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Abstract—Artificial intelligence (AI) detection techniques based on
convolution neural networks (CNNs) require high computations and
memory. Their deployment on embedded edge devices, with reduced
resources and power budget, is highly hindered especially for applications
that requires real-time inference. Several optimization methods such as
pruning, quantization and using shallow networks, are mainly utilized
to overcome this limitation but at the cost of degradation in detection
performance. However, efficient approaches for training and inference
have been recently introduced to lower such degradation. This work
investigates the use of these approaches to optimize the popular You Only
Look Once (YOLO) network targeting various emerging edge devices
(Nvidia Jetson Xavier AGX, AMD-Xilinx Kria KV260 Vision AI Kit, and
Movidius Myriad X VPU) in order to enhance the detection of humans
in maritime environment.

Index Terms—Marine, Object detection, Deep Learning, YOLO, Op-
timization

I. INTRODUCTION

Convolutional Neural Network (CNN) architectures have been
widely adopted to handle the challenge of detecting multiple objects
in images and videos. Real-life applications impose the requirements
of accuracy and precision as well as insuring real-time detection.
These requirements come with a high cost in terms of computational
resources at training and inference phases. The implementation of
CNN-based architectures on embedded edge devices with limited
available energy and resources introduces a major challenge. Several
solutions have been introduced in this context. These solutions in-
clude methods of adopting light networks , pruning and quantization.

Human detection in marine environments is an important applica-
tion for several disciplines such as marine search and rescue missions,
man overboard accidents and illegal marine immigration. Recent
studies show that marine incidents and irregular migration have led to
increased number of losses in human lives [1][2]. Deep learning (DL)
techniques based on CNNs have been adopted to detect humans in
several application domains. However, few works tackle the detection
of floating humans in open water using DL.

Recently, You Only Look Once (YOLO) [3] has been introduced
as an efficient unified model of all phases of a CNN for detecting
multiple objects in real-time. Several versions of YOLO exist, with
different light networks suitable for embedded systems and low-
power modes. However, these networks differ in their detection per-
formance and inference rate. In this work, we aim to investigate these
models in detecting floating humans and examine their performance
in terms of accuracy, precision, and detection speed. In addition, the
impact of optimization techniques, in particularly quantization and
pruning, is evaluated when deployed on emerging embedded edge
devices such as Nvidia Jetson Xavier AGX, AMD-Xilinx Kria KV260
Vision Al Kit, and Movidius Myriad X VPU.

This work was supported in part by the Regional Council of Bretagne
through the ODESSA FEDER project.

The rest of the paper is organized as following. Section II presents
a brief background and reviews related work. Section III describes
the adopted methods and presents the obtained results along with the
discussion. Finally, Section V concludes the paper.

II. BACKGROUND AND RELATED WORK
A. Optimization techniques of DNNs on low resource devices

Deep Neural Networks (DNNs) have advanced significantly over
the past few years in a variety of applications in the field of
computer vision. In particular, CNN architectures have been improved
to address the challenging tasks of image classification and object
detection. The evolution of CNNs have introduced a solution to detect
several objects in images and videos with acceptable accuracy and
precision which are considered on par with human performance.
In fact, deep learning models are traditionally dense and over-
parameterized. This over-parameterization benefits the convergence
of gradient descent during training but comes at the cost of additional
memory and computation effort during model training and inference.

To cope with the challenges of implementing CNNs on embedded
edge devices with limited computational resources and power budget,
several optimization approaches have been introduced in the litera-
ture. The common techniques includes: (1) using of light models of
the networks with fewer layers and reduced parameters, (2) pruning
to reduce the number of parameters, (3) and quantization of weight
and/or activation values. These techniques reduce the impact of the
required computations and memory but at the cost of accuracy and
precision.

In this paper, we explore these techniques for the application of
human detection in marine environment. For network model design,
we target the original YOLOvV4 network and the compressed network
YOLOV4 Tiny with both MISH and leakyRelu activation layers [4].
YOLOv4 network consists of 162 layers based on CSPDarknet53
structure. YOLOv4 Tiny uses the simplified network structure of
CSPDarknet53-tiny. It compromises 38 layers and only two detec-
tor heads. For parameter quantization, half floating-point precision
(FP16) and INTS8 inference is adopted targeting embedded edge
platforms. Parameter pruning is applied on YOLOv4 model to reduce
the memory utilization and computational needs on target edge
devices. In particular, we make use of sparsification to reduce the
complexity by zeroing out subsets of the model parameters [5]. The
impact of these optimization techniques are investigated in terms of
detection performance and inference rate.

B. Human detection in marine environment using deep learning on
edge devices

Most of the available works on object detection in maritime
environments using deep learning target the detection of ships [6].
CNN-based techniques have been used to detect humans in several



recent works targeting multitude of applications such as crowd
detection, security, search and rescue missions [7][8][9][10][11].
However, few works have focused on human detection in maritime
scenes [12][13][14][15].

The performance of Faster R-CNN in detecting floating persons
has been investigated in [13] while using thermal images. In this
work, the authors have not indicated the target device. Only the
training and testing results are presented. Man overboard event
detection from RGB and thermal images is performed using single
shot detector (SSD) and YOLOV3 in [12]. However, this work lacks to
the performance results in terms on accuracy, precision and detection
speed as well as the used device. The authors in [14], have deployed
YOLOV3 to detect and localize human in marine environment using
images captured by drones for search and rescue missions. The used
dataset includes only 450 areal images captured in the same location.
Also, the inference speed on embedded device is not addressed.
The authors show the training and testing performances using their
dataset. In [15], the authors have deployed YOLOv3 Tiny on NVIDIA
Jetson TX1 to detect floating persons captured in areal images in the
context of search and rescue missions using UAVs. This work shows
that trained YOLOvV3 Tiny model can achieve 12 FPS detection of
humans in open water with mean average precision (mAP) of 67%
evaluated on validation dataset.

III. EXPERIMENTS AND RESULTS
A. Dataset

The used dataset contains 6462 images of humans in marine scenes
from various positions and from different perspectives and scales with
different backgrounds, resolutions and luminosity. The images are
collected from previous published datasets [15] and other internet
resources. YOLO_Mark tool is used for marking bounded boxes
of humans or for adjusting the existing bounding boxes of labeled
images to meet with the dimensions of the persons. Overall, 16795
bounding boxes are created. Note that the number of humans varies
among the collected images. The collected images are split randomly
by 70% as training dataset, 10% as validation dataset and 20% as
testing dataset.

B. Training

The original structures of the target networks are not modified.
The depth size of the last convolution layers connected to the layers
of the detection layers are modified to fit with one class. In order to
preserve the generalization, transfer learning is opted starting from
models trained on COCO dataset with 80 classes. Before launching
the training, the weights of the detection and classification layers are
deleted; whereas, those of feature extraction layers are maintained.
Upon training on our dataset, all weights are updated. The number
of images per batch is adjusted to 64. The total number of iterations
is set to 20000. The learning rate for training is initially fixed to
0.001 and it is set to be scaled down by the factor of 0.1 at iteration
16000 and iteration 18000. The input images are down sampled into
resolutions (Res) of 416 x 416 or 608 x 608. Data augmentation
(DA) is applied during the training process. Several DA modes are
applied such as mosaic, cutmix, rotation and changing exposure and
saturation.

C. Evaluation

The validation of the models is performed while training using the
validation dataset. The mAP is computed for each 4 epochs based
on the AP50 metric defined in the MS COCO competition. Fig. 1
illustrates the training and validation performances. Note that the blue
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Fig. 1. Sample training and validation performances

TABLE I
EVALUATION RESULTS OF THE TRAINED YOLOV4 MODELS

Preci-R all F1 | Avr |mAP
sion | “®score| IOU |@0.50

without| 0.71 0.60 [50.08%] 0.513
with | 0.77 0.76 {55.32%| 0.728
without| 0.71 0.54 [50.28%| 0.43
with | 0.78 0.75 [55.92%| 0.686
without| 0.59 0.42 [41.30%] 0.326
with | 0.77 0.75 [55.66%| 0.712
without| 0.70 0.39 {48.93%] 0.302
with | 0.75 0.73 [53.50%] 0.675

without| 0.70 0.7250.05%| 0.693
with | 0.70 0.72 [49.61%| 0.691
without| 0.72 0.73150.71%| 0.719
with | 0.72 0.73 [50.71%] 0.719
without| 0.71 0.72 [49.94%| 0.697
with | 0.70 0.7249.61%| 0.691
without| 0.73 0.73 [51.32%] 0.711
with | 0.69 0.71 [47.52%] 0.681
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curves correspond to the training losses; whereas, the red curves
correspond to the computed mAP values. Testing of the trained
models is conducted using the testing dataset. Table. I shows the
obtained results in terms of popular object detection metrics.



D. Structured Pruning / Sparsifying

In order to achieve high-speed inference with high-precision de-
tection, YOLOv4 model is pruned at the level of channels and layers.
First, training under channel-level sparsity-induced regularization
is performed in order to identify insignificant channels [16]. L1
regularization of the loss during training is adopted based on the
work presented in [17]. The cost function is modified by adding a
penalty term on the scaling factor (sparse weights). Also, a parameter
A is used to balance the normal training loss and the penalty term
defined on the weights. Different values of A are examined using
the collected dataset to determine the best value. To determine
whether the sparseness is sufficient, we use the Guppy multiple
moving averages (Gmma) weight distribution map of each batch
normalization (BN) layer. During sparsity training, it can be noticed
that Gmma weights tend to close to zero indicating more sparseness
as shown in Fig. 2.

Channel pruning is then applied to eliminate the channels with little
contribution by deleting its input-output connections and correspond-
ing weights. In this step, channels with near-zero scaling factors are
pruned using a global threshold across all layers. A specific percentile
of all the scaling factor values is used to define this threshold. In
order to achieve the best value of the global threshold, we used the
strategy of large intervals and then gradually subdividing to approach
the optimal pruning point. In this work, 92% pruning leads to the
optimal pruning point.

After channel pruning, layer pruning is performed in order to
address the cross layer connections (residual) in YOLOv4 network
where the output of a layer is the input to several subsequent layers.
The previous CBL (Conv + Batch Normalizaton + Leaky-Relu) of
each shortcut layer in the network is evaluated. Accordingly, the
Gmma mean of each layer is sorted and the smallest layer is chosen
for layer pruning. To determine the best number of Resunits to be
cut, several experiments have been conducted while evaluating the
obtained accuracy based on the metrics of precision, recall, mAP
and Fl-score. In this work, the best choice to maintain the accuracy
of the model as much as possible is to cut 20 Resunits which imposes
the removing of 48 layers in total.

Fine tuning is then applied to assist the pruned model to restore
accuracy. The pruned compact model is retrained for 300 epochs.
Fig. 3 shows the obtained performance metrics while fine-tuning the
compact model.

Table. II presents the obtained results after each pruning step
of YOLOv4 network with leakyRelu activation function. The table
shows that the mAP drops by 2.3 points after sparsity training.
However, this degradation, which is due to the modification of the loss
function, is compensated later by the conducted fine-tuning on the
pruned network. Also, the results illustrate that the channel pruning
greatly reduces the number of model parameters (—98.4%) and the
FLOPS (—91.64%) that involve a speed-up effect on embedded
devices without suffering from accuracy loss. Fine-tuning of the
YOLOvV4 network recovers the accuracy loss due sparsity training.
The obtained results show that the fine-tuned network achieves higher
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Fig. 2. Gmma weight distribution map of the BN layer

TABLE II
PRUNING RESULTS OF YOLOV4 NETWORK WITH leakyRelu

Step Precision|Recall mAP [F1-score|Parameters BFLOPS
baseline 0.666 |0.741] 0.7 | 0.701 | 63937686 | 59.54
sparsity training| 0.616 |0.748|0.677| 0.676 | 63937686 | 59.54
channel pruning| 0.581 [0.7520.658| 0.655 1037301 4.978
layer pruning 0.609 |0.729]0.656| 0.663 | 1028025 | 4.965
fine-tuning 0.643 | 0.78 |0.721| 0.705 | 1028025 | 4.965

accuracy (42.1 points in mAP) than the baseline network while
preserving a significant decrease in the required memory (—90.4%
reduction of parameters) and computations (—91.66% reduction of
FLOPS) .

E. Deploying trained model on edge devices

This subsection presents the deployment of the trained YOLOv4
models on Nvidia Jetson Xavier AGX, Xilinx Kria FPGA KV260 and
Intel Movidius Myriad X Vision Processing Unit (VPU) integrated
in OAK-D camera kit.

The deployment flow includes two basic steps:

1) quantization step where the bit-width of weights and activations
is reduced to the desired representation using heuristic method
and a golden reference pool of images selected from the
training dataset.

2) compilation step in which the the model is optimized based
on target hardware and then mapped into optimized instruction
sequence ready to be deployed.

1) Deployment on Nvidia Jetson Xavier AGX: TensorRT is utilized
in order to achieve lower latency and higher throughput inference on
Jetson Xavier AGX. The target models are first converted to Open
Neural Network Exchange (ONNX) and then to TensorRT engine
with FP32 representation. Next, the target models are quantized
to FP16 representation. Table. III presents the obtained detection
performance and inference speed of the original trained models and
the converted models using TensorRT when deployed on the Jetson
Xavier AGX. The comparison shows that using TensorRT increases
the inference rate while achieving better accuracy for all tested
networks. This refers to the optimization process that implements
several techniques such as kernal fusion, precision calibration, kernel
auto-tuning, dynamic tensor memory and multi-stream execution. The
quantization leads to better inference rate of 52 FPS (+247%) but a
cost of degradation in the detection performance (-2.9 points in mAP).

2) Deployment on Xilinx Kria KV260: The trained models on
darknet framework are first converted to a frozen TensorFlow graphs
as Vitis Al does not support the graph provided by darknet frame-
work. Also, the MISH activation layers are not supported by the
Deep Learning Processor Unit (DPU) in Xilinx FPGA. Therefore,
the deployment of the models with leakyRelu activation functions is
considered. Using Vitis Al, the transferred model is quantized into
INT8 representation, which is the only supported one, and compiled
targeting DPUCZDXS8G architecture. Note that the Vitis Al compiler
does not support slice operator, which is used in the YOLOv4 Tiny
model, for the targeted DPU. So, this architecture model is modified
accordingly. Table. IV presents the obtained results in terms of
detection performance and inference speed of the deployed models
on Kria KV260. The pruned YOLOv4 model can achieve the highest
inference speed (69 FPS) on KV260 kit while the unpruned YOLOv4
network can achieve the best mAP with 1% degradation due to
quantization. YOLOv4 Tiny can achieve an inference rate of 65 FPS
while loosing 5% in the mAP when quantized to INTS. Note that the
FPS values for FP32 representation are not listed in Table. IV as the
DPU in Kria KV260 kit can run only values in INTS8 representation.
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Fig. 3. Obtained performance metrics while fine-tuning the compact model
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TABLE IIT
OBTAINED RESULTS ON JETSON XAVIAR AGX
Network | YOLOv4 Tiny YOLOv4
AF leakyRelu leakyRelu MISH
Resolution 416x416 416x416 608 <608
Model [originalFP32|FP16/original FP32{FP16joriginal|FP32|FP16)
mAP @0.5 0.8 (0.818/0.795| 0.859 0.861(0.830| 0.815 |0.826/0.802
FPS 90 92 | 115 15 20 | 52 9 10 | 30
TABLE IV
OBTAINED RESULTS ON KRIA KV260
Network YOLOV4 Tiny YOLOv4 Pruned YOLOV4
Resolution 416x416 416x416 416 x 416
Model FP32 INT8 FP32 | INT8 | FP32 INT8
mAP @0.5 | 0.509 | 0451 0.829 | 0.818 | 0.372 0.348
FPS - 65 - 11 - 69

3) Deployment on Movidius Myriad X VPU: The pruned YOLOv4
model is also deployed on Movidius Myriad X VPU. Movidius
Myriad X VPU is programmable with the Intel distribution of the
OpenVINO [18]. The model is optimized and quantized to FP16
representation. The resultant model achieves an inference speed of
29.8 FPS (2 threads running on 6 SHAVE cores) and 14.7 FPS (1
thread running on 6 SHAVE cores) with a slight degradation of 1.2%
in the mAP (71.01%) when compared to the unquantized pruned
network (72.4%). In addition, the YOLOv4 Tiny model is deployed
on Movidius Myriad X VPU. It achieves 30 FPS inference speed
with a mAP of 72.4%.

F. Analysis

The analysis of the obtained results shows that Jetson Xavier AGX
can achieve best inference speed and mean average precision but at
the cost of higher power consumption. The power consumption of the
GPU (30W) on Jetson Xavier AGX is 3.75 times more than KRIA
KV260 AI VISION KIT (8W) and 7.5 times more that of Movidius
Myriad X VPU (4W). The performance per Watt is determined when
running the models on all targeted embedded edge platforms. Jeston
Xavier AGX can achieve 3.83 FPS/W and 1.73 FPS/W for YOLOv4
Tiny and YOLOv4 networks respectively. Kria KV260 Vision Al
kit can achieve 8.125 FPS/W, 1.375 FPS/W and 8.625 FPS/W for
YOLOvV4 Tiny, YOLOv4 and pruned YOLOv4 networks. Movidius
Myriad X VPU can achieve 7.45 FPS/W for pruned YOLOv4 model
and 7.5 FPS/W for YOLOv4 Tiny model.

IV. CONCLUSION

In this paper, we have investigated the deployment of YOLO on
edge devices for efficient human detection in maritime environments.
Three recent emerging edge devices have been considered in this
study: Nvidia Jetson Xavier, AMD-Xilinx Kria KV260 Vision Al
Kit, and Movidius Myriad X VPU. Channel, layer and fine pruning
techniques, together with different levels of quantization, have been
applied to enable high detection speed without scarifying accuracy
and precision. Furthermore, the impact of different parameters such

as network model, activation function, image resolution and data aug-
mentation has been analyzed. The proposed deployments demonstrate
promising results with an inference speed of 50 FPS and limited
degradation of 2.9% in mAP.
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