any
dramatic decrease in the performance of damper, which
can therefore be considered as robust.

3 Nonlinear Lanchester damper

In this section, we consider a nonlinear Lanchester
absorber which is composed of an additional mass con-
nected to the main structure with dry friction force. As
before, the primary system is a mass-spring-viscous
damper system which is connected to the smaller mass
which now slides on the surface of the primary mass
(see Fig. 9). Due to relative displacement, friction force
will dissipate energy from the system and reduce the
resonance amplitude. In the following sections, wewill
investigate the efficiency of such nonlinear vibration
dampers.

3.1 Equations of motion

The equation of motion of the system depicted in Fig. 9
can be obtain by applying Newton’s law, which results
in the following:

Mẍ1 + c1 ẋ1 + kx1 + fc = F sin(�t), (21a)

mẍ2 − fc = 0, (21b)



Fig. 5 Frequency response
function of the primary
mass for different values of
ξ and λ. a ξ = 0.1, b
ξ = 0.01, c ξ = 10−3 and d
ξ = 10−4

(a) (b)

(c) (d)

Fig. 6 Comparison
between numerical and
analytical values of AdB as a
function of mass ratio (μ)
for several values of ξ .
Continuous lines (−) relate
to the numerical method and
circles (◦) relate to the
analytical method

where fc is the Coulomb’s dry friction force between
the two masses, defined as function of the relative
velocity (ẋd = ẋ2 − ẋ1):

⎧⎨
⎩

fc = −Fc if ẋd > 0
fc = Fc if ẋd < 0
fc ∈ [−Fc, Fc] if ẋd = 0

(22)



Fig. 7 A∗
dB as function of

deviation of the design
parameter from its optimal
value (λ/λopt) for several
values of ξ and μ. a
ξ = 0.1, b ξ = 0.01, c
ξ = 10−3 and d ξ = 10−4

(a) (b) (c) (d)

Fig. 8 A∗
dB − AdB as

function of deviation of λopt
for μ = 0.1 and for several
values of ξ . a ξ = 0.1, b
ξ = 0.01, c ξ = 10−3 and d
ξ = 10−4

(a) (b) (c) (d)

Fig. 9 Schematics of a nonlinear Lanchester absorber attached
to a primary system of mass M

The previous nonlinear force can be rewritten shortly
using the sign function as fc = Fc sign(ẋd). Using the

same procedure as in Sect. 2, one obtains the equation
of motion under non-dimensional form as:

{ ¨̄x1 + μ ¨̄x2 + 2ξ ˙̄x1 + x̄1 = sin(ωt̄),
μ ¨̄x2 + λsign( ˙̄xd) = 0,

(23)

with:

ω = �

ω1
, λ = Fc

F
, a = F

k
, x̄1 = x1

a
,

x̄2 = x2
a

, t̄ = ω1t. (24)

Note that the parameter λ is the nonlinear counterpart
of the parameter λ defined for the linear damper, with
the difference that it now depends on the amplitude of



excitation force. For brevity sake, we will keep using
the notation λ for the nonlinear parameter as well.

3.2 Direct steady state solution

Since the nonlinear force is an odd function of velocity,
the response is expected to verify the so called inversion
symmetry property (see [26] and “Appendix A”): the
second half of the period is the opposite of the first
half, i.e., ∀t x(t + π/ω) = −x(t). Thus, only half a
period will be considered for the study of the steady
states, as proposed in [22]. After describing the three
types of motion, we will look for transition frequencies
from one type of motion to the other. This will allow to
compute the frequency response and consequently the
optimal design parameter for the nonlinear absorber.

3.2.1 Stick-only response

Here, the damper is fully stuck to the primary structure
(x2 = x1, xd = 0) and theproblem is linear and consists
of a single degree of freedom system with a mass of
1+μ. Equation of motion in this response type is given
by the following:

(1 + μ) ¨̄x1 + 2ξ ˙̄x1 + x̄1 = sin(ωt̄). (25)

The response of the system is then a pure sine function
for x1(t) = x2(t) with amplitude:

Â = 1

1 + μ

1√(
ω̂2
1 − ω2

)2 + 4ξ̂2ω̂2
1ω

2
. (26)

where

ω̂1 =
√

1

1 + μ
, ξ̂ = ξ√

1 + μ
. (27)

ω̂1 and ξ̂ are, respectively, the dimensionless natural
frequency and the damping ratio of the system with the
two masses fully stuck.

3.2.2 Stick–slip response

Depending on the parameters of the system, mainly if
the maximum friction force (Fc) is in the same order

as the excitation force (F) and if the excitation fre-
quency is far from the natural frequency of the primary
system, the two masses will both lock and unlock dur-
ing half a period leading to a stick–slip response. Here,
only one stick phase per half-period will be considered.
Figure10 shows the general form of different variables
in this response type over one period of excitation.

The beginning of the period is chosen to be the time
at which the twomasses start to lock (x2 = x1, xd = 0).
Translating time origin to this instant can be done by
adding a (yet unknown) phase φ in the forcing term
of Eq. (23) which now becomes sin(ωt̄ + φ). Locking
is possible only when the velocity of both masses is
equal. The masses will unlock when the force required
to keep them connected reaches the maximum value of
friction force (Fc).

Consider T as the unlocking time; then, the motion
over one half-period consists of two parts: (i) for 0 <

t < T the masses are connected and (ii) for T < t <
π
�

the masses move separately. In the first part, the
system could be considered as a linear single degree of
freedom system excited with a force (F sin(�t + φ)).
In the second part, the motion of M is a result of both
the excitation force and the friction force, whereas the
dynamic of mass m is only imposed by the friction
force. In the following, we will derive the expression
for each part of the motion.

Part 1 (Stick): as mentioned before, in this part both
masses are locked together and can thus be consid-
ered as one (x1 = x2). The dimensionless equation of
motion for this part is given as:

(1 + μ) ¨̄x1 + 2ξ ˙̄x1 + x̄1 = sin(ωt̄ + φ). (28)

The solution of the previous equation is the sum of a
transient response and a steady states response:

x̄1(t̄) = Â sin(ωt̄ + α̂ + φ)

+ e−ξ̂ ω̂1 t̄
[
b sin(ω̂d t̄) + a cos(ω̂d t̄)

]
, (0 � t̄ � T̄ )

(29)

where Â is defined by Eq. (26) and

ω̂d = ω̂1

√
1 − ξ̂2, α̂ = − atan

2ξ̂ ω̂1ω

ω̂2
1 − ω2

. (30)



Fig. 10 Representation and
characteristics of a
stick–slip response for the
two degrees of freedom
system of Fig. 9

The constant a and b are obtained by taking into
account the initial conditions:

a = X0 − Â sin(α̂ + φ),

b = 1
ω̂d

[
V0 + ξ̂ ω̂1(X0 − Â sin(α̂ + φ))

− Â cos(α̂ + φ)
]
,

(31)

with X0 and V0 being x̄1(0) and ˙̄x1(0), respectively.
Part 2 (Slip): in this part, the two masses move sepa-

rately. The initial conditions for this part of the motion
are the final values of the displacement and the veloc-
ity of the stick part (part 1). Let us denote the initial
displacement as X1 = x̄1(T̄ ) and the initial velocity
as V1 = ˙̄x1(T̄ ).

In the following, we find the motion of each mass.
We first consider the motion of the secondary mass m
subjected to the following equation of motion:

μ ¨̄x2 = λ, (32)

which allows to compute the velocity of the secondary
mass directly as (for T̄ ≤ t̄ ≤ π

ω
):

˙̄x2(t̄) = λ

μ
(t̄ − T̄ ) + V1. (33)

We now consider the motion of the primary mass M
subjected to the following equation of motion:

¨̄x1 + 2ξ ˙̄x1 + x̄1 + λ = sin(ωt̄ + φ). (34)

A solution of equation (34) can be expressed as follows
for T̄ � t̄ � π

ω

x̄1(t̄) = A sin(ωt̄ + α + φ) − λ

+ e−ξ(t̄−T̄ )
[
d sin(ωd(t̄

− T̄ )) + c cos(ωd(t̄ − T̄ ))
]
, (35)

where

A = 1√(
1 − ω2

)2 + 4ξ2ω2
, α = − tan−1

(
2ξω

1 − ω2

)
,

ωd =
√
1 − ξ2.

The constants c and d can be obtained using the final
condition of the stick phase:

c = X1 − A sin(ωT̄ + α + φ) + λ,

d = 1
ωd

[
V1 + ξ(X1 − A sin(ωT̄ + φ + α) + λ)

−A cos(ωT̄ + φ + α)
]
.

(36)

As a result, one sees that there are four unknown
parameters in the description of the stick–slip motion:
(T, φ, X0, V0). These four parameters can be obtained
by solving the following set of equations:

μ ¨̄x1(T̄ ) = λ, (37a)

˙̄x1
(π

ω

)
= −V0, (37b)

˙̄x2
(π

ω

)
= −V0, (37c)

x̄1
(π

ω

)
= −X0. (37d)



The above equations are related to the following con-
ditions: (i) the connecting force between two masses
should be equal to the maximum friction force at t̄ = T̄
[Eq. (37a)], (ii) and (iii) the velocity of both masses
should be equal and equal to −V0 at t̄ = π

ω
[Eqs. (37b)

and (37c)], (iv) the displacement of mass M should be
equal to −X0 at t̄ = π

ω
[Eq. (37d)]. Solving this set of

equations allows to finds the parameters (T, φ, X0, V0)
and to reconstruct a stick–slip motion of over a period.
This set of nonlinear equations is solved using itera-
tive algorithms provided by fsolve function in Matlab
software.

3.2.3 Slip-only response

Here, we suppose that the two masses will not lock to
each other during the period, as depicted on Fig. 11.

The expression for the slip-only solution can be
obtained as a particular case of stick–slip response stud-
ied previously. Indeed, the slip motion is similar to the
second part of the stick–slip response in Eq. (35). The
only difference would be to set the value of T to zero
(T = 0).

The equations to be solved to find the three unknown
parameters (φ, X0 and V0) in this response type are of
the same type as in the stick–slip situation except that
one have to be removed. The equation to be kept is
Eqs. (37b), (37c) and (37d).

As the main objective is to observe the amplitude
of the frequency response over a frequency interval
around the resonance, the computation is carried out
sequentially in increasing order of frequency with a
fixed frequency step. At each point, the set of solutions
is solved and the results are then used as an initial guess
for the next step. For the initial point of the frequency
response, it can be obtained using a linear computation
(for the fully stick case, away from the resonance) or it
can be found using a time integration algorithm (e.g.,
Runge–Kutta).

3.2.4 Switching points

Now that the different types of steady state motion
have been described, it is important to find out how
the change occurs between one type to another when
the excitation frequency changes (see, e.g., Fig. 12).

For very low frequencies, the two masses are con-
nected to each other (x1 = x2), acting as a single
mass up to a point where the required connecting force

between them is equal to the maximum available fric-
tion force. Following Eqs (21b) and (23), it can be writ-
ten:

mẍ2 = Fc ⇒ μ ¨̄x2 = λ. (38)

Since the system acts as a one degree of freedom lin-
ear system solution of Eq. (25), x̄2 = x̄1 is a pure sine
function with amplitude Â defined by Eq. (26). Conse-
quently, at the switching point, one has:

μω2 Â = λ. (39)

The above equation is a nonlinear equation w.r.t the
excitation frequency ω. The first positive root of this
equation corresponds to the transition point between
stick and stick–slipmotion, and it can be obtained using
numerical root finding algorithm.

When the excitation frequency increases, another
transition point can appear corresponding to the transi-
tion between stick–slip and fully slipping motion. This
transition happens when the solution of Eqs. (37a)–
(37d) yield negative value for the variable T̄ . Note that
this transition may not exists, particularly for systems
with high value of λ.

When the excitation frequency increases even more,
the transitions happen in reversed order (i.e., from fully
slipping to stick–slip motion and from stick–slip to
fully stick motion). The transition from fully slipping
to stick–slip happens when the solution of Eqs. (37a)–
(37d) corresponds to a velocitywhich is not always neg-
ative in the first half-period, and thus out of the hypoth-
esis of the previous section [According to Eqs. (37b)
and (37c), the final value of the velocity in both masses
must be the opposite value of their initial value in a
half-period]. From this frequency on, the motion is
under stick–slip form. This stick–slip motion will be
valid until the excitation frequency reaches the maxi-
mum positive root of Eq. (39). After this point, the two
masses get fully stuck again.

3.2.5 Frequency response plot

Figure 12 shows an example of frequency response of
the primary mass illustrating the position of the tran-
sition points between the different types of motion for
a specified system over a wide range of excitation fre-
quency. For each frequencyω, the steady state response
function is computed and the maximum displacement



Fig. 11 Representation and
characteristics of a slip-only
response for the two degrees
of freedom system of Fig. 9

Fig. 12 Frequency response for the primary system of Fig. 9
with ξ = 0.01, μ = 0.1 and λ = 0.7. Continuous line shows
slip-only response, dash-dotted lines show stick–slip response,
and dashed lines show the stick-only response type. Circles (◦)
indicate switching points between response types

of the primary mass is extracted from the solution and
termed hereafter as X1M .

3.2.6 Results

Steady state solutions have been computed for several
values of ξ and λ over a wide range of excitation fre-
quency for systems having parameter μ set to 0.05.

Dimensionless frequency response plots of displace-
ment of the primary mass (M) are shown in Figs. 13
and 14. Those figures show several aspects of a nonlin-
ear Lanchester damper.

First, as expected, it can be seen that by increas-
ing the friction force in the system (increasing λ), the
response of the system gets closer and closer to the
response of a system where the two masses are con-
nected (λ = ∞). In this case, the system has only
one degree of freedom and shows a classical linear
resonant response of resonance frequency close to ω̂1

[Eq. (27)], depicted on Figs. 13 and 14 with dashed
dark blue lines. Also, when the friction force increases,
the frequency interval corresponding to a fully slipping
response shortens.

Second, one sees thatwhen theparameterλ increases
from low to high values, the maximum amplitude of
the response (of the primary mass) decreases to a min-
imum and then increases again. This indicates that in
nonlinear Lanchester damper, as well as for a linear
Lanchester damper, there exists an optimal value for λ

which minimizes the maximum amplitude of the pri-
marymass. For each given system presented in Figs. 13
and 14, the frequency response corresponding to the
optimal value of λ (λopt) is shown in orange. The next
step is to compute the attenuation of such a nonlinear
Lanchester damper and to compare it with the one of a
linear Lanchester damper.



Fig. 13 Frequency
response of the primary
mass for ξ = 10−4 (top
plot) and ξ = 10−3 (bottom
plot) with μ = 0.05.
Continuous line shows
slip-only response,
dash-dotted lines show
stick–slip response, and
dashed lines show the
stick-only response type.
Circles (◦) indicate
switching points between
response types. The colors
are related to a given value
of λ, shown in the legend.
(Color figure online)

3.3 Attenuation of nonlinear damper

In this section, we focus on the attenuation of a nonlin-
ear Lanchester damper. The simulations presented in
this section have been carried out for several values of
the mass ratio μ going from μ = 0.0025 to μ = 0.2.
For each value of μ, the solution has been computed
over a wide range of excitation frequency for several
value of λ in order to find the optimal value of this
design parameter (λopt).

The attenuation of the nonlinear damper is character-
ized by the quantity AdB which has the same definition
as in the linear case [see Eq. (8)]. The attenuation of
the nonlinear Lanchester damper is depicted on Fig. 15,
for several values of the mass ratio μ and of the pri-
mary damping ξ . One can see that for a given mass, the
attenuation of the nonlinear damper is much higher in

systems having low primary damping ratio (i.e small
ξ ).

The optimal value of λopt as a function of the mass
ratio and primary damping ratio is depicted on Fig. 16.
One can conclude from Fig. 16 that for a given mass
ratio, the required friction force to meet the optimal
value of λ is greater for system having low primary
damping ratio. Figure16 also shows that, for low pri-
mary damping ratio, the optimal value of λ is almost
constant with relation to the mass ration μ.

3.4 Robustness of nonlinear damper

In this section, we investigate the robustness of the non-
linear Lanchester damper. The procedure is the same as
in the linear case already presented in the first section
of this paper. Recall that the robustness is evaluated
using the quantity A∗

dB which is essentially the same as



Fig. 14 Frequency
response of the primary
mass for ξ = 0.01 (top plot)
and ξ = 10−1 (bottom plot)
with μ = 0.05. Continuous
line shows slip-only
response, dash-dotted lines
show stick–slip response,
and dashed lines shows the
stick-only response type.
Circles (◦) indicate
switching points between
response types. The colors
are related to a given value
of λ, shown in the legend.
(Color figure online)

Fig. 15 Attenuation AdB of
the nonlinear Lanchester
damper, as a function of the
mass ratio μ for several
values of ξ



Fig. 16 Optimal values of
λ for the nonlinear
Lanchester damper, as a
function of the mass ratio μ,
for several values of ξ

AdB except that it is not necessarily computed with the
optimal design value (λopt).

In order to evaluate the robustness of the nonlinear
Lanchester damper, the mass ratio has been fixed to
μ = 0.1, and the quantity A∗

dB has been computed for
several values of λ around the optimal point λopt. The
results are shown on Fig. 17.

It can be seen that the attenuation drops when λ

is varied. It is noteworthy that systems with higher
primary damping experience a higher drop in perfor-
mance. However, the system can be seen as quite robust
since a 20% variation in λ around λopt induces a drop in
attenuation of at most 6.5%. System having lower pri-
mary damping ratio (lower ξ ) seems to be more robust,
especially when λ is greater than λopt (in those cases,
the attenuation decreases slower forλ > λopt compared
to the decrease for λ < λopt).

4 Comparison and discussion

In this section, we compare and discuss the results
obtained for a linear and nonlinear Lanchester damper.
The comparison is done with relation to the attenuation
AdB and is depicted on Fig. 18, where it is plotted for
the linear damper as well as for the nonlinear damper.
Overall, for a given primary system, we observe that
AdB is of the same order ofmagnitude for both dampers
and that the linear damper performs slightly better than
the nonlinear one, the difference being of the order of
2–3dB. The discrepancy between the attenuations is
larger for small values of the primary damping. When

the primary damping increases, the attenuation of the
two dampers (linear and nonlinear) is globally equiva-
lent.

Another point of comparison can be drawn by com-
paring the robustness of the two kinds of damper. Fig-
ure 19 depicts the evolution of the attenuation as a func-
tion of the deviation of design parameterλ from its opti-
mal value λopt for linear and nonlinear dampers, and for
several values of the primary damping ξ . In this figure,
it can be seen clearly that the linear damper is much
more robust compared to the nonlinear damper.

Following this comparison, we can conclude that
the linearLanchester damper outperforms the nonlinear
Lanchester damper since it always has a better attenu-
ation and is much more robust. Moreover, in the linear
case, the optimal parameter λ is independent of the
excitation amplitude, so that it stays optimal regard-
less to the amplitude of the excitation force. This is
another advantage over the nonlinear damper. Indeed,
in the nonlinear case, λ = Fc/F [see Eq. (24)]. Conse-
quently, its optimal value depends on the forcing ampli-
tude F and thus has to be adjusted when the excitation
amplitude changes for optimal damping performance.

5 Conclusion

In this paper, we studied and compared linear and non-
linear Lanchester damper in the context of vibration
reduction. For both cases, methods were developed
to tune the damper based on parameters of the pri-
mary system. Dimensionless equations are considered



Fig. 17 Attenuation A∗
dB as

function of the deviation of
λ] attenuation (A∗

dB) as
function of deviation of λ

from its optimal value (λopt)
for different values of ξ ,
with μ = 0.1. a ξ = 10−1,
b ξ = 10−2, c ξ = 10−3, d
ξ = 10−4

(a) (b)

(c) (d)

Fig. 18 Comparison of the
attenuation AdB between
linear and nonlinear
dampers, as function of μ,
for different values of ξ .
Continuous lines are related
to nonlinear damper, and
dashed lines are related to
the linear damper

in order to generalize the results to many different sys-
tems.

For the linear damper, the optimal parameters have
been approximated using an analytical form for the

attenuation. Those approximations have been validated
using results coming from a direct numerical method.

For the nonlinear damper, the optimal parameters
have been estimated using a semi-analytical procedure.
First, the frequency response of the primary system is



Fig. 19 attenuation drop
(A∗

dB − AdB) for both linear
(dashed lines) and nonlinear
(continuous lines) for
different values of ξ , with
μ = 0.1. a ξ = 10−1, b
ξ = 10−2, c ξ = 10−3, d
ξ = 10−4

(a) (b)

(c) (d)

constructed by considering that three types of solution
can be observed: (i) stick-only, (ii) stick–slip and (iii)
slip-only. Then, the optimal values of the parameters
are obtained by searching for the frequency response
having the lowest maximum amplitude.

The comparison between linear and nonlinear
dampers is then carried out based on their attenuation
and their robustness. Globally, it can be seen that the
linear damper outperforms the nonlinear damper both
in terms of attenuation and robustness. Moreover, the
linear damper remains optimal regardless to the ampli-
tude of the excitation force,whereas the optimal param-
eter for the nonlinear damper depends on the excitation
force level.

Even though linear system performs better, in phys-
ical system, dry friction force is almost inevitable, and
this study provides reference curves for the study of a
primary system coupled to a damper through dry fric-
tion force. Those curves can serve as a benchmark for
future comparison using fully numerical procedures.

The presented method and the results obtained in
this paper can be used as a reference solution for the
frequency response of nonlinear system with dry fric-
tion forces. This reference can then be used in order
to validate numerical procedures such as the harmonic
balance method in the context of dry friction.
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Appendix A: Symmetry in the response curves

Weconsider the following harmonically forced dynam-
ical system:

mẍ + cẋ + kx + fnl(ẋ) = fe cos�t (A.1)



where x(t) is a function of time t , ◦̇ is the time deriva-
tive of ◦, m, c, k are mass, damping and stiffness con-
stants, fnl(ẋ) is the nonlinear internal force and fe is
the external force.

We assume that fnl(ẋ) is an odd function of ẋ , which
means that for all ẋ :

fnl(−ẋ) = − fnl(ẋ). (A.2)

As a consequence, its Taylor series expansion around
0 contents only odd terms:

fnl(ẋ) = a1 ẋ+a3 ẋ
3+a5 ẋ

5+· · · =
+∞∑

i=1,3,5

ai ẋ
i , (A.3)

where the ai , i ∈ N are the Taylor coefficients of fnl.
If periodic solutions of Eq. (A.1), in the steady state,
are under concern, they can be written as the following
Fourier series:

x(t) = x0 +
+∞∑
h=1

(
xch cos h�t + xsh sin h�t

)
(A.4)

where � = 2π/T is the frequency of motion, T its
period and (xch, x

s
h) are the Fourier coefficients of x(t).

In Eq. (A.1), the harmonics content of x(t) is created
by the only nonlinear term of the equation, the function
fnl. Since it is odd, it creates only odd harmonics in
x(t). For instance, if x(t) = cos(�t + ϕ) = cosφ,
x3 = (3 cosφ+cos 3φ)/4, x5 = (10 cosφ+5 cos 3φ+
cos 5φ)/16… so that:

x(t) = cos(�t + ϕ) ⇒ fnl(ẋ)

=
+∞∑

h=1,3,5

(
f ch cos h�t + f sh sin h�t

)
, (A.5)

As a consequence, the simplest solution x(t) of
Eq. (A.1) is composed only by odd harmonics:

x(t) =
+∞∑

h=1,3,5

(
xch cos h�t + xsh sin h�t

)
, (A.6)

Even harmonics can still be created after a symmetry
breaking bifurcation, a case out of the scope of the
present text. Now, we consider the following symmetry
property of the T -periodic time function x(t):

∀t, x(t + T/2) = −x(t) (A.7)

so that one half of the period is the inverse mirror of
the other half-period. Inserting Eq. (A.7) into Eq. (A.4),
one shows that necessarily all even harmonics of x(t)
are zero, so that x(t) has an odd harmonics content
[Eq. (A.6)]. The reciprocal rule is also verified: any
time periodic function with an odd harmonics content
verifies the symmetry property (A.7).

As a conclusion, if fnl(ẋ) is an odd function of ẋ ,
the harmonics content of the basic (without consider-
ing symmetry breaking bifurcations) nonlinear solution
x(t) of Eq. (A.1) is necessarily odd and the symmetry
property (A.7) is verified.
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