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Abstract— Frontotemporal dementia and amyotrophic
lateral sclerosis are rare neurodegenerative diseases with
no effective treatment. The development of biomarkers
allowing an accurate assessment of disease progression
is crucial for evaluating new therapies. Concretely, neu-
roimaging and transcriptomic (microRNA) data have been
shown useful in tracking their progression. However, no
single biomarker can accurately measure progression in
these complex diseases. Additionally, large samples are
not available for such rare disorders. It is thus essential
to develop methods that can model disease progression
by combining multiple biomarkers from small samples. In
this paper, we propose a new framework for computing a
disease progression score (DPS) from cross-sectional mul-
timodal data. Specifically, we introduce a supervised multi-
modal variational autoencoder that can infer a meaningful
latent space, where latent representations are placed along
a disease trajectory. A score is computed by orthogonal
projections onto this path. We evaluate our framework with
multiple synthetic datasets and with a real dataset contain-
ing 14 patients, 40 presymptomatic genetic mutation carri-
ers and 37 controls from the PREV-DEMALS study. There
is no ground truth for the DPS in real-world scenarios,
therefore we use the area under the ROC curve (AUC) as
a proxy metric. Results with the synthetic datasets support
this choice, since the higher the AUC, the more accurate the
predicted simulated DPS. Experiments with the real dataset
demonstrate better performance in comparison with state-
of-the-art approaches. The proposed framework thus lever-
ages cross-sectional multimodal datasets with small sam-
ple sizes to objectively measure disease progression, with
potential application in clinical trials.
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I. INTRODUCTION

FRONTOTEMPORAL dementia (FTD) and amyotrophic
lateral sclerosis (ALS) are rare neurodegenerative disor-

ders that have devastating personal and social consequences.
FTD and ALS may be sporadic (no previous family history) or
genetically inherited. The most common genetic cause of FTD
and ALS is a hexanucleotide repeat expansion in the C9orf72
gene [1], [2]. These fatal conditions can sometimes coexist
in C9orf72-mutated individuals, and have no cure or standard
treatment to date.

Carriers of the C9orf72 mutation that do not present clinical
symptoms are considered presymptomatic, since they have a
very high probability of manifesting FTD and/or ALS later in
life. Clinical trials for potential therapies are likely to be most
effective at this presymptomatic stage, before any irreversible
brain damage has occurred. However, the evaluation of new
treatments depends on an accurate measure of disease pro-
gression, which is not evident without observable symptoms.
Previous work has shown the relevance of neuroimaging
[3], [4] and transcriptomic (microRNA) [5] biomarkers for
a better understanding of C9orf72-disease in presymptomatic
carriers. Nevertheless, when these modalities are analysed
separately, they provide only an incomplete picture of these
diseases. It is thus essential to develop methods that combine
different modalities to accurately measure disease progression.
As different biomarkers characterise distinct disease stages,
various biomarkers can be combined to represent the entire
disease course with a single measure, commonly referred in
the literature as the disease progression score (DPS).

The idea of computing disease progression scores falls
within the larger topic of modeling disease progression. In
the past years, many approaches have been developed for
data-driven modeling of disease progression, such as event-
based models (EBM) [6]–[9], different algorithms fitting lo-
gistic functions to biomarker trajectories [10], [11], non-
linear mixed-effects models [12], [13], a vertex-wise model
of brain diseases fitted with expectation-maximisation [14],
Gaussian processes [15]–[17], topological profiles reflecting



2 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS

brain connectivity [18], Bayesian multi-task learning [19], and
recurrent neural networks [20].

Most of these approaches require longitudinal data. For
instance, the authors of [10] assume that the longitudinal
dynamic of each biomarker can be represented as a sigmoidal
function of the DPS. They propose a joint optimization al-
gorithm to compute the DPS, fit one sigmoid function per
biomarker using alternating least squares, and apply their
work to hundreds of patients with Alzheimer’s disease (AD).
Similarly, a more recent method [11], also applied to AD,
uses M-estimation to map each subject’s age to a DPS,
jointly fitting generalized logistic functions to the longitudinal
dynamics of biomarkers as functions of the DPS. Schiratti
et al [12] proposed a general non-linear mixed-effects model
for longitudinal data based on concepts from Riemannian
geometry. The application of this framework to AD, called
AD Course Map [13], allowed to map each subject to their
corresponding disease stage. The authors of [15] proposed a
probabilistic approach based on Gaussian process regression
from time-series of biomarker measurements. Yet another
framework, named Data-driven Inference of Vertexwise Evo-
lution (DIVE) [14] consists in identifying clusters of vertex-
wise biomarker measurements in the brain, and estimating
representative trajectories for these clusters. Finally, [20] uses
recurrent neural networks to predict biomarker values without
parametric assumptions about trajectories, with application to
AD. To the best of our knowledge, the only disease modeling
approaches that infer a DPS from cross-sectional data are
EBM [6]–[9]. These models explore the temporal sequence
in which biomarkers become abnormal in the course of a
disease. They have been successfully applied to a variety of
diseases including AD [6]–[9], [21]–[23], multiple sclerosis
[24], [25], Parkinson’s disease [26], Huntington’s disease [27]
as well as FTD [28], [29] and ALS [30]. However, in these
works, EBMs were applied to a relatively small number of
features (typically 10-50). Although these are the state-of-
the-art methods for disease progression modeling with cross-
sectional datasets, previous studies do not clarify if they would
perform well in higher dimensions.

Despite the recognized importance of estimating neurode-
generative diseases progression, research has tended to focus
mostly on higher prevalence conditions. Existing solutions are
thus inadequate to model rare diseases with high-dimensional
cross-sectional data, for three main reasons. First, we observe
that longitudinal data is needed for the vast majority of
approaches. However, C9orf72-associated FTD and ALS are
slowly progressive conditions in the presymptomatic phase,
which hinders the collection of meaningful longitudinal data.
Second, most published methods benefit from large samples,
which are not available for very low prevalence disorders such
as genetic FTD and ALS. Finally, it is unclear if event-based
models, the only methods suitable for cross-sectional data, can
be robustly applied to high-dimensional microRNA expression
data, which comprise hundreds of biomarkers.

In this paper, we present a novel framework to estimate
disease progression scores for rare neurodegenerative disorders
using only cross-sectional multimodal data. To that purpose,
we introduce a new supervised multimodal variational autoen-

coder (VAE) trained with neuroimaging and microRNA data.
Our working hypothesis is that disease progression scores may
be modelled as underlying latent traits. Concretely, we aim to
learn a meaningful latent space, where the relative positions
of latent representations indicate the distance travelled along
the disease pathophysiological pathway.

VAEs are powerful generative models that project data into a
low-dimensional regularized latent space [31]. These models
have been previously used with multimodal data [32]–[34],
but not for the purpose of inferring a DPS. Usually VAEs are
trained in an unsupervised manner. However, extensions have
been proposed for semi-supervised [35]–[37] or supervised
[38] tasks. These studies demonstrate that providing super-
vision to the model imposes specific semantics on the latent
space, resulting in more meaningful and robust representa-
tions. In our context, explicit labels (control, presymptomatic,
patient) are already available for all subjects. We thus add
supervision during training, leveraging this information to
improve the separation of the groups in the latent space. Ad-
ditionally, we propose to split high-dimensional (neuroimag-
ing and microRNA data) and low-dimensional (demographic
information) modalities. Our model thus couples two neural
networks with different inputs: (1) an encoder/decoder that
learns a latent space from the high-dimensional features, and
(2) a classifier having as input the latent variables concatenated
with the low dimensional features, useful for the classification
task. As no ground truth is available for the DPS in real-
world scenarios, we evaluate our models with a proxy metric:
the area under the ROC curve (AUC) for each pairwise
classification between clinical groups, computed using only
the inferred DPS.

The main contributions of our paper are as follows. First, we
propose a novel disease progression modeling framework that
can be applied to cross-sectional data. Second, we introduce
a supervised VAE to estimate a latent space that contains
useful information for disease progression. To the best of our
knowledge, supervised VAEs have never been used for disease
progression modeling and have only been introduced in very
different fields such as robotics [38]. Third, we propose to
compute a disease trajectory in the latent space using principal
curves. Fourth, we conduct very extensive experiments includ-
ing: ablation studies to assess the importance of each new
methodological component, different settings to study the ro-
bustness of the framework, and comparisons with state-of-the-
art methods. A preliminary version has been published at the
SPIE MI 2022 conference [39]. Compared to the conference
version, the present paper introduces many novelties including
VAE supervision, the use of principal curves instead of straight
lines, and an extensive set of experiments.

The manuscript is organized as follows. Section II explains
our proposed framework, section III describes the analyzed
datasets, section IV details our experiments and corresponding
outcomes, and finally section V examines the meaning of our
results and highlights the broader implications of our study.

II. METHODOLOGY

We consider a dataset (X ,Y) = {(x1, y1), ..., (xn, yn)}. The
i-th subject is characterized by a feature vector xi ∈ Rm and
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Fig. 1: Illustration of the proposed framework for disease progression scores (DPS) computation. 1) High-dimensional
(neuroimaging and microRNAs expression data) and low-dimensional (demographic information) features are extracted; the
former are fed to the encoder, the latter are concatenated with latent codes and fed to the classifier. 2) Once the model is
trained, all training examples are encoded in the latent space and a principal curve is calculated to define the disease trajectory.
3) Test examples are encoded in the latent space and the latent representations are orthogonally projected onto the previously
computed curve; the DPS correspond to their coordinates along the curve.

a label yi ∈ {0, 1, 2} denoting the clinical group (control,
presymptomatic, patient). Our aim is to estimate a DPS,
denoted as vi ∈ [1, 100] (the interval for the scores is arbi-
trary), where a greater score corresponds to a higher disease
severity. To that purpose, we assume that the observations have
corresponding latent variables zi ∈ Rℓ. We will thus aim to
estimate a latent representation and the DPS will be computed
from a trajectory in the latent space.

Our framework is composed of three main steps, as illus-
trated in Fig. 1. First, we propose a supervised multimodal
variational autoencoder to estimate the latent space. We lever-
age the fact that participants belong to different groups to
introduce some supervision in order to improve the VAE
training. The model aims at simultaneously reconstructing
the data and classifying the participants. We propose to split
low-dimensional sociodemographic data (denoted Xld, used
only for the classification) from high-dimensional multimodal
neuroimaging and transcriptomic data (denoted Xhd, used both
for reconstruction and classification). Second, we build a curve
representing disease trajectory in the latent space. Finally, data
from new subjects, not included in the training set, are encoded
in the latent space and projected onto this trajectory, in order
to obtain their DPS.

In this section, we first explain the three main steps of our
framework, then we describe implementation details.

A. Supervised multimodal VAE

A variational autoencoder (VAE) [31] is a generative model
that learns the training data distribution p(x) using a latent
representation model: p(x) =

∫
p(x|z)p(z)dz, where z is a

continuous latent variable living in a lower dimensional space

and p(z) is its prior distribution, commonly a Gaussian with
zero mean and identity covariance matrix. The solution of the
inference problem to describe the latent space is given by
deriving the posterior p(z|x). However, there is no closed-form
solution for complex real-world datasets. Therefore, VAEs
introduce the idea of learning a variational approximation
qϕ(z|x) of the true posterior, in the form of a neural network
referred to as the encoder. The encoder maps data x to a
mean vector zmean and a log-variance vector zlogvar, that
parametrize a Gaussian distribution from which we obtain
the latent representation z. VAEs are also equipped with a
generative function pθ(x|z), parametrized by a neural network
referred to as the decoder. The decoder transforms the latent
representation z back to the original input space.

During training, the vanilla VAE aims at maximizing the
variational lower bound of the marginal log-likelihood, known
as the evidence lower bound (ELBO). This is equivalent to
minimizing a loss function with two terms: L = Lr(x, x̂) +
LKL(qϕ(z|x), p(z)). The first term is the reconstruction er-
ror between the input data x and the reconstructed data x̂,
typically a mean squared error (MSE). The second term is
the Kullback-Leibler divergence between the approximated
posterior qϕ(z|x) and the prior distribution p(z), acting as a
regularization term.

We propose to insert a supervised branch in the vanilla
VAE architecture in order to exploit the fact that our samples
have different diagnostic labels, even though their DPS is
unknown. Denoting y as the true class label and ŷ as the
predicted class label, we define our training objective as:
L = α1 · Lr(x, x̂) + α2 · LKL(qϕ(z|x), p(z)) + α3 · Lc(y, ŷ),
where Lr and LKL correspond to the ELBO in vanilla VAEs
and Lc is a cross-entropy term that penalizes the classification
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error. The hyperparameters αk control the relative weights
between the different loss terms (

∑3
k=1 αk = 1).

Before training, we split the high-dimensional modali-
ties (miRNA expression and neuroimaging) from the low-
dimensional (demographic information). As it will be men-
tioned later in the datasets description, we consider one low-
dimensional feature and m − 1 high-dimensional features,
although the same concepts can be applied to more low-
dimensional features. So we use m − 1 features to feed the
encoder and one feature concatenated to the latent code to feed
the classifier. Features are rescaled from 0 to 1. Our encoder
consists of fully-connected layers of sizes (m−1)→ 50→ 2,
meaning our latent space is 2-dimensional. The decoder is
implemented with fully-connected layers of sizes 2 → 50 →
(m−1). The nonlinear activation function is the leaky rectified
linear unit (ReLU) in all layers except the decoder’s last layer
which uses a sigmoid function to constrain the output between
0 and 1. The classifier network has one fully connected layer
of 3 → 3 units, with a softmax function to normalize the
output to probabilities over the predicted classes. We use the
mean squared error as the reconstruction loss Lr and the cross-
entropy as the classification loss Lc.

This specific architecture, with a 2-dimensional latent space,
has shown to be adequate for our real-world dataset. The
proposed method is generic, and higher-dimensional latent
spaces could yield better results with other datasets.

B. Trajectory definition
Once the model is trained, the next step is to encode

the training data in the latent space. We then compute the
straight line passing through the centroids of the control and
patient clusters. This straight line could be used in downstream
analyses as a rudimentary disease trajectory in the latent space.
Instead, we obtain an improved nonlinear trajectory by using
this line as initialization for the principal curve algorithm [40].
A principal curve is a smooth one-dimensional curve passing
through the middle of given data points. The algorithm detailed
in [40] finds a nonparametric curve by iteratively minimizing
the orthogonal distances to the points until convergence.

C. DPS computation
Once the disease trajectory curve is computed in the latent

space, we can encode the test data. The next step is to
orthogonally project the latent codes onto the computed curve.
The DPS vi ∈ [1, 100] for each subject is the coordinate
of their projection along this curve, 1 corresponding to the
beginning and 100 to the end of the curve. The pseudo-
code from model training to DPS computation is shown in
Algorithm 1.

D. Implementation details
The hyperparameters of the training objective were set as

α1 = 0.2, α2 = 0.2, and α3 = 0.6. The loss function was
optimized using Adam [41], with a learning rate of 10−3,
batches of 32 observations and 250 epochs.

We carried out the experiments on a computer equipped
with a 2.4 GHz Intel Quad-Core Core i5 processor and 16

Algorithm 1 DPS computation from latent representation

Input: features X = {xi}ni=1 ∈ Rm, labels Y = {yi}ni=1 ∈
{0, 1, 2}, training set indices Itr and test set indices Ite for
one data split into training and test set.
Output: DPS {vi}i=Ite of the subjects in the test set.
/* first step: supervised VAE training */
for epoch in [1,250] do

Sample batches (Xj ,Yj) from (XItr ,YItr )
for each batch (Xj ,Yj) do
Xhd,Xld ← split high low dimension(Xj)
Zmean,Zlogvar ← encoder(Xhd)
Draw latent codes Z ∼ N (Zmean, e

Zlogvar )
Ŷy ← classifier(concatenate(Xld,Zmean))
X̂hd ← decoder(Z)
Lr ← mean squared error(Xhd, X̂hd)
LKL ← kl divergence(N (Zmean, e

Zlogvar ),N (0, I))
Lc ← cross entropy(Yy, Ŷy)
L ← α1 · Lr + α2 · LKL + α3 · Lc

Compute gradients, update network to minimize L
end for

end for
/* second step: trajectory definition */
Z, ← encoder(XIte)
ccontrol ← mean({Zj : yj == 0})
cpatient ← mean({Zj : yj == 2})
pc← principal curve(ccontrol, cpatient, degree = 2)
/* third step: DPS computation */
for i in Ite do
zpc ← projection of zi into pc
vi ← coordinate of zpc ∈ [0, 100]

end for
return {vi}i=Ite

GB of RAM. Models were implemented in Python 3.8.5 using
PyTorch 1.8.1 and Scikit-learn 0.23.2 [42]. For the principal
curves computation, we used the implementation provided in
the Python package pcurvepy 0.0.10 (https://pypi.org/
project/pcurvepy/), specifying 2 as the degree of the
smoothing spline.

III. DATASETS

A. Synthetic datasets
Since ground truth disease progression scores are not avail-

able in real-world scenarios, we created synthetic datasets
to better evaluate the proposed framework. Multiple datasets
were generated, with different noise levels and distinct pro-
portions of features correlating with the DPS.

Let Y ∈ {0, 1, 2} indicate the class labels (respectively
control, presymptomatic and patient). We created n = 111
synthetic participants (a number close to that of our real
dataset), denoting class labels by yi (i = 1, ..., 111), with
yi=1,...,37 = 0, yi=38,...,74 = 1, yi=75,...,111 = 2.

Next, we modeled the disease progression scores as con-
tinuous random variables following uniform distributions. Let
V ∈ [1, 100) represent the DPS values. We defined the
conditional distribution of the DPS given the class labels as
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Fig. 2: Synthetic ground truth disease progression scores
{vi}ni=1 ∈ [0, 100) for n = 111 subjects (37 subjects per
group).

Fig. 3: Format of the synthetic datasets D ∈ Rn×m containing
m features from n individuals. Half of the features are initially
sampled from a negative binomial distribution and half from
a normal distribution.

follows: V |Y = 0 ∼ U[1, 34);V |Y = 1 ∼ U[34, 67);V |Y =
2 ∼ U[67, 100).

We then sampled the corresponding DPS vi from the
conditional distributions defined above. The obtained disease
progression scores are displayed in Fig. 2.

Once the synthetic ground truth DPS were created, we
generated multiple datasets D ∈ Rn×m containing n = 111
participants and m = 160 features. In order to simulate two
modalities, features were initially sampled from two distribu-
tions: half from a negative binomial distribution (typical of
miRNA expression data) and half from a normal distribution
(representative of various real-world datasets). We denote the
columns of D by C1, ..., Cm. The format of the synthetic
datasets is illustrated in Fig. 3.

Each created dataset had a distinct proportion of features
correlating with the DPS and different noise levels. The
number of features from each modality to positively and
negatively correlate with the DPS is denoted as f , and the
standard deviation of the added zero-mean Gaussian noise
as s. We used f = {0, 2, 5, 10, 15, 20, 25, 30, 35, 40} and s
= {0.001, 0.2, 0.5, 0.8, 1, 5} and thus obtained a total of 60
synthetic datasets.

B. Real dataset
Participants were recruited through the PREV-DEMALS

study (https://clinicaltrials.gov, ID NCT02590276), a French
multicentric prospective cohort focused on C9orf72 expansion
carriers. Written informed consents were obtained from all
participants. The study was approved by the ethics committee
(Comité de Protection des Personnes CPP Ile-De-France VI,
CPP 68-15 and ID RCB 2015-A00856-43). A detailed descrip-
tion of this cohort and its demographic profile can be found
in [5].

We included 110 individuals in our analyses, divided into
three groups, according to their clinical status:

• Patient group: 22 symptomatic (15 FTD, 4 FTD/ALS and
3 ALS) carriers of a pathogenic C9orf72 expansion;

• Presymptomatic group: 45 asymptomatic carriers;
• Control group: 43 asymptomatic non-carriers.
The dataset comprised multimodal data including mi-

croRNA (miRNA) sequencing data and neuroimaging data.
Among the 110 subjects, 91 had complete miRNA expression
and neuroimaging data, while 19 had only miRNA expression
available. The two modalities are described below.

1) MicroRNA data: MicroRNAs are a class of small non-
coding RNAs that negatively regulate gene expression [43].
MicroRNAs expression in blood plasma has been shown to
correlate with the diagnosis and progression of many neu-
rodegenerative diseases [44], including FTD and ALS. All
individuals included in this cohort underwent plasma sam-
pling, from which miRNA sequencing was performed. Plasma
collection and preparation, miRNA extraction and sequencing,
quality control and the computational pipeline to obtain the
miRNA counts are detailed in [5]. The initial miRNA dataset
contained expression levels for all miRNAs mapped in the
human genome (2576 miRNAs). We retained the 589 miRNAs
with expression profiles above noise level (minimum total
count of 1000 reads and at least 50 reads for one sample). A
trimmed mean of M-values [45] implemented in the R package
EdgeR [46] was used to normalize the raw counts.

2) Neuroimaging data: Neuroimaging data consisted of grey
matter volumes extracted from T1-weighted anatomical mag-
netic resonance imaging (MRI), including the estimated total
intracranial volume (TIV), 68 cortical regions of interest
(ROIs) using the Desikan atlas and 18 subcortical ROIs using
the Aseg nomenclature, thus resulting in 87 neuroimaging
features. The TIV was used to normalize the volume of each
ROI,

NVROI =
TIVm × VROI

TIV
,

where VROI is the original volume of the ROI, NVROI is the
corresponding normalized volume and TIVm is the average
TIV computed across all subjects. The MRI acquisition pa-
rameters, quality check and processing pipeline are thoroughly
described in [4].

Since only 91 subjects (14 patients, 40 presymptomatic
carriers and 37 controls) had MRI scans collected, we divided
our dataset into two subsets: 19 subjects that only had miRNA
data available, and 91 subjects with multimodal neuroimaging
and miRNA data. The former subset was used as a discovery
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set for miRNA feature selection: we used these 19 individuals
to perform differential expression analysis (as described in
[5]). The 68 miRNAs with the lowest p-values were selected
for all downstream analyses.

Lastly, we also included age as demographic information
for all subjects. So the total dimension of each feature vector
was m = 87 + 68 + 1 = 156.

IV. EXPERIMENTS AND RESULTS

A. Synthetic datasets
We applied our framework to 60 synthetic datasets (de-

scribed in Section III-A) with different noise levels and distinct
number of features correlating with the ground truth DPS.
Each synthetic dataset was divided into a training set of 90
subjects (30 per clinical group) and a test set of 21 individuals
(7 per group). We trained one model per dataset, using the
same hyperparameters as the experiments with the real dataset.
After training each model, we computed the DPS for the
subjects from the test set. We then calculated the Spearman
correlations between the simulated ground-truth scores and
the predicted scores. Finally, we evaluated the ROC AUC for
each pairwise comparison between the three simulated clinical
groups.

Fig. 4 presents the computed trajectories and the DPS ob-
tained when 50% of the features are correlated (25% positively
and 25% negatively correlated) with the disease progression,
for six different noise levels. The correlation matrices illus-
trate the strength of the relationships between the simulated
features, for all investigated noise levels. Lower noise levels
(Fig. 4a-c) imply a strong correlation between the simulated
features and DPS, which in turn result in more meaningful
inferred trajectories and finally more accurate estimated DPS.

The results of the Spearman correlation between the syn-
thetic ground truth and the estimated DPS, as well as the
average ROC AUC scores for the three pairwise comparison
between groups, are shown in Fig. 5, for six different noise
levels. We note that two factors imply higher Spearman corre-
lations, and thus more accurate DPS estimations: first, lower
noise levels (Fig. 5 top rows); and second, a higher proportion
of relevant features (Fig. 5 horizontal axes). Importantly, we
observe that the Spearman correlation of the DPS and the
macro-average ROC AUC have similar behaviors, indicating
that the ROC AUC of pairwise comparisons is a reasonable
proxy to evaluate the DPS, as will be done with the real
dataset.

Additionally, we conducted additional experiments with
imbalanced datasets (fixing f = 20 and s = 0.5, following the
notation from Section III). We computed the macro-average
ROC AUC and the Spearman correlation between the ground
truth and the estimated DPS, for two scenarios with moderate
imbalance and two scenarios with strong imbalance. Results
are displayed in Appendix I Table A.1. The model has a good
performance with moderate imbalance (minor class with 10%
of the size of the major class), but heavily underperforms with
strong imbalance (minor class with 1% of the size of the major
class).

Finally, we analyzed the performance of our approach
with higher dimensional synthetic datasets, containing 16000

features. In each experiment, we varied the number of features
that correlated with the simulated ground truth DPS, while
keeping the added noise fixed (s = 0.5). The macro-average
ROC AUC and Spearman correlation between ground truth
and estimated DPS are shown in Appendix I Table A.2. We
note that the greater the number of features correlating with
the DPS, the better the results. Therefore, the most important
factor affecting performance is not the absolute number of
features, but how many of these features are actually useful
to estimate the DPS.

B. Real dataset

Experiments with the real dataset (described in Section III-
B) were carried out with a cross-validation of 100 stratified
randomized folds. For each fold split, we trained a model
using 73 training subjects, and then computed the DPS for
the 18 individuals in the test set. Fig. 6 displays an example
of the DPS computation for one representative training data
split. For each split, once the model was trained, the training
data was encoded in the latent space and the disease trajectory
was computed (Fig. 6a). Then, the corresponding test set was
encoded in the latent space, and each latent code was projected
onto the previously computed trajectory (Fig. 6b). Finally,
disease progression scores were obtained for each subject as
the coordinates along the trajectory (Fig. 6c).

Unlike for the synthetic dataset, there is no ground truth
for the DPS in the real dataset. We thus applied a proxy
metric to assess model performance: using only the inferred
DPS, we did pairwise comparisons between the clinical groups
and computed the corresponding areas under the ROC curves.
Specifically, we present the following experiments: (1) evalua-
tion of the proposed method, (2) comparison with the state-of-
the-art methods for modeling disease progression with cross-
sectional data (EBM), (3) ablation study, (4) variation of
hyperparameters, (5) contribution of different modalities, and
(6) impact of incorrect diagnosis.

1) Evaluation of the proposed method: First, we used the
DPS computed in each fold to build ROC curves for the three
pairwise comparisons between clinical groups. The average
ROC curves are shown in Fig. 7. The ROC AUC for the
classification of controls and presymptomatic subjects was
0.74 ± 0.13, for controls and patients was 0.98 ± 0.05 and to
distinguish presymptomatic carriers and patients was 0.96 ±
0.07. These results reveal that it is harder to differentiate con-
trols from presymptomatic individuals than it is to distinguish
between patients and the other two groups. The histogram
displayed in Fig. 8 illustrates the disease progression scores
computed over all 100 test folds (18 subjects per test fold,
corresponding to 1800 DPS). The distribution shapes highlight
a clear separation between the patient group and the other
groups. The distribution of the DPS for the presymptomatic
group is more spread, which was expected as this group is the
most heterogeneous. Some presymptomatic subjects are very
far from onset and the neurodegenerative process has barely
begun, they are thus closer to controls. Other presymptomatic
subjects are closer to disease onset and thus their DPS is closer
to that of patients. Finally, the Spearman correlation computed
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(a) Noise standard deviation = 0.001

(b) Noise standard deviation = 0.2

(c) Noise standard deviation = 0.5

(d) Noise standard deviation = 0.8

(e) Noise standard deviation = 1

(f) Noise standard deviation = 5

Fig. 4: Results on synthetic data when 50% of the features are correlated with the disease progression score. The rows indicate
different noise levels (zero-mean Gaussian noise with different standard deviations). Each column displays, respectively: (1)
correlation matrices showing the strength of the relationships between the simulated features, (2) inferred trajectories and test
sets projected in the latent space, and (3) estimated DPS vs. ground truth DPS.
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Fig. 5: Results on synthetic data. Macro-average ROC AUC and Spearman correlation between ground truth and estimated
DPS, for different noise levels (zero-mean Gaussian with 0.001, 0.2, 0.5, 0.8, 1, and 5 as standard deviation) and several
proportions (0% to 100%) of features correlating with the disease progression score. Random chance is denoted by the dashed
lines (ROC AUC = 0.5 and Spearman Rho = 0).

(a) Training data projected in the latent space (b) Test data projected in the latent space (c) Computed scores for the test data

Fig. 6: Results on real data. (a) Training data projected in the latent space and the corresponding computed trajectory for one
of the 100 fold splits. (b) Test data projected in the latent space, along with the previously computed trajectory. (c) Scores
computed after the projection of the latent representation of the test data onto the trajectory.

between DPS and age was 0.54 for the presymptomatic group
and 0.38 for the patient group. It is expected that DPS and
age are somewhat correlated, since older subjects tend to have
more advanced neurodegeneration.

2) Comparison with EBM: Next, we compared our results to
three different event-based models, which are the state-of-the-
art methods to model disease progression from cross-sectional
data: two discriminative event-based models (DEBM) [8], [9]
and one generative EBM [7] that extended the original version
of the algorithm [6]. For that experiment, the same cross-
validation strategy of 100 stratified folds was applied. We
built all the event-based models and computed the DPS
using the Python package pyebm 2.0.3 (https://pypi.org/
project/pyebm/), optimizing for the best staging algorithm
among the four choices offered by the package. Table I
displays the corresponding ROC AUC results for each pairwise

comparison, while the ROC curves obtained with our proposed
approach are displayed alongside the ROC curves yielded
by the best performing EBM in Fig. 7. We can observe
that our model achieves a substantially better classification
performance for all pairwise comparisons. Additionally, our
approach used less computing time: our framework took 2
seconds per fold for training and DPS computation, while the
EBM algorithms took on average 180 seconds per fold.

3) Ablation study: Afterwards, to investigate the impact
of certain components of our framework, we conducted an
ablation study. We changed some elements of the proposed
approach to obtain four alternative models:

• Linear trajectory: rather than computing the trajectory in
the latent space using principal curves, we simply used a
straight line.

• No supervision: we removed the entire classification
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Fig. 7: Results on real data. Average ROC (receiver operating
characteristic) curves for each pairwise comparison between
clinical groups, over 100 stratified splits, for our proposed
supervised VAE and for the best performing EBM [7]. The
shaded areas correspond to one standard deviation. The areas
under the ROC curves (ROC AUC) are shown as mean ±
standard deviation. Random chance is indicated by the red
line.

component of our framework, thus performing unsu-
pervised training, and discarding the low-dimensional
demographic information.

• Concatenated modalities: we concatenated the low-
dimensional demographic information with the high-
dimensional modalities in the encoder input, and used
only the latent codes as input for the classifier.

• No supervision, concatenated modalities: we removed the
entire classification branch and concatenated the low and
high-dimensional modalities.

For each alternative model, we conducted the same cross-

Fig. 8: Results on real data. Histogram of the disease pro-
gression scores (DPS) inferred for 18 test subjects over 100
stratified splits. The distribution shapes are approximated with
kernel density estimates.

TABLE I: Results on real data: comparison between
our approach, two discriminative event-based models
(DEBM) [8], [9], and a generative event-based model
(EBM) [7]. ROC AUC (mean ± standard deviation) over 100
stratified splits.

Comparison Our model DEBM [8] DEBM [9] EBM [7]
Control vs. Pre 0.74 ± 0.13 0.65 ± 0.16 0.68 ± 0.14 0.63 ± 0.15

Control vs. Patient 0.98 ± 0.05 0.80 ± 0.14 0.78 ± 0.17 0.89 ± 0.12
Pre vs. Patient 0.96 ± 0.07 0.71 ± 0.17 0.68 ± 0.17 0.85 ± 0.14

validation strategy of 100 stratified folds, computing the DPS
for the test sets and the corresponding areas under the ROC
curves. The results, displayed in Table II, show that the
proposed model has a better and more stable performance in all
comparisons, with the highest average ROC AUC and lowest
standard deviation among the splits.

4) Variation of hyperparameters: We checked whether our
results were robust to reasonable changes in the hyperparam-
eters. Notably, we tested different numbers of hidden units
in the fully-connected layers, and different combinations of
the relative weights between the loss terms. These results
are summarized in Appendix I Tables A.3 and A.4. The
slightly different but overall similar results demonstrate that
our hyperparameter choice is not overfitting the data.

5) Contribution of different modalities: Appendix I Table A.5
shows the ROC AUC results using each modality separately.
Notably, microRNAs are more informative than neuroimaging
to distinguish between controls and presymptomatic indi-
viduals, while neuroimaging is more informative to classify
between patients and the two other groups. Additionally, age
alone achieves a high ROC AUC when classifying between
patients and the two other groups, which is expected, as the
patients are older than the other participants.

6) Impact of incorrect diagnosis: Finally, to assess the im-
pact of incorrect diagnosis, we performed 100 stratified splits
randomly changing 10% of the training labels. Results are
displayed in Appendix I Table A.6. Although the classification
branch depends on diagnoses as labels, this is just one compo-
nent of the model, and a few label errors did not considerably
impact results.
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TABLE II: Results on real data: ablation study. ROC AUC results (mean ± standard deviation) for the proposed model and
four alternative models from the ablation study.

Comparison Proposed model Linear trajectory No supervision Concatenated
modalities

No supervision,
concatenated modalities

Control vs. Pre 0.74 ± 0.13 0.62 ± 0.15 0.67 ± 0.15 0.72 ± 0.15 0.65 ± 0.15
Control vs. Patient 0.98 ± 0.05 0.93 ± 0.12 0.96 ± 0.06 0.95 ± 0.17 0.96 ± 0.06

Pre vs. Patient 0.96 ± 0.07 0.93 ± 0.11 0.94 ± 0.10 0.91 ± 0.18 0.94 ± 0.10

V. DISCUSSION

In this paper, we proposed a new approach for estimating
disease progression scores from cross-sectional neuroimaging
and transcriptomic data that is applicable in small samples,
which are typically found in rare diseases. The approach
was designed and evaluated on data from C9orf72-associated
FTD and ALS, but is potentially applicable to other diseases.
Results on synthetic data demonstrated the ability of the
method to accurately estimate the DPS, and experiments on
real data, in the absence of ground truth DPS, showed the
separation of different diagnostic classes. The findings of
this study validated the usefulness of supervised variational
autoencoders to infer disease trajectories from cross-sectional
multimodal data, indicating that a single disease progression
score may be used to represent progression of neurodegener-
ative diseases. Remarkably, our results revealed that the DPS
may be inferred using only cross-sectional data from a small
sample of subjects.

Experiments with a cohort of C9orf72-mutation carriers
demonstrate that subjects from the same clinical groups (pa-
tients, presymptomatic individuals and controls) are clustered
together in the latent space (Fig. 6), allowing the inference of
a disease trajectory. After training the model, data from new
individuals is encoded in the latent space and orthogonally
projected onto this trajectory to compute the DPS. Notably,
using only the computed DPS, we are able to classify presymp-
tomatic subjects and patients with an average ROC AUC of
0.96 over 100 stratified fold splits (Fig. 7), illustrating how
much the DPS reflects the degree of disease progression in
mutation carriers. Unsurprisingly, it is harder to differentiate
between controls and presymptomatic individuals, as indicated
by the average ROC AUC of 0.74 and displayed in Fig. 8.
This stems from the fact that, during earlier disease stages,
most biomarker levels are closer to normal ranges, so the
presymptomatic class is more heterogeneous.

To the best our of knowledge, event-based models are
the only published methods to compute disease progression
scores from cross-sectional data, other approaches requiring
longitudinal data. The comparisons presented in Table I reveal
that our proposed approach resulted in considerably higher
ROC AUC than EBM for all pairwise classifications. This
suggests that the supervised VAE is more suitable than event-
based models for DPS computation with high-dimensional
features, such as multimodal microRNA and neuroimaging
data. Indeed, published studies using event-based models ex-
plored a substantially lower number of features. For instance,
in Alzheimer’s disease, EBM experiments were carried our
with 13 to 50 [6]–[9], [21]–[23] biomarkers. Studies focusing
on FTD analyzed 21 [28] or 7 [29] biomarkers, while multiple

sclerosis was investigated with 25 [24] or 24 [25] biomarkers.
Other conditions such as Parkinson’s disease [26], ALS [30]
and Huntington’s disease [27] were modeled with respectively
42, 19 and 8 biomarkers. Nevertheless, the EBM model
presents useful additional features, beyond the computation of
DPS. In particular, it can provide a temporal ordering of when
the different biomarkers become abnormal, which is useful for
understanding disease progression. Moreover, a balance has to
be found between the number of features and the number of
subjects in each dataset. Indeed, we also had to perform feature
selection to decrease the number of microRNAs in our study.
It should be noted that this feature selection was unbiased,
since it was performed using a completely separate set of
participants that was not used in the rest of the study. The
proposed framework was able to achieve a good performance
with 156 features and less than a hundred subjects, thus
demonstrating its potential for dealing with higher dimensional
datasets.

An ablation study evaluated the impact of different com-
ponents of our approach (Table II). We observed that each
component positively impacted the framework’s performance.
First, it can be seen that a curved trajectory better fits the dis-
ease pathway in the latent space when compared to a straight
line. The use of principal curves has been inspired from
their application in a similar task: pseudotime inference for
single-cell transcriptomics, as shown in [47]. In that context,
pseudotime represents an underlying temporal variable driving
a smooth transition between cellular states, and principal
curves are used to infer a trajectory in a low-dimensional
space. Second, it is clear that the addition of supervision with
a classifier branch improves the separation between clinical
groups in the latent space. Rather than discrete clusters, our
experiments demonstrate that latent representations are placed
along a continuous path. Specifically, supervision adds mean-
ing to the relative positions between points in the latent space.
Finally, results show the contribution of splitting high and
low-dimensional features. When using the low-dimensional
features concatenated with the latent codes as inputs to the
classifier, the model’s performance is enhanced. The same
pattern is observed in [38], although in a totally different
context (failure detection in robotics). Concretely, a low-
dimensional feature can directly contribute to the classifier,
without the need for encoding.

Regarding the experiments with simulated datasets, it is
crucial to highlight the relationship of the average ROC
AUC with the Spearman correlation between ground truth
and estimated DPS (Fig. 5). The simulation supports that the
higher the ROC AUC, the more accurate the predicted DPS.
Therefore, for real-world scenarios without ground truth DPS,
our choice of the ROC AUC as proxy metric is corroborated.
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Furthermore, evidence was found that the models do not overfit
the data, since it is clear that larger noise levels lead to poorer
results, eventually equivalent to random chance. The effect
of noise is further illustrated in Fig. 4. We observe that lower
noise levels induce more evident clusters and more meaningful
trajectories in the latent space. Consequently, the estimated
DPS are closer to the ground truth. These simulations also
confirm one intuition behind our model: the more features
correlate with disease progression, the closer the estimated
DPS are to the ground truth.

Our study has the following limitations. First, there is
no ground truth for the progression scores in real datasets.
Although the experiments with synthetic data showed that the
ROC AUC is an adequate proxy metric, long-term follow-
up of individuals will be necessary to assess the accuracy of
the computed DPS. For instance, we need follow-up data to
confirm the hypothesis that a higher DPS implies an earlier
disease onset for a presymptomatic subject. Second, the lack
of a replication cohort means that additional studies will be
necessary to further support the clinical relevance of our find-
ings. Third, as it is the case with other supervised algorithms,
our proposed method will underperform with strongly imbal-
anced datasets. Fourth, the interpretability of our approach is
limited in comparison with event-based models, which directly
estimate the ordering in which biomarkers become abnormal.
Finally, our model does not deal with incomplete datasets: to
infer a disease progression score for a new subject, all the
features that were used during training are needed. To address
incomplete datasets, possible solutions could be implementing
multiple stages in the network, to gradually integrate available
multimodal data in each stage [48], or even synthesizing data
from the available modalities [49]. Future work will also
concentrate on the integration of more data sources, such as
positron emission tomography (PET) scans and neurofilament
light chain (NfL) levels in blood.

In conclusion, we proposed a new approach to measure
disease progression from multimodal imaging and microRNA
data in rare neurodegenerative disorders using only cross-
sectional data. Even though we focused on C9orf72-associated
FTD and ALS, our framework is generic. It has the potential
to be useful for a variety of other diseases, enabling the
evaluation of novel treatments even when only cross-sectional
data from small cohorts are available.
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APPENDIX I
SUPPLEMENTARY EXPERIMENTS

TABLE A.1: Macro-average ROC AUC and Spearman cor-
relation between the ground truth and the estimated DPS,
for simulated datasets with different class imbalance levels.
Original results are shown in bold.

Subjects in each
clinical group

30, 30,
30

300, 30,
30

300, 30,
300

3000, 30,
30

3000, 30,
3000

Macro-average AUC 0.83 0.81 0.82 0.74 0.67
Spearman Rho 0.76 0.70 0.65 0.50 0.30

TABLE A.2: Macro-average ROC AUC and Spearman cor-
relation between the ground truth and the estimated DPS, for
high-dimensional simulated datasets with different proportions
of informative features. Original results are shown in bold.

Features
(correlated)

160
(80)

16000
(80)

16000
(320)

16000
(640)

16000
(1280)

Macro-average AUC 0.83 0.58 0.82 0.85 0.99
Spearman Rho 0.76 0.32 0.65 0.72 0.99

TABLE A.3: ROC AUC results on real data (mean ± SD) over
100 stratified splits when changing the number of units of the
hidden layers. Original results are shown in bold.

Hidden units 50 100 80 25
Control vs. Pre 0.74 ± 0.13 0.73 ± 0.13 0.71 ± 0.12 0.71 ± 0.13

Control vs. Patient 0.98 ± 0.05 0.98 ± 0.04 0.97 ± 0.05 0.98 ± 0.05
Pre vs. Patient 0.96 ± 0.07 0.96 ± 0.06 0.96 ± 0.06 0.96 ± 0.06

TABLE A.4: ROC AUC results on real data (mean ± SD)
over 100 stratified splits when changing the weights of the
loss function terms. Original results are shown in bold.

Weights αk 0.2, 0.2, 0.6 0.1, 0.1, 0.8 0.1, 0.2, 0.7 0.3, 0.2, 0.5
Control vs. Pre 0.74 ± 0.13 0.72 ± 0.12 0.73 ± 0.12 0.72 ± 0.14

Control vs. Patient 0.98 ± 0.05 0.97 ± 0.08 0.97 ± 0.06 0.98 ± 0.05
Pre vs. Patient 0.96 ± 0.07 0.94 ± 0.10 0.95 ± 0.09 0.96 ± 0.07

TABLE A.5: ROC AUC results on real data (mean ± SD) over
100 stratified splits, analyzing the impact of each modality.
The best results in each comparison are shown in bold.

Comparison MicroRNA Neuroimaging Demographic
Control vs. Pre 0.73 ± 0.12 0.60 ± 0.15 0.40 ± 0.13

Control vs. Patient 0.81 ± 0.18 0.97 ± 0.04 0.81 ± 0.14
Pre vs. Patient 0.67 ± 0.19 0.96 ± 0.05 0.91 ± 0.09

TABLE A.6: ROC AUC results on real data (mean ± SD) over
100 stratified splits when changing 10% of the training labels.
Original results are shown in bold.

Comparison Original results Changing 10% of training labels
Control vs. Pre 0.74 ± 0.13 0.72 ± 0.15

Control vs. Patient 0.98 ± 0.05 0.98 ± 0.06
Pre vs. Patient 0.96 ± 0.07 0.95 ± 0.08
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