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Particles, Quasi-particles, Elementary and Topological excitations in condensed matter

C. Tannous
Université de Brest, Lab-STICC, CNRS-UMR 6285, F-29200 Brest, FRANCE

(Dated: September 27, 2022)

Condensed Matter (CM) contains a broad spectrum of ingredients such as Particles, Quasi-
particles and Elementary excitations that are different from their counterparts in vacuum, in air
or other gases because of the smaller distances between the electrons, atoms and ions constitut-
ing the CM medium or because of specific structural (geometrical) symmetries or non-geometrical
symmetries such as Time-reversal symmetry, particle-hole symmetry and chiral symmetry as in
topological materials. In these interesting emergent materials, topological excitations have already
been observed and potential paradigm shift applications are expected in the near future.
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I. INTRODUCTION

Solids are made of atoms or molecules containing electrons and nuclei containing protons and neutrons. Free
electrons, protons and neutrons are considered as particles but when they are inside a particular environment such as
a solid or a nucleus... their behavior is strongly different from their free non-interacting counterparts.

Quasi-particles are particles dressed by their environment or by interactions among themselves. For instance, an
electron in a solid is subject to a potential V (r) created by atoms, ions, impurities, dislocations... present inside the
solid.

The idea of quasi-particles originated in Lev Landau’s theory of many-body Fermi liquids, which was originally
created phenomenologically for understanding liquid Helium-3. Landau [1, 2] assumed that the energy of the system
is described by a simple parameter, the spatial density ρ(r) of quasi-particles and that these preserve the basic
characteristics of the Fermi-liquid system such as charge, spin and Fermi-Dirac statistics implying that we are mapping
the many-body system to an ensemble of weakly interacting fermions.

https://orcid.org/0000-0002-9293-1763
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Landau [3] main hypothesis is that the energy is a functional F [ρ(r)] and not a simple function, enabling him to
define specific conditions that F should satisfy in order to qualify as the right energy. This idea lead, later on, to
band-structure calculations of many systems with the DFT (Density Functional Theory) and afterwards to SDFT
(Spin Density Functional Theory) pertaining to magnetic systems.

However, it does not apply to Luttinger-Tomonaga [4] 1D fermions, superconducting systems in any dimension or
any strongly interacting fermion system.

Elementary excitations are quanta describing excited states of a solid or a liquid. They are different from both
particles and quasi-particles. While particles and quasi-particles possess mass, charge and spin, elementary excitations
do not have those characteristics and are rather described by their dispersion relations ω(k).

The excited states are obtained when parts of the solid or liquid are driven away from their equilibrium states. The
description is akin to a pendulum that exhibits periodic harmonic oscillations with small amplitude about equilibrium
when slightly disturbed. However, when it is excited with large perturbations, it will exhibit non-linear, non-harmonic
and even chaotic motion.

A quantum many-body system such as a solid contains a large number of interacting particles or quasi-particles on
the order of Avogadro number (NA = 6.023×1023) for a mole of material. In principle, Schrödinger equation predicts
exactly how this system will behave, however it is a daunting task to solve systems of 3NA Schrödinger PDE (Partial
Differential Equations) in 3D.

Quasi-particles and elementary excitations are types of low-lying excited state. A phonon is a quantum of crystal
vibration called an elementary excitation, whereas an electron in a crystal is a quasi-particle.

Several distinctions exist between free particles in vacuum and particles in a crystal. In vacuum, momentum p or
wavevector k = p/~ are continuous as well as the corresponding energy ~ω(k).

In a crystal, momentum, wavevector and energy are discrete and called quasi-momentum and quasi-wavevector
because translational symmetry is adapted to a discrete lattice and no longer to a continuum.

Translational symmetry restricts momentum and wavevector space to a finite Brillouin zone (BZ) describing physical
phenomena in Fourier space much like a unit cell is sufficient to describe physical phenomena in real crystal space.
For instance, a simple way to understand the transformation from a free electron kinetic energy EK = ~2k2

2me
into a

dispersion relation ~ωλ,σ(k) is to perform back-folding of EK in the BZ (see e.g. Kittel [5]).
Dispersion relation ~ωλ,σ(k) is labeled with a band index λ that might take finite (vibration case) or infinite values
(electronic excitations) depending on the underlying physics and σ the spin index that describe particles and quasi-
particles but not elementary excitations.

Therefore, using quasi-particles/elementary excitations, instead of analyzing a large number (3NA particles),
boils down to handling somewhat-independent excitations. It is, therefore, an effective approach to simplify the
many-body problem from the quantum statistical mechanics point of view.

This approach is not useful for strongly correlated materials where emergent quasi-particles are encountered
throughout the discovery of high-Tc superconductivity (HTS), the Fractional Quantum Hall Effect (FQHE) and
Topological materials (Insulators, Superconductors...).

Many of the properties of these emergent materials can be explained by the Berry connection, the k-space analog
of the magnetic vector potential and the Berry curvature, the k-space analog of the magnetic field, their peculiarity
being revealed by integration over the Brillouin Zone (BZ) yielding a non-zero integer number (Chern) while, in
ordinary materials, the integration yields zero.

Topological properties of these materials can be revealed by other special symmetries, sometimes not present in
standard materials such as particle-hole symmetry, chiral symmetry, time-reversal symmetry and the number of
topologically distinct ground states [6].

Additionally, strong correlations produce separation of charge and spin degrees of freedom [7]. Exceptions exist,
however, in e.g. Graphene while not a strongly correlated material, displays topological order with dissipation-less
transport along with fractional charge and statistics.

Thus, Topological properties of emergent materials are fascinating as they pave the way to a plethora of novel
properties such as spinless or spin edge states in insulating (Chern or Topological), metallic (Weyl, Dirac, Majorana...),
superconducting materials ... leading to novel applications and paradigms in condensed matter.
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II. STATISTICAL DISTRIBUTIONS

Generally, an ensemble of spatially distant non-interacting particles with small De Broglie wavelength λdB are
considered as classical whereas in the case of large λdB the particles are considered as quantum.

In order to precisely qualify the notion of small and large λdB , one must consider the typical interparticle distance
dint. Thus if we have dint � λdB the ensemble is considered as a classical gas whereas when λdB � dint the ensemble
is considered as a quantum gas.

In fact, there is a semi-quantum regime that occurs when λdB is large without overlap between nearest neighbors.
Thus a purely classical regime exists when λdB is very small and simultaneously dint is large.

A. The 3D ideal classical gas

In the Microcanonical ensemble [8], the chemical potential µ = −T
(

∂S
∂N

)
V,E

in terms of (E, V,N) canoni-
cal variables [9] with entropy S = S(E, V,N) (see Appendix A) related to Ω(E, V,N) via Boltzmann relation
S = kB lnΩ(E, V,N) where Ω is given by [10]:

Ω(E, V,N) =
∫
· · ·
∫
δ(E −H) dΓN (1)

where dΓN = 1
N !h3N ΠN

i=1dridpi and H =
∑3N

i=1 p
2
i /2m is the Hamiltonian for a system of N free particles.

Note that in the Microcanonical ensemble [8] the total energy is called E and not U .

Since H is r-independent and spherically symmetric with respect to momenta pi, we may write in 3D eq. 1 as:

Ω(E, V,N) =
V N

N !h3N

2π3N/2

Γ(3N/2)
×
∫ ∞

0

dP P 3N−1δ(E − P 2/2m) (2)

with a change of variable P ≡
∑3N

i=1 p
2
i and hyper-volume (see Appendix B) element in 3N dimensions with momenta

pi. Thus:

Ω(E, V,N) =
1
N !

V N

h3N
(2πm)3N/2 E3N/2−1

(3N/2− 1)!
≈ 1
N !

V N

h3N
(2πm)3N/2 E3N/2

(3N/2)!
(3)

Using Stirling approximation [11], one obtains for the entropy S:

S = kBN

{
ln
V

N
+

3
2

ln
[

mE

3π~2N

]
+

5
2

}
. (4)

Substituting the above into the thermodynamic (see Appendix A) relation µ = −T
(

∂S
∂N

)
V,E

leads to the ideal
classical gas chemical potential:

µC = −kBT ln

[
V

N

(
mkBT

2π~2

)3/2
]
, (5)

where the relation E = 3
2NkBT has been used.

B. The 3D ideal quantum gas

Particles, quasi-particles and elementary excitations, are characterized by their Mass, Charge, Spin, Polarizations,
Statistical properties and dispersion relations.



4

They can be statistically distributed along either Bose-Einstein or Fermi-Dirac depending on the value of their
spin. In sharp contrast, with non-existing spin value, elementary excitations can be classified as Bosons or Fermions
rather from the commutation relations related to their creation-annihilation operators.

In the Bose-Einstein case, the mean occupation number fB(ε) = 〈n〉 of energy level ε is:

fB(ε) =
1

e β (ε−µ) − 1
(6)

whereas in the Fermi-Dirac case:

fF (ε) =
1

e β (ε−µ) + 1
(7)

with β = 1/kBT and µ the chemical potential that allows to determine the number of particles in the system. The
chemical potential is a Lagrange multiplier corresponding to the conservation of particles when one determines the
statistical distribution of a given system of particles [1]. It is zero in the non-conserved case and negative in the
Bose-Einstein case, dropping to zero at the condensation temperature.

For free non-interacting bosons in 3D, the conservation of particles condition is written by expressing their number
N as an integral over energy levels ε using the density of states g(ε) = m2/3

√
2π2~3 ε

1/2:

N =
V m3/2

√
2π2~3

∫ ∞

0

ε1/2dε

eβ(ε−µ) − 1
(8)

Instead of using specific integration methods proper to Fermi integrals (see Appendix C), we use the Polylogarithm
function by noting that:

∫ ∞

0

ε1/2dε

eβ(ε−µ) − 1
=

1
β3/2

∫ ∞

0

x1/2dx

ζex − 1
(9)

where ζ is defined as ζ ≡ e−βµ. The Polylogarithm function Lis(ζ) defined as:

Lis(ζ) =
1

Γ(s)

∫ ∞

0

ts−1dt

ζ−1et − 1
. (10)

can be used to express the result in a compact way.
For s = 3/2 and ζ → ζ−1 we have:

Li3/2

(
1
ζ

)
=

1
Γ(3/2)

∫ ∞

0

t1/2dt

ζet − 1
(11)

which enable us to rewrite the last integral above as:

1
β3/2

∫ ∞

0

x1/2dx

ζex − 1
=

1
β3/2

Li3/2

(
eβµ
)
. (12)

This allows the chemical potential µ to be written as an implicit function of temperature T and particle density N/V
as:

N

V
=
(
mkBT

2π~2

)3/2

Li3/2

(
eβµ
)
. (13)

The above corresponds to the equation of state µ = µ(N,V, T ) for an ideal Bose gas.
Let us find explicitly the equation of state µ = µ(N,V, T ) for an ideal Fermi gas. Proceeding as in the Bose case,

we use the density of states g(ε) = m2/3
√

2π2~3 ε
1/2 to get:

N =
∑

s

〈ns〉 =
∑

k

1
eβ(εk−µ) + 1

(14)
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This yields:

N =
V

Γ(3/2)

( m

2π~2

)3/2
∫ ∞

0

ε1/2dε

eβ(ε−µ) + 1
, (15)

Using particle density N/V and the polylogarithm function Lis(z) we write:

N

V
= −

(
mkBT

2π~2

)3/2

Li3/2(−eβµ), (16)

Thus, the equation of state µ(N,V, T ) is obtained with µ(N,V, T = 0) and Fermi energy EF = kBTF = ~2k2
F /2m

given by:

EF =
~2

2m

(
6π2N

V

)2/3

. (17)

The Fermi-Dirac equivalent TFD of the Bose-Einstein condensation temperature TBE is given by:

N

V
= −

(
mkBTFD

2π~2

)3/2

Li3/2(−1) =
(
mkBTFD

2π~2

)3/2

(18)

This enables us to check the temperature at which the chemical potential of a Fermi gas is zero (condensation
forbidden by Pauli exclusion principle) as given by:

TFD =
2π~2

mkB

(
N

V

)2/3

(19)

In order to evaluate numerically the polylogarithmic [12] function Lis(z), we express them with the Lerch transcen-
dent Φ as [13]:

Lis(z) = zΦ(s, z, 1) Re(s) > 1, |z| ≤ 1. (20)

Φ(s, z, c) defined by Φ(s, z, c) =
∑∞

n=0
zn

(n+c)s is a fast converging sum. The Lerch transcendent Φ(s, z, c) is obtained
from the Lerch zeta function ζ(s, a, c) =

∑∞
n=0 e

2iπna(n + c)−s under change of variable z = e2iπa and sometimes
called the Lerch zeta function (cf. Oberhettinger [14]) despite the fact ζ(s, a, c) was originally studied in 1887 by the
Czech mathematician Mathias Lerch [15, 16]. In the |z| > 1 case, an analytical continuation [17, 18] is performed in
order to calculate Lis(z).

C. Spin, statistics and associated fields

If the spin of a P/Q/E (P: Particle, Q: Quasi-particle, E: Elementary excitation) is zero, the field associated with
it, is Scalar.
If the spin of a P/Q/E is half, the field associated with it, is Spinorial [20]. Mathematically, a spinor reverses its sign
when the polar angle is rotated by 2π since |ψ(θ + 2π, φ)〉 = R̂z(θ + 2π, φ) |ψ(θ, φ)〉 = − |ψ(θ, φ)〉
If the spin of a P/Q/E is one, the field associated with it, is Vectorial.
If the spin of a P/Q/E is a half-integer > 1/2, the field associated with it, is Spinorial of higher order [20].
If the spin of a P/Q/E is an integer > 1, the field associated with it, is Tensorial [21].

Intermediate statistics or para-statistics (also called Gentile) occur, for instance, in gas adsorption problems where
several gas molecules can fill empty sites of a surface contrasting with the Langmuir (Fermi-Dirac) model where a
site is empty or filled at most by a single gas molecule.

Para-statistics and intermediate or fractional statistics can be described by three methods at least:
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FIG. 1: (Color on-line) Variation of the chemical potential potential for a classical particle [19], a boson and a fermion. At
left is Fetter et al. theoretical behavior and at right are our own results obtained from reverting the polylogarithmic [12]
function Li3/2(z). The chemical potential of a boson is always negative reaching zero at the condensation temperature. The
classical limit is when the Bose-Einstein factor 〈n〉 = 1

eβ(~ω−µ)−1
� 1 and the Fermi-Dirac factor 〈n〉 = 1

eβ(~ω−µ)+1
� 1 or when

mean particle distance is much larger than thermal wavelength [1, 20]. When βµ → −∞, we recover Boltzmann distribution

〈n〉 ≈ e−β(~ω−µ) with the merging of all chemical potentials: Bose-Einstein, Fermi-Dirac and Maxwell-Boltzmann along the

classical limiting line: βµC → ln N
V

( 2π~2

mkBT
)

3
2 .

1. Interpolation method: A Fermion can fill a single quantum level according to Pauli Exclusion Principle whereas
Bosons can occupy a single quantum level with no bounds (Condensation). Describing level occupation index
with a number p, we infer that p = 1 for Fermions, whereas p = ∞ for Bosons, thus we can interpolate between
these two extreme values, to finally obtain a mean occupation fp(ε) of energy level ε as:

fp(ε) =
1

e β (ε+µ) − 1
− p+ 1
e(p+1) β (ε+µ) − 1

(21)

2. Operator method: Fermions obey anti-commutator relations {a, a†} = aa† + a†a = 1 whereas Bosons obey
commutator [a, a†] = aa† − a†a = 1 relations. We thus introduce q-deformed commutation relations in the
following way: [a, a†]q = aa† − qa†a where q = 1 for bosons and q = −1 for fermions.

Proceeding exactly as done with the standard harmonic oscillator ladder operators, we get: a† |n〉 =√
[n+ 1]q |n+ 1〉 and a |n〉 =

√
[n]q |n− 1〉 where q-numbers are defined as [n]q = qn−1

q−1 .

Orthonormalized set of eigenstates is obtained by repetitive application of the creation operator a† onto vacuum
state |0〉 defined by a|0〉 = 0 to obtain:

|n〉 =
(a†)n√

[n]q!
|0〉 n = 0, 1... (22)

where the q-factorial [n]q! is defined from q-numbers such that [n]q! = [n]q[n− 1]q...[1]q with [0]q = 1.

Finally, we get the mean occupation of energy level ε as:

fq(ε) =
1

ln q
ln
(
e β (ε−µ) − 1
e β (ε−µ) − q

)
(23)
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3. Exchange operations: In Pauli spin-statistics theorem, a many-particle wave-function has the following property:

Ψ(r1, r2...rj , ...ri...) = eiθΨ(r1, r2...ri, ...rj ...) θ = 0, π (24)

The generalization of this theorem proceeds through consideration of an arbitrary value of θ. In addition, there
is a peculiarity of 2D spatial dimension from a topological point of view.

Firstly, the occurrence of surface states (called edge states) and secondly the permutation group describing
spatial exchange of particles is transformed into a Braid group [22] leading to Non-Abelian statistics in sharp
contrast to the permutation group that is Abelian in any dimension D > 2.

This has consequences on the phase factor affecting the many-particle wave-function during exchange of particles:

ψα(r1, r2...ri, rj ...) → eiθpT p
αβψβ(r1, r2...rj , ri...) (25)

where the former wave-function Ψ has been replaced by a multi-component ψα and the phase has acquired
several values θp that are altered by a n× n transformation matrix T p where n is the corresponding Lie Group
size [6] (see Appendix D).

On the statistics side we get either bosons or fermions for D > 2 according to Pauli Spin-Statistics [21] theorem,
however arbitrary statistics are allowed in 2D paving the way to novel exotic physical properties such as the
FQHE to be discussed further below.

III. QUASI-PARTICLES AND EMERGENCE OF TOPOLOGICAL EXCITATIONS

In solids, an electron quasi-particle is an electron affected by other forces and interactions in the solid. The electron
quasi-particle has the same charge and spin as a free electron. However, its mass can differ substantially from that of
a free electron. Its electric field is also modified, as a result of screening produced by a large number of surrounding
electrons. In some metals under ordinary conditions, these so-called Landau quasi-particles are similar to free electrons.

A hole is a positively charged quasi-particle consisting of the absence of an electron in a state; it is used to describe
empty states of a semiconductor valence band.

A photon in vacuum has zero rest mass and travels at the speed of light c, thus its energy is pc with p its
momentum. Note that the photon number not being conserved, µ = 0 for all temperatures, implying that the photon
character is always quantum and the ”classical” limit kBT � ~ω invoked by Planck [23, 24] bypasses the quantum
nature of the photon.

In sharp contrast, a photon inside a photonic crystal has an energy ~ω(k), a mass and a velocity depending on the
dispersion law ω(k).

A phonon [5] is a elementary excitation associated with the vibration of atoms in a crystal. It is a quantum of a
sound wave.

A magnon [5] is an elementary excitation associated with the electronic spin structure in a crystal lattice. It is a
spin wave quantum.
A plasmon [5] is an elementary excitation, a quantum of plasma (ionized medium) oscillation with electrons moving
as a whole with respect to ions.
A polaron [5] is a quasi-particle consisting of an electron interacting with the polarization of its surrounding ions.
An exciton [5] is an electron and hole bound together by Coulomb interaction.
A roton [2, 3] is an elementary excitation (vortex quantum) associated with the rotation of a fluid or a superfluid.

According to Kittel [5], the number of polarizations arise in the density of states. This function is g(ω) in d

dimensions for a system of typical linear length L given by g(ω) =
(

L
2π

)d ∫
dSω

vg
with k integration performed such
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Name Nature Mass Charge Spin Np Statistics Chemical Potential Dispersion relation

Free Boson P P m q S 2S + 1 Bose-Einstein µ(T, P ) ~2k2

2m

Free Fermion P P m q S 2S + 1 Fermi-Dirac µ(T, P ) ~2k2

2m

Free Electron P me −e 1/2 2 Fermi-Dirac µ(T, P ) ~2k2

2me

Electron in crystal Q m∗
e −e 1/2 2 Fermi-Dirac µ(T, P ) ~ωλ,σ(k)

Hole in crystal Q m∗
h +e 1/2 2 Fermi-Dirac µ(T, P ) ~ωλ,σ(k)

Free Photon P 0 0 1 2 Bose-Einstein 0 pc

Photon in Photonic crystal P 0 0 1 2 Bose-Einstein 0 ~ωλ,σ(k)

Phonon E No No No 1 Bose-Einstein 0 ~ωλ(k)

Magnon E No No No 1 Bose-Einstein 0 ~ωλ(k)

Graviton in Vacuum P 0 0 2 2 Bose-Einstein µ(T, P ) pc

TABLE I: Examples of Particles (P), Quasi-Particles (Q) and Elementary excitations (E). While P and Q possess mass, spin
and number of polarization states Np, E do not have neither mass, nor charge, nor spin nor polarization states (however we
take, by default, Np = 1). If a P is massive and possesses a spin S, it has Np = 2S + 1 polarization states, whereas a zero-
mass P with a spin S has only two polarization states ±S (Np = 2). Particles, quasi-particles and elementary excitations are
characterized by their dispersion relation ω(k) with k continuous for free particles, discrete and restricted to the BZ in crystals
for quasi-particles and elementary excitations along with the corresponding dispersion relations ωλ,σ(k) and ωλ(k) since spin
is inexistent in the case of elementary excitations. When we have conservation of the number of particles or quasi-particles we
should have a defined chemical potential µ(T, P ) depending on system temperature and pressure (T, P ). In the non-conserved
case, µ(T, P ) = 0, ∀T, P . λ, σ are band index and spin. For electrons, holes and photons in crystals λ is unbounded whereas
for phonons it is bounded by the total number of vibrational modes.c is vacuum speed of light.

that ω < ω(k) < ω + dω. vg is the group velocity modulus of the elementary excitations [5]: vg = |∇kω(k)| and
dSω is the differential area element on the constant dispersion surface ω(k) = ω. This formula is generalized into
g(ω) = Np

(
L
2π

)d ∫
dSω

vg
where Np is the number of polarizations.

When the excitations are real particles (photons, electrons...) and possess a spin S, Np = 2S+1 when the particles
have non-zero mass (electrons) andNp = 2 for zero-mass particles (such as photons). Elementary excitations (phonons,
plasmons, magnons, excitons...) possess Np = 1 regardless of statistics. E. Wigner [25] showed in 1939 with Lorenz
invariance, that a photon (or any other massless particle with spin S) moves with the velocity of light c. Exploiting
rotational symmetry around c direction provides two polarizations: left or right circular corresponding to mS = ±S
spin eigenstates.

A. Berry phase and the Quantum adiabatic theorem

In classical physics, rotating an object by an integral number m of full revolutions about some axis returns the
object to its initial state. This means the rotation operation by angle 2mπ radians, with integer m, is equivalent to
the identity operation producing no observable consequences.
In Quantum Mechanics, the situation is different with the adiabatic theorem allowing the wave function to alter its
phase after its control variables are cycled around a circuit.

Berry [22] first showed that by recalling the adiabatic theorem extension of quantum mechanics, the wave function
of a quantum system does not necessarily return to its original phase after circulating around a closed path.

The phase possesses a topological character determined by underlying atomic symmetries that include both inversion
and time-reversal symmetry.

As an example, in a material with a band structure defined with Bloch cell periodic eigenstates |unk〉, altering adi-
abatically the wave-vector from k to k′, we define the Berry connection (see Appendix E) by An = −i 〈unk| ∂

∂k |unk〉.

The Berry phase is given by: ΦB(k,k′) =
∫ k′

k
dk ·An = −i

∫ k′

k
dk · 〈unk| ∂

∂k |unk〉.

For a closed circuit, we get: ΦB =
∮
dk ·An = 2πN with N a non-zero integer.

Consequently, we infer that the Berry connection is simply the k-space analog of the magnetic vector potential.
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Additionally, the Berry curvature, the k-space analog of the magnetic field, Fn = (∇×An)z yields the Chern number
as an integral over the Brillouin Zone (BZ) summed over filled states:

C =
filled∑

n

1
2π

∫
BZ

dkxdkyFn = 0,±1,±2,±3... (26)

C = 0 corresponds to a standard material whereas C = ±1,±2,±3... corresponds to a Chern insulator material.
The Hall conductivity [26], in a Chern insulator, is given by: σxy = C e2

h and the edge state is a charge current.
The Z2 invariant is calculated over half the Brillouin Zone (BZ/2) :

Z2 =
filled∑
n=1

1
2π

(∮
BZ/2

An · dk −
∫

BZ/2

dkxdkyFn

)
= 0, 1 (mod 2) (27)

Z2 corresponds to a standard material whereas Z2 = 1 corresponds to a topological insulator material [22] possessing
time-reversal symmetry and in which the edge state is a spin current.

In addition there are other indicators such as surface states (or edge states in 2D) and excitations that possess
fractional charge or statistics.

They can be characterized by topological entropy that measures the complexity of their order. One example would
be the complexity of the ground state wave-function [27].

Topological materials address several issues such as those mentioned by Thouless [28]:

1. Why does current flow without loss in a superconductor, although the current-carrying state does not have low
free energy?

2. Why is a solid rigid?

3. Why can a poorly defined Josephson junction provide the world’s best voltage measurements?

4. Why can the quantum Hall effect provide the best standards of electrical resistance?

5. How many different types of line defects are there in various liquid crystal phases?

Moreover, following Wen [27], another set of questions can be addressed in Topological materials along the following
lines:

1. Topological insulators and superconductors (i.e. with T 2 = (−)NF the fermion number parity operator [22] for
electron systems time-reversal symmetry and weak interactions) has no topological order.

Topological insulators are insulating in bulk but their surface might be insulating or conducting (gapless)
depending on a topological property. For example, a (2+1) D (2 spatial + 1 time) topological insulator is
characterized by a non-zero term called θ and time-reversal symmetric flux [29, 30]. Most materials have θ = 0
whereas a topological insulator has θ = π. θ is a topological quantity that controls charges in the topological
material, for instance when θ = 2π we get e the electron charge [29, 30].

For a 3D topological insulator gapless states might occur on its faces, along its sides or some directions or even
at special points [31] as displayed in Fig. 2.

Note this is in sharp contrast with respect to (non-topological) amorphous Selenium films (used in photocopier
photoconducting drums) that are conducting in the bulk and insulating on their surface [32] so that they retain
charges reproducing the latent image for some required time (imaged document) before later processing.

2. (3 + 1)D (3 spatial + 1 time) s-wave superconductors have no topological order, while (3 + 1)D real-life s-wave
superconductors have a Z2-topological order.

3. (2 + 1)D fermion paired state and Integer Quantum Hall (IQH) states do not have any fractional topological
excitations. They are considered either as long or short-range entangled states.

4. What are the difference between a Chern insulator, quantum anomalous Hall state, and IQH?

5. In non-Abelian statistics, should a Majorana fermion obey Fermi statistics?
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FIG. 2: (Color on-line) Cubic 3D topological insulator with gapless (conducting) states occurring on its 2D faces (left), along
1D sides (center) or at 0D apices (right).

6. Is the Bogoliubov [33] quasiparticle in a superconductor a Majorana fermion, knowing that a Bogoliubov quasi-
particle is rather inspired from superfluidity than superconductivity?

We would add that it brings another look at exchange of identical particles based on the essence of topology i.e.
continuity. Thus exchange might be viewed as an adiabatic, continuous transformation with the particles changing
place via continuous paths.

Moreover there are indications from Chern-Simons theory based on physics belonging to a new type of gauge
theory, completely different from Maxwell theory, in (2+1)D (see Appendix D) implying the charge density is locally
proportional to the magnetic field meaning that in Chern-Simons theory magnetic flux is tied to electric charge
through a coupling parameter κ.

This implies a coupling of charge and magnetic flux that is responsible for the notion of composite particle carrying
an electric charge and a magnetic flux as in the FQHE.

Note: Let us insist there is a clear distinction between the 3D case and the 2D case where topological and
fractional properties have been observed in many systems pertaining to spin behavior in 2D.

For instance, composite fermions arise in a 2D system subject to a large magnetic field, displaying the FQHE.
One observes a fraction of the electron charge e with filling fraction values:

• ν = m
2m±1 for integer m ≥ 1 (principal series),

• ν = m
2pm±1 for integer m, p ≥ 1 (Jain series),

• ν = m
m+2 for integer m ≥ 2 (Moore-Read-Rezayi series),

• ν = m
2(m±1) for integer odd m ≥ 3 (Even denominator series) and finally

• ν = m
(3m−2) for integer m ≥ 2.

IV. PARTICLES, QUASI-PARTICLES AND ELEMENTARY EXCITATIONS IN EMERGENT
MATERIALS

Emergent and topological materials [34] are the source of novel Particles, Quasi-Particles and Elementary excita-
tions.

While ”standard” Particles (P) and Quasi-Particles (Q) are characterized by their Mass, Charge, Spin, Polariza-
tions and dispersion relations, topological excitations are characterized by symmetries such as Time-reversal or T
symmetry Θ, particle-hole symmetry Ξ and chiral symmetry Π = ΞΘ. Their charge, spin and statistics are fractional
meaning they behave distinctly from both Bosons and Fermions.

In the case of Elementary excitations (E) Mass, Charge, Spin and Polarizations are not relevant but only the
dispersion relations. Same is true for Topological Elementary excitations as well as symmetry properties.

Topological excitations were considered after three major paradigm shifts [35] in condensed matter physics:

1. Discovery of High Temperature Superconductivity (HTSC).
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2. Discovery of the Integer (IQHE) and Fractional Quantum Hall Effect (FQHE).

3. Discovery of Bose-Einstein condensation in dilute atomic gases such as vapors of Rubidium, Sodium, and
Lithium.

Topological symmetry [22] is higher than geometrical (spatial) symmetry in the sense it does not care about
specific angles or lengths as in standard crystallography. Landau argument [1], defining a phase transition as broken
symmetry that is a change from higher (at higher temperature) to lower geometrical symmetry (at lower tem-
perature) has to be modified in the case of Topological symmetry since it is not about geometrical or spatial symmetry.

In Landau theory [1] the main ingredient is a local order parameter which is zero in the higher symmetry (higher
temperature) phase and non-zero in the lower symmetry (lower temperature) phase like magnetization in magnetic
materials which is zero in the paramagnetic phase and non-zero in the ferromagnetic phase.

Topological symmetry endows the corresponding material, such an insulator having an energy gap with ”protection”
meaning that the gap value cannot change under any deformation of the Hamiltonian, does not cause it to decrease
and does not trigger, for instance, an Insulator-Metal (first-order) phase transition. This protection implies also that
any disorder considered as a deformation to the Hamiltonian cannot affect certain physical quantities belonging to a
given topological symmetry.

We recall that an insulating state might occur in one-body band structure (weakly interacting Fermi gas) from the
appearance of a large (several eV) energy gap (ordinary insulator) or in many-body systems (strongly interacting
Fermi gas) from Coulomb interactions (Mott insulator) or from disorder (Anderson insulator). We will show below
that in topological materials we have occurrence of two new types of insulating materials, Chern and topological
materials who have both special edge (surface) states.

Topological materials display non-local effects and the corresponding topological order parameter (TOP) cannot
be described by a local Landau theory [1] but by special numbers and integrals over the entire material also called
topological numbers or invariants [27] characterizing their nature such as charge or density...

Examples of invariants are Chern numbers that are equivalent to Berry flux evaluated through integration over
the Brillouin Zone (or its half in the case of Time-Reversal symmetry) and Z2. Both can be evaluated directly
from the Bloch cell periodic eigenstates |unk〉 or other mathematical quantities associated with the state of interest [27].

Topological insulators and superconductors [22] properties are determined by specifying the symmetry class and the
dimensionality. The symmetry class depends on the presence or absence of time-reversal T symmetry (see Table II),
with Θ2 = ±1 and/or particle-hole symmetry(see Table II) with Ξ2 = ±1.

In topological insulators and superconductors there are ten symmetry classes [21] specified by presence or absence
of T symmetry Θ, particle-hole symmetry Ξ and chiral symmetry Π = ΞΘ.

The symmetry classes are closely related to the classification of random matrices [21].
The similarity between insulators and superconductors originates from the presence of an energy gap. In an insulator

a (direct or indirect) gap occurs in its one-body band structure whereas a gap in a superconductor originates from a
many-body interaction and separates the ground state from the first excited state.

Some examples of emergent fermionic quasi-particles are:
A Dirac fermion is a relativistic electron observed in materials such as Graphene.
A Majorana fermion is a uncharged particle which is its own antiparticle, and can emerge as a quasi-particle in
certain superconductors, or in a quantum spin liquid.
A Weyl fermion is a massless fermion.

Non-linear excitations are solitons as the Su-Schrieffer-Heeger (SSH) in Polyacetylene or magnetic monopoles,
vortices, domain walls and skyrmions (topological spin structures, see Appendix F)...

A. Bose-Einstein condensation in dilute atomic gases and Quantum Gas Microscopes

Bose-Einstein condensation (BEC) in dilute atomic gases such as vapors of Rubidium, Sodium, and Lithium
constitutes the Third Quantum Revolution after the First one signaling the birth of Quantum Mechanics and
the Second exploiting Bell inequalities to distinguish Quantum Theory as clearly characterized by its non-locality.
The third quantum revolution opens the doors of Quantum Physics to macroscopic applications and Quantum
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Symmetry d

System Cartan Θ Ξ Π 1 2 3

A 0 0 0 0 Z 0

Wigner-Dyson AI 1 0 0 0 0 0

AII −1 0 0 0 Z2 Z2

AIII 0 0 1 Z 0 Z
Chiral BDI 1 1 1 Z 0 0

CII −1 −1 1 Z 0 Z2

D 0 1 0 Z2 Z 0

BdG C 0 −1 0 0 Z 0

DIII −1 1 1 Z2 Z2

CI 1 −1 1 0 0 Z

TABLE II: Periodic table of topological insulators and superconductors. The 10 symmetry classes are labeled using Cartan
labeling [34] and are specified by presence or absence of T symmetry Θ, particle-hole symmetry Ξ and chiral symmetry
Π = ΞΘ. Z2 means two topologically distinct ground states whereas Z means that the topologically distinct ground states
can be labeled by the set of integers [6]. Wigner-Dyson refers to traditional Quantum Field Theory whereas BdG refers to
Bogoliubov-De-Gennes [33] superconductivity theory.

Emergent field Basic component Control parameter Bottleneck/key experiment Target applications

Topological Berry phase Band structure design RT Zero-field edge current Information technology

Electronics Spin texture Skyrmionic circuit Sustainable energy

(see Appendix F)

Magneto- Spin-orbit Broken symmetries RT E-field switching Low Dissipation circuits

Electronics or interaction in space and time Ultrafast photo-switching Information technology

Spintronics Sustainable energy

MIPT Mott Transistor Band-filling RT E-field switching Low Dissipation circuits

Electronics Phase Transition Bandwidth Above-RT superconductor Sustainable energy

Quantum Quantum coherence Nanomaterials design Qubit/photon interface Quantum computer

Computing Topological protection Quantum simulator Information security

Ultra-fast decryption

Large scale Quantum Gas Bose-Einstein Optical Lattice Many-body problem solving:

Computing microscope condensation (BEC) Hubbard, Bose-Hubbard...

TABLE III: Emergent applications of Quantum/Topological materials and Bose-Einstein condensation. Adapted from Tokura
et al. [36]. Note: MIPT is Metal-Insulator Phase Transition. RT is Room Temperature.

Technologies such as Quantum Information, Communications and Computing.

Dilute quantum gases differ from ordinary gases, liquids and solids in a number of ways, The particle density at the
centre of a Bose-Einstein condensed atomic cloud is typically 1013-1015/cm3. By contrast, the density of molecules
in air at room temperature and atmospheric pressure is about 1019/cm3. In liquids and solids the density of atoms
is of order 1022/cm3, while the density of nucleons in atomic nuclei is about 1038/cm3.

BEC has been observed in Excitons and Photons under specific conditions. This led to many scientific advances
such as the reaching of extremely low temperatures (nano-K and pico-K ranges). Moreover, BEC of Magnons and
Photons have been both observed surprisingly at room temperature.

Another application of BEC is the development of Quantum Gas Microscopes allowing to study in a straightforward
way the properties of many-body systems...

Putting atoms into an optical lattice, paves the way to study of many-body systems that are realizations of models
used in condensed matter physics such as the Hubbard model for fermions or Bose-Hubbard model for bosons.
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Although the gases are very dilute, the atoms can be made to interact strongly, thus providing new challenges
for the description of strongly correlated many-body systems. In a period of less than ten years, the study of dilute
quantum gases has changed from an unusual topic to an integral part of contemporary physics, with strong ties to
molecular, atomic, subatomic and condensed matter physics.

APPENDIX A: CLASSICAL THERMODYNAMICS REFRESHER

The Jacobian method allows one to derive easily any thermodynamic identity as long as one respects the canonical
variables associated with some potential.

This is provided with the Guggenheim table below where each potential Gibbs, Enthalpy, Energy and Free energy
respectively G,H,U and F is flanked on each side by the appropriate canonical variables.

H S

G U

T F V

P

FIG. 3: (Color on-line) The table is constructed with a simple sentence: Great Physicists Have Studied Under Very Fine
Teachers starting with G at left of middle row and proceeding clockwise. The corner highlighted variables make Maxwell
relation table.

If we want to derive the enthalpy differential dH from the table, we write dH = adP + bdS and a, b are found by
inspecting the element in box across the diagonal from the box containing the canonical variable. We have a (+)
sign if we are moving down from the canonical variable to reach out for the diagonally opposite corner box and a
(-) sign in the opposite case. Thus a = V and b = T yielding dH = V dP + TdS. In the energy differential case
dU we have dU = adS + bdV with a = T, b = −P yielding dU = TdS − PdV . In the case of free energy we have
dF (T, V ) = −SdT − PdV whereas for Gibbs potential, dG(P, T ) = V dP − SdT .

Maxwell identities are constructed as well from the table corners. Thus we have:
(

∂P
∂T

)
V

=
(

∂S
∂V

)
T

and each time
we exchange variables diagonally we pick up a sign change as in the case P ↔ V :

(
∂V
∂T

)
P

= −
(

∂S
∂P

)
T
.

Note that if we want to enlarge the number of thermodynamic variables to the Grand Canonical ensemble
case that includes N,µ we write: dU(S, V,N) = TdS − PdV + µdN , dH(P, S,N) = V dP + TdS + µdN ,
dF (T, V,N) = −SdT − PdV + µdN and dG(P, T,N) = V dP − SdT + µdN . From dU(S, V,N). we obtain
µ = −T

(
∂U
∂N

)
S,V

or µ = −T
(

∂S
∂N

)
V,U

by taking into dU(S, V,N) = TdS − PdV + µdN V,U as constants implying
dV = 0, dU = 0. Same can be done with the other thermodynamic potentials H,F,G.

In order to describe the use of Jacobians in Thermodynamics, let us recall some of their properties [1, 9]:

• ∂(u,v)
∂(x,y) =

∣∣∣∣∣∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

∣∣∣∣∣
• ∂(u,v)

∂(x,y) = −∂(v,u)
∂(x,y)

• ∂(u,y)
∂(x,y) =

(
∂u
∂x

)
y

• ∂(u,v)
∂(x,y) = ∂(u,v)

∂(s,t)
∂(s,t)
∂(x,y)

• ∂(u,v)
∂(x,y) = 1/∂(x,y)

∂(u,v)
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This means that any term such as ∂(x, y) behaves as if it were an elementary algebraic coefficient simplifying and
speeding up enormously mathematical operations.

Nonetheless, there is a limit to express any physical quantity: It should depend on three experimentally measurable
quantities [9]:

1. Dilation coefficient αP = 1
V

(
∂V
∂T

)
P

2. Compressibility κT = − 1
V

(
∂V
∂P

)
T

3. Heat capacity CV = T
(

∂S
∂T

)
V

or CP = T
(

∂S
∂T

)
P

As an example, let us find the expression of CP−CV . We start by writing: CV = T
(

∂S
∂T

)
V

= T ∂(S,V )
∂(T,V ) = ∂(S,V )

∂(T,P )
∂(T,P )
∂(T,V )

which gives:
CP − CV = − T

(
∂V
∂T

)2
P
/
(

∂V
∂P

)
T

= TV α2
P /κT .

In the ideal gas case we have the state equation PV ∝ T resulting in αP = 1/T and κT = 1/P . Thus CP − CV =
PV/T = NkB where N is the number of particles.

APPENDIX B: SURFACE AND VOLUME OF A HYPERSPHERE IN d DIMENSIONS

Surface and volume of a 3D sphere is done through rationalisation of coordinate expressions via the following
transformations:

(x, y, z) → (x1, x2, x3)
(r, θ, φ) → (r, θ1, θ2); θ1 ∈ [0, π], θ2 ∈ [0, 2π] (B1)

Cartesian coordinates use (r, θ1, θ2) in the rationalized case as:

x1 = r sin θ1 sin θ2
x2 = r sin θ1 cos θ2
x3 = r cos θ1 (B2)

Note: Angles (θ1, θ2) are different from spherical angles (θ, φ) since θ1 = (ẑ, r), θ2 = (ŷ, r) whereas
θ = (ẑ, r), φ = (x̂, r). Unit vectors ŷ, ẑ are along y, z axes respectively.

Jacobian J of transformation (x1, x2, x3) → (r, θ1, θ2) links volume elements dx1dx2dx3 = |J |drdθ1dθ2 in both
systems.

Jacobian modulus is:

|J | =
∣∣∣∣∂(x1, x2, x3)
∂(r, θ1, θ2)

∣∣∣∣ =
∥∥∥∥∥∥∥

∂x1
∂r

∂x1
∂θ1

∂x1
∂θ2

∂x2
∂r

∂x2
∂θ1

∂x2
∂θ2

∂x3
∂r

∂x3
∂θ1

∂x3
∂θ2

∥∥∥∥∥∥∥ =

∥∥∥∥∥∥∥
sin θ1 sin θ2 r cos θ1 sin θ2 r sin θ1 cos θ2
sin θ1 cos θ2 r cos θ1 cos θ2 −r sin θ1 sin θ2

cos θ1 −r sin θ1 0

∥∥∥∥∥∥∥ = r2 sin θ1, (B3)

yielding expressions for volume dV and surface dS elements:

dV = r2 sin θ1drdθ1dθ2, dS = r2 sin θ1dθ1dθ2 = r2dΩ, dΩ = sin θ1dθ1dθ2 (B4)

Solid angle element dΩ is defined by direction (θ1, θ2) is simply elemental surface of unit radius sphere along direction
(θ1, θ2).

For a d dimension hypersphere its surface and volume are obtained with an extension from 3D to d dimensions via
Cartesian and rationalized hyperspherical coordinates:

(x, y, z, u, v...) → (x1, x2, x3, x4, x5...xd)
(r, θ, φ, ψ...) → (r, θ1, θ2, ...θd−1); θ1 ∈ [0, π], θ2 ∈ [0, 2π]... (B5)
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Exploiting an analogy with eq. B2 the coordinates are expressed as:

x1 = r sin θ1 sin θ2... sin θd−2 sin θd−1

x2 = r sin θ1 sin θ2... sin θd−2 cos θd−1

x3 = r sin θ1 sin θ2... cos θd−2

...
xd = r cos θ1 (B6)

The respective domains pertaining to each variable are given by:

r ∈]0,∞[, θ1 ∈ [0, π], θ2 ∈ [0, 2π]...θd−1 ∈ [0, 2π] (B7)

Rationalized angles are given by: θi = (x̂d−i+1, r) (cf. Note above).
One may generalize the Jacobian to d dimensions according to the following.
A volume element in d dimensions can be obtained from Jacobian Jd with coordinate transformation

dx1dx2dx3dx4dx5...dxd = |Jd|drdθ1dθ2...dθd−1, to obtain:

|Jd| =
∣∣∣∣∂(x1, x2, x3, x4, x5...xd)

∂(r, θ1, θ2, ...θd−1)

∣∣∣∣ = rd−1 sin θ1 sin θ2 sin θ3... sin θd−2, (B8)

proceeding along B3, obtaining the volume element as:

dV = rd−1 sin θ1 sin θ2 sin θ3... sin θd−2 drdθ1dθ2..dθd−1 (B9)

For the surface element we have:

dS = rd−1 sin θ1 sin θ2 sin θ3... sin θd−2 dθ1dθ2..dθd−1 ≡ rd−1dΩd

dΩd = sin θ1 sin θ2 sin θ3... sin θd−2 dθ1dθ2..dθd−1 (B10)

dΩd is a hyper solid angle given by directions (θ1, θ2, ...θd−1). It is in fact an area element on the unit sphere
contained between directions (θ1, θ2, ...θd−1).

Thus we are able to evaluate volumes and surfaces in d dimensions by direct integration.

1. Laurent Schwartz method

Another elegant method attributed to Mathematician Laurent Schwartz (creator of Distribution Theory) consists
of using relations based on Eulerian Γ function.

Since: ∫ ∞

−∞
dx exp(−x2) =

√
π (B11)

Taking this identity to d-th power yields:

Id =
[∫ ∞

−∞
dx exp(−x2)

]d

=
[√
π
]d (B12)

This is equivalent to turning d 1D integrals into a single integral in d dimensions:

Id =
∫ ∞

−∞
dx exp(−x2)

∫ ∞

−∞
dy exp(−y2)

∫ ∞

−∞
dz exp(−z2)... =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
... exp−(x2+y2+z2...)dxdydz... (B13)

Following the above path, we are able to express this d dimensional integral as follows:
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Id =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
... exp−(x2 + y2 + z2...)dxdydz... =

∫ ∞

0

∫
Dθ

exp(−r2)rd−1drdΩd (B14)

where angular domain Dθ = [0, π] × [0, 2π]... × [0, 2π] corresponds to respective intervals : θ1 ∈ [0, π], θ2 ∈
[0, 2π]...θd−1 ∈ [0, 2π].

The hypersphere surface is given by: Sd =
∫
Dθ
dΩd whereas the radial integral Ir =

∫∞
0

exp(−r2)rd−1dr and
consequently Id is finally reduced to: Id = πd/2 = IrSd.

Using Gamma function definition Γ(x) =
∫∞
0

exp(−t)tx−1dt after change of variable u = r2 yields Ir = Γ(d/2)/2.
Thus Sd = 2πd/2/Γ(d/2) for a unit radius hypersphere. For a radius R hypersphere, its surface is SR =

2Rd−1πd/2/Γ(d/2) and its volume is VR = 2Rdπd/2/[dΓ(d/2)].

APPENDIX C: FERMI INTEGRALS

A Fermi integral is defined by:

I =
∫ +∞

0

G(ε)dε
e(ε−µ)/kBT + 1

(C1)

with G(ε) an arbitrary function of energy ε.
Using change of variable z = (ε− µ)/kBT I yields:

I = kBT

∫ +∞

−µ/kBT

G(µ+ kBTz)dz
ez + 1

= kBT

∫ 0

−µ/kBT

G(µ+ kBTz)dz
ez + 1

+ kBT

∫ +∞

0

G(µ+ kBTz)dz
ez + 1

(C2)

Performing z → −z in the first integral and using:

1
e−z + 1

= 1− 1
ez + 1

(C3)

we get:

I =
∫ µ

0

G(z)dz − kBT

∫ µ/kBT

0

G(µ− kBTz)dz
ez + 1

+ kBT

∫ +∞

0

G(µ+ kBTz)kBTdz

ez + 1
(C4)

Using the approximation µ/kBT ≈ ∞, we get:

I =
∫ µ

0

G(z)dz + kBT

∫ ∞

0

[G(µ+ kBTz)−G(µ− kBTz)]dz
ez + 1

(C5)

Expanding G(z) around µ:

G(µ+ x)−G(µ− x) ≈ G(µ) + xG′(µ) +
x2

2!
G′′(µ)...− [G(µ)− xG′(µ) +

x2

2!
G′′(µ)...] (C6)

we get:

I ≈
∫ µ

0

G(z)dz + 2(kBT )2G′(µ)
∫ ∞

0

zdz

ez + 1
... (C7)

Using the identity
∫∞
0

zdz
ez+1 = π2

12 , we finally get:

I ≈
∫ µ

0

G(z)dz +
π2

6
(kBT )2G′(µ)... (C8)



17

APPENDIX D: ABELIAN AND NON-ABELIAN GAUGE THEORY WITH IMPLICATIONS TO
STATISTICS

Most of groups of interest in physics can be formulated as groups of matrices. For instance, the Lorentz group,
consists of a set of 4× 4 matrices.

In elementary particle physics, a Lie group is a continuous group, with an infinite number of elements such as
rotation angles, taking on a continuum of values. For example, a general 3D rotation matrix has three parameters
(Euler angles) and nine elements. Lie groups are Non-Abelian as we recall that rotations (in 3D) do not commute
and thus constitute examples of Non-Abelian groups.

U(n) is made of all unitary n× n matrices. A unitary matrix is such that its inverse is its adjoint i.e. U−1 = U†.
SU(n) is made of unitary matrices with unit determinant, S stands for special meaning that the determinant=1. Real
unitary matrices make the group O(n) where O stands for orthogonal; an orthogonal matrix inverse is equal to its
transpose: O−1 = OT . Finally, the group of real, orthogonal, n × n unity determinant matrices is SO(n) that may
be thought of as the group of all rotations in n dimensional space.

Let us introduce T p Lie group generators where the index p = 1, 2, ...dG with dG the Group dimension [6]. For
instance, dG = n2 − 1 for SU(n) and dG = 1

2n(n− 1) for SO(n).

The generators T p define the group SU(n) with the commutation relations [T a, T b] = ifabcT c where the numbers
fabc are called the group [37] structure constants (for example, in the SU(2) case [37], we have fabc = εabc where εabc

is the 3D Levi-Civita antisymmetric tensor).

We move on below to a (2 + 1)D Abelian Chern-Simons gauge theory which is different from standard Maxwell
electromagnetism with a field Lagrangian [38] given by:

LM = −1
4
FµνF

µν −AµJ
µ (D1)

Fµν = ∂µAν − ∂νAµ is expressed with a 4-potential Aµ = (A0, ~A), A0 being the scalar potential and ~A the 3D
vector potential whereas the 4-current Jµ = (ρ,~j) in a Minkowski space with signature (-1,1,1,1). We assume Einstein
summation rule over repeated indices for the above Lagrangian as well as the rest of this section.

A global gauge transformation is given by:

ψ → e−ieαψ (D2)

whereas a local gauge transformation is given by:

ψ → e−ieα(x)ψ (D3)

implying that

Aµ → Aµ − ∂µα(x) (D4)

The Abelian Chern-Simons (CS) (2 + 1)D Lagrangian uses κ, a coupling parameter such that:

LCS =
κ

2
εµνρAµ∂νAρ −Aµj

µ (D5)

where εµνρ is the 3D Levi-Civita [37] antisymmetric tensor.
In order to understand the significance of coupling a matter current Jµ to a Chern-Simons gauge field Aµ, consider

the electric charge density ρ and current components Ji :

ρ = κB, J i = κεijEj (D6)

where εij is the dielectric tensor.
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These equations indicate the charge density is locally proportional to the magnetic field meaning that in Chern-
Simons theory magnetic flux is tied to electric charge through parameter κ.

This implies a coupling of charge and magnetic flux that is responsible for the notion of composite particle carrying
an electric charge and a magnetic flux as in the FQHE and explaining many other aspects of FQHE not explainable
by Maxwell theory.

Regarding statistics, Pauli spin-statistics theorem, a many-particle wave-function has the following property:

Ψ(r1, r2...rj , ...ri...) = eiθΨ(r1, r2...ri, ...rj ...) θ = 0, π (D7)

The generalization of this theorem is an arbitrary value for θ. In addition, there is a peculiarity of 2D spatial
dimension from a topological point of view.

Since the permutation group describes spatial exchange of particles in order to describe the effect of exchange
on statistics we recall that the general permutation group is Abelian for any dimension D > 2. It is thus remark-
able that 2D is special since the permutation group becomes a Braid group [39] characterized by Non-Abelian statistics.

In Non-Abelian gauge theory where 4-potentials Aµ develop non-commuting components Aα
µ with same in the

case of the many-particle wave-function leading to a phase factor affecting each wave-function component ψα during
exchange of particles:

ψα(r1, r2...ri, rj ...) → eiθpT p
αβψβ(r1, r2...rj , ri...) (D8)

Note that T p components are indexed with α, β (Einstein summation rule being assumed over repeated indices
p, β) and the former wave-function Ψ has been replaced by a multi-component ψα and the phase has acquired several
values θp that are altered by the matrix T p whose size is n× n with n the size of the corresponding Lie group.

APPENDIX E: TOPOLOGY, DIFFERENTIAL GEOMETRY AND BAND STRUCTURE

Topology is a branch of mathematics concerned with continuity and geometrical properties of objects that are
insensitive to smooth deformations [40].

Popular examples of topology is that a sphere cannot be smoothly deformed into the surface of a torus and that a
torus can be smoothly deformed into a cup with a handle.

The genus, g, is an integer consisting of the number of holes in the object and obviously is 0 for the sphere and 1
for the torus. The genus is an example of a topological invariant.

Surfaces that can be deformed into one another are topologically equivalent, and those with different genus that
cannot be deformed into one another, are said to be topologically distinct.

Moreover, topological invariants can be determined for surfaces with the help of Differential Geometry [41]. With
the Gauss-Bonnet theorem stating that the integral of the Gaussian curvature [41], K over a surface, one obtains an
integer number called the Euler characteristic. More precisely, if S is an orientable [41] compact surface of class C2

(twice derivable), then:

∫∫
S

KdS = 2πχ(s) (E1)

The number χ(s) is the Euler characteristic of S and 2πχ(s) is called the total curvature.
For instance, for a sphere of radius R, K = 1/R2 and consequently χ(s) = 2 whereas χ(s) = 0 for a torus meaning

zero total curvature.
If S has handles like a cup of coffee then χ(s) = 2(1− g) where g is the genus equivalent to the number of handles.

In order to relate topology to band structure we recall Bloch theorem [5] stating the eigenstates of an electron in a
crystal is given by eik·r |unk〉 that is a plane wave multiplied by a cell periodic eigenstate of the Bloch Hamiltonian
H(k) = eik·rHe−ik·r the k transform of the real space Hamiltonian H.

The Bloch states are invariant under the transformation
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|unk〉 → eiφ(k) |unk〉 (E2)

and if we define the Berry connection [40] as An = −i 〈unk| ∂
∂k |unk〉 it transforms as An → An +∇kφ(k) thus it

behaves as an electromagnetic vector potential with φ(k) playing the role of a gauge.

Pushing the analogy further, we define the Berry phase [40] ΦB as the line integral over C a closed loop in k space,
we get ΦB =

∮
C

An · dk. This yields ΦB = 2πN with N a non-zero integer.

Transforming the line integral into a surface integral yields ΦB =
∫∫

S
Fnd

2k where Fn = (∇ ×An)z is the Berry
curvature [40], the analog of the magnetic field. Thus the link between topology and band structure is established.

Moreover, integrating over the Brillouin Zone (BZ) Fn = (∇ × An)z yields the Chern number by summing over
filled states:

C =
filled∑

n

1
2π

∫
BZ

dkxdkyFn = 0,±1,±2,±3... (E3)

C = 0 corresponds to a standard material whereas C = ±1,±2,±3... corresponds to a Chern insulator material. For
instance, the Hall conductivity of a Chern insulator is:

σxy = C e
2

h
(E4)

Thus another link between topology and a transport coefficient like Hall conductivity [26] is also established.

Another link is related to the Z2 invariant calculated over half the Brillouin Zone (BZ/2) (by Kramers theorem
related to time-reversal symmetry and resulting in a symmetrical band structure such that ωn(k) = ωn(−k)):

Z2 =
filled∑
n=1

1
2π

(∮
BZ/2

An · dk −
∫

BZ/2

dkxdkyFn

)
= 0, 1 (mod 2) (E5)

Z2 corresponds to a standard material whereas Z2 = 1 corresponds to a topological insulator material [22].

APPENDIX F: EXAMPLE OF TOPOLOGICAL EXCITATIONS: SKYRMIONS

Skyrmions are spin textures [42] carrying charge and possessing topological properties described further below.
In fact, they are spatially localized soliton-like [43] structures with fixed rotational sense magnetic whirls possessing

axial symmetry. They have been observed in non-centro-symmetric (with no inversion symmetry) bulk crystals
in which a Dzyaloshinskii-Moriya [43] interaction (DMI) of the form Dijmi × mj exists between two neighboring
moments mi,mj . DMI interaction is the vector counterpart of the scalar Heisenberg exchange Jijmi ·mj interaction.

The interest in Magnetic Skyrmions originate from the fact they offer great potential as information carriers in
future robust, high-density, and energy-efficient spintronic devices.

In addition to their protected topology and nanoscale size, they can easily be moved by lateral spin currents
and created as well as deleted by vertical spin-current injection since they couple very efficiently to spin currents
and respond sensitively to spin transfer torques [43]. They might make racetrack-type memory using spin-current
densities being five to six orders of magnitude smaller than those needed to move magnetic domain walls [43].

Their name originates from nuclear physics: the Skyrme model [44] that considers three linearly dispersing
(massless) spin wave excitations corresponding to three oscillation directions about the ordered one. These three
massless modes represent three almost massless pions π+, π0, π−. The nucleons (proton and neutron) are represented
by Skyrmion spin textures. It can be shown that these pions are fermions despite the fact they are a coherent
superposition of an infinite number of bosonic spin waves akin to the buildup of a quantum wavepacket from an
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FIG. 4: (Color on-line) 3D view of a skyrmion spin texture (above) and same in 2D (below). The components are given by

(see text) mx(r) = 2λr cos (θ−ϕ)

λ2+r2 , my(r) = 2λr sin (θ−ϕ)

λ2+r2 , mz(r) = r2−λ2

λ2+r2 with λ = 1 and φ = 0.6. The spins are down about the
origin and gradually turn upwards for large distance r. At intermediate distances, the x− y components of the spin exhibit a
vortex-like winding.

infinite superposition of plane waves.

Since magnetic spins tend to be locally parallel we obtain a smooth topological object as displayed in fig. 4.
While the spins point downwards about the origin and gradually turn upwards for large distance r their aspect at

intermediate distances is a vortex-like configuration. However there is no singularity in the core region because the
spins are able to rotate downwards out of the x− y plane as displayed in fig. 4.

Regarding the electric charge carried by a skyrmion, consider a ferromagnet with local spin orientation m(r ). The



21

exchange field keeps the spin following the local orientation m as each electron travels such that a charge density can
be defined from the gradients of the local spin orientation. This results in a topological charge density [42] given by:

ρT =
1
8π
εαβm · ∂αm× ∂βm (F1)

where εαβ is the 2D Levi-Civita antisymmetric tensor.

Performing 2D spatial integration, the Skyrmion has total topological charge:

QT ≡
1
8π

∫
d2r εαβm · ∂αm× ∂βm (F2)

which is always an integer. In fact for any smooth spin texture in which the spins at infinity are all parallel, QT is
always an integer. QT is a topological invariant meaning that it is stable against smooth continuous distortions of m.

Since skyrmions carry charge, we can modify the spin configuration with an electric rather than a magnetic field.
One possible representation of the m(r ) skyrmion components is:

mx(r) =
2λr cos (θ − ϕ)

λ2 + r2
(F3)

my(r) =
2λr sin (θ − ϕ)

λ2 + r2
(F4)

mz(r) =
r2 − λ2

λ2 + r2
(F5)

where (r, θ) are the polar coordinates in the plane, λ is a constant that controls the Skyrmion size scale, and ϕ is a
constant that controls the xy spin orientation. The Skyrmion spin texture shape arises from the fact mz(r) component
points downwards when |r| → 0 and upwards when |r| → ∞ for a positive λ while mx(r),mx(r) components rotate
about z axis as displayed in fig.4.
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