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Mélanie Guhl, France Mentré, Julie Bertrand
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Abstract This article evaluates the performance of pharmacokinetic (PK) equiv-
alence testing between two formulations of a drug through the Two-One Sided
Tests (TOST) by a model-based approach (MB-TOST), as an alternative to the
classical non-compartmental approach (NCA-TOST), for a sparse design with a
few time points per subject. We focused on the impact of model misspecification
and the relevance of model selection for the reference data.

We first analysed PK data from phase I studies of gantenerumab, a monoclonal
antibody for the treatment of Alzheimer’s disease. Using the original rich sample
data, we compared MB-TOST to NCA-TOST for validation. Then, the analysis
was repeated on a sparse subset of the original data with MB-TOST. This analysis
inspired a simulation study with rich and sparse designs. With rich designs, we
compared NCA-TOST and MB-TOST in terms of type I error and study power.
With both designs, we explored the impact of misspecifying the model on the
performance of MB-TOST and adding a model selection step.

Using the observed data, the results of both approaches were in general con-
cordance. MB-TOST results were robust with sparse designs when the underlying
PK structural model was correctly specified. Using the simulated data with a rich
design, the type I error of NCA-TOST was close to the nominal level. When using
the simulated model, the type I error of MB-TOST was controlled on rich and
sparse designs, but using a misspecified model led to inflated type I errors. Adding
a model selection step on the reference data reduced the inflation.

MB-TOST appears as a robust alternative to NCA-TOST, provided that the
PK model is correctly specified and the test drug has the same PK structural
model as the reference drug.

Keywords Equivalence test · Pharmacokinetics · Non-compartmental analysis ·
Non-linear mixed effects models · Sparse design
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Introduction

In bioequivalence (BE) studies with pharmacokinetic (PK) endpoints (for gener-
ics), or PK similarity studies (for biologicals), we aim to compare the exposure
after administration of different drug formulations by comparing two PK param-
eters of interest: the area under the curve (AUC) of the plasma concentration as
a function of time, and the maximal concentration (Cmax).

BE studies are an essential part of drug development and still an active research
field. Currently, a key science and research priority at the U.S. Food and Drug
Administration (FDA) is to “improve quantitative pharmacology and BE trial
simulation to optimise the design of BE studies for generic drug products and
establish a foundation for model-based BE study designs” [1].

The classical statistical test used to assess BE is the Two One Sided Tests
(TOST) proposed by Schuirmann in 1987 [2]. It consists of two t tests, on PK
parameters of interest, comparing the difference of treatment effects computed to
a threshold δ. The FDA as well as the European Medicines Agency (EMA) fix this
threshold to δ = log(0.8) and δ = log(1.25) [3,4].

FDA and EMA recommend estimating BE treatment effects via non-compartmental
analysis (NCA) for both crossover and parallel study designs [3,4]. However, as-
sessment of PK equivalence may be challenging for PK BE studies with sparse
sampling, such as in participants receiving ophthalmic or oncology drug products.
PK BE studies for ophthalmic drug products typically involve a sparse design
with one sampling time point per subject (or per treatment group per subject in
a crossover design). In such studies, FDA recommends BE to be assessed using
a non-parametric bootstrap NCA-based approach or a parametric method [5,6].
This type of sparse study design may be useful for certain drug products or may
occur from study interruptions due to the COVID-19 pandemic or other causes.

An alternative proposed by Dubois et al. (2010) [7] is to use a model-based
(MB) approach, using the empirical Bayes estimated (EBE) individual parameters
of a non-linear mixed effects model instead of NCA parameters. They showed
that this method leads to an increase in type I error when the EBE shrinkage is
above 20%, which is frequent in case of sparse design. Dubois et al. (2011) [8] also
proposed a MB approach, this time inferring on the population parameters. They
showed that this MB approach works as well as the NCA on rich designs and can
be applied on sparser designs. Currently, it is unclear when MBBE methods would
be preferred over traditional BE approaches. As such, FDA has actively supported
research focused on MBBE approaches for PK BE studies with sparse designs [9,
10,11]. Indeed, MB tests can lead to an inflation of the type I error because of an
underestimation of the standard error (SE) of treatment effects on sparse designs
in presence of large variability, which led Loingeville et al. to propose and evaluate
methods of correction of the standard errors in MB studies [10]. Shen et al. [12]
also proposed a MB alternative to traditional BE tests. In this MBBE approach,
rich individual PK profiles are simulated from the model and NCA is performed to
estimate individual AUC and Cmax values. Since TOST was based on individual
predicted values, the authors assessed distributional assumptions.

MB approaches involve the selection of a PK model to fit the data, which
raises the question of the impact of model misspecification on the results of the
equivalence tests.
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Impact of model misspecification on MB tests in PK studies with parallel design 5

In this study, we define a ”sparse” design as any study with only a few sampling
points and that challenges the identifiability of the model, which means that the
sparse nature of data depends on the complexity of the model of interest.

Our work was based on data collected during the development of gantenerumab,
a monoclonal antibody for the treatment of Alzheimer’s disease. As this drug has
a very long half-life, the clinical trials were conducted using a parallel design (more
than 13 weeks of follow up), which is not the classical design for PK equivalence
studies that are usually conducted using a crossover design.

In this real case, we compared the PK data gathered in participants treated
with two formulations of gantenerumab. Then, we evaluated the performance of
the MB approach on simulations based on data from this study and assessed
the impact of study design, model misspecification, and the relevance of a model
selection step. Although this assessment was based on PK data from a monoclonal
antibody, our novel method may potentially be used to evaluate BE studies in
generic drug development when there is sparse PK sampling.

We first present the theoretical background, i.e., the NCA and MB approach
for equivalence TOST tests. We then describe the observed data, the methodology
to analyse it and the results of this real case study. We finally present the design,
methods and results of the simulation study, and discuss our findings in the last
section.

Theoretical background

Two One-Sided Tests

Showing the PK equivalence of two drug formulations, one reference (R) and one
test (T), means showing their exposure is equivalent.

In PK BE studies, drug exposure is typically characterised by two PK pa-
rameters, variables of the plasma concentration versus time profiles : the Area
Under the Curve (AUC), which can be computed from 0 to the last sampling
point (AUCtlast) or extrapolated to infinity (AUC∞), and the maximum plasma
concentration (Cmax). Treatment effects on AUC and Cmax, namely θAUC and
θCmax

, are defined as the difference of the expectation of the log individual values
of these variables under test and reference treatment. For instance:

θAUC = E(log(AUCT ))− E(log(AUCR)) (1)

Since we wish to reject the assumption that the two formulations have different
exposures, we write the null hypothesis as [2]:

H0 : {θ ≤ −δ or θ ≥ δ} (2)

where δ is the tolerance. The regulatory guidances for equivalence studies fix
the threshold δ = log(1.25) [3,4].

By decomposing this null hypothesis in two, we perform Two One-Sided Tests
(TOST):

H0,−δ : {θ ≤ −δ} and H0,δ : {θ ≥ δ} (3)

The two t test statistics are rejected at α = 5% if:
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6 Mélanie Guhl et al.

Z−δ =
θ + δ

SE(θ)
≥ q1−α and Zδ =

θ − δ

SE(θ)
≤ qα (4)

with qα the quantile of order α of a reference distribution.
Equivalently, we can reject the null hypothesis if the confidence interval of θ

is within [−δ, δ], that is if the confidence interval of the exponential of θ is within
[0.8 ; 1.25]. The exponential of θ is often shown in the results of the test and is
called the geometric mean ratio (GMR).

Non-compartmental analysis

The standard method for PK equivalence studies is to compute individual AUC
and Cmax and use an ANOVA or a linear mixed model to estimate the treatment
effect. AUCtlast can be computed using the trapezoidal method and AUC∞ can
be estimated by linear extrapolation. For this, FDA recommends that sampling
continues for at least three or more terminal elimination half-lives of the drug and
there are at least three sampling points after the peak [3]. Cmax is defined as the
maximal concentration measured among the study sampling times.

Depending on the study design, there can be a period and a sequence effect on
the variables of interest. In parallel studies, there is only one period: each group
of participants receives one treatment only. Our present work focuses on a drug
with a long half-life which warrants a parallel study design instead of the classical
crossover design for PK equivalence studies. In this case, there is no period or
sequence effect and intra-individual variability cannot be properly evaluated. The
models to fit are simply:

log(AUCi) = µAUC + θAUCTi + ϵAUCi
(5)

log(Cmaxi) = µCmax
+ θCmax

Ti + ϵCmaxi
(6)

with:

– µ: mean value of variable for the reference treatment;
– Ti: treatment covariate variable for individual i;
– θ: coefficient of treatment effect;
– ϵi ∼ N (0, σ2): residual error.

The treatment effects on the variables of interest and their standard errors are
obtained directly from the linear model inference.

The geometric mean ratio is, e.g. for AUC:

GMR =
exp(E(log(AUCT )))

exp(E(log(AUCR)))

=
exp(µAUC + θAUC)

exp(µAUC)

= exp(θAUC)

In non-compartmental PK equivalence analyses (hereafter called NCA-TOST),
the standard error is obtained with the Fisher Information Matrix (FIM), which
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Impact of model misspecification on MB tests in PK studies with parallel design 7

is asymptotically the inverse of the lower bound of the variance-covariance matrix
of regression coefficients. With balanced groups, the reference distribution to use
in NCA-TOST is a Student’s t distribution with N-2 degrees of freedom, N being
the number of participants in the study.

Model-based approach

Regulatory requirements may not be met in studies with sparse sampling design,
and NCA-TOST may then become less accurate. Indeed, it can be hard to compute
individual AUC and Cmax if we only have a few points per subject. In an effort
to leverage population data over time to inform predictions for individuals, a
model-based alternative has been proposed [8,10], in which we build a structural
PK model and use a non-linear mixed effect model (NLMEM) to estimate the
treatment effect. The corresponding statistical model can be written as follows in
the case of parallel studies:

yij = f(tij , ϕi) + g(tij , ϕi)ϵij (7)

log(ϕil) = log(µl) + θlTi + ηil (8)

with:

– tij : time j for individual i;
– yij : concentration for individual i at time tij ;
– ϕi: vector of parameters for individual i (typically of size 3 to 10);
– f(tij , ϕi): non-linear structural PK model depending on ϕi;
– g(tij , ϕi): error model;
– ϵij ∼ N (0, 1): residual error;
– µl: fixed effect for parameter l;
– Ti: treatment covariate variable;
– θl: coefficient of treatment effect for parameter l;
– ηil ∼ N (0, ωl): between subject random effect for parameter l;
– ωl: standard deviation of the inter-individual random effect for parameter l.

g() describes the error model, with usual models being:

– Additive error model: g(tij , ϕi) = σa ;
– Multiplicative error model:g(tij , ϕi) = σb f(tij , ϕi) ;
– Combined error model: g(tij , ϕi) = σa + σb f(tij , ϕi) .

In the context of BE studies, we usually have previous knowledge on the un-
derlying PK characteristics of the reference product, which could be described by
a subset of structural PK models f().

In this study, we only fitted and compared PK models that differed in terms
of number of compartments, order of absorption, and presence of an absorption
delay. A description of all the models used in this study can be found in Appendix
1, defining the vector µ of l parameters related to each model.
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Computation of standard errors

In this study, we used and compared three different methods of computation of SE
in the MB approach, that are described below, and called ”Asympt”, ”Gallant”
and ”Post”. These three methods have also been evaluated in the context of BE
studies by Loingeville et al. [10].

Asympt

AUC and Cmax are secondary PK parameters of the models, i.e., functions derived
from the PK model direct parameters, and their treatment effects are also functions
of the PK model direct parameters and treatment effect: θ = h(µPK , θPK). For

instance, for all PK models with a linear elimination, AUC∞ =
FD

CL
, where D is

the dose administered, F the bioavailability of the drug and CL the clearance, so
the treatment effect on AUC∞ can be simply derived from the model as θAUC∞ =
−θCL/F and SE(θAUC∞) = SE(θCL/F ). In one compartment models, there are
analytical solutions for all secondary PK parameters, so the delta-method can be
used to compute the standard errors of treatment effects. In two-compartment
models, there is no analytical solution for Cmax, so we need to compute θCmax

and its standard error by simulation. This method consists of sampling parameters
from a multi-normal distribution with maximum likelihood estimates as the mean
vector and the inverse of the FIM as the variance-covariance matrix, to simulate
rich concentration profiles for reference and test treatments (see Appendix 2 for a
more precise description of the method).

In this approach (which will be designated hereafter by MB-TOST Asympt),
the standard error computed in NLMEM is also obtained with the FIM, using a
linearisation of the PK model.

The reference distribution we use in MB-TOST Asympt is a Gaussian distri-
bution with zero mean and a standard deviation equal to 1.

In the MB approach, an underestimation of the asymptotic standard errors of
the treatment effects has been observed which resulted in an inflation of type I
error when performing PK equivalence tests [8]. To address this, several methods
of correction of the asymptotic standard errors have been suggested. Here, we use
two methods of correction, designated Gallant and Post, which were proposed for
equivalence tests by Loingeville et al. [10].

Gallant

The Gallant correction [13] (MB-TOST Gallant) aims to take into account the
number of parameters estimated towards the available data to correct for the
underestimation of the standard errors of treatment effects. It involves re-weighting
the standard errors using the following formula:

SEGallant = SE

√
N

N − p
(9)

with N the number of participants in the study and p the number of fixed and
covariate effects (here, we only have the treatment as a covariate).
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Impact of model misspecification on MB tests in PK studies with parallel design 9

We also switch the reference distribution used in the tests from a Gaussian
distribution to a Student’s t distribution with N − p degrees of freedom.

Post

This method (MB-TOST Post) uses posterior distribution samples to compute the
standard errors of treatment effects [10].

Samples of population parameters are generated by Bayesian inference, with
the Hamiltonian Monte Carlo algorithm. Maximum likelihood estimates obtained
with NLMEM are used as initial values. Uniform priors are used for the fixed and
treatment effects and Half-Cauchy distributions with zero mean and a standard
deviation equal to 1 for the random effects and residual error variance parameters.

When the data are not informative enough given the number of model parame-
ters to estimate, these priors can result in chains with low Neff and high R̂. When

Neff ≤ 400 and R̂ ≥ 1.05, log normal priors can be used for the fixed effects, with
mean equal to the maximum likelihood estimation and a standard deviation equal
to 0.5 and normal priors with zero mean and standard deviation equal to 0.5 for
the treatment effects as in [10].

The standard errors of treatment effects are computed using samples from the
posterior distribution.

The reference distribution, as for MB-TOST Asympt, is a Gaussian distribu-
tion with zero mean and a standard deviation equal to 1.

Case study: gantenerumab

Data

In our analysis, PK data was collected from two phase I randomised clinical trials
on healthy male or female subjects between 40-70 years of age. These trials inves-
tigated the relative bioavailability, tolerability, and dose-exposure relationship of a
high concentration liquid formulation (HCLF G3) versus a lyophilised formulation
(LyoF G2) of gantenerumab, a monoclonal antibody used for the treatment of
Alzheimer’s disease. Hereafter we considered the high concentration liquid formu-
lation as the reference formulation. Both formulations were administered by sub-
cutaneous injection. The first study (NCT01636531, here called S1) was composed
of five parallel arms with 24 participants each: three reference arms at different
dose levels (105, 225 and 300 mg) and two test arms (105 and 225 mg). In the
second study (NCT02133937, here called S2), composed of one reference arm of
25 participants and one test arm of 23 participants, the dose tested was 225 mg.
PK sampling was performed in participants for up to 13 weeks using the following
scheme: 0.25, 1, 2, 3, 4, 7, 13, 20, 42, 63, and 84 days post dose. There was one
additional sampling time in S2, one hour post dose (0.04 days). We evaluated PK
equivalence of the two formulations in terms of Cmax and AUC∞.
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10 Mélanie Guhl et al.

Methods

We performed separate analyses for each study and dose tested, hereafter called
S1-105, S1-225 and S2-225, discarding the 300 mg arm of S1 as this study did not
include a test treatment arm at this dose.

On the original rich design data (11 sampling points per subject), different
structural PK models and residual error models were fitted on the reference arms,
and compared for selection purposes. The structural PK models tested differed
in terms of number of compartments (one or two), order of absorption (zero or
one) and presence of an absorption delay. A description of all these models can be
found in Appendix 1. As we work on a drug administered by sub-cutaneous in-
jection, the parameters of the PK models used are apparent parameters scaled by
the bioavailability of the drug F . Inter-individual variability followed a log-normal
distribution for all parameters. Three types of error models were tested: additive,
multiplicative and combined. Models were compared using the Bayesian Informa-
tion Criterion (BIC) computed by Importance Sampling, combined with a second
criteria of a relative SE (RSE) below 50% for all parameters. Inter-individual vari-
ability parameters that did not meet this second criteria were removed. We also
explored the relevance of adding a correlation between the inter-individual vari-
abilities. Goodness of fit was assessed with Visual Predictive Checks (VPC) and
Normalised Prediction Distribution Errors (NPDE) [14]. The selected PK model
was then fitted on both the reference and test arms and treatment effects were es-
timated on all parameters. We compared the results of MB-TOST, using only the
Asympt computation method for the SE, with results obtained with NCA-TOST
which usually performs well on such rich designs.

MB analyses were also run on a sparse subset of the data to explore the impact
of the study design. The sparse subset for each study contained 5 points per subject
because it is the maximum number of population parameters that we needed to
estimate, in order to make the model identifiable. These points were obtained
by optimisation of the design with PFIM [15] (Population Fisher Information
Matrix, an algorithm for the evaluation and optimisation of designs), using the
model fitted on the rich reference and test arms. Given that this manuscript focuses
on the investigation of MB methods as an alternative for sparse design, we tested
the PK equivalence only with MB-TOST, selecting again the PK structural model
on the reference arm. Three methods to compute the SE were used: Asympt,
Gallant and Post.

Implementation

Analyses were run on R version 4.0.2. Parameters of the PK models were estimated
by maximising the likelihood using the Stochastic Approximation of Expectation
Maximisation algorithm (SAEM) [16], in the saemix R package [17] (development
version: https://github.com/saemixdevelopment/saemixextension). For NCA-
TOST, AUC∞ was computed by extrapolation with the PKNCA R package [18]
version 0.9.4, using the observed concentration at tlast. Sampling points for the
sparse designs were chosen with the PFIM [15] R package version 4.0 which enables
to optimise population design using the Fedorov-Wynn algorithm.
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Impact of model misspecification on MB tests in PK studies with parallel design 11

Results

Fig. 1 shows spaghetti plots of the plasma concentrations of gantenerumab versus
time in log-scale, for the two lower doses in each study. The plots in the top row
show the actual data with the rich design. The two formulations are shown with
different colors.

The same model, a two-compartment model (V1/F : apparent volume of the
principal compartment, V2/F : apparent volume of the peripheral compartment,
Q/F : apparent inter-compartmental clearance) with linear absorption (ka: ab-
sorption constant) and elimination (CL/F : apparent clearance constant) with an
absorption delay (Tlag), was selected to be the best (among the considered can-
didates) at describing the drug PK across studies/arms (taken as three separate
datasets). A treatment effect was estimated on all 6 parameters (θTlag, θka, θCL/F ,
θV 1/F , θQ/F , and θV 2/F ). On all datasets, based on BIC, the inter-individual ran-
dom effect on V2/F was withdrawn, and a correlation between the inter-individual
random effects of CL/F and V1/F was estimated. On S1-105 and S1-225, the error
model was multiplicative. On S1-225, no inter-individual random effect was kept
on Q/F . On S2-225, the error model was combined. The models selected were
therefore very similar. Table A1 in Appendix 3 gives the parameter estimates
obtained across datasets. As shown in Fig. 2, illustrating the GMR and their con-
fidence intervals in the different datasets investigated, the different methods gave
consistent results: for S1-105, with both NCA-TOST and MB-TOST Asympt, the
90% confidence interval of the GMR of AUC and Cmax fell within [0.8; 1.25], but
for S1-225, equivalence could not be shown on Cmax with either of the two meth-
ods. On S2-225, equivalence could not be shown on Cmax with both methods.
For AUC, equivalence was shown using MB-TOST but not using NCA-TOST,
although the estimates were close (MB-TOST Asympt: 90% CI=[0.801;1.218], p-
value=0.049; NCA-TOST: 90% CI=[0.782;1.205], p-value=0.070). The data used
to produce Fig. 2 are provided in Table A2 in Appendix 3.

The sparse design optimised using PFIM led to the following sampling scheme:
0.25, 3, 7, 20, 84 days post dose for S1-105, 0.25, 4, 20, 42, 84 days for S1-225,
and 0.04, 4, 13, 42, 84 days post dose for S2-225. The selected PK model was
a one compartment model with linear absorption and an absorption delay on
the two S1 datasets, and a one compartment model with zero order absorption
and no absorption delay on S2. Again, a treatment effect was estimated on all
apparent parameters in each case. On all datasets, a correlation between the inter-
individual random effects of CL/F and V/F was selected. On S1-105 and S1-225,
the error model selected was multiplicative. On S2-225, the error model selected
was combined. On S1-225 and S2-225, no inter-individual random effect was kept
on Tlag. Table A1 in Appendix 3 gives the parameters estimated on all these
subsets. Although the PK models selected on the sparse data were different from
the ones selected on the observed data, the results of the equivalence study using
MB-TOST were consistent, across all computation methods of SE, and comparable
to those obtained on rich design (Fig. 2).

Fig. A1 shows the VPC and Fig. A2 reports the normality of residuals for S1-
225 original and sparse design. These goodness of fit plots have also been checked
for S1-105 and S2 (not shown).

ACCEPTED MANUSCRIPT / CLEAN COPY



12 Mélanie Guhl et al.

Simulation study

Methods

The real case study inspired our simulation settings with rich and sparse design. We
simulated parallel studies with reference and test treatment arms, 24 participants
per arm. The vector of rich sampling times was taken from S1-225 : 0.25, 1, 2, 3,
4, 7, 13, 20, 42, 63, and 84 days post dose.

The PK model used to simulate data was the one selected to describe the data
of the reference arm of S1-225, corresponding to a two-compartment model with
linear absorption and elimination. We removed the absorption delay. Moreover, the
simulation study was performed prior to the availability of the data for publication.
At the time, we only had access to scaled values of the doses that were divided
by 15. Fig. 1 gives a graphical representation of the model simulated, and Table 2
gives the values of the fixed, random and error parameters simulated that were
taken from the fit of S1-225.

Different levels of treatment effects were simulated on the apparent parameters,
in order to get a treatment effect on AUC and Cmax at the desired levels. To
compute type I errors, we simulated data with treatment effects on AUC and Cmax

at boundaries of the null hypothesis, log(0.8) and log(1.25). These scenarios are
denoted as H0:0.8 and H0:1.25, respectively. To study the power, we simulated data
with treatment effects on AUC and Cmax at and close to 0 (log(0.9), log(1) and
log(1.11)). These scenarios are denoted as H1:0.9, H1:1 and H1:1.11. The treatment
effects were simulated on clearance (CL/F ) and central volume (V1/F ), with no
treatment effect on ka, Q/F and V2/F . In practice, the treatment effect on CL/F
was fixed (e.g. θCL/F = log(0.8) to get θAUC = log(1.25)) and then the treatment
effect on V 1/F was varied to obtain the desired treatment effect on Cmax without
impacting the treatment effect on AUC. Table 3 gives the values of the different
levels of treatment effects simulated. For each of the 5 treatment effects, 1000
datasets were simulated.

On rich design simulations, we compared the performances of NCA-TOST and
MB-TOST Asympt in terms of type I error and study power. We first fitted the
simulated structural PK model, estimating treatment effects on all 5 apparent
parameters (referred to as model 2cpt par). We also explored the performance
of MB-TOST Asympt when modeling the treatment effects differently, i.e., two-
compartment model with treatment effects estimated on the absorption parameter
only, i.e., ka, and an additional scale/bioavailability parameter defined by F , with
µF fixed to 1, and ωF estimated (called hereafter 2cpt F). Table 1 represents the
structure of both models fitted to the rich design data.

In a second step, we also analysed sparse optimal design subsets, using PFIM:
we selected 5 time-points, assuming 2cpt par was true. The same 5 time points
were selected regardless of the level of treatment effect considered: 0.25, 7, 20, 42,
and 84 days post dose. On these sparse design simulations, we challenged MB-
TOST by exploring the impact of a structural PK model misspecification: the
model used to fit the data was either 2cpt par or a misspecified one-compartment
model with treatment effects estimated on all apparent parameters (1cpt par).
Table 1 represents the models fitted on sparse design simulations. As on the case
study, three methods of computation of the SE were used on the sparse design
simulations: Asympt, Gallant and Post.
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We also explored the relevance of a PK model selection step, on the reference
arm, on the BIC, prior to the equivalence test, on rich and sparse design simulations
(two models to compare in each case). We observed the impact of this approach
in terms of type I error.

Estimation Errors (EE) and Standard Errors (SE) of treatment effects were
computed to evaluate the agreement between the estimations of NLMEM and the
real values under which we simulated the data. Empirical SE were computed as
the standard deviation on the 1000 estimates of each parameter in each scenario.

Implementation

A script detailing the analysis of one simulated dataset with saemix and stan is
available on Zenodo (https://doi.org/10.5281/zenodo.6500556).

Results

Rich design

Fig. 3A shows the boxplots of estimation errors (EE, top) and standard errors (SE,
bottom) of the treatment effects on AUC and Cmax in the different simulation
scenarios with a rich design. We see that the treatment effects estimated with
2cpt par (the structure of which is similar to the one of the model we simulated
except treatment effects are estimated on all parameters) showed no bias and good
precision : the EE were close to 0 and the estimated SE were close to the empirical
SE. As expected on this rich design, NCA also provided good estimations of the
treatment effects.

Fig. 4A shows the type I errors of the TOST for AUC and Cmax using NCA or
a MB approach on rich design. The type I errors obtained with MB-TOST Asympt,
using 2cpt par, were similar to those obtained with NCA-TOST and close to the
nominal value of 5%.

When we modelled the treatment effects differently from how they were sim-
ulated (i.e., using the misspecified model 2cpt F), the model misspecification led
to unsatisfactory results: the graph of EE (Fig. 3A Top) shows that the treatment
effect on AUC was underestimated. In the scenario H0:0.8, the relative bias in the
estimation of the treatment effect on AUC is -0.038, 0.016, and 0.016 for 2cpt F,
2cpt par, and NCA, respectively. In the scenario H0:1.25, the relative bias in the
estimation of the treatment effect on AUC is -0.104, -0.021, and -0.030 for 2cpt F,
2cpt par, and NCA, respectively. The asymptotic SE boxplots appear lower than
the empirical SE, though the relative root mean square errors (RMSE) are approx-
imately -0.35 for both 2cpt par, 2cpt F, and NCA, respectively. Increasing bias led
to inflated type I errors we see in Fig. 4A.

A selection step using the BIC, prior to the test, on reference data helped in
correcting the bias. Indeed, the difference of BIC between 2cpt par and 2cpt F
ranged from -22.1 to 10.3 with a median of -3.4. The simulation model was found
in 85% of the cases thanks to the selection procedure. Consequently, the type I
error of MB-TOST was within the 95% prediction interval of the nominal value of
0.05 for each simulated level of treatment effect .
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Study power for each study design, with NCA or MB-TOST, was low due to
the parallel design of the clinical trial and the sample size (N=24 per arm, see
Fig. 5).

Sparse design

On the simulations with sparse design, the treatment effects were still well esti-
mated using 2cpt par (Fig. 3B). Fig. 4B shows the type I errors on sparse simula-
tions with the MB approach where MB-TOST Asympt led to type I errors close
to the 95% prediction interval of the nominal value of 0.05 with 2cpt par.

When the structural PK model was misspecified, with only one compartment
for the drug to distribute to, we observed a large inflation of the type I error on
Cmax, which we infer from Fig. 3B to be due to an underestimation of both the
treatment effect and its SE. Indeed, in the scenario H0:0.8, the relative bias in the
estimation of the treatment effect on Cmax is -0.079 and 0.037 for 1cpt par and
2cpt par, respectively. In the scenario H0:1.25, the relative bias in the estimation
of the treatment effect on Cmax is -0.139 and -0.015 for 1cpt par and 2cpt par,
respectively. In the scenario H0:0.8, the relative RMSE in the estimation of the
treatment effect on Cmax is -0.40 and -0.48 for 1cpt par and 2cpt par, respectively.
In the scenario H0:1.25, the relative RMSE in the estimation of the treatment effect
on Cmax is 0.40 and 0.47 for 1cpt par and 2cpt par, respectively.

MB-TOST Post gave results similar to MB-TOST Asympt (Fig. 4B Right).
MB-TOST Gallant corrected the inflation of type I errors partly but could not
correct for the bias in the estimations.

The numbers used to produce Figs.4 and 5 are provided in tables A3 and A4
in Appendix 3.

Here, a selection step using the BIC, prior to the test, to choose the number of
compartments of the structural PK model on reference data, led to the selection
of the simulated structural model in most cases (at least 99.0%). The difference
of BIC between 2cpt par and 1cpt par ranged from -69.1 to 6.0 with a median of
-20.8. This allowed for control of type I error with MB-TOST.

We checked the assumption of normality of the test statistics under the null
with Asympt in both rich and sparse design (data not shown).

Discussion

In this article, we compare the PK data gathered in participants treated with
two formulations of gantenerumab, a monoclonal antibody for the treatment of
Alzheimer’s disease. The data used was originally collected to study the relative
bioavailability of these two formulations. In this work, we use the data to com-
pare the conventional NCA-TOST to the MB-TOST approach for PK equivalence
testing. The data evaluated in our study is based on a parallel design instead of
the more conventional crossover design in equivalence studies. The data is then
used to generate a simulation study to explore the impact of sparse design and of
model misspecification on the MB approach to test for PK equivalence.

After finding a dose effect on the pooled data, we performed the analyses
separately on each study and dose evaluated. In our evaluation of these PK BE
studies, we assume that the PK characteristics of the reference drug are well-known
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and the change of treatment does not affect the underlying PK structural model.
In our simulations, we assumed the residuals are independent of the treatment
covariate in the model. Also, we assumed that the study population would be
adequately randomised to avoid imbalance between the treatment arms, so we
did not evaluate the impact of covariates in our MB approaches. However, it is
important to acknowledge that covariates would likely have a greater impact on
a PK BE study with a parallel study design as compared to a crossover design.
Moreover, adding covariates that affect the PK would decrease the between subject
variability. Thus, future research may be warranted in this area. Using the real
data, we evaluated the models selected to assess the assumptions made on the
residuals as part of model building process. Also, the distributions of the MB-
TOST statistics under the null from our simulations were verified as recommended
by Shen et al. [12].

Using the original data, the NCA and MB-TOST approaches generally pro-
vide consistent results with the original rich design and the MB-TOST approach
provides consistent results after sparsifying the data.

Previous studies by Dubois et al. and Reijers et al. have shown that MB ap-
proaches evaluating studies with a crossover design [19] and a parallel design [20],
respectively, have performed as well as NCA methods for biosimilarity studies in
the case of rich sampling. Dubois et al. also explored MB approaches on a sparse
version of their data.

In the present study, we performed a simulation study to explore the influence
of the design and model specification on the performance of the approaches and
the relevance of the model selection.

Here, as in the previous works [8,10], we only considered average BE. With
average BE, by contrast with individual and population BE [21], we only take into
account the average treatment effect at population level. Population BE would
also take into account the variability of this effect, and individual BE would take
into account the within-subject and subject-by-formulation variabilities. In this
parallel study, population BE could be done, because variability is not correctly
accounted for. Individual BE requires replicated cross-over studies so this approach
would not be feasible on our data.

In the simulation study, when using the simulated model, MB-TOST Asympt
achieved controlled type I errors that were similar to those obtained with NCA-
TOST on rich designs. These results complement previous studies showing the
efficiency of MB approaches for equivalence tests [8]. In general, regulatory au-
thorities recommend that PK sampling includes 12 to 18 samples with at least
three sampling points after the peak [3,4]. These recommendations present unique
challenges for PK studies with sparse designs. Indeed, the sparse design we ex-
tracted from the full design did not comply with those requirements, consequently
we did not apply NCA-TOST to the datasets simulated with the sparse design.
In this setting, we used MB-TOST as it relies on NLMEM which demonstrated
improved accuracy of the estimates in particular when dealing with sparse de-
signs [22]. However, Dubois et al. [8] showed that MB tests can lead to an inflation
of the type I error because of an underestimation of the standard error of treatment
effects when it is estimated asymptotically on sparse design with high variability.
As such, Loingeville et al. proposed and evaluated methods of correction of the
standard errors in MB studies, with satisfying results [10]. Notably, they compared
the three methods we present here, along with a bootstrap method, but consid-
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ering one model only (one-compartment) and without exploring the interest of
model selection. One of the correction methods for SE in MB studies, Gallant, has
been used outside the context of BE. To illustrate, Bertrand et al. [23] considered
various methods of correcting the number of degrees of freedom in a Student distri-
bution and found that the Gallant correction was a good compromise in NLMEM
to handle the information carried by the number of subjects. In this research, the
use of Gallant leads to the same reference distribution in MB-TOST Gallant as in
NCA-TOST, instead of the Gaussian distribution used in MB-TOST Asympt and
MB-TOST Post.

Our results showed that MB-TOST Asympt was adequate with sparse designs,
with a slightly conservative type I error for Cmax that was corrected using MB-
TOST Post. Here, the Post method was used only as an alternative to produce SE.
This algorithm is sensitive to the choice of prior distribution, and this could be
further investigated. Nevertheless, the performance of the different MB methods
were very similar on the sparse design in our work. Actually, we obtained asymp-
totic SE close to the empirical SE which explains that the results of the tests were
not affected by the correction methods.

As the treatment effect on Cmax is not directly linked to the parameters, we
estimated it via simulations. We used an approximation simulating the treatment
effect on a profile using the mean parameters; in Appendix 2, we provide a more
computationally intense method. In this example, the first approximation gave
equivalent results, but the second approximation should be used in the presence
of higher variability.

A sparse design is commonly seen in PK BE studies for ophthalmic drug prod-
ucts where only one sample of aqueous humor is collected from the eye at a single
time point. Currently, FDA recommends a non-parametric bootstrap NCA-based
approach or a parametric method in the BE assessment for these drug products [5,
6]. In our assessment, we evaluated a study design with only five sampling points,
which were optimally selected using PFIM. One limitation of this work is that we
did not evaluate the performance of the classical NCA-TOST approach on sparse
design as our focus was to evaluate the MB-TOST approach. The limitation of
few sampling points per subject apply to both approaches as the NCA-TOST ap-
proach may become less accurate when there are few sample points whereas the
MB-TOST approach may select a wrong PK structure model-based. Indeed, in
our application study, the model parameter estimates varied considerably between
the rich and sparse design (see Table A1 in Appendix 3).

The MB approach was previously evaluated only in simulations assuming the
true model to be known [8,9,10]. In our present study, we investigate this question
by fitting PK models different from the one used to simulate the data. The two-
compartment model with treatment effects estimated on ka and F only, fitted on
the rich designs, is the same structural PK model as the simulated one but with an
alternative way of parameterising the treatment effects. It has already been used
in other studies as the simulated model [11]. Here, it cannot properly fit the data
as θF reflects a treatment effect on all distribution and elimination parameters,
which does not agree with the way we simulated the data (i.e., without an effect
on the peripheral clearance and volume). This explains why the effect on AUC is
underestimated. With biosimilars, differences in the PK characteristics of a drug
may be due to factors other than differences in the absorption phase. In contrast,
the misspecified one-compartment model with treatment effects estimated on all
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apparent parameters, fitted on sparse designs, is a different PK structural model
than the simulated one. The choice of the number of compartments is an essential
step in structural PK model building. It is very sensitive to the study design and is
therefore highly susceptible to misspecification. A less complex model would more
likely be selected on a real study in case of non-optimised sparse design because of
the lack of information. The treatment effect on AUC is still quite well estimated
because it is a mean PK parameter, unlike Cmax which is more sensitive to the
misspecification because it is driven by only one point.

Adding a step of model selection on the reference data allowed to select the
simulated model in most cases. When the simulated model is not selected, the
difference of BIC between the models is very low. In this case, we assume that
the misspecified model can adequately describe the data because the overall type
I errors are controlled after the selection step. Most importantly, we mimic a
real model development setting, where model selection is always part of the PK
analysis. The selection of the model is based on data from the reference product
only in order to avoid a bias in the MBBE evaluation from using test product data
to fit the model used in the BE assessment. However, it is possible that using the
reference arm for the model selection, and then for the assessment of a treatment
effect, could inflate the type I error of the BE assessment. Therefore, this issue may
warrant further investigation. Moreover, this can cause a problem if the underlying
PK model is different in the test arm. Another limit of our simulation study is
that we only selected between two different PK models. We could extend this
approach to test and compare more features of the PK structural (absorption and
elimination phases) and/or variability (random effects and residual errors) models
as we performed in the real case study. We could also consider more complex data
exhibiting, for example, double peaks which can be very challenging to evaluate,
or that the magnitude of the variability depends on the treatment arm. It is likely
that, in this case, the simulated model would not be recovered as often, potentially
affecting the type I errors. However, the impact may not be very large if there
were more candidate models in the selection step, as the models retained would
have adequate goodness of fit. Hence, the estimated AUC and Cmax would all
be acceptable despite the diversity of underlying structural PK models. It would
therefore be interesting to further evaluate the impact of small model variations
on the model selection process and the ensuing ability to estimate Cmax and AUC
and the associated treatment effects. Competing models could also be taken into
account via model averaging, which has been shown to work at least as well as
model selection in dose finding studies using NLMEM [24,25], as it allows to take
into account the uncertainty on the model.

The methods presented in our study may be applied to PK similarity for large
molecules (i.e., biologics) as well as PK BE studies for small molecules. By re-
scaling the time frame, we could transpose our simulation settings and results to
a BE study framework. In both cases, the test product or new drug contains the
same active substance as the reference product, for which the PK is likely well
characterised. To shorten the development phase of the new drug, it is recom-
mended to demonstrate that there is no difference of treatment effect on the PK.
In both cases, MB approaches may serve as an alternative method to NCA for
sparse designs, and thus, are increasingly explored [26]. However, it is acknowl-
edged that the performance of NCA and MB methods will drop in case of large
inter-individual variability in PK or deviations from working assumptions.
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Thus, we propose the use of MB-TOST when NCA-TOST may not be feasible
or reasonable, as MB approaches are more informative and flexible than NCA.

This is consistent with recent proposals for MB approaches to serve as an
alternative BE approach in generic drug development in situations for which con-
ventional BE approaches are not feasible [27].

Conclusions

Our novel MB BE approach appears to be a robust alternative to the conventional
NCA approach provided that the PK model is correctly specified and the test drug
has the same PK structural model as the reference drug. Our simulation studies
show that the selection of the PK model is a key step in the implementation of a
model-based approach for PK equivalence studies. However, MB methods rely on
numerous assumptions which need further investigation to determine when MB
could offer a viable alternative to NCA in the context of PK BE studies.
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Tables with legends

Model simulated

Models fitted

2cpt par 2cpt F

on rich design

Models fitted

1cpt par

on sparse design

Table 1 Graphical representation of the model simulated and the models fitted on
the rich and sparse design simulations, with the corresponding fixed and treatment
effects and inter-individual variability parameters
The graphical representation 1cpt par corresponds to the third model presented in
Appendix 1 (one compartment model with linear absorption and elimination) and
the three other graphical representations correspond to the fifth model presented in
Appendix 1 (two compartment model with linear absorption and elimination).
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µka (d) µCL/F (L.d−1) µV1/F (L) µQ/F (L.d−1) µV2/F (L)

0.45 0.04 0.96 0.03 0.34

ωka (%) ωCL/F (%) ωV1/F (%) ρCL/V1
σb (%)

57 26 36 0.8 15

Table 2 Fixed coefficient values for fixed effects and standard deviations of the
inter-individual random effects and residual errors, under which data were gener-
ated in the simulation study
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Scenario
Treatment effect on GMR on
CL/F V1/F AUC Cmax

H0:0.8 log(1.25) log(1.279) 0.8 0.8
H1:0.9 log(1.11) log(1.124) 0.9 0.9
H1:1 log(1) log(1) 1 1

H1:1.11 log(0.9) log(0.889) 1.11 1.11
H0:1.25 log(0.8) log(0.778) 1.25 1.25

Table 3 Treatment effects simulated on CL/F and V1/F and GMR obtained on
AUC and Cmax on each simulation scenario
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Figures

Fig. 1 Individual concentration versus time profiles, in log scale, in studies S1
and S2 per dose (105 and 225 mg), in the reference (HCLF G3, in blue) and test
(LyoF G2, in green) treatment arms
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Fig. 2 Geometric mean ratios (GMR) and their 90% confidence intervals for AUC
and Cmax, with NCA-TOST and MB-TOST Asympt on observed data and with
MB-TOST Asympt, Gallant and Post on sparse data
S1-105 denotes Study 1 with dose=105mg reference and treatment arms and sim-
ilarly for S1-225 and S2-225.
Grey lines are the limits of the null hypothesis interval, GMR = 0.8 and GMR =
1.25, and the black line represents GMR = 1. PK equivalence is shown as green
intervals while blue intervals highlight the parameters and datasets for which PK
equivalence was not established.
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Fig. 3 Boxplots of estimation errors (EE) (top row) and standard errors (SE)
(bottom row) of the treatment effects estimated on AUC and Cmax, on (a) rich
design simulations with NCA-TOST and MB-TOST Asympt, using the simulated
PK structural model and treatment effects estimated and all apparent parameters
(2cpt par) or only on ka and F (2cpt F), and (b) sparse design simulations with
MB-TOST Asympt using the simulated PK structural model (2cpt par) or a mis-
specified one compartment model (1cpt par), with treatment effects estimated on
all apparent parameters
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Fig. 4 Type I errors for AUC and Cmax, under H0:0.8 and H0:1.25, on (a) rich
design simulations with NCA-TOST and MB-TOST Asympt, and on (b) sparse
design simulations with MB-TOST Asympt, Gallant and Post

Fig. 5 Study power for AUC and Cmax, under H1:0.9, H1:1 and H1:1.11, on (a) rich
design simulations with NCA-TOST and MB-TOST Asympt, and on (b) sparse
design simulations with MB-TOST Asympt, Gallant and Post
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1 Appendix 1 : Pharmacokinetic models equations and parameters

One compartment model with zero-order absorption, linear elimination

C(t) =

{
D

Tk0Cl

(
1− exp(−Cl

V1
t)
)

if t ≤ Tk0
D

Tk0Cl

(
1− exp(−Cl

V1
Tk0)

)
exp

(
− Cl

V1
(t− Tk0)

)
if t > Tk0

with:

– C(t) the concentration at time t;
– D the dose administered;
– Tk0 the absorption duration;
– V1 the volume of distribution of the compartment;
– Cl the clearance of the drug;

– k =
Cl

V1
the elimination rate constant.

Here, there are l = 3 parameters: µ = c(Tk0, V1, Cl).

One compartment model with zero-order absorption, linear elimination, with a lag
time

C(t) =


0 if t ≤ Tlag

D
Tk0Cl

(
1− exp(−Cl

V1
(t− Tlag))

)
if Tlag < t ≤ Tlag + Tk0

D
Tk0Cl

(
1− exp(−Cl

V1
Tk0)

)
exp

(
− Cl

V1
(t− Tlag − Tk0)

)
if t > Tk0

The lag time Tlag adds a period of latency before the concentration starts ris-
ing. It works the same for all models.

Here, there are l = 4 parameters: µ = c(Tk0, V1, Cl, Tlag).

One compartment model with first-order absorption, linear elimination

The model 1cpt par represented in Table 1 corresponds to the equation:

C(t) =
D

V1

ka
Cl
V1

− ka

(
exp(−kat)− exp(−Cl

V1
t)
)

(10)

with ka the absorption constant rate.

Here, there are l = 3 parameters: µ = c(ka, V1, Cl).

Two compartment model with zero-order absorption, linear elimination

C(t) =



D

Tk0

(A
α
(1− exp(−αt)) +

B

β
(1− exp(−βt))

)
if t ≤ Tk0

D

Tk0

(A
α
(1− exp(−αTk0)) exp(−α(t− Tk0)) if t > Tk0

+
B

β
(1− exp(−βTk0)) exp(−β(t− Tk0))

)
with:
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– A =
1

V1

k21 − α

β − α
the first macro-constant;

– B =
1

V1

k21 − β

α− β
the second macro-constant;

– α =
k21k

β
the first rate constant;

– β = 1
2

(
k12 + k21 + k −

√
(k12 + k21 + k)2 − 4k21k

)
the second rate constant;

– k12 =
Q

V1
the distribution rate constant between the principal and the periph-

eral compartment;

– k21 =
Q

V2
the distribution rate constant between the peripheral and principal

compartment;
– Q the inter-compartmental clearance;
– V1 the volume of distribution of the principal compartment;
– V2 the volume of distribution of peripheral compartment.

Here, there are l = 5 parameters: µ = c(Tk0, V1, Cl, V2, Q).

Two compartment model with first-order absorption, linear elimination

The model used to generate the data in the simulation, and the models 2cpt par
and 2cpt F , are represented in Table 1 and correspond to the equation:

C(t) = D
(
A exp(−αt) +B exp(−βt)− (A+B) exp(−kat)

)
(11)

with:

– A =
ka

V1

k21 − α

(ka− α)(β − α)
;

– B =
ka

V1

k21 − β

(ka− β)(α− β)
.

Here, there are l = 5 parameters: µ = c(ka, V1, Cl, V2, Q).

Note: in the two compartment models under study here, the clearance occurs
only from the central compartment via the clearance constant Cl. The drug in
the peripheral compartment can only return to the central compartment via the
inter-compartmental clearance constant Q.

Parameterisation with F

Implicit in the equations above is the notion of bioavailability, defined as the frac-
tion of dose reaching the system. Including bioavailability as an explicit parameter
F corresponds to replacing D with D × F in the equations above. We can easily
see from equations 10 and 11 that this is equivalent to dividing both Cl and V1 by
F , so that the latter, when estimated from data collected after oral absorption, are
called apparent clearance and volume, and sometimes denoted Cl/F and V1/F to
show their dependency on F .
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This leads to an alternative way of parameterising the model, by including F
in the model. Because F cannot be identified without intravenous data, we fix
the population value at F=1 and only allow for some inter-individual variability.
We put a treatment effect only on the absorption parameters and F . Also, no
correlation is allowed between the random effects of volumes and clearances, as
these correlations are assumed to be carried by F . This parameterisation allows
to compute fewer treatment effect coefficients.
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2 Appendix 2: Method to compute the treatment effect on Cmax and
its SE

As part of a PK equivalence analysis, after fitting a NLMEM, we want to compute
treatment effects on the PK parameters of interest and their SE when there is no
explicit relationship with the direct parameters of the model. We simulate typical
concentration versus time profiles, taking into account the variance covariance
matrix of the fixed parameters.

Let c(µ, θ) be the vector of fixed effects and treatment effects obtained with the
NLMEM and M−1

F the asymptotic variance-covariance matrix of the fixed effects
and treatment effects, obtained by solving the Fisher Information Matrix of the
model.

We simulate K parameter sets with a multivariate normal distribution.

c(µk, θk) ∼ N (c(µ, θ),M−1
F )

with k=1,...,K, here K=1000.
For each parameter set, we compute a profile of concentrations with the pop-

ulation parameters and a short time step, under reference treatment and under
test treatment. For example, with a two-compartment model with first order ab-
sorption:

CR
k = C(time, kak, CLk, V 1k, Qk, V 2k)

and

CT
k = C(time, kak eθka,k , CLk eθCL,k , V 1k eθV 1,k , Qk eθQ,k , V 2k eθV 2,k)

Then we compute the treatment effect as the log ratio of the PK parameter
of interest under test and reference treatment. For instance, with CR

max,k the

maximum over the vector CR
k and CT

max,k the maximum over the vector CT
k :

θCmax,k
= log

(
CT

max,k

CR
max,k

)
We obtain a vector of K estimated treatment effects. We estimate the global

treatment effect as the mean of this vector mean(θCmax,k), and its standard error
as the standard deviation of this vector sd(θCmax,k).

Consequently, the geometric mean ratio is computed as the exponential of the
point estimate of θ computed, GMRCmax = exp(mean(θCmax,k)) for instance.

We evaluate the performance of this method on the estimated standard error
of the treatment effect on AUC, because it has an explicit formulation with direct
parameters:

AUC =
D

CL

AUCR
k =

D

CLk

AUCT
k =

D

CLk eθCL,k
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θAUCk
= log

(
AUCT

k

AUCR
k

)
= −θCL,k

E( ̂sd(θAUC)) = E[sd((θCL,k))] = sd(θCL)

That shows that the method would give an estimate of the standard error of
θAUC consistent with the method based on the explicit link with the direct param-
eters. However, we compute θk as the treatment effect on a concentration profile
in the mean parameters. The definition of θ is the mean of the treatment effect on
each individual profile. In this example, the relationship between θAUC and θCL is
linear, so these two quantities are equal, but this does not apply for Cmax. A more
accurate simulation method would take into account the interindividual variability
by simulating individual time-concentration profiles using the variance-covariance
matrix of the random effects. This method would be much more computationally
intensive because simulating too few participants would lead to the poor estima-
tion of the variability of the treatment effect, even more if the random variability
of the direct parameters influencing Cmax is high.

In this study, a comparison between the two approximations showed us that
they gave similar results in terms of estimation of θ for Cmax and its SE: it seems its
relationship with the direct parameters treatment effect is close enough to linear,
so we decided to use it for its computational conservativeness. It is likely that in
a study with more random effects, for instance if there is some intra-individual
variability, the second method would be preferable.

We also checked that this simulation method gave results similar from the
FIM-based method for θAUC , but decided to keep the FIM-based method for
θAUC because it is less time-consuming.
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3 Appendix 3: Tables with legends
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Table A1 Parameters estimates and treatment effect coefficients (relative stan-
dard errors), given by saemix on all separate studies, with the original and sparse
design
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Dataset Design Method PK parameter GMR 90% CI p

S1-105

Rich
NCA-TOST

AUC 1.068 [0.924 ; 1.236] 0.038
Cmax 0.997 [0.836 ; 1.189] 0.021

MB-TOST Asympt
AUC 1.077 [0.937 ; 1.239] 0.040
Cmax 0.972 [0.809 ; 1.167] 0.040

Sparse

MB-TOST Asympt
AUC 1.054 [0.913 ; 1.215] 0.025
Cmax 1.039 [0.907 ; 1.189] 0.012

MB-TOST Gallant
AUC 1.054 [0.905 ; 1.227] 0.033
Cmax 1.039 [0.899 ; 1.200] 0.018

MB-TOST Post
AUC 1.054 [0.902 ; 1.231] 0.035
Cmax 1.039 [0.898 ; 1.201] 0.018

S1-225

Rich
NCA-TOST

AUC 1.080 [0.947 ; 1.231] 0.034
Cmax 0.914 [0.771 ; 1.085] 0.098

MB-TOST Asympt
AUC 1.073 [0.946 ; 1.216] 0.023
Cmax 0.925 [0.787 ; 1.087] 0.070

Sparse

MB-TOST Asympt
AUC 1.033 [0.906 ; 1.177] 0.008
Cmax 0.867 [0.749 ; 1.003] 0.184

MB-TOST Gallant
AUC 1.033 [0.892 ; 1.196] 0.017
Cmax 0.867 [0.736 ; 1.021] 0.208

MB-TOST Post
AUC 1.033 [0.904 ; 1.180] 0.009
Cmax 0.867 [0.749 ; 1.003] 0.184

S2-225

Rich
NCA-TOST

AUC 0.971 [0.782 ; 1.205] 0.070
Cmax 0.858 [0.674 ; 1.093] 0.314

MB-TOST Asympt
AUC 0.988 [0.801 ; 1.218] 0.049
Cmax 0.863 [0.695 ; 1.071] 0.284

Sparse

MB-TOST Asympt
AUC 1.003 [0.812 ; 1.240] 0.044
Cmax 0.899 [0.734 ; 1.102] 0.171

MB-TOST Gallant
AUC 1.003 [0.796 ; 1.265] 0.059
Cmax 0.899 [0.720 ; 1.123] 0.190

MB-TOST Post
AUC 1.003 [0.807 ; 1.247] 0.048
Cmax 0.899 [0.728 ; 1.111] 0.182

Table A2 Gantenerumab analysis - Geometric mean ratios (GMR), their 90%
confidence interval and the p− value of the test, for AUC and Cmax, with NCA-
TOST and MB-TOST Asympt on original data and with MB-TOST Asympt,
Gallant and Post on sparse data
Significant p-values are highlighted in bold.
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Type I error
AUC Cmax

R0.8

NCA-TOST 0.05 0.037
2cpt par MB-TOST Asympt 0.054 0.036
2cpt F MB-TOST Asympt 0.082 0.066

R1.25

NCA-TOST 0.071 0.056
2cpt par MB-TOST Asympt 0.077 0.059
2cpt F MB-TOST Asympt 0.123 0.074

S0.8

2cpt par
MB-TOST Asympt 0.039 0.027
MB-TOST Gallant 0.032 0.019
MB-TOST Post 0.054 0.038

1cpt par
MB-TOST Asympt 0.049 0.081
MB-TOST Gallant 0.040 0.070
MB-TOST Post 0.041 0.077

S1.25

2cpt par
MB-TOST Asympt 0.064 0.042
MB-TOST Gallant 0.055 0.034
MB-TOST Post 0.069 0.058

1cpt par
MB-TOST Asympt 0.065 0.126
MB-TOST Gallant 0.054 0.111
MB-TOST Post 0.055 0.123

Table A3 Type I errors for AUC and Cmax, under H0:0.8 and H0:1.25, on rich
(R) design simulations with NCA-TOST and MB-TOST Asympt, and on sparse
(S) design simulations with MB-TOST Asympt, Gallant and Post
Significant p-values are highlighted in bold.
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Power
AUC Cmax

R0.9

NCA-TOST 0.418 0.231
2cpt par MB-TOST Asympt 0.427 0.256
2cpt F MB-TOST Asympt 0.490 0.377

R1

NCA-TOST 0.770 0.401
2cpt par MB-TOST Asympt 0.795 0.407
2cpt F MB-TOST Asympt 0.823 0647

R1.11

NCA-TOST 0.470 0.251
2cpt par MB-TOST Asympt 0.491 0.269
2cpt F MB-TOST Asympt 0.574 0.409

S0.9

2cpt par
MB-TOST Asympt 0.374 0.206
MB-TOST Gallant 0.329 0.144
MB-TOST Post 0.409 0.251

1cpt par
MB-TOST Asympt 0.418 0.424
MB-TOST Gallant 0.386 0.387
MB-TOST Post 0.4399 0.411

S1

2cpt par
MB-TOST Asympt 0.714 0.320
MB-TOST Gallant 0.667 0.225
MB-TOST Post 0.739 0.384

1cpt par
MB-TOST Asympt 0.780 0.683
MB-TOST Gallant 0.721 0.601
MB-TOST Post 0.762 0.667

S1.11

2cpt par
MB-TOST Asympt 0.454 0.201
MB-TOST Gallant 0.402 0.128
MB-TOST Post 0.4731 0.255

1cpt par
MB-TOST Asympt 0.470 0.482
MB-TOST Gallant 0.437 0.439
MB-TOST Post 0.450 0.467

Table A4 Study power to detect a treatment effect on AUC and Cmax, under
H1:0.9, H1:1 and H1:1.11, on rich (R) design simulations with NCA-TOST and MB-
TOST Asympt, and on sparse (S) design simulations with MB-TOST Asympt,
Gallant and Post
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4 Appendix 4: Figures

Fig. A1 Visual predictive check for the S1-225 study reference (left) and test
(right) arm, on original (top) and sparse (bottom) design
Note: the predicted 5%, 50% and 95% percentiles are shown as dashed lines; the
observed percentiles as solid lines.

Definition of Visual Predictive Checks (from Monolix documentation) :

The VPC (Visual Predictive Check) offers an intuitive assessment of misspec-
ification in structural, variability, and covariate models. The principle is to assess
graphically whether simulations from a model of interest are able to reproduce
both the central trend and variability in the observed data, when plotted versus
an independent variable (typically time). It summarises in the same graphic the
structural and statistical models by computing several quantiles of the empirical
distribution of the data after having regrouped them into bins over successive
intervals. More precisely, the goal is to compare the two following elements:

Empirical percentiles: percentiles of the observed data, calculated either for
each unique value of time, or pooled by adjacent time intervals (bins).

Theoretical percentiles: percentiles of simulated data are computed from mul-
tiple Monte Carlo simulations with the model of interest and the design structure
of the original dataset (i.e., dosing, timing, and number of samples). For each sim-
ulation, the same percentiles are computed across the same bins as for empirical
percentiles. Prediction intervals for each percentile are then estimated across all
simulated data and displayed as colored areas.

If the model is correct, the observed percentiles should be close to the predicted
percentiles and remain within the corresponding prediction intervals.
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Fig. A2 Distributions of normalised predictive distribution errors (npde) for the
S1-225 study on original (left) and sparse (right) design

Definition of normalised prediction distributions errors (npde) from Comets et
al. (2008) [28] :

The cumulative distribution function (cdf) of the predictive distribution of the
concentrations observed can be computed using Monte–Carlo simulations.

We define the prediction discrepancies (pd) as the value of this cdf at each
observation.

pd are computed as the percentiles of each observation in the empirical distri-
bution of the simulations.

By construction, pd are expected to follow U(0, 1), but only in the case of
one observation per subject; within-subject correlations introduced when multiple
observations are available for each subject induce an increase in the type I error
of the test. To correct for this correlation, we compute the empirical mean and
empirical variance-covariance matrix over the simulations.

Decorrelation is performed simultaneously for simulated data and for observed
data. Decorrelated pd are then obtained using the same formula but with the
decorrelated data, and we call the resulting variables prediction distribution errors
(pde).

If the number of Monte-Carlo simulations is large enough, the distribution of
the prediction distribution errors should follow a uniform distribution over the
interval [0,1] by construction of the cdf. Normalised prediction distribution errors
can then be obtained using the inverse function of the normal cumulative den-
sity function. By construction, npde follow the N (0, 1) distribution without any
approximation and are uncorrelated within an individual.
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