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Adaptive Control/Identification for Hybrid Systems,
Part II: with Linear-growth-order Discrete Regressor

Mohamed Maghenem Adnane Saoud Antonio Lorı́a

Abstract— In this and the companion paper [1] we propose
a direct-adaptive-control framework for hybrid dynamical sys-
tems with unknown parameters. The approach addresses both
the tracking-control and the parameter-estimation problems
and relies on Lyapunov theory for hybrid systems. In this paper,
we extend the main results of [1] to deal with hybrid systems
that contain a regressor that is of linear order of growth,
thereby relaxing the boundedness restriction imposed in [1].
As in the latter reference, the statements rely on Lyapunov
theory for hybrid systems and we establish uniform global
asymptotic stability in closed loop. In particular, parameter-
estimation convergence is guaranteed when a generic hybrid
persistence of excitation condition on the pair of discrete and
continuous regressor functions holds. On the other hand, the
relaxation of the boundedness assumption relies on a higher-
order adaptation law.

I. INTRODUCTION

Adaptive control algorithms have been developed in the
literature for continuous, discrete, and hybrid systems. In
most existing works, the focus is on either state convergence
only or parameter estimation only; see for example [2],
[3], [4], [5], [6]. In few other works, the tracking-plus-
estimation problem is considered [7], [8], [1]. For exam-
ple, for continuous-time systems, uniform global asymptotic
stability of the subset corresponding to a null value of the
tracking and estimation errors is established in [7]. Moreover,
stability plus convergence to the latter subset, for discrete-
time case, is guaranteed in [8], where boundedness of the
regressor is required. This requirement is replaced in [4]
by a linear growth condition on the regressor function. It
is important to note that relaxing the regularities of the
regressor function, in the discrete-time case, usually requires
a high-dimension adaptation law [3].

Motivated by the aforementioned discussion, in this paper,
we revisit the hybrid adaptive-control framework proposed
in Part I [1] while relaxing the boundedness of the discrete
regressor. That is, we allow the discrete regressor to have
a linear growth with respect to the tracking error. We solve
the tracking-plus-estimation problem in two steps. First, we
design the discrete-time adaptation law based on existing
adaptive-control literature for discrete-time systems [3], [4],
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[9]. Furthermore, we propose a new continuous-time adap-
tation law so that we can guarantee global stability of the
closed-loop hybrid system. In addition, under an appropriate
hybrid persistence of excitation condition, convergence of the
tracking plus estimation errors is ensured. After justifying the
lack of uniformity as well as the absence of well-posedness
of the resulting closed-loop system, we refine the design of
the discrete adaptation law using set-valued maps. Hence, we
guarantee well posedness of the resulting closed-loop system
and uniform global asymptotic stability of the subset where
the tracking-plus-estimation errors are null.

The remainder of this paper is organized as follows. In
Section II, we recall some definitions and notations on hybrid
systems as per in [10]. In Section III, the problem at hand
is formulated. Our main results are presented in Section IV
and some concluding remarks are provided in Section V.

II. PRELIMINARIES

Notation. Given a vector x of dimension mx, and a
nonempty set K ⊂ Rmx , |x|K := infy∈K |x − y| denotes
the distance between x and the set K and U(K) denotes
an open neighborhood around K. By B, we denote the
closed unit ball in Rmx centered at the origin. For a map
φ : R≥0 × N → Rmx ∪ {∅}, domφ ⊂ R≥0 × N denotes
the domain of definition of φ, namely, φ(t, j) 6= ∅ if and
only if (t, j) ∈ domφ. Moreover, |φ|∞ := sup{|φ(t, j)| :
(t, j) ∈ domφ}. A continuous function β : R≥0 → R≥0 is
a class K∞ function if it is strictly increasing, β(0) = 0,
and limv→∞ β(v) = ∞. A continuous function β : R≥0 ×
R≥0 → R≥0 is a class KL function if β(t, ·) ∈ K∞ for all
t ≥ 0 and limt→∞ β(t, v) = 0 for all v ≥ 0. For a symmetric
semi-positive definite matrices Γ1, Γ2 ∈ Rmx×mx , λmin(Γ1)
and |Γ1| := λmax(Γ1) denote the smallest and the largest
eigenvalues of Γ1, respectively. Furthermore, we write Γ1 ≥
0 when λmin(Γ1) ≥ 0 and Γ1 > 0 when λmin(Γ1) > 0.
Also, we say that Γ1 ≥ Γ2 if Γ1 − Γ2 ≥ 0 and Γ1 > Γ2

if Γ1 − Γ2 > 0. Finally, F : Rmx ⇒ Rmx denotes a set-
valued map associating each element x ∈ Rn to a subset
F (x) ⊂ Rmx . Finally, given a hybrid arc Φ : dom Φ →
Rmθ×mθ , mθ ∈ {1, 2, ...} (see Part I [1, Definition 1]), given
a positive constant K ∈ R>0 ∪ {+∞} and (t, j) ∈ dom Φ,
we use EΦ

t,j,K ⊂ dom Φ to denote the shortest hybrid time
domain, starting from (t, j) and contained in dom Φ, of
length larger or equal than K. Let mK be the maximum
amount of jumps achieved on EΦ

t,j,K ; namely, EΦ
t,j,K :=

[tj , tj+1]× {j} ∪ · · · ∪ [tmK , tmK+1]× {mK} ⊂ dom Φ.



A. Continuity Properties in Set-Valued Maps

Consider a set-valued map F : K ⇒ Rn, where K ⊂ Rm.

• The map F is said to be outer semicontinuous at
x ∈ K if, for every sequence {xi}∞i=0 ⊂ K and for
every sequence {yi}∞i=0 ⊂ Rn with limi→∞ xi = x,
limi→∞ yi = y ∈ Rn, and yi ∈ F (xi) for all i ∈ N, we
have y ∈ F (x); see [10, Definition 5.9].

• The map F is said to be lower semicontinuous (or,
equivalently, inner semicontinuous) at x ∈ K if for each
ε > 0 and yx ∈ F (x), there exists U(x) satisfying the
following property: for each z ∈ U(x)∩K, there exists
yz ∈ F (z) such that |yz − yx| ≤ ε.

• The map F is said to be upper semicontinuous at x ∈ K
if, for each ε > 0, there exists U(x) such that for each
y ∈ U(x) ∩K, F (y) ⊂ F (x) + εB; see [11, Definition
1.4.1].

• The map F is said to be continuous at x ∈ K if it is
both upper and lower semicontinuous at x.

Furthermore, the map F is said to be upper, lower, outer
semicontinuous, or continuous if, respectively, it is upper,
lower, outer semicontinuous, or continuous for all x ∈ K.

B. Hybrid Inclusions

In this paper, we consider hybrid systems of the form

H :

{
ẋ = F (x) x ∈ C
x+ ∈ G(x) x ∈ D, (1)

with the state variable x ∈ X ⊂ Rmx , the flow set C ⊂ X ,
the jump set D ⊂ X , the flow and jump maps F : C → Rmx
and G : D ⇒ Rmx , respectively.

Definition 1 (Concept of solution to H): A hybrid arc φ :
domφ→ Rmφ is a solution to H if

(S0) φ(0, 0) ∈ cl(C) ∪D;
(S1) for all j ∈ N such that Ij := {t : (t, j) ∈ domφ}

has nonempty interior, t 7→ φ(t, j) is locally absolutely
continuous and

φ(t, j) ∈ C for all t ∈ int(Ij),
φ̇(t, j) = F (φ(t, j)) for almost all t ∈ Ij ;

(S2) for all (t, j) ∈ domφ such that (t, j + 1) ∈ domφ,
φ(t, j) ∈ D, φ(t, j + 1) ∈ G(φ(t, j)).

A hybrid inclusion H = (C,F,D,G) is well-posed if the
following hybrid basic conditions are satisfied.

(A1) The sets C and D are closed.
(A2) The flow map F : C → Rn is continuous.
(A3) The jump map G : D ⇒ Rn is outer semicontinuous,

locally bounded, and has nonempty images.

We recall that, in well-posed hybrid systems [10, Def-
inition 6.2], the solutions enjoy very useful robustness
properties with respect to perturbations affecting the initial
condition [10, Chapter 6].

C. Stability Notions

Inspired by [12], we introduce the global stability (GS)
notion for hybrid systems.

Definition 2 (GS): A closed subset A ⊂ X is said to be
globally stable (GS) for H if, for each ε > 0, there exists a
neighborhood U(A) around A such that, for each φ solution
to H starting from U(A) at (to, jo) ∈ domφ, we have
|φ(t, j)|A ≤ ε for all (t, j) ∈ domφ.

Next, we introduce the global asymptotic stability (GAS)
notion for hybrid systems.

Definition 3 (GAS): A closed subset A ⊂ X is said to be
globally asymptotically stable (GAS) forH if the set A is GS
for H and, for each ε > 0, for each complete solution φ to
H, and for each (to, jo) ∈ domφ, there exists (t, j) ∈ domφ
such that t+ j ≥ to + jo and |φ(t, j)|A ≤ ε.

Finally, we refer the reader to Part I [1] for the defini-
tions of uniform global stability (UGS) and uniform global
asymptotic stability (UGAS).

III. PROBLEM FORMULATION

As in Part I [1], we introduce the following class of hybrid
systems

Heθ :




ė
˙̃
θ
ṫ

j̇

 =


Ace+ ψc(t, j, e)θ̃
Ac(t, j, e)

1
0

 (t, j, e, θ̃) ∈ Ceθ


e+

θ̃+

t+

j+

 =


Ade+ ψd(t, j, e)θ̃

θ̃ +Ad(t, j, e, e+)
t

j + 1

 (t, j, e, θ̃) ∈ Deθ,

where (t, j, e, θ̃) ∈ Xeθ, Xeθ := domψc(= domψd)×Rmθ ,
(Ac, Ad) ∈ Rme×me×Rme×me , the sets (Ceθ, Deθ) ⊂ Xeθ×
Xeθ are the flow and the jump sets, respectively, the maps
Ac : domψc → Rmθ and Ad : domψd × Rme → Rmθ are,
respectively, the continuous and the discrete-time adaptation
laws to be designed, finally, the hybrid arcs ψc, ψd :
domψd(= domψc)→ Rme×mθ are, respectively, called the
continuous- and the discrete-time regressor functions.

Our goal in this paper is to solve the following problem.
Problem 1: Design the adaptation laws Ac and Ad such

that the resulting hybrid system Heθ is well posed and the
set A := {(e, θ̃, t, j) : e = θ̃ = 0} is UGAS.

Note that Problem 1 is motivated and compared to related
literature in Part I [1]. Furthermore, Problem 1 is solved
therein under the assumption that ψd is globally bounded. In
this paper, we relax such a requirement by allowing ψd to
have a linear growth rate with respect to e. More precisely,
we consider the following assumption.



Assumption 1: There exist c1, c2 ≥ 0 such that
|ψd(t, j, e)| ≤ c1 + c2|e| ∀(t, j, e, θ̃) ∈ Deθ.

Remark 1: Assumption 1 is also used in the discrete-
time adaptive scheme proposed in [4]. However, only (non-
uniform) global stability of A plus (non-uniform) conver-
gence of e are established. The same result is obtained in [3]
without restricting the growth of ψd. However, the adaptation
law used therein is, relatively, of higher dimension and the
stability conclusions are weaker than those established in the
paper.

The following additional assumptions are used in both the
current paper and its companion [1]. Furthermore, they are
thoroughly discussed and motivated in the aforementioned
reference, but we repeat them here for convenience.

Assumption 2: There exist P , Q ∈ Rme×me symmetric
and positive definite such that

Ac
>P + PAc ≤ −Q,

Ad
>PAd − P ≤ −Q.

(2)

Assumption 3 (Regularity of ψc and ψd): The maps ψc
and ψd are continuous.
Next, we specify the following functions

φc(t, j) := ψc(t, j, 0),

φd(t, j) := ψd(t, j, 0),

∆c(t, j, e) := ψc(t, j, e)− ψc(t, j, 0),

∆d(t, j, e) := ψd(t, j, e)− ψd(t, j, 0).

Assumption 4 (Regularity of φc): For each j ∈ N, the
map t 7→ φc(t, j) is absolutely continuous on

Ij := {t : (t, j) ∈ domφc}.

Furthermore, there exists φ̄ > 0 such that

sup
(t,j)∈domφc

{|φc(t, j)|} ≤ φ̄

ess sup
t∈Ij

{|φ̇c(t, j)|} ≤ φ̄.

Assumption 5 (Growth rate of ∆c and ∆d): There exists
a positive non-decreasing function κo : R≥0 → R≥0 such
that, for each (t, j, e) ∈ domψc = domψd, we have

max{|∆c(t, j, e)|, |∆d(t, j, e)|} ≤ κo(|e|)|e|.

Assumption 6 (HPE of (φc, φd)): There exist K, µ > 0
such that, for each hybrid time domain

J⋃
j=jo

([tj , tj+1]× {j}) ⊂ domφc

such that (tJ+1 − to) + (J − jo) ≥ K, we have

J∑
j=jo

∫ tj+1

tj

φc(s, j)
>φc(s, j)ds+

J∑
j=jo

φd(tj+1, j)
>φd(tj+1, j)

≥ µImθ .

IV. MAIN RESULTS

We contribute with two adaptive controllers that solve
Problem 1. The interest of the first is that it consists in a
rather natural design, inspired from classical adaptive-control
algorithms and in particular from [4], but it is tailored for
hybrid systems. However, it leads to non-uniform stability
properties. The second is a refinement of the first, for which
UGAS is guaranteed.

A. Primary Solution

Given γo > 0, we introduce the set

Go := {Γ ∈ Rmθ×mθ : Γ = Γ> > 0, |Γ| ≤ γo}.

Now, we introduce the adaptation laws

Ac(t, j, e) := −µ
c

Γ
ψc(t, j, e)

>

1 + µe>Pe
Pe

Ad(t, j, e, e+) := −GoΓ(t, j, e,Γ)ψd(t, j, e)
> (e+ −Ade

)
,

(3)
where

GoΓ(t, j, e,Γ) := Γ− Γψ>d
[
Ime + ψdΓψ

>
d

]−
ψdΓ, (4)

and Γ ∈ Go is a state variable governed by{
Γ̇ = 0 if (t, j, e, θ̃) ∈ Ceθ

Γ+ = GoΓ(t, j, e,Γ) if (t, j, e, θ̃) ∈ Deθ.
(5)

Remark 2: Note that, for each (t, j, e,Γ) ∈ domψd×Go,
we have that

0 < GoΓ(t, j, e,Γ) ≤ Γ.

Indeed, while the right inequality is straightforward, to
deal with the left inequality, we use the Woodbury matrix
identity [13] to obtain

GoΓ(t, j, e,Γ)− = Γ− + ψ>d ψd.

Hence, by definition of the set Go, we conclude that
GoΓ(t, j, e,Γ) ∈ Go, for all Γ ∈ Go. Furthermore, under
Assumption 3, we conclude that GoΓ is continuous on
domψd × Go.

Remark 3: The proposed discrete adaptation Ad is de-
signed as in [4]. We design Ac so that we can find a
Lyapunov function that is non-increasing along the jumps as
well as the flows of Heθ in spit of the relaxed Assumption;
see Proposition 1.

The resulting closed-loop system is governed by the hybrid
dynamics



Haeθ :





ė

˙̃
θ

Γ̇

ṫ

j̇

 =



Ace+ ψc(t, j, e)θ̃

−µ
c

Γ
ψc(t, j, e)

>

1 + µe>Pe
Pe

0

1

0


(t, j, e, θ̃,Γ) ∈ Caeθ


e+

θ̃+

Γ+

t+

j+

 =


Ade+ ψd(t, j, e)θ̃

θ̃ −GoΓ(t, j, e,Γ)ψd(t, j, e)
>(e+−Ade)

GoΓ(t, j, e,Γ)

t

j + 1


(t, j, e, θ̃,Γ) ∈ Da

eθ,

where Caeθ := Ceθ × Go and Da
eθ := Deθ × Go.

In the sequel, we propose a Lyapunov-based approach to
analyze stability of the set A given by

A := {(t, j, e, θ̃,Γ) ∈ Xeθ × Go : e = θ̃ = 0}. (6)

Theorem 1: Consider system Haeθ such that Assumptions
1-6 hold. Let the parameters (c, µ) be such that

µ ≥ 2c22γo
|P | (1 + 2γoc21)

(7a)

c ≥ 2
(
1 + 2γoc

2
1

)(
µ+ 2

∣∣∣∣Q−1/2A>d P
1/2

∣∣∣∣2
)
|P |, (7b)

where ((c1, c2), (P,Q)) come from Assumption 1 and As-
sumption 2, respectively. Then, the set A is GAS for Haeθ.

B. Refining the Primary Solution

The solution proposed in the previous section has two
drawbacks. First, the stability guarantees in Theorem 1 are
not uniform. Second, the hybrid system Haeθ is not well
posed. In particular, the sets Caeθ and Da

eθ are not closed
since the set Go is not so. To handle the latter two issues,
we propose to redefine the set Go as a closed subset that
we denote by G1. Furthermore, we modify the update law of
Γ to guarantee that it remains in the new closed subset G1

after the jumps. That is, for some constants γo, γ1 > 0, we
introduce the set

G1 := {Γ ∈ Go : Γ ≥ γ1Imθ}.

Furthermore, we introduce the set-valued map G1Γ :
domψd × G1 ⇒ G1 given by

G1Γ(t, j, e,Γ) := {M ∈ G1 : M ≥ GoΓ(t, j, e,Γ)},

where GoΓ(t, j, e,Γ) is given in (4). The resulting closed-
loop system is governed by the hybrid dynamics

Hbeθ :





ė

˙̃
θ

Γ̇

ṫ

j̇

 =



Ace+ ψc(t, j, e)θ̃

−µ
c

Γ
ψc(t, j, e)

>

1 + µe>Pe
Pe

0

1

0


(t, j, e, θ̃,Γ) ∈ Cbeθ


e+

θ̃+

Γ+

t+

j+

 ∈


Ade+ ψd(t, j, e)θ̃

θ̃ −GoΓ(t, j, e,Γ)ψd(t, j, e)
>(e+−Ade)

G1Γ(t, j, e,Γ)

t

j + 1


(t, j, e, θ̃,Γ) ∈ Db

eθ,

where Cbeθ := Ceθ × G1 and Db
eθ := Deθ × G1.

Lemma 1: Under Assumption 3, G1Γ is outer semicontin-
uous, locally bounded, and has nonempty images.

Theorem 2: Consider system Hbeθ under Assumptions 1-6
hold. Let the parameters (c, µ) satisfy (7). Then, Hbeθ is well
posed and the set A in (6) is UGAS.

C. Proof of Theorem 1

To avoid heavy notations, when the arguments in the
functions (ψc, ψd), (φc, φd) are omitted, it means that they
are evaluated at (t, j, e) and (t, j), respectively.

1) Global Stability: To establish GS of the set A for Haeθ,
we use the following intermediate result.

Proposition 1: Consider system Haeθ such that Assump-
tions 1 and 2 hold. Consider the Lyapunov function candidate

V (e, θ̃,Γ) := ln
(
1 + µe>Pe

)
+ cθ̃>Γ−θ̃, (8)

where the parameters µ and c satisfy (7). Then, along each
solution φ to Haeθ, we have

• For each j ∈ N such that int(Ij) 6= ∅, we have

V̇ (e, θ̃,Γ) ≤ − µe>Qe

1 + µe>Pe
for almost all t ∈ Ij .

• For each ((t, j), (t, j + 1)) ∈ domφ× domφ, we have

∆V := V (e+, θ̃+,Γ+)− V (e, θ̃,Γ)

≤ −µ
2

e>Qe

1 + µe>Pe
− c

2
θ̃>ψ>d

[
Ime + ψdΓψ

>
d

]−
ψdθ̃.

According to Proposition 1 and along each solution φ to
Haeθ, starting from φo := (to, jo, eo, θ̃o,Γo), we have

V (e(t, j), θ̃(t, j),Γ(t, j)) ≤ V (eo, θ̃o,Γo)

≤ ln
(
1 + µe>o Peo

)
+ cθ̃>o Γ−o θ̃o

for all (t, j) ∈ domφ. At the same time, the function V



satisfies the inequality

V (e, θ̃,Γ) ≥ ln
(
1 + µe>Pe

)
+

c

γo
θ̃>θ̃.

Hence, there exists a class K∞ function κ, such that

V (e, θ̃,Γ) ≥ κ
(
|t, j, e, θ̃,Γ|2A

)
= κ

(
|e, θ̃|2

)
. (9)

As a result, for all (t, j) ∈ domφ, we have

|(e(t, j), θ̃(t, j))|2 ≤ κ−
(
V (eo, θ̃o,Γo)

)
. (10)

The latter implies that, for all (t, j) ∈ domφ, we have

|(e(t, j), θ̃(t, j))|2 ≤ κ−
(

ln
(
1 + µe>o Peo

)
+ cθ̃>o Γ−o θ̃o

)
≤ κ−

([
µ|P |+ c

λmin(Γo)

]
|(eo, θ̃o)|2

)
.

The latter inequality is enough to conclude global stability
of the set A according to Definition 2.

Remark 4: Note that we cannot show UGS since we
cannot upper bound the term c

λmin(Γo) by a positive constant.

2) Global Asymptotic Attractivity: In this section, we
establish that, for each ε > 0, the complete solutions to Haeθ
reach the set A + εB. For this, given Vo > 0, we introduce
the Lyapunov-like function given by

Z(t, j, e, θ̃,Γ) := ρ1(Vo)V (e, θ̃,Γ)− ρ2(Vo)e
>φc(t, j)θ̃

− θ̃>QΦ(t, j,∞)θ̃,

where ρ1, ρ2 : R≥0 → R>0 are continuous non-decreasing
functions to be specified later, the hybrid arc QΦ is given by

QΦ(t,j,∞) :=

m∞∑
i=j

∫ ti+1

ti

exp(t+j)−(s+i) Φ(s, i)ds

+
1

2

m∞∑
i=j

[∫ ti+2

ti+1

exp(t+j)−(s+i) ds

]
Φ(ti+1, i),

(11)

Φ := φcdφ
>
cd, and φcd(t, j) :=

{
φc(t, j) if t ∈ int(Ij)
φd(t, j) otherwise,

where m∞ is the number of jumps of the hybrid arc Φ.
Note that key properties of the arc QΦ(·,∞) are in [1].
Furthermore, we rely on the following key result.

Proposition 2: Consider system Haeθ such that Assump-
tions 1-6 and (7) hold. Then, given Vo > 0, there exist
positive constants (λc, λd) such that, along every solution φ
to Haeθ starting from (eo, θ̃o,Γo, to, jo) with V (eo, θ̃o,Γo) ≤
Vo, it holds that:

• for each j ∈ N such that int(Ij) 6= ∅, we have

Ż(t, j, e, θ̃,Γ) ≤ −λc|e, θ̃|2 for almost all t ∈ Ij ,

• for each ((t, j), (t, j + 1)) ∈ domφ× domφ, we have

Z(t, j + 1, e+, θ̃+,Γ+)− Z(t, j, e, θ̃,Γ) ≤ −λd|e, θ̃|2.
At this point, we introduce the function

Z̄(t, j, e, θ̃,Γ) := Z(t, j, e, θ̃,Γ) + ρ3(Vo)V (e, θ̃,Γ),

where

ρ3(Vo) := φ̄γ1/2
o |P−1/2|

(
expVo

µ
+

1

c

)
ρ2(Vo)

+ γo|QΦ(·,∞)|∞. (12)

Remark 5: Using Propositions 1 and 2, we can eas-
ily see that along every solution φ to Haeθ starting from
(eo, θ̃o,Γo, to, jo) with V (eo, θ̃o,Γo) ≤ Vo, we have

• For each j ∈ N such that int(Ij) 6= ∅, we have

˙̄Z(t, j, e, θ̃,Γ) ≤ −λc|(e, θ̃)|2 for almost all t ∈ Ij .

• For each ((t, j), (t, j + 1)) ∈ domφ× domφ, we have

Z̄(t, j+, e+, θ̃+,Γ+)− Z̄(t, j, e, θ̃,Γ) ≤ −λd|(e, θ̃)|2.
Next, we show the existence of ρ, ρ̄ : R≥0 → R>0

continuous and non-decreasing functions such that

ρ(Vo)V ≤ Z̄ ≤ ρ̄(Vo)V. (13)

Indeed, using Young’s inequality, we note that

Z̄ ≤ (ρ1(Vo) + ρ3(Vo))V − ρ2(Vo)e
>φcθ̃

≤ (ρ1(Vo) + ρ3(Vo))V

+ ρ2(Vo)φ̄γ
1/2
o |P−1/2|

[
e>Pe+ θ̃>Γ−θ̃

]
.

Next, when V (e, θ̃,Γ) ≤ Vo, and using the fact that x ≤
(1 + x) ln(1 + x) for all x ≥ 0, we conclude that e>Pe ≤
expVo

µ ln
(
1 + µe>Pe

)
. As result, we have that

Z̄ ≤ (ρ1(Vo) + ρ3(Vo))V − ρ2(Vo)e
>φcθ̃

≤ (ρ1(Vo) + ρ3(Vo))V + ρ2(Vo)φ̄γ
1/2
o |P−1/2|

×
[

expVo

µ
ln
(
1 + µe>Pe

)
+ θ̃>Γ−θ̃

]
≤ (ρ1(Vo) + ρ3(Vo))V

+ φ̄γ1/2
o |P−1/2|

(
expVo

µ
+

1

c

)
ρ2(Vo)V. (14)

Hence, we can choose ρ̄ as

ρ̄(Vo) :=ρ1(Vo) + ρ3(Vo)

+ φ̄γ1/2
o |P−1/2|

(
expVo

µ
+

1

c

)
ρ2(Vo).

On the other hand, we note that

Z̄ ≥ (ρ1(Vo) + ρ3(Vo))V − ρ2(Vo)e
>φcθ̃

− θ̃>QΦ(t, j,∞)θ̃

≥ (ρ1(Vo) + ρ3(Vo))V − γo|QΦ(t, j,∞)|θ̃>Γ−θ̃

− φ̄γ1/2
o |P−1/2|

(
expVo

µ
+

1

c

)
ρ2(Vo)V

≥ (ρ1(Vo) + ρ3(Vo))V

− φ̄γ1/2
o |P−1/2|

(
expVo

µ
+

1

c

)
ρ2(Vo)V,

where the second inequality comes from (14). Hence, by
taking ρ3 as in (12), we conclude that Z̄ ≥ ρ1(Vo)V =:



ρ(Vo)V . To complete the proof, we use a contradiction
argument. That is, we assume the existence of a complete
solution φ := (e, θ̃,Γ, t, j) to Haeθ starting from φo :=
(eo, θ̃o,Γo, to, jo) with V (eo, θ̃o,Γo) ≤ Vo and ε > 0 such
that

|φ(t, j)|2A = |(e, θ̃)|2 ≥ ε ∀(t, j) ∈ domφ. (15)

Now, combining (15) and Remark 5, we conclude that, along
the solution φ, the following properties hold.

• For each j ∈ N such that int(Ij) 6= ∅, we have

˙̄Z(t, j, e, θ̃,Γ) ≤ −λcε for a.a. t ∈ Ij .

• For each ((t, j), (t, j + 1)) ∈ domφ× domφ, we have

Z̄(t, j + 1, e+, θ̃+,Γ+)− Z̄(t, j, e, θ̃,Γ) ≤ −λdε.

The latter two items imply that Z̄ must reach zero in finite
(hybrid) time. Moreover, using (13), we conclude that V
along the solution φ must also reach zero in finite (hybrid)
time. Finally, using (9), we conclude that |φ|A must also
reach the origin in finite (hybrid) time, which contradicts
(15).

D. Proof of Theorem 2

Under Assumption 3 and using Lemma 1, we conclude
that Hbeθ is well posed.

Next, to prove UGS, we note that the only difference
between Hbeθ and Haeθ is along the jumps; more precisely, in
the discrete update of Γ. As a result, to find an upper-bound
to ∆V along the jumps, we have to analyze the difference

θ̃+>(Γ+)−θ̃+ − θ̃>Γ−θ̃ = θ̃+>M−θ̃+ − θ̃>Γ−θ̃, (16)

where M ∈ G1Γ(t, j, e, θ̃,Γ). Note that, in the proof of
Proposition 1 and along the jumps of Haeθ, we had

θ̃+>(Γ+)−θ̃+ − θ̃>Γ−θ̃ = θ̃+>(GoΓ(·))−θ̃+ − θ̃>Γ−θ̃.

Now, if we re-express (16) as

θ̃+>(Γ+)−θ̃+ − θ̃>Γ−θ̃ = θ̃+>M−θ̃+ − θ̃>Γ−θ̃

= θ̃+>(M− − (GoΓ(·))−)θ̃+ + θ̃+>(GoΓ(·))−θ̃+ − θ̃>Γ−θ̃,

and we use the Loewner order of symmetric positive definite
matrices [14], we conclude that (M− − (GoΓ(·))−) ≤ 0.
Hence, along the jumps of Hbeθ, we have

θ̃+>(Γ+)−θ̃+ − θ̃>Γ−θ̃ ≤ θ̃+>(GoΓ(·))−θ̃+ − θ̃>Γ−θ̃.

As a result, the statement of Proposition 1 remains valid if
we replace Haeθ therein by Hbeθ. Furthermore, we note, in
view of Remark 4, that the Lyapunov function candidate V
in (8) is now proper; namely, we can find class K∞ functions
λ̄ and λ such that

λ(|e, θ̃|2) ≥ V (e, θ̃) ≤ λ̄(|e, θ̃|2).

Hence, UGS follows using [1, Theorem 1].
Finally, using the exact same computations, we can show

that Proposition 2 remains valid if we replace Haeθ therein
by Hbeθ, which is enough to prove UGAS of the set A. �

V. CONCLUSION

In this work, we revisited the hybrid adaptive-control
framework proposed in Part I [1]. More specifically, we
relaxed the boundedness of ψd by allowing a linear growth
with respect to e. As a result, a high-order adaptation law
that is set valued is proposed. The resulting adaptive-control
scheme guarantees attraction of the closed-loop tracking-
plus-estimation errors, under a suitable hybrid persistence
of excitation condition.
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