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Abstract

Reliability analysis aims to assess the probability of structural failure. The main difficulties
in computing this quantity lie in its inherently low value, which causes most simulation
methods to require a large number of expensive model evaluations. To alleviate the associated
computational burden, practitioners today increasingly resort to active learning methods to
train a surrogate model that is then used in lieu of the original model for computing the
failure probability. In this contribution, we apply an adaptive variant of the recently proposed
stochastic spectral embedding (SSE) surrogate modelling technique to solve reliability analysis
problems. SSE creates a sequence of polynomial chaos expansions by splitting and refining
subdomains of the input space. We propose here modified refinement and splitting criteria
that can generate an efficient surrogate model with increased accuracy near the limit state
surface. The performance of the algorithm is showcased on two reliability problems from the
literature.

1 Introduction

The assessment of structural reliability is one of the central tasks of civil engineers. Assessment of
structural performance involves the simulation of structures by means of advanced computational
methods. Independent of the simulation complexity, simulation models take M input parameters
X ∈ DX ⊆ RM and produce a set of quantities of interest (e.g. maximum stress, deformations,
temperatures). The latter are subsequently used to construct a limit-state function g that
assumes positive values if the structural requirements are met, and non-positive values otherwise.
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By treating the input parameters as a random vector, with an associated joint probability density
function fX, it is possible to use the limit-state function to define the probability of failure as

Pf
def= P [g(X) ≤ 0] =

∫

DX
1Df

(x)fX(x) dx, (1)

where 1Df
is the indicator function that assumes the value 1 inside the failure domain Df and 0

in the safe domain:

1Df
(x) =





1, if g(x) ≤ 0,

0, if g(x) > 0.
(2)

As structural systems are designed to be safe, this failure probability is typically quite small,
while the computer simulations required to evaluate g can be extremely expensive. This poses
challenges for computational methods developed to estimate the integral in Equation 1.

A powerful strategy to estimate the failure probability is provided by so-called active learning
reliability methods (e.g. AK-MCS in (author?) [1] or bootstrap PCE in (author?) [2]). These
methods adaptively refine approximations of the limit-state function to accurately distinguish
between failure and safe domains.

In this contribution we present a novel active learning reliability method based on the recently
proposed stochastic spectral embedding (SSE, (author?) [3, 4]) surrogate modelling technique.
This method constructs an approximation of the target function by means of local residual
expansions in subdomains of the input space. By modifying its training algorithm, this technique
can be efficiently applied to approximating limit-state functions of reliability problems. By smartly
choosing the partitions, the total failure probability is thereby split into a set of easier-to-estimate
failure probabilities that can be computed efficiently with standard reliability algorithms.

2 Stochastic spectral embedding

Spectral expansion techniques are powerful tools for functional representation. Arguably the
most widely used spectral technique is polynomial chaos expansions (PCE, [5, 6]). Assuming
that the limit-state function has finite variance (i.e. E [g(X) < +∞]), this approach expresses g

in an orthogonal polynomial basis {Ψα}α∈NM such that

g(X) =
∑

α∈A
aαΨα(X) + R(X), (3)

where A ⊂ NM is a multi-index set used to denote the polynomial degree, aα denotes the
polynomial coefficients and R is the residual of the expansion.

Given an experimental design X def= {x(1), · · · , x(N)} and corresponding evaluations of the limit
state function Y def= g(X ), there exist numerous algorithms to efficiently compute the polynomial
coefficients as well as A [6]. The idea of SSE is to extract additional information from the residual
R by expanding it onto additional partitions of the input space (Fig. 1).
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Figure 1: SSE partitions in the quantile space DU. Red dots denote the experimental design X
and orange domains are the terminal domains T ⊂ K.

After sequentially expanding the residuals in subdomains of decreasing size indexed by elements
of K, the SSE representation of the limit-state function can be more compactly written as

g(X) ≈
∑

k∈K
Rk

S(X), (4)

where the residual expansion is given by Rk
S(X) = ∑

α∈Ak ak
αΨk

α(X). (author?) [3] also derived
a measure of domain-wise accuracy for the SSE representation by means of the SSE generalization
error. In the k-th terminal domain it is defined by

Ek
GEN

def= E
[(

Rk
S(Xk) − Rk(Xk)

)2
]

, (5)

where Xk denotes the input vector conditional on the k-th subdomain.

Using the available PCE leave-one-out cross validation error Ek
LOO, the generalization error can

be estimated as
Ek

LOO ≈ Ek
GEN. (6)

The SSE representation in Equation 4 allows a decomposition of the failure probability integral
in Equation 1 into card(T ) independent reliability problems such that

Pf =
∑

k∈T
VkP k

f , with Vk =
∫

Dk
X

fX(x) dx. (7)

These local failure probabilities P k
f can be efficiently estimated with any standard reliability

method (Monte Carlo simulation, subset simulation [7], importance sampling [8] etc.) since (1)
by construction P k

f is either close to 1 or negligibly small and (2) the local limit-state function
is a cheap-to-evaluate polynomial. Furthermore, the SSE error measure allows the estimation
of bounds on the local failure probability. To this end, we assume a subdomain-wise normally

3



distributed proxy to the approximation error based on the SSE error measure. With this, we can
estimate the bounds on the local failure probability as

P k
f ≈ P

[
gSSE(Xk) − 2σk ≤ 0

]
, (8)

P k
f ≈ P

[
gSSE(Xk) + 2σk ≤ 0

]
, (9)

where σk def=
√

Ek
LOO with the leave-one-out error defined in Equation 6.

By combining these bounds with Equation 7, bounds on the total failure probability can be
derived as well. For the upper bound this amounts to

P f =
∑

k∈T
VkP

k
f . (10)

The bounds to the total failure probability derived this way are rather conservative because they
assume the worst/best case for all terminal domains at the same time.

3 Active learning modifications

The adaptive sequential partitioning SSE algorithm, performs a sequence of refinement steps
that consist of (1) selecting a refinement domain, (2) partitioning this domain, (3) enriching the
experimental design and (4) expanding the residual in the created partitions. These steps are
described in detail in [4] in the context of Bayesian model calibration.

The modular nature of SSE makes it possible to adapt the algorithm to various function
approximation problems. In this contribution we modify steps (1) and (2), to derive a tailored
SSE algorithm for reliability problems. These modifications are explained in this section with
the proposed algorithm given in Section 3.3.

3.1 Refinement domain selection

At every refinement step, the algorithm picks a refinement domain from the terminal domains,
i.e. unsplit domains (Fig. 1), and focuses only on this domain for the remainder of this step.

The refinement domain should be chosen in order to reduce the uncertainty on the total failure
probability estimator. Using the bounds on the local failure probability from Equations 8 and 9
and the decomposition of the total failure probability in Equation 7, the domain with the largest
contribution to the failure probability bounds is

krefine = arg max
k∈T

Vk
(
P k

f − P k
f

)
. (11)
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3.2 Partitioning strategy

The partitioning strategy determines how the refinement domain is partitioned prior to construct-
ing the residual expansions. It can be used to focus on regions of interest in the input space.
The regions of interest in active learning reliability problems are those of high misclassification
probability, i.e. regions that are possibly not classified correctly as failed or safe. These are
typically located in the tails of the input distribution.

The default equal-splitting strategy of the original algorithm, which splits the space along a
certain Cartesian coordinate into equal probability regions, would require a large number of steps
until reaching those regions of interest. Therefore, the proposed partitioning strategy introduces
splits with the intent to isolate regions of high misclassification probability from regions with
a low misclassification probability. To this end, we define a misclassification index, using the
standard deviation of the SSE predictor as

Im(x) = 1 − 1Df
(x) · 1Df

(x), (12)

where

1Df
(x) =





1, if gSSE(x) − 2σk ≤ 0,

0, if gSSE(x) − 2σk > 0,
(13)

1Df
(x) =





1, if gSSE(x) + 2σk ≤ 0,

0, if gSSE(x) + 2σk > 0.
(14)

The misclassification index in a given point can be used to define two auxiliary random vectors as

Z0 def= X|Im = 0 (15)

Z1 def= X|Im = 1, (16)

These conditional random vectors have disjoint supports and distinguish regions with Im = 0
and Im = 1 respectively (Fig. 2).
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Figure 2: Sample of auxiliary random vectors Z0 and Z1 used in the partitioning strategy. The
support of Z0 is the region of Im = 0, while the support of Z1 is the region of Im = 1. The
variables are shown in the quantile space U.

We use these auxiliary random vectors to define the location of the split. In each dimension
ξi ∈ DXi , i = 1, · · · , M , we choose a splitting location that confines a maximum of Z1’s probability
mass to one side, and Z0’s probability mass to the other side of the split. More formally, we pick
the splitting location in dimension i as

ξ̂i = arg max
ξi∈DXi

Li(ξi), (17)

with

Li(ξi)
def= max




P

[
Z1

i ≤ ξi
]

+ P
[
Z0

i > ξi
]
,

P
[
Z1

i > ξi
]

+ P
[
Z0

i ≤ ξi
]
,

(18)

where Z0
i and Z1

i are the marginals of the auxiliary random vectors in the i-th dimension.
The objective function Li characterizes the split properties by returning the maximum of the
respective auxiliary probability masses in the subdomains resulting from the split. For illustrative
purposes, this process is shown in Figure 3
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Figure 3: The function Li defined in Eq. 18 for the example in Figure 2 and its application to
the marginals of Z0

i and Z1
i . The upper plot shows histograms of the marginals (in different

scales). The lower plot displays Li and the two terms it is composed of. The splitting location ξ̂i

defined in Eq. 17 is shown as a vertical dashed line.

To ultimately choose a splitting direction d ∈ {1, · · · , M}, we compare the values of the objective
functions Li and split along the dimension

d = arg max
i∈{1,··· ,M}

Li(ξ̂i). (19)

The computations presented in this section are conducted with a sufficiently large sample of the
auxiliary random vectors Z0 and Z1. This sample can be generated at a low computational cost,
because it only requires the evaluation of the SSE model.

3.3 Proposed algorithm

We sketch here the proposed algorithm. It is based on the adaptive algorithm from (author?)
[4].

1. Initialization:
Algorithm parameters:

• Nref : size of refinement sample
• NED: size of computational budget

(a) D0,1
X = DX

(b) Sample from input distribution X = {x(1), · · · , x(2Nref)}
(c) Calculate the truncated expansion R̂0,1

S (X) of g(X) in the full domain D0,1
X , retrieve its

approximation error E0,1 and initialize T = {(0, 1)}
(d) R1(X) = g(X) − R̂0,1

S (X)

7



2. For (ℓ, p) = krefine from Eq. 11
(a) Split the current subdomain Dℓ,p

X in 2 sub-parts Dℓ+1,{s1,s2}
X according to Eq. 17 and 19 and

update T
(b) For each split s = {s1, s2}

i. Enrich sample X with min{Nref , NED − |X |} new points inside Dℓ+1,s
X

ii. If Nref points inside Dℓ+1,s
X

A. Create the truncated expansion R̂ℓ+1,s
S (Xℓ+1,s) of the residual Rℓ+1(Xℓ+1,s) in the

current subdomain using X ℓ+1,s

B. Update the residual in the current subdomain Rℓ+2(Xℓ+1,s) = Rℓ+1(Xℓ+1,s) −
R̂ℓ+1,s

S (Xℓ+1,s)

(c) Retrieve Pf from Eq. 7 and its bounds from Eq. 10
(d) If convergence criterion is met or less than two new expansions were created because the

computational budget NED has been exhausted, terminate the algorithm, otherwise go back
to 2

3. Termination

(a) Return Pf and its bounds

3.4 Convergence criterion

In principle, any convergence criterion from the active learning literature can be applied to
terminate the algorithm [9]. We opt for the the beta bounds criterion that stops refinement when

∣∣∣β − β
∣∣∣

β
≤ εBB (20)

where β, β and β are the reliability index and its approximate bounds computed as β = −Φ−1(Pf ),
β = −Φ−1(Pf ) and β = −Φ−1(Pf ) respectively. As the bounds on β overestimate the actual
bounds (see Eq. 10), the convergence threshold is chosen to a relatively large value of εBB = 3%.
The algorithm is stopped if this criterion is met three times in a row to ensure a degree of
robustness to premature convergence.

4 Application

To demonstrate the performance of our algorithm, we test it on two problems: the well-known
four-branch function [1, 10] and a truss structure.
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Figure 4: Four-branch function: Selected steps from the proposed algorithm. The limit state
surface (i.e. g(X) = 0) is shown as a thick black line. Misclassified regions are shown in red.
Black points are the experimental design with the last latest additions to the experimental design
highlighted in green. The domain partitions are shown as dashed lines.

4.1 Four-branch function

This 2D function simulates a series system with four failure regions. The limit state function is
defined analytically by

g(X) = min




3 + 0.1(X1 − X2)2 − X1+X2√
2 ,

3 + 0.1(X1 − X2)2 + X1+X2√
2 ,

(X1 − X2) + 6√
2 ,

(X2 − X1) + 6√
2




. (21)

The input parameter is modelled as a bivariate independent standard Gaussian distribution,
i.e. X ∼ N (0, I2) which puts the failure probability from reference Monte Carlo simulations at
Pf = 4.45 · 10−3 corresponding to a reliability index of β = 2.61.

We run the proposed active learning algorithm with Nref = 15. The residual PCE expansions
are constructed with the PCE module of UQLab [11] and using an adaptively chosen maximum
polynomial degree of pmax = 7.

A few selected steps of the algorithm are shown in Figure 4. The initial global expansion in Step
1 overestimates the failure probability by not accounting for the corners of the safe region. In
Step 2, the algorithm partitions the domain along d = 1, enriches the experimental design with
Nref = 15 new points and constructs two residual expansions. This procedure is repeated until
Step 13, where the convergence criterion is met. The corresponding convergence of the reliability
index is shown in Figure 5

To show the robustness of our algorithm, we produce 50 replications of the analysis and show
the convergence of β in Figure 6.

4.2 Truss structure

The second considered example is the static model of a truss structure as presented originally
in (author?) [12] (Fig. 7). The truss structure is subject to six point loads Pi, i = 1, · · · , 6.
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Figure 5: Four-branch function: Convergence of the reliability index β for a single run of the
proposed algorithm. The reference value of β = 2.61 was computed with Monte Carlo simulation
on the original function.

Figure 6: Four-branch function: Convergence of the reliability index β for 50 runs of the proposed
algorithm. The reference value of β = 2.61 was computed with Monte Carlo simulation on the
original function.
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Figure 7: Sketch of the considered truss structure subject to 6 point loads.

Table 1: Truss structure: Input parameter marginals. The mean is denoted by µ and the standard
deviation by σ.

Name Distribution µ σ unit
Ei Lognormal 2.1 · 1011 2.1 · 1010 [Pa]
A1 Lognormal 2 · 10−3 2 · 10−4 [m2]
A2 Lognormal 10−3 10−4 [m2]
Pi Gumbel 5 · 104 7.5 · 103 [N ]

The bars of the chord and web are assumed to be made from materials with Young’s moduli E1

and E2 and have cross section areas A1 and A2 respectively. Those quantities are unknown and
modelled as independent random variables with marginals given in Table 1.

Gathering the uncertain parameters in a vector X = {E1, E2, A1, A2, P1, · · · , P6}, failure of the
structure is assumed when the mid-span deflection w exceeds 0.13 [m] leading to a limit-state
function

g(X) = 0.13 − u(X). (22)

We compute the deflection u(X) with a simple finite element code. With this, the failure
probability obtained from a reference Monte-Carlo simulation is Pf = 2.36 · 10−4, corresponding
to a reliability index of β = 3.5.

We solve this problem with our proposed algorithm, setting Nref = 20 and using local residual
expansions with a maximum polynomial degree of pmax = 12. The convergence for a single run
is shown in Figure 8. The bounds on β cover the reference failure probability, but the mean
prediction overestimates β by approximately 1%.

We again produce 50 replications of our analysis and show the convergence of β in Figure 9. It can
be clearly seen that the algorithm slightly underestimates the failure probability, corresponding
to a median overestimation of β by approximately 3%.

5 Conclusions

The paper presents an active learning SSE algorithm for structural reliability analysis. The
algorithm is tested with two examples, which demonstrate good performance. However, we still
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Figure 8: Truss structure: Convergence of the reliability index β for a single run of the proposed
algorithm. The reference value of β = 3.5 was computed with Monte Carlo simulation on the
original model.

Figure 9: Truss structure: Convergence of the reliability index β for 50 runs of the proposed
algorithm. The reference value of β = 3.5 was computed with Monte Carlo simulation on the
original model.
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see significant room for improvement. The three main points that we will investigate in the
future pertain to: (1) underestimating failure probabilities, (2) estimating local error bounds
and (3) sample enrichment. They will be considered in future contributions:

(1) The first issue can be attributed to the algorithm estimating P k
f = 0 in large domains that

actually have a non-zero failure probability. This is a direct result of the refinement domain
selection criterion (Sec. 3.1) that will never refine large domains that (wrongly) predict
P k

f = P k
f = 0.

(2) The local error bounds estimation is crude and, depending on the limit-state surface, can
underestimate the true bounds. This is especially problematic for problems that can be
approximated well globally, but show a different behaviour near the limit state surface. A
more localized error metric could solve this problem.

(3) The sample enrichment strategy promises considerable room for improvement. The current
approach of naively sampling uniformly in individual subdomains could be improved by
sampling according to the misclassification probability.
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