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Adaptive Control/Identification for Hybrid Systems, Part II: with Linear-growth-order Discrete Regressor

. As in the latter reference, the statements rely on Lyapunov theory for hybrid systems and we establish uniform global asymptotic stability in closed loop. In particular, parameterestimation convergence is guaranteed when a generic hybrid persistence of excitation condition on the pair of discrete and continuous regressor functions holds. On the other hand, the relaxation of the boundedness assumption relies on a higherorder adaptation law.

I. INTRODUCTION

Adaptive control algorithms have been developed in the literature for continuous, discrete, and hybrid systems. In most existing works, the focus is on either state convergence only or parameter estimation only; see for example [START_REF] Haddad | Direct adaptive control for discrete-time nonlinear uncertain dynamical systems[END_REF], [START_REF] Kanellakopoulos | A discrete-time adaptive nonlinear system[END_REF], [START_REF] Johansson | Global lyapunov stability and exponential convergence of direct adaptive control[END_REF], [START_REF] Hiroshi | A discrete-time algorithm for simple adaptive control[END_REF], [START_REF] Haddad | Hybrid adaptive control for non-linear uncertain impulsive dynamical systems[END_REF]. In few other works, the tracking-plusestimation problem is considered [START_REF] Loría | Strict Lyapunov functions for model-reference adaptive control: application to Lagrangian systems[END_REF], [START_REF] Leonessa | Direct discrete-time adaptive control with guaranteed parameter error convergence[END_REF], [START_REF] Maghenem | Adaptive Control/Identification for Hybrid Systems, Part I : A Bounded Discrete Regressor[END_REF]. For example, for continuous-time systems, uniform global asymptotic stability of the subset corresponding to a null value of the tracking and estimation errors is established in [START_REF] Loría | Strict Lyapunov functions for model-reference adaptive control: application to Lagrangian systems[END_REF]. Moreover, stability plus convergence to the latter subset, for discretetime case, is guaranteed in [START_REF] Leonessa | Direct discrete-time adaptive control with guaranteed parameter error convergence[END_REF], where boundedness of the regressor is required. This requirement is replaced in [START_REF] Johansson | Global lyapunov stability and exponential convergence of direct adaptive control[END_REF] by a linear growth condition on the regressor function. It is important to note that relaxing the regularities of the regressor function, in the discrete-time case, usually requires a high-dimension adaptation law [START_REF] Kanellakopoulos | A discrete-time adaptive nonlinear system[END_REF].

Motivated by the aforementioned discussion, in this paper, we revisit the hybrid adaptive-control framework proposed in Part I [START_REF] Maghenem | Adaptive Control/Identification for Hybrid Systems, Part I : A Bounded Discrete Regressor[END_REF] while relaxing the boundedness of the discrete regressor. That is, we allow the discrete regressor to have a linear growth with respect to the tracking error. We solve the tracking-plus-estimation problem in two steps. First, we design the discrete-time adaptation law based on existing adaptive-control literature for discrete-time systems [START_REF] Kanellakopoulos | A discrete-time adaptive nonlinear system[END_REF], [START_REF] Johansson | Global lyapunov stability and exponential convergence of direct adaptive control[END_REF], [START_REF] Narendra | Adaptive control of discrete-time systems using multiple models[END_REF]. Furthermore, we propose a new continuous-time adaptation law so that we can guarantee global stability of the closed-loop hybrid system. In addition, under an appropriate hybrid persistence of excitation condition, convergence of the tracking plus estimation errors is ensured. After justifying the lack of uniformity as well as the absence of well-posedness of the resulting closed-loop system, we refine the design of the discrete adaptation law using set-valued maps. Hence, we guarantee well posedness of the resulting closed-loop system and uniform global asymptotic stability of the subset where the tracking-plus-estimation errors are null.

The remainder of this paper is organized as follows. In Section II, we recall some definitions and notations on hybrid systems as per in [START_REF] Goebel | Hybrid Dynamical Systems: Modeling, stability, and robustness[END_REF]. In Section III, the problem at hand is formulated. Our main results are presented in Section IV and some concluding remarks are provided in Section V.

II. PRELIMINARIES

Notation. Given a vector x of dimension m x , and a nonempty set K ⊂ R mx , |x| K := inf y∈K |x -y| denotes the distance between x and the set K and U (K) denotes an open neighborhood around K. By B, we denote the closed unit ball in R mx centered at the origin. For a map φ :

R ≥0 × N → R mx ∪ {∅}, dom φ ⊂ R ≥0 × N denotes the domain of definition of φ, namely, φ(t, j) = ∅ if and only if (t, j) ∈ dom φ. Moreover, |φ| ∞ := sup{|φ(t, j)| : (t, j) ∈ dom φ}. A continuous function β : R ≥0 → R ≥0 is a class K ∞ function if it is strictly increasing, β(0) = 0, and lim v→∞ β(v) = ∞. A continuous function β : R ≥0 × R ≥0 → R ≥0 is a class KL function if β(t, •) ∈ K ∞ for all t ≥ 0 and lim t→∞ β(t, v) = 0 for all v ≥ 0. For a symmetric semi-positive definite matrices Γ 1 , Γ 2 ∈ R mx×mx , λ min (Γ 1 )
and |Γ 1 | := λ max (Γ 1 ) denote the smallest and the largest eigenvalues of Γ 1 , respectively. Furthermore, we write Γ 1 ≥ 0 when λ min (Γ 1 ) ≥ 0 and Γ 1 > 0 when λ min (Γ 1 ) > 0. Also, we say that

Γ 1 ≥ Γ 2 if Γ 1 -Γ 2 ≥ 0 and Γ 1 > Γ 2 if Γ 1 -Γ 2 > 0. Finally, F : R mx ⇒ R mx denotes a set- valued map associating each element x ∈ R n to a subset F (x) ⊂ R mx . Finally, given a hybrid arc Φ : dom Φ → R m θ ×m θ , m θ ∈ {1, 2, ...} (see Part I [1, Definition 1]), given a positive constant K ∈ R >0 ∪ {+∞} and (t, j) ∈ dom Φ,
we use E Φ t,j,K ⊂ dom Φ to denote the shortest hybrid time domain, starting from (t, j) and contained in dom Φ, of length larger or equal than K. Let m K be the maximum amount of jumps achieved on E Φ t,j,K ; namely,

E Φ t,j,K := [t j , t j+1 ] × {j} ∪ • • • ∪ [t m K , t m K +1 ] × {m K } ⊂ dom Φ.

A. Continuity Properties in Set-Valued Maps

Consider a set-valued map F : K ⇒ R n , where K ⊂ R m .

• The map F is said to be outer semicontinuous at

x ∈ K if, for every sequence {x i } ∞ i=0 ⊂ K and for every sequence {y i } ∞ i=0 ⊂ R n with lim i→∞ x i = x, lim i→∞ y i = y ∈ R n , and y i ∈ F (x i ) for all i ∈ N, we have y ∈ F (x); see [START_REF] Goebel | Hybrid Dynamical Systems: Modeling, stability, and robustness[END_REF]Definition 5.9].

• The map F is said to be lower semicontinuous (or, equivalently, inner semicontinuous) at x ∈ K if for each > 0 and y x ∈ F (x), there exists U (x) satisfying the following property: for each z ∈ U (x) ∩ K, there exists y z ∈ F (z) such that |y z -y x | ≤ .

• The map F is said to be upper semicontinuous at x ∈ K if, for each > 0, there exists U (x) such that for each

y ∈ U (x) ∩ K, F (y) ⊂ F (x) + B; see [11, Definition 1.4.1]. • The map F is said to be continuous at x ∈ K if it is
both upper and lower semicontinuous at x.

Furthermore, the map F is said to be upper, lower, outer semicontinuous, or continuous if, respectively, it is upper, lower, outer semicontinuous, or continuous for all x ∈ K.

B. Hybrid Inclusions

In this paper, we consider hybrid systems of the form

H : ẋ = F (x) x ∈ C x + ∈ G(x) x ∈ D, (1) 
with the state variable x ∈ X ⊂ R mx , the flow set C ⊂ X , the jump set D ⊂ X , the flow and jump maps F : C → R mx and G : D ⇒ R mx , respectively. Definition 1 (Concept of solution to H): A hybrid arc φ :

dom φ → R m φ is a solution to H if (S0) φ(0, 0) ∈ cl(C) ∪ D;
(S1) for all j ∈ N such that I j := {t : (t, j) ∈ dom φ} has nonempty interior, t → φ(t, j) is locally absolutely continuous and φ(t, j) ∈ C for all t ∈ int(I j ), φ(t, j) = F (φ(t, j)) for almost all t ∈ I j ;

(S2) for all (t, j) ∈ dom φ such that (t, j + 1) ∈ dom φ, φ(t, j) ∈ D, φ(t, j + 1) ∈ G(φ(t, j)). We recall that, in well-posed hybrid systems [10, Definition 6.2], the solutions enjoy very useful robustness properties with respect to perturbations affecting the initial condition [START_REF] Goebel | Hybrid Dynamical Systems: Modeling, stability, and robustness[END_REF]Chapter 6].

A hybrid inclusion

C. Stability Notions

Inspired by [START_REF] El-Hawwary | Reduction theorems for stability of closed sets with application to backstepping control design[END_REF], we introduce the global stability (GS) notion for hybrid systems.

Definition 2 (GS): A closed subset A ⊂ X is said to be globally stable (GS) for H if, for each > 0, there exists a neighborhood U (A) around A such that, for each φ solution to H starting from U (A) at (t o , j o ) ∈ dom φ, we have |φ(t, j)| A ≤ for all (t, j) ∈ dom φ.

Next, we introduce the global asymptotic stability (GAS) notion for hybrid systems.

Definition 3 (GAS): A closed subset A ⊂ X is said to be globally asymptotically stable (GAS) for H if the set A is GS for H and, for each > 0, for each complete solution φ to H, and for each

(t o , j o ) ∈ dom φ, there exists (t, j) ∈ dom φ such that t + j ≥ t o + j o and |φ(t, j)| A ≤ .
Finally, we refer the reader to Part I [START_REF] Maghenem | Adaptive Control/Identification for Hybrid Systems, Part I : A Bounded Discrete Regressor[END_REF] for the definitions of uniform global stability (UGS) and uniform global asymptotic stability (UGAS).

III. PROBLEM FORMULATION

As in Part I [START_REF] Maghenem | Adaptive Control/Identification for Hybrid Systems, Part I : A Bounded Discrete Regressor[END_REF], we introduce the following class of hybrid systems

H eθ :                                  ė θ ṫ j    =     A c e + ψ c (t, j, e) θ A c (t, j, e) 1 0     (t, j, e, θ) ∈ C eθ     e + θ+ t + j +     =     A d e + ψ d (t, j, e) θ θ + A d (t, j, e, e + ) t j + 1     (t, j, e, θ) ∈ D eθ , where (t, j, e, θ) ∈ X eθ , X eθ := dom ψ c (= dom ψ d ) × R m θ , (A c , A d ) ∈ R me×me ×R me×me , the sets (C eθ , D eθ ) ⊂ X eθ × X eθ
are the flow and the jump sets, respectively, the maps

A c : dom ψ c → R m θ and A d : dom ψ d × R me → R m θ
are, respectively, the continuous and the discrete-time adaptation laws to be designed, finally, the hybrid arcs ψ c , ψ d : dom ψ d (= dom ψ c ) → R me×m θ are, respectively, called the continuous-and the discrete-time regressor functions.

Our goal in this paper is to solve the following problem. Problem 1: Design the adaptation laws A c and A d such that the resulting hybrid system H eθ is well posed and the set A := {(e, θ, t, j) : e = θ = 0} is UGAS.

Note that Problem 1 is motivated and compared to related literature in Part I [START_REF] Maghenem | Adaptive Control/Identification for Hybrid Systems, Part I : A Bounded Discrete Regressor[END_REF]. Furthermore, Problem 1 is solved therein under the assumption that ψ d is globally bounded. In this paper, we relax such a requirement by allowing ψ d to have a linear growth rate with respect to e. More precisely, we consider the following assumption.

Assumption 1: There exist c 1 , c 2 ≥ 0 such that |ψ d (t, j, e)| ≤ c 1 + c 2 |e| ∀(t, j, e, θ) ∈ D eθ .
Remark 1: Assumption 1 is also used in the discretetime adaptive scheme proposed in [START_REF] Johansson | Global lyapunov stability and exponential convergence of direct adaptive control[END_REF]. However, only (nonuniform) global stability of A plus (non-uniform) convergence of e are established. The same result is obtained in [START_REF] Kanellakopoulos | A discrete-time adaptive nonlinear system[END_REF] without restricting the growth of ψ d . However, the adaptation law used therein is, relatively, of higher dimension and the stability conclusions are weaker than those established in the paper.

The following additional assumptions are used in both the current paper and its companion [START_REF] Maghenem | Adaptive Control/Identification for Hybrid Systems, Part I : A Bounded Discrete Regressor[END_REF]. Furthermore, they are thoroughly discussed and motivated in the aforementioned reference, but we repeat them here for convenience.

Assumption 2: There exist P , Q ∈ R me×me symmetric and positive definite such that

A c P + P A c ≤ -Q, A d P A d -P ≤ -Q. ( 2 
)
Assumption 3 (Regularity of ψ c and ψ d ): The maps ψ c and ψ d are continuous.

Next, we specify the following functions

φ c (t, j) := ψ c (t, j, 0), φ d (t, j) := ψ d (t, j, 0), ∆ c (t, j, e) := ψ c (t, j, e) -ψ c (t, j, 0), ∆ d (t, j, e) := ψ d (t, j, e) -ψ d (t, j, 0).
Assumption 4 (Regularity of φ c ): For each j ∈ N, the map t → φ c (t, j) is absolutely continuous on Assumption 6 (HPE of (φ c , φ d )): There exist K, µ > 0 such that, for each hybrid time domain

I j := {t : (t, j) ∈ dom φ c }.
J j=jo ([t j , t j+1 ] × {j}) ⊂ dom φ c such that (t J+1 -t o ) + (J -j o ) ≥ K, we have J j=jo tj+1 tj φ c (s, j) φ c (s, j)ds + J j=jo φ d (t j+1 , j) φ d (t j+1 , j) ≥ µI m θ .

IV. MAIN RESULTS

We contribute with two adaptive controllers that solve Problem 1. The interest of the first is that it consists in a rather natural design, inspired from classical adaptive-control algorithms and in particular from [START_REF] Johansson | Global lyapunov stability and exponential convergence of direct adaptive control[END_REF], but it is tailored for hybrid systems. However, it leads to non-uniform stability properties. The second is a refinement of the first, for which UGAS is guaranteed.

A. Primary Solution

Given γ o > 0, we introduce the set 

G o := {Γ ∈ R m θ ×m θ : Γ = Γ > 0, |Γ| ≤ γ o }.

Now, we introduce the adaptation laws

A c (t, j, e) := - µ c Γ ψ c (t,
G oΓ (t, j, e, Γ) := Γ -Γψ d I me + ψ d Γψ d -ψ d Γ, (3) where 
and Γ ∈ G o is a state variable governed by

Γ = 0 if (t, j, e, θ) ∈ C eθ Γ + = G oΓ (t, j, e, Γ) if (t, j, e, θ) ∈ D eθ . (5) 
Remark 2: Note that, for each (t, j, e, Γ) ∈ dom ψ d × G o , we have that 0 < G oΓ (t, j, e, Γ) ≤ Γ.

Indeed, while the right inequality is straightforward, to deal with the left inequality, we use the Woodbury matrix identity [START_REF] Woodbury | Inverting modified matrices[END_REF] to obtain

G oΓ (t, j, e, Γ) -= Γ -+ ψ d ψ d .
Hence, by definition of the set G o , we conclude that G oΓ (t, j, e, Γ) ∈ G o , for all Γ ∈ G o . Furthermore, under Assumption 3, we conclude that G oΓ is continuous on

dom ψ d × G o .
Remark 3: The proposed discrete adaptation A d is designed as in [START_REF] Johansson | Global lyapunov stability and exponential convergence of direct adaptive control[END_REF]. We design A c so that we can find a Lyapunov function that is non-increasing along the jumps as well as the flows of H eθ in spit of the relaxed Assumption; see Proposition 1.

The resulting closed-loop system is governed by the hybrid dynamics

H a eθ :                                                                ė θ Γ ṫ j         =          A c e + ψ c (t, j, e) θ - µ c
Γ ψc(t, j, e) 1 + µe P e P e 0 1 0 

         (t, j, e, θ, Γ) ∈ C a eθ         e + θ+ Γ + t + j +         =         A d e + ψ d (t,
A := {(t, j, e, θ, Γ) ∈ X eθ × G o : e = θ = 0}. (6) 
Theorem 1: Consider system H a eθ such that Assumptions 1-6 hold. Let the parameters (c, µ) be such that

µ ≥ 2c 2 2 γ o |P | (1 + 2γ o c 2 1 ) (7a) 
c ≥ 2 1 + 2γ o c 2 1 µ + 2 Q -1/2 A d P 1/2 2 |P |, (7b) 
where ((c 1 , c 2 ), (P, Q)) come from Assumption 1 and Assumption 2, respectively. Then, the set A is GAS for H a eθ .

B. Refining the Primary Solution

The solution proposed in the previous section has two drawbacks. First, the stability guarantees in Theorem 1 are not uniform. Second, the hybrid system H a eθ is not well posed. In particular, the sets C a eθ and D a eθ are not closed since the set G o is not so. To handle the latter two issues, we propose to redefine the set G o as a closed subset that we denote by G 1 . Furthermore, we modify the update law of Γ to guarantee that it remains in the new closed subset G 1 after the jumps. That is, for some constants γ o , γ 1 > 0, we introduce the set

G 1 := {Γ ∈ G o : Γ ≥ γ 1 I m θ }.
Furthermore, we introduce the set-valued map G 1Γ : dom

ψ d × G 1 ⇒ G 1 given by G 1Γ (t, j, e, Γ) := {M ∈ G 1 : M ≥ G oΓ (t, j, e, Γ)},
where G oΓ (t, j, e, Γ) is given in [START_REF] Johansson | Global lyapunov stability and exponential convergence of direct adaptive control[END_REF]. The resulting closedloop system is governed by the hybrid dynamics

H b eθ :                                                                ė θ Γ ṫ j         =          A c e + ψ c (t, j, e) θ - µ c
Γ ψc(t, j, e) 1 + µe P e P e 0 1 0

         (t, j, e, θ, Γ) ∈ C b eθ         e + θ+ Γ + t + j +         ∈         A d e + ψ d (t, j, e) θ θ -G oΓ (t, j, e, Γ)ψ d (t, j, e) (e + -A d e)
G 1Γ (t, j, e, Γ)

t j + 1         (t, j, e, θ, Γ) ∈ D b eθ , where C b eθ := C eθ × G 1 and D b eθ := D eθ × G 1 .
Lemma 1: Under Assumption 3, G 1Γ is outer semicontinuous, locally bounded, and has nonempty images.

Theorem 2: Consider system H b eθ under Assumptions 1-6 hold. Let the parameters (c, µ) satisfy [START_REF] Loría | Strict Lyapunov functions for model-reference adaptive control: application to Lagrangian systems[END_REF]. Then, H b eθ is well posed and the set A in ( 6) is UGAS.

C. Proof of Theorem 1

To avoid heavy notations, when the arguments in the functions (ψ c , ψ d ), (φ c , φ d ) are omitted, it means that they are evaluated at (t, j, e) and (t, j), respectively.

1) Global Stability:

To establish GS of the set A for H a eθ , we use the following intermediate result.

Proposition 1: Consider system H a eθ such that Assumptions 1 and 2 hold. Consider the Lyapunov function candidate V (e, θ, Γ) := ln 1 + µe P e + c θ Γ -θ,

where the parameters µ and c satisfy [START_REF] Loría | Strict Lyapunov functions for model-reference adaptive control: application to Lagrangian systems[END_REF]. Then, along each solution φ to H a eθ , we have

• For each j ∈ N such that int(I j ) = ∅, we have V (e, θ, Γ) ≤ - µe Qe 1 + µe P e
for almost all t ∈ I j .

• For each ((t, j), (t, j + 1)) ∈ dom φ × dom φ, we have

∆V := V (e + , θ+ , Γ + ) -V (e, θ, Γ) ≤ - µ 2 e Qe 1 + µe P e - c 2 θ ψ d I me + ψ d Γψ d -ψ d θ.
According to Proposition 1 and along each solution φ to H a eθ , starting from Hence, there exists a class K ∞ function κ, such that

V (e, θ, Γ) ≥ κ |t, j, e, θ, Γ| 2 A = κ |e, θ| 2 . (9) 
As a result, for all (t, j) ∈ dom φ, we have

|(e(t, j), θ(t, j))| 2 ≤ κ -V (e o , θo , Γ o ) . (10) 
The latter implies that, for all (t, j) ∈ dom φ, we have

|(e(t, j), θ(t, j))| 2 ≤ κ -ln 1 + µe o P e o + c θ o Γ - o θo ≤ κ -µ|P | + c λ min (Γ o ) |(e o , θo )| 2 .
The latter inequality is enough to conclude global stability of the set A according to Definition 2. Remark 4: Note that we cannot show UGS since we cannot upper bound the term c λmin(Γo) by a positive constant.

2) Global Asymptotic Attractivity: In this section, we establish that, for each > 0, the complete solutions to H a eθ reach the set A + B. For this, given V o > 0, we introduce the Lyapunov-like function given by

Z(t, j, e, θ, Γ) := ρ 1 (V o )V (e, θ, Γ) -ρ 2 (V o )e φ c (t, j) θ -θ Q Φ (t, j, ∞) θ,
where ρ 1 , ρ 2 : R ≥0 → R >0 are continuous non-decreasing functions to be specified later, the hybrid arc Q Φ is given by 

Q Φ (t,
Φ := φ cd φ cd , and φ cd (t, j) := φ c (t, j) if t ∈ int(I j ) φ d (t, j) otherwise, where m ∞ is the number of jumps of the hybrid arc Φ. Note that key properties of the arc Q Φ (•, ∞) are in [START_REF] Maghenem | Adaptive Control/Identification for Hybrid Systems, Part I : A Bounded Discrete Regressor[END_REF]. Furthermore, we rely on the following key result.

Proposition 2: Consider system H a eθ such that Assumptions 1-6 and (7) hold. Then, given V o > 0, there exist positive constants (λ c , λ d ) such that, along every solution φ to H a eθ starting from (e o , θo , Γ o , t o , j o ) with V (e o , θo , Γ o ) ≤ V o , it holds that:

• for each j ∈ N such that int(I j ) = ∅, we have Ż(t, j, e, θ, Γ) ≤ -λ c |e, θ| 2 for almost all t ∈ I j ,

• for each ((t, j), (t, j + 1)) ∈ dom φ × dom φ, we have Z(t, j + 1, e + , θ+ , Γ + ) -Z(t, j, e, θ, Γ) ≤ -λ d |e, θ| 2 .

At this point, we introduce the function Z(t, j, e, θ, Γ) := Z(t, j, e, θ, Γ) + ρ 3 (V o )V (e, θ, Γ), where

ρ 3 (V o ) := φγ 1/2 o |P -1/2 | exp Vo µ + 1 c ρ 2 (V o ) + γ o |Q Φ (•, ∞)| ∞ . (12) 
Remark 5: Using Propositions 1 and 2, we can easily see that along every solution φ to H a eθ starting from (e o , θo , Γ o , t o , j o ) with V (e o , θo , Γ o ) ≤ V o , we have

• For each j ∈ N such that int(I j ) = ∅, we have Ż(t, j, e, θ, Γ) ≤ -λ c |(e, θ)| 2 for almost all t ∈ I j .

• For each ((t, j), (t, j + 1)) ∈ dom φ × dom φ, we have Z(t, j + , e + , θ+ , Γ + ) -Z(t, j, e, θ, Γ)

≤ -λ d |(e, θ)| 2 .
Next, we show the existence of ρ, ρ : R ≥0 → R >0 continuous and non-decreasing functions such that

ρ(V o )V ≤ Z ≤ ρ(V o )V. (13) 
Indeed, using Young's inequality, we note that

Z ≤ (ρ 1 (V o ) + ρ 3 (V o )) V -ρ 2 (V o )e φ c θ ≤ (ρ 1 (V o ) + ρ 3 (V o )) V + ρ 2 (V o ) φγ 1/2 o |P -1/2 | e P e + θ Γ -θ .
Next, when V (e, θ, Γ) ≤ V o , and using the fact that x ≤ (1 + x) ln(1 + x) for all x ≥ 0, we conclude that e P e ≤ exp Vo µ ln 1 + µe P e . As result, we have that

Z ≤ (ρ 1 (V o ) + ρ 3 (V o )) V -ρ 2 (V o )e φ c θ ≤ (ρ 1 (V o ) + ρ 3 (V o )) V + ρ 2 (V o ) φγ 1/2 o |P -1/2 | × exp Vo µ ln 1 + µe P e + θ Γ -θ ≤ (ρ 1 (V o ) + ρ 3 (V o )) V + φγ 1/2 o |P -1/2 | exp Vo µ + 1 c ρ 2 (V o )V. (14) 
Hence, we can choose ρ as

ρ(V o ) :=ρ 1 (V o ) + ρ 3 (V o ) + φγ 1/2 o |P -1/2 | exp Vo µ + 1 c ρ 2 (V o ).
On the other hand, we note that

Z ≥ (ρ 1 (V o ) + ρ 3 (V o )) V -ρ 2 (V o )e φ c θ -θ Q Φ (t, j, ∞) θ ≥ (ρ 1 (V o ) + ρ 3 (V o )) V -γ o |Q Φ (t, j, ∞)| θ Γ - θ -φγ 1/2 o |P -1/2 | exp Vo µ + 1 c ρ 2 (V o )V ≥ (ρ 1 (V o ) + ρ 3 (V o )) V -φγ 1/2 o |P -1/2 | exp Vo µ + 1 c ρ 2 (V o )V,
where the second inequality comes from [START_REF] Hartwig | A note on the partial ordering of positive semi-definite matrices[END_REF]. Hence, by taking ρ 3 as in [START_REF] El-Hawwary | Reduction theorems for stability of closed sets with application to backstepping control design[END_REF], we conclude that Z ≥ ρ 1 (V o )V =:

ρ(V o )V . To complete the proof, we use a contradiction argument. That is, we assume the existence of a complete solution φ := (e, θ, Γ, t, j) to H a eθ starting from

φ o := (e o , θo , Γ o , t o , j o ) with V (e o , θo , Γ o ) ≤ V o and > 0 such that |φ(t, j)| 2 A = |(e, θ)| 2 ≥ ∀(t, j) ∈ dom φ. (15) 
Now, combining (15) and Remark 5, we conclude that, along the solution φ, the following properties hold.

• For each j ∈ N such that int(I j ) = ∅, we have Ż(t, j, e, θ, Γ) ≤ -λ c for a.a. t ∈ I j .

• For each ((t, j), (t, j + 1)) ∈ dom φ × dom φ, we have Z(t, j + 1, e + , θ+ , Γ + ) -Z(t, j, e, θ, Γ) ≤ -λ d .

The latter two items imply that Z must reach zero in finite (hybrid) time. Moreover, using (13), we conclude that V along the solution φ must also reach zero in finite (hybrid) time. Finally, using (9), we conclude that |φ| A must also reach the origin in finite (hybrid) time, which contradicts (15).

D. Proof of Theorem 2

Under Assumption 3 and using Lemma 1, we conclude that H b eθ is well posed. Next, to prove UGS, we note that the only difference between H b eθ and H a eθ is along the jumps; more precisely, in the discrete update of Γ. As a result, to find an upper-bound to ∆V along the jumps, we have to analyze the difference θ+ (Γ + ) -θ+ -θ Γ -θ = θ+ M -θ+ -θ Γ -θ, (16) where M ∈ G 1Γ (t, j, e, θ, Γ). Note that, in the proof of Proposition 1 and along the jumps of H a eθ , we had θ+ (Γ + ) -θ+ -θ Γ -θ = θ+ (G oΓ (•)) -θ+ -θ Γ -θ. Now, if we re-express (16) as

θ+ (Γ + ) -θ+ -θ Γ -θ = θ+ M -θ+ -θ Γ - θ = θ+ (M --(G oΓ (•)) -) θ+ + θ+ (G oΓ (•)) -θ+ -θ Γ -θ,
and we use the Loewner order of symmetric positive definite matrices [START_REF] Hartwig | A note on the partial ordering of positive semi-definite matrices[END_REF], we conclude that (M --(G oΓ (•)) -) ≤ 0. Hence, along the jumps of H b eθ , we have θ+ (Γ + ) -θ+ -θ Γ -θ ≤ θ+ (G oΓ (•)) -θ+ -θ Γ -θ.

As a result, the statement of Proposition 1 remains valid if we replace H a eθ therein by H b eθ . Furthermore, we note, in view of Remark 4, that the Lyapunov function candidate V in (8) is now proper; namely, we can find class K ∞ functions λ and λ such that λ(|e, θ| 2 ) ≥ V (e, θ) ≤ λ(|e, θ| 2 ).

Hence, UGS follows using [1, Theorem 1].

Finally, using the exact same computations, we can show that Proposition 2 remains valid if we replace H a eθ therein by H b eθ , which is enough to prove UGAS of the set A.

V. CONCLUSION

In this work, we revisited the hybrid adaptive-control framework proposed in Part I [START_REF] Maghenem | Adaptive Control/Identification for Hybrid Systems, Part I : A Bounded Discrete Regressor[END_REF]. More specifically, we relaxed the boundedness of ψ d by allowing a linear growth with respect to e. As a result, a high-order adaptation law that is set valued is proposed. The resulting adaptive-control scheme guarantees attraction of the closed-loop trackingplus-estimation errors, under a suitable hybrid persistence of excitation condition.

  H = (C, F, D, G) is well-posed if the following hybrid basic conditions are satisfied. (A1) The sets C and D are closed. (A2) The flow map F : C → R n is continuous. (A3) The jump map G : D ⇒ R n is outer semicontinuous, locally bounded, and has nonempty images.

Furthermore, thereAssumption 5 (

 5 exists φ > 0 such that sup (t,j)∈dom φc {|φ c (t, j)|} ≤ φ ess sup t∈I j {| φc (t, j)|} ≤ φ. Growth rate of ∆ c and ∆ d ): There exists a positive non-decreasing function κ o : R ≥0 → R ≥0 such that, for each (t, j, e) ∈ dom ψ c = dom ψ d , we have max{|∆ c (t, j, e)|, |∆ d (t, j, e)|} ≤ κ o (|e|)|e|.

  φ o := (t o , j o , e o , θo , Γ o ), we have V (e(t, j), θ(t, j), Γ(t, j)) ≤ V (e o , θo , Γ o ) ≤ ln 1 + µe o P e o + c θ o Γ - o θo for all (t, j) ∈ dom φ. At the same time, the function V satisfies the inequality V (e, θ, Γ) ≥ ln 1 + µe P e + c γ o θ θ.

  )-(s+i) ds Φ(t i+1 , i),

  C eθ × G o and D a eθ := D eθ × G o . In the sequel, we propose a Lyapunov-based approach to analyze stability of the set A given by

	j, e)	θ	
	θ -G oΓ (t, j, e, Γ)ψ d (t, j, e) (e + -A d e) G oΓ (t, j, e, Γ) t       
	j + 1		
	(t, j, e, θ, Γ) ∈ D a eθ ,		
	where C a eθ :=		
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