
HAL Id: hal-03789355
https://hal.science/hal-03789355v1

Submitted on 27 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Human Arm Motion Prediction for Collision Avoidance
in a Shared Workspace

Pu Zheng, Pierre-Brice Wieber, Junaid Baber, Olivier Aycard

To cite this version:
Pu Zheng, Pierre-Brice Wieber, Junaid Baber, Olivier Aycard. Human Arm Motion Prediction for
Collision Avoidance in a Shared Workspace. Sensors, 2022, 22 (18), pp.6951. �10.3390/s22186951�.
�hal-03789355�

https://hal.science/hal-03789355v1
https://hal.archives-ouvertes.fr


Citation: Zheng, P.; Wieber, P.-B.;

Baber, J.; Aycard, O. Human Arm

Motion Prediction for Collision

Avoidance in a Shared Workspace.

Sensors 2022, 22, 6951. https://

doi.org/10.3390/s22186951

Academic Editors: Alwin Poulose

and Antonio Fernández-Caballero

Received: 7 July 2022

Accepted: 7 August 2022

Published: 14 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Human Arm Motion Prediction for Collision Avoidance in a
Shared Workspace
Pu Zheng 1,*, Pierre-Brice Wieber 2, Junaid Baber 1 and Olivier Aycard 1

1 The Laboratoire d’Informatique de Grenoble, University of Grenoble Alpes, 38000 Grenoble, France
2 Inria Centre at the University Grenoble Alpes, 38000 Grenoble, France
* Correspondence: pu.zheng@univ-grenoble-alpes.fr

Abstract: Industry 4.0 transforms classical industrial systems into more human-centric and digitized
systems. Close human–robot collaboration is becoming more frequent, which means security and
efficiency issues need to be carefully considered. In this paper, we propose to equip robots with
exteroceptive sensors and online motion generation so that the robot is able to perceive and predict
human trajectories and react to the motion of the human in order to reduce the occurrence of the
collisions. The dataset for training is generated in a real environment in which a human and a robot
are sharing their workspace. An Encoder–Decoder based network is proposed to predict the human
hand trajectories. A Model Predictive Control (MPC) framework is also proposed, which is able
to plan a collision-free trajectory in the shared workspace based on this human motion prediction.
The proposed framework is validated in a real environment that ensures collision free collaboration
between humans and robots in a shared workspace.

Keywords: human robot collaboration; human motion prediction; collision avoidance

1. Introduction

The third industrial revolution brought rapid progress to industrial automation and
provided the solid foundation of modern manufacturing. During this era, many enterprise
companies expanded and created a number of opportunities and businesses around the
world. However, the main focus of this revolution was on automation of repetitive tasks
in manufacturing industry and assembly lines [1]—for example, a robot doing a fixed
task with hard-coded trajectories. The fourth industrial revolution is changing the life of
every individual by altering the way of living. In this revolution, human and robots are
working smartly together in shared environments and the the trajectories for robots are not
hard-coded—these trajectories are dynamic or predicted using machine learning.

An important component of human capacity to interact with the world resides in the
ability to predict its evolution over time. Handing an object to another person, playing
sports, or simply walking in a crowded street would be extremely challenging without
our understanding of how people move, and our ability to predict what they are likely
to do in the following instants. Similarly, machines that are able to perceive and interact
with moving people, either in physical or virtual environments, must have a notion of how
people move. Since human motion is the result of both physical limitations (e.g., torque
exerted by muscles, gravity, moment preservation) and the intentions of subjects (how to
perform an intentional motion), motion modeling is a complex task that should be ideally
learned from observations.

Collaborative robots, a.k.a cobots, offer a solution for small and medium-sized compa-
nies that require a flexible, fast, and precise operational solution in a shared workspace [2].
These cobots have proven to be intrinsically safe due to their ability to detect collisions and
react accordingly [3]. However, it is always preferable to avoid collisions [4], and if a cobot
is able to re-plan its trajectory to avoid collisions with a human in a shared workspace,

Sensors 2022, 22, 6951. https://doi.org/10.3390/s22186951 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22186951
https://doi.org/10.3390/s22186951
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-7517-6858
https://doi.org/10.3390/s22186951
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22186951?type=check_update&version=2


Sensors 2022, 22, 6951 2 of 15

there is an increase in productivity with respect to task completeness, effectiveness, safety,
and throughput of human and cobot working time [5].

In our previous work, we proposed a model for predictive control scheme to generate
trajectories for cobots that ensures a collision free environment in a shared workspace with
humans by separating the work plane for the cobot [6]. The cobot automatically changes
its trajectory to avoid the collision if a human hand enters the cobot plane. In this case, the
collision can not be avoided, and the cobot ensures being at rest at the time of collision.

In this paper, we extend our previous work by predicting trajectories of human hands
with our online trajectory generation framework [6] to ensure a safe and efficient human–
robot collaboration in a shared workspace. The trajectories generated for cobots are fused
with the predicted trajectories of a human hand to ensure a collision free environment.
The perception module is composed of two parts: (1) detection and localization of the
human hand in shared workspace, and (2) prediction of the human hand trajectory. Object
detection from an RGB image is extensively studied since the development of deep learning
libraries such as Openpose [7] and Mediapipe [8], which can achieve real-time skeleton
detection of a human in a 2D images. However, the Cartesian 3D position of the human is
necessary for the generation of the cobot trajectory. By using the RGB-D camera, we can
re-project the 2D coordinates of the RGB image into Cartesian space.

This paper is organized as follows: Section 2 gives brief discussion on related work,
Section 3 gives a formulation of our collision-free motion generator with a definition of
collision avoidance constraints through separating planes, and a formulation through
Quadratic Programs (QP). Section 4 explains the detection of the human pose from a
single monocular 3D camera and the projection into Cartesian space. The prediction
model is explained in Section 5. Experiments and results are discussed in Section 6; finally,
conclusions and future work are discussed in Section 7.

2. Related Work

Our work mainly contributes to human robot collaboration (HRC) using human
motion prediction, particularly the human hand, in a shared workspace with a cobot.
There are multiple ways and practices to detect the human for tracking and prediction in
HRC systems [9–12]. Use of monocular camera, depth camera, 3D LiDAR, and inertial
measurement unit (IMU) sensors for motion capture is a common practice. The IMU sensor
based methods are not suitable for collaborative tasks, and the 3D LiDARs are relatively
expensive in terms of cost and computation. However, using the vision sensors such as RGB
cameras is a widely used approach for human motion prediction [9]. The main limitation of
RGB cameras includes a range of camera sensors and enabling 3D human position w.r.t the
robot. Using an RGB-D camera, which is a combination of a single view from monocular
and depth sensors, provides a balance between simplicity and performance [13].

The depth camera based on time-of-flight (TOF) and structured light technologies can
provide the distance information from a single depth image; thus, it creates the possibilities
to deal directly with 3D data [14]. Moreover, human pose estimation has some unique
characteristics and challenges such as flexible body configuration indicating complex
interdependent joints, diverse body appearance, and complex environment may cause
occlusion. The existing approaches can be divided into three categories: template-based
method, feature-based method, and learning-based method [15]. The template-based
method compares the similarity between the detected object and the constructed template
to identify the motion category [16,17]. The template-based methods need to establish
a template library of parameterised template to compare with the human body, which
is time-consuming, and the accuracy of template-based methods is very limited due to
the diversity of the different human pose in space. Feature-based methods use geodesic
distance information [18], geometric features such as silhouette [19], to estimate the human
joints. The feature-based template has some disadvantages; for instance, it requires prior
knowledge to combine with extracted global or local features to obtain the 3D pose, and it
is not suitable for changing poses.The learning-based method use the network structure
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to automatically learn the required features from input data. The learned features can be
further used to extract the human poses [20].

Recently, deep learning based models are getting popular [11,21–24]. Deep learning
methods can take unprocessed data such as point clouds and produce human poses
with high accuracy [24]. However, deep learning models are data greedy models and
require heavy data for training which are not easily available for human hand prediction,
and datasets contain point clouds that are not suitable for real-time applications. Therefore,
as a more accessible approach, estimating human poses from RGB images captured by
regular cameras and then mapping the 2D information into 3D space is efficient and widely
practiced in industry and academia [6,9].

The trivial way to estimate 3D human poses is to design an end-to-end network to
predict the 3D key-point locations directly from 2D images [25,26]. However, recovering a
3D human pose from a single image is still challenging and leads to many false positives.
Using depth information from RGB-D cameras can effectively transform 2D pose location
into 3D [6].

Existing human motion prediction methods can generally be divided into model-
based and learning-based approaches. Model-based approaches attempt to directly model
the kinematics or dynamics of the human and thus find the corresponding arm motor
control [27], and human movements follow an optimal feedback control strategy that
connects together motor behaviour, limb mechanics, and neural control. The detailed
description on human arm motor control can be found in [27]. However, the choice of
optimal trajectory cost is not trivial because the human musculoskeletal system presents
more degrees of freedom (DoF). This kinematic, dynamic, and actuation redundancy
issue is not straightforward in terms of motion equations. Numerous cost functions have
been identified in literature [28–31]. In [28], the authors model the hand’s point-to-point
kinematic motions with minimum Cartesian jerks (third derivative of Cartesian coordinates)
for an arm movement in the horizontal plane. Authors in [29] incorporate dynamics
with a minimum torque change model in the horizontal plane; however, the results are
not validated for 3D movements. While defining these motor control criteria manually
is difficult, the author in [30] defines a combination of seven different criteria (such as
Cartesian jerk, angle jerk, angle acceleration, torque change, torque, geodesic and energy)
and an inverse optimisation method has been used to find the weight associated with
each criteria. In [31], instead of finding arm motor control artificially, the authors over-
approximate the occupancy of the arm with a maximum velocity model, but this can be too
restrictive if the prediction horizon is long. These approaches have several limitations such
as the dynamics of the human being highly nonlinear and non-deterministic; it can vary
according to emotions and physical condition, so direct modelling can be quite inaccurate
in different situations. Moreover, the hypothesis about the human’s rationality is often
invalid; hence, constructing an optimisation criteria based on this hypothesis can be very
ambiguous, and the combination of the different criteria is chosen manually.

Human motion is the result of complex bio-mechanical processes that are challeng-
ing to model. As a consequence, state-of-the-art work on motion prediction focuses on
data-driven models [9,32–37] such as probabilistic models [35,36] and deep learning
models [9,37]. Recent work on short-term human motion prediction has centered on a
Recurrent Neural Network (RNN) due to their capacities to handle sequential data. The
RNN can remember important things about the input received that allow them to be very
accurate in predicting the output. In the proposed framework, an RNN based approach
is used to predict the human hand motion which is then passed to our motion planning
package for collision avoidance with the cobot.

3. General Trajectory Planning Scheme

The goal of our scheme is to generate a collision-free trajectory for a cobot (e.g., a 7-
DoF manipulator cobot) that has to perform a task in a workspace shared with a human
worker. This scheme is composed of three parts, as shown in Figure 1: (i) a human motion
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prediction module, (ii) a collision-free trajectory generation module, and (iii) a low-level
robot motion control module.

Figure 1. Abstract flow diagram of control architecture.

In this section, we summarise how to compute a collision-free trajectory based on the
perception module and the cobot’s dynamics. In addition, we emphasise the role of the
terminal constraint to guarantee safety. This terminal constraint provides a passive motion
safety guarantee [38], which means that, if a collision occurs, the cobot is at rest at the time
of the collision so that it does not inject its own kinetic energy. In the following, we recall
the main equations from the MPC approach developed in our previous work [6].

3.1. Separating Plane Optimisation

As illustrated in Figure 2, if there exists at the prediction time k ∈ N a plane defined
by a normal vector ak ∈ R3 and a scalar constant bk ∈ R such that all vertices yj related
to the human stay on one side between instants k and k + 1 while all vertices ri related
to the cobot stay on the other side, then we have evidence that they do not collide over
this interval of time. Here, j ∈ {1, . . . Np} and i ∈ {1, . . . Nr} where Np and Nr are the
number of vertices associated with the human and the cobot, as appears in the constraints,
Equations (1b)–(1e), and the distance d ∈ R controls the position of the separating plane
between the human and the cobot.

min.
ak , bk , d

− d + αd2 + β‖ak − ap
k ‖

2 + β||bk − bp
k ||

2 (1a)

s.t. ∀ j ∈ {1, . . . Np}, aT
k yj

k ≤ bk, (1b)

∀ j ∈ {1, . . . Np}, aT
k yj

k+1 ≤ bk, (1c)

∀ i ∈ {1, . . . Nr}, aT
k ri

k ≥ bk + d, (1d)

∀ i ∈ {1, . . . Nr}, aT
k ri

k+1 ≥ bk + d, (1e)

− 13 ≤ ak ≤ 13, (1f)

1− ε ≤ aT
k ap

k ≤ 1 (1g)
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We want to maximise the distance d between the separating plane and the cobot. Given
the formulation as a minimisation problem, we include the term −d in the cost function,
Equation (1a). The following term in the cost function smooths the variations of separating
planes, with ap

k and bp
k the separating plane parameters obtained at the previous sampling

time, and some small weights α and β. Finally, we use constraints, Equations (1f) and (1g),
to approximate a nonlinear constraint to bound the vector ak to a unit norm, where 13 ∈ R3

is a row vector of ones.

r(k)

r(k+
1)

dsaf
e

a(k)

b(k)
X
O

y(k)

y(k+1)

Figure 2. An illustration of separating plane between two objects.

3.2. Optimal Motion Generation

Once we have a sequence of separating planes parameters, we can include them in
our MPC scheme to compute an optimal collision-free trajectory:

min.
u

N−1

∑
k=0
‖sk+1 − sdes

k+1‖
2
Q + ‖uk − udes

k ||
2
R (2a)

s.t. ∀ k ∈ {0, . . . N − 1}, u ≤ uk ≤ u, (2b)

∀ k ∈ {1, . . . N}, q ≤ qk ≤ q, (2c)

∀ k ∈ {1, . . . N − 1}, q̇ ≤ q̇k ≤ q̇, (2d)

q̇N = 0, (2e)

∀ k ∈ {0, . . . N − 1}, ∀ i,

aT
k ri

k(q
p
k ) + aT

k J(qp
k )(qk − qp

k ) ≥ bk + dsafe, (2f)

∀ k ∈ {0, . . . N − 1}, ∀ i,

aT
k ri

k(q
p
k+1) + aT

k J(qp
k+1)(qk+1 − qp

k+1) ≥ bk + dsafe (2g)

where qk ∈ Rn and q̇k ∈ Rn are respectively the joint position and velocity, with n the
number of degrees of freedom. The state sk ∈ R2n includes qk and q̇k, and uk ∈ Rn is the
control input (acceleration) of the cobot.

Our prediction horizon has a length N ∈ N. The cost function, Equation (2a), is
designed to track a desired joint state trajectory qdes

k with acceleration udes
k , while q, q, q̇, q̇,
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u, u indicate minimum and maximum joint positions, speed, and acceleration (we assume
that q̇ ≤ 0 ≤ q̇ and u ≤ 0 ≤ u). The terminal constraint, Equation (2e), ensures that the
cobot is at rest at the end of the prediction horizon in order to provide a passive motion
safety guarantee, making sure that the cobot is able to stop and stay at rest before any
collision happens in the future. Equations (2f) and (2g) introduce the collision avoidance
constraint based on separating planes, which is computed by linearising the kinematics of
the cobot around the previously computed trajectory:

ri
k = ri(qk) ≈ ri(qp

k ) + J(qp
k )(qk − qp

k ) (3)

4. Human Pose Detection

The Algorithm 1 gives the set of instructions for collision free trajectory computa-
tion. In this section, we explain how to detect a human’s position and train the model
for prediction.

Algorithm 1 Collision free trajectory computation.

Input: Up
k , Sk, ap

k , bp
k

Output: Uk

1: i = 0;
2: while (||Uk −Up

k ||
2 OR i ≤ k) do

3: Up
k = Uk;

4: /* Updating Robot Parameters */
5: {a,b}←− Solve Equation (1) for k ∈ {0, . . . N − 1} ;
6: {Uk}←− Solve Equation (2) ;
7: i ++;

The perception system used in this work is an ASUS Xtion Pro depth camera which
provides cloud points, colour and depth images. We can then recover the (x,y,z) position
in Cartesian space by combining color and depth image information. The advantage of
working with 2D images is that we can directly use existing deep learning libraries such as
OpenPose [39] or MediaPipe [8], which are fast and robust. Mediapipe is widely used for
several real-time applications such as tracking [40], and sign language understanding [41].
An example of human upper-body key points extraction is shown in Figure 3a. With the
lightweight version of this deep learning model, the inference speed is performing at 0.25 s
on a MacBook Pro (2017).

Figure 3. Example demonstration of RGB-D image for mapping human hand in 3D space, (a) shows
RGB image on which hand joins are detected, (b) shows the bounding box around the points in the
depth image, and (c) shows the mapping of points in 3D space.
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After obtaining the coordinates of the joints in the colour image frame, we can map
the corresponding coordinates in the depth image to find the distance between the camera
and the pixel points. This mapping necessitates a proper calibration of the camera [42].
The distance information allows us to compute the key point’s Cartesian location using the
pinhole camera projection model, since we know the camera’s intrinsic parameters:

X = (u− cx)
Z
fx

(4)

Y = (v− cy)
Z
fy

(5)

Z = Z (6)

where u and v are key point locations in pixel coordinates, cx and cy are camera offset, fx
and fy are camera focal parameters, and Z is the distance given by the depth image.

The information contained in the depth image is sensitive to disturbances and back-
ground elements. To make the result more robust and accurate, we define a bounding box
around the key point to eliminate outliers and average the distances, as shown in Figure 3b.
Finally, we successfully map the key point’s from RGB image to 3D location, as shown in
Figure 3c.

5. Human Hand Motion Prediction

Figure 4 shows the overall architecture of human hand prediction, robot controlling,
and collision avoidance. It has basically three modules; in the first module, it extracts
the human hand trajectory from the RGB-D camera and passes to our trained prediction
model: in the second module, the predicted trajectories are handled by a motion planning
package to detect and avoid collision: finally, the last module controls the motion of the
robot based on the feedback by a motion planning module. The configuration for PC used
is also shown in Figure 4; the average time to extract hand trajectory and prediction is
0.04 s, whereas the frame per seconds (fps) from RGB-D camera is 33, which makes our
prediction real-time on commodity hardware. The 0.04 seconds comprise time to extract
CNN based keypoints for hand motion trajectory generation and LSTM based prediction.
The motion planning package takes 0.01 seconds/frame to ensure collision avoidance.
The simulation demo of human and cobot collaboration on shared workspace can be seen
online (https://www.youtube.com/watch?v=PAZZRtS7Qc4, accessed on 17 August 2022).

The dynamics of the human can be described in state-space from Equations (7a) and (7b).
Without loss of generality, we consider only the dynamics of a human’s hand position to
simplify notations:

xt+1 = g(xt, wt) (7a)

yt = h(xt) (7b)

where xt ∈ R3 is the discrete time variable describing the human’s hand position, wt ∈ R3

is the muscular force or external effect that causes the human’s movement, which is
not known; the function g represents the human’s hand dynamics, and ht ∈ R3 is the
measurable position given a state xt. We assume that the movement of the human is not
completely random and follows patterns as shown in Figure 5b, where dotted red lines
denote representative motions to different goals.

In order to anticipate the human’s future motion, it’s not sufficient to predict only one-
step ahead as shown in Equation (7a). In a more general scenario, we want to predict T steps
ahead given a current state xt and wt and consider L-order Markov assumptions. Therefore,
we can formulate this problem as: given a time-series input x = {xt, xt−1, . . . , xt−L}, we
want to find a function φ such that: φ : x→ y, where L is the number of past observations
and y = {xt+1, xt+2, . . . , xt+T} with T the number of steps to predict.

https://www.youtube.com/watch?v=PAZZRtS7Qc4
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Figure 4. ROS based controller architecture to enable collaboration between humans and robots in
shared environments.

(a) (b) (c) (d) (e)

Figure 5. Demonstration of the environment for dataset generation, (a) shows the person working in
shared environment with a cobot, (b) shows the possible goals on which the hand should be moving,
(c) shows one sample hand motion trajectory generated over one minute, (d) shows the sub-trajectory
over 12 observations, and (e) shows the trajectory divided into two sequences (x for training and y
for prediction).

Modelling such a dynamics function is very challenging because the external factors
are not measurable and unpredictable. Moreover, the dynamics of the human are highly
nonlinear. However, neural network structure is efficient to learn such nonlinear mapping
patterns. We define our prediction network structure in Figure 6a as an encoder–decoder
model. The past observation data are encoded through several stacked Long Short-Term
Memory (LSTM) layers to increase the depth of the network. The encoded information
is passed into an LSTM decoder layer followed by a fully connected layer to produce the
final multi-step prediction. The structure of an LSTM cell is shown in Figure 6b and the
mathematical formulation is as follows:

ft = σ(W f · [ht−1, xt] + b f ) (8a)

it = σ(Wi · [ht−1, xt] + bi) (8b)

C̃t = tanh(WC · [ht, xt] + bC) (8c)

Ct = ft ∗ Ct−1 + it ∗ C̃t (8d)

ot = σ(Wo · [ht−1, xt + bo] (8e)

ht = ot ∗ tanh(Ct) (8f)

where [W f , b f ], [Wi, bi], [WC, bC] and [Wo, bo] are learn-able weights and bias, ft and it
are forget gate and update gate, and ht−1 and ht are previous and current hidden states,
respectively. C̃t is the new candidate cell value. Thus, the new cell state Ct is updated by
Ct−1 and C̃t with associated forgetting weight and update weight. The new output and new
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hidden state are represented by ot and ht. In the end, the predicted positions are provided
to the separating plane computation to formulate constraints Equations (1b) and (1c).

(a)

(b)

Figure 6. Proposed model for human hand motion prediction, (a) shows the architecture of the
encoder–decoder LSTM neural network, and (b) shows the overview of LSTM cell architecture.

6. Experiments and Results

As stated in the Introduction, the collision avoidance by predicting human motion
prediction has potential applications in the industry. However, there is still no benchmark
dataset for experimentation and learning. Therefore, very few works have been reported.
In this paper, we generate a dataset with real cobot coordination. The Franka Emika Panda
cobot is used for the experimentation. In our previous work, we used a similar cobot
for collision detection [6]. To generate the human hand trajectories, a human is asked to
perform some tasks on a shared workspace with the cobot. The human hand moves to
several different goals with some patterns with different speed and position; the patterns
on which the hand should be moved is shown in Figure 5b, and the overall flow diagram
for dataset generation is shown in Figure 5.

Let the learning data of K observation sequences be collected from the RGB-D camera,
as demonstrated in Figure 5, S = {S1, . . . , SK}, where Sk = {Sk

1, . . . , Sk
Tk
}. Each element Sk

tk
denotes the position of the hand in Cartesian space. In this experimentation, the human’s
hand moves to several different goals with some patterns shown in Figure 5b. For each
task, we generate five similar trajectories with minor changes in position and speed. Raw
trajectory data are shown in Figure 5 (a partial trajectory), which can be used with relative
positions for better learning [43].

We transform the absolute coordinates of the hand’s position into relative coordi-
nates (relative displacements) to let coordinates become scene independent. In this way,
the model will learn the motion displacement pattern instead of memorizing the trajectory.
Secondly, we apply the data augmentation method to increase model generalisation capabil-
ity. We use random rotation to each trajectory to make the network learn rotation-invariant
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patterns. We add Gaussian noise with mean 0 and small standard deviation to every point
to make the network more robust to small perturbations and imprecision. Furthermore,
we divide these trajectories into prediction windows. For example, we define one training
sample as χ = (x, y) with x and y tensor of shape two corresponding to time-step and
features size, as shown in Figure 5e.

We demonstrate the proposed optimal collision-free trajectory planner with a 7-DoF
manipulator cobot. Maximum joint speed and acceleration are respectively π

2 rad.s−1 and
10 rad.s−2. We opt for a prediction horizon of length 0.25 s, with sampling time ∆t = 0.05 s
and N = 5, which covers the time necessary for the cobot to stop completely under all
circumstances, in order to satisfy the terminal constraint, Equation (2e), and enable in this
way the passive motion safety guarantee. A longer prediction time could provide improved
collision avoidance, but this would be highly dependent on the precision of longer-term
human motion prediction.

The safety distance is chosen equal to dsafe = 20 cm. The cobot completes a pick-and-
place task between positions GrA = (0.5, 0.4, 0.2) m and GrB = (0.5, −0.4, 0.2) m expressed
in the frame of the cobot base link. These two positions are shown as the green balls in
Figure 5b. In addition, the human moves his hand following the trajectory patterns shown
in Figure 5b. The neural network model is implemented in Tensorflow [44], and the total
network parameters are 149,699. The encoder part consists of three stacked LSTM layers
with 64 units for each layer. We add l1 and l2 regularisation with weights 1 ×10−4 and
1 × 10−5, respectively. The decoder has the same structure as the encoder, and we change
the final output layer by a time distributed by using fully connected layers to predict
future relative displacements. The MSE (mean squared error) is used as loss function
for our deep learning model, and the original data are augmented by adding random
rotations and Gaussian noise, as explained above. The Gaussian noise is widely used for
data augmentation. However, we experimented with Gaussian noise, random noise, and
without any kind of noise. Figure 7 shows the learning loss over different epochs, (a) shows
training loss, and (b) shows validation loss.

The model is evaluated based on MAE (mean absolute error), which is a widely used
metric for evaluating the prediction based models [45–48]. The MAE is basically the sum
of absolute difference between ground-truth 3D position and predicted position. Figure 8
shows the MAE for the proposed model; (a) shows the MAE for validation and training set
with Gaussian noise; (b) and (c) show comparative curves for random noise and models
without noise. It can be seen that the model without noise has a high error on the validation
set, which clearly gives the impression of over-fitting. Surprisingly, the random noise gives
an overall minimum error on the training and validation set, but the Gaussian based model
works better on a cobot when these models were deployed for real-time testing.
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Figure 7. Training and validation loss of proposed model, (a) shows the training and validation
MAE for the model with Gaussian noise, and (b) shows the training and validation MAE with
random noise.
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The qualitative visualization of deployed model is shown in Figure 9. In Figure 9a,a’,
the cobots move from goal GrA to GrB, and the collision-free trajectory is shown as suc-
cessive frames in green. As the distance between the cobot and human is large enough,
this trajectory is straight to the goal. The yellow spheres represent the predicted positions
of the human’s hand in five time-steps. The green plane represents the separating plane
(only the first predicted step is shown here, we have in total (N-1) planes). In Figure 9b,c
and Figure 9b’,c’, the cobot deviates its trajectory in order to avoid the human motion.
The predicted positions are shown according to the yellow sphere. Finally, the cobot attends
the position of GrB with successful collision avoidance, as shown in Figure 9d,d’.
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Figure 8. The MAE of proposed model, (a) shows the training and validation MAE for the model
with Gaussian noise, (b,c) show the comparative validation and training MAE with a different
configuration of noise.

To ensure human safety in a collaborative shared workspace, we evaluated different
cases on which we ensured that the cobot achieves his goal by avoiding the possible collision
with humans, as explained in previous experiments, and we also tested a situation which
created a deadlock, and it is not achievable for the cobot to complete the task. Figure 10
shows the simulation on which the human hand is placed for longer duration, which
creates no exception for completing the task. In this case, the motion generator keeps the
cobot still at the desired safe distance.

The proposed MPC modules give competitive performance for various industrial tasks
in shared environments. However, the proposed model ensures human safety and collision
avoidance only if one hand is used. It is obvious that the perception module can not see
the second hand of the human due to occlusion. The limitation of the proposed module
can easily be removed by installing more than one RGB-D cameras to ensure the occlusion
free perception.
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Figure 9. The qualitative visualization of collaborative environment between cobot and human,
(a) shows the distance between cobot and hand, which is much larger than safety distance (20 cm),
(b) shows the behavior of the cobot when the human hand is intentionally placed for possible collision,
the cobot deviates from its initial trajectory to avoid the collision, (c,d) show that the cobot achieves
its goal without stopping or hurting the human while keeping a safe distance. The sub-figures from
(a’–d’) show the corresponding visualization of the same data in RVIZ.

Figure 10. A case study on which collision can not be avoided, (a) human blocks cobot motion
intentionally, (b) the trajectory generator ensures that the cobot is at rest to avoid collision.

7. Conclusions and Future Work

In this paper, we integrated a perception module into our previous safe MPC scheme
to generate optimal collision-free trajectories online. In our previous MPC module, we
detected the collision and ensured that, during collision, the cobot is at rest. In this work,
we extended our previous MPC scheme; instead of detecting collision, we aimed to prevent
it by predicting the human hand motion. Based on the prediction trajectories, the cobot
changes its motion and maintains a safe distance from the human hand. Taking into account
the future motion of a human’s hand can significantly help the motion generator to plan a
collision-free trajectory. In this case, the task of the cobot is interrupted intentionally by the
human, and MPC can not generate a collision free trajectory; then, the motion generator
lets the cobot wait at a safe distance. However, using one camera leads to a problem of
occlusion. In this case, the human second hand position can not be detected reliably even
with state-of-the art algorithms. Our next goal is to extend our perception module with
multiple cameras to ensure occlusion-free perception to our MPC. Furthermore, we want
to generalize the hand’s prediction task to whole-body motion prediction where humans
can work with autonomous mobile robots.
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