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Adaptive Control/Identification for Hybrid Systems
Part I: with Bounded Discrete Regressor

Mohamed Maghenem Adnane Saoud Antonio Lorı́a

Abstract— In this and the companion paper [1], we propose
a direct-adaptive-control framework for hybrid dynamical sys-
tems with unknown parameters. The approach addresses both
the tracking-control and the parameter-estimation problems
and relies on Lyapunov theory for hybrid systems. In this paper,
we address these problems for systems with bounded discrete
regressor. This assumption may appear restrictive at first sight,
but its interest lies in that it yields a fairly simple static
discrete adaptation law. Furthermore, parameter-estimation
convergence is guaranteed under an original property of
persistency of excitation tailored for hybrid systems, which is
introduced here. The main results rely on Lyapunov theory for
hybrid systems and establish uniform global asymptotic stability
for the resulting closed-loop hybrid system. In the companion
paper [1] the boundedness assumption on the regressor is
relaxed and a high-order discrete adaptation law is proposed.

I. INTRODUCTION

Direct adaptive control is a well-understood and popular
method used when stabilizing a plant whose constant param-
eters are unknown. The related literature in both continuous and
discrete-time systems is very rich and different stability and
convergence statements are available [2], [3]. Roughly speak-
ing, given a nonlinear function f : Rmx×Rmu×Rmθ → Rmx
representing the dynamics of a continuous or a discrete-time
system. The function f involves the system’s state vector x ∈
Rmx , the input u ∈ Rmu , and the unknown constant parameters
θ ∈ Rmθ . Given a reference trajectory, r : dom r → Rmx ,
where dom r := N in the discrete-time case and dom r := R≥0

in the continuous-time case, it is usually assumed that one can
design a feedback law κ : dom r × Rmy × Rmθ → Rmu ,
function of the reference r, the system’s output y ∈ Rmy , and
the parameters’ estimate θ̂ ∈ Rmθ such that, when substituting
u = κ in f and using the tracking and estimation errors
e := x− r and θ̃ := θ̂ − θ, respectively, we obtain

f(x, κ(t, y, θ̂), θ) := ṙ +Ae+ ψ(t, e)θ̃ (1)

in continuous time and

f(x, κ(j, y, θ̂), θ) := r(j + 1) +Ae+ ψ(j, e)θ̃ (2)

in discrete time. The matrix A is usually Hurwitz and the
function ψ defines what is called a regressor function. Note
that in some works the forms in (1) and (2) are expressed
in terms of Lyapunov inequalities [4], [5], which allows f to
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have a more general structure in closed loop. The objective of
direct adaptive-control is to design an update law for θ̂ called
adaptation law such that the resulting closed-loop system is
stable and either e, θ̃, or both converge to the origin.

This problem is solved for discrete- and continuous-time
systems in [4] and [6], respectively, where the tracking-plus-
estimation problem is considered. In [4], uniform global asymp-
totic stability of the set {(e, θ̃, t) : e = θ̃ = 0} is established
using Lyapunov’s 2nd method. However, only stability and
convergence to the set {(e, θ̃, j) : e = θ̃ = 0} are guar-
anteed in [6], which relies on a trajectory-based approach. In
general, for discrete-time systems, the existing adaptation laws
are designed based on recursive least-squares and least-mean-
squares algorithms with focus on either state convergence only
or parameter estimation only; see for example [5], [7], [8], [9].
Hence, the stability guarantees are usually weaker than those
established for continuous-time systems. For example, in [8],
only (non-uniform) stability plus (non-uniform) convergence of
e are established; see also [7].

On the other hand, to address the tracking-plus-estimation
problem, the conditions on the regressor ψ are usually stronger
for discrete-time systems compared to the continuous-time case
[7]. For example, in [6] boundedness of the regressor ψ needs
to be verified. In [8], boundedness of ψ is relaxed by allowing
a linear growth with respect to e. It is important to note that
relaxing the regularities of ψ, in the discrete-time case, usually
yield to a high-dimension adaptation law [7].

To the best of our knowledge, the only available adaptive
control algorithm for hybrid systems is provided in [10], where
the impulsive-systems formalism is used. However, only the
tracking problem is considered in the latter reference. In this
paper, we propose a direct adaptive-control framework for a
class of uncertain hybrid systems. That is, given a hybrid
plant and a hybrid reference trajectory, we assume that the
continuous and the discrete-time right-hand sides of the plant
can be expressed in the form of (1) and (2), respectively, using
an appropriate control action. Inspired by existing adaptive-
control literature, we design a continuous and a discrete-time
adaption laws for θ̂ during the plant’s continuous and discrete-
time evolution, respectively. Furthermore, we derive sufficient
conditions to guarantee uniform global asymptotic stability of
the set {(e, θ̃, t, j) : e = θ̃ = 0} for the resulting closed-
loop system. In particular, to address the parameter-estimation
task, an appropriate hybrid persistence of excitation condition is
introduced. Boundedness of the discrete regressor is assumed,
which allows us to propose a static discrete adaptation law. A
relaxation of the latter requirement is proposed in Part II, at the
price of using a higher-order discrete adaptation.

The remainder of this paper is organized as follows. In
Section II, we recall some definitions and notations on hybrid



systems as per in [11]. In Section III, we present some motiva-
tional examples for the problem at hand, which is formulated
in Section IV. Our main results are presented in Section V and
some concluding remarks are provided in Section VI.

II. PRELIMINARIES

Notation. For a nonempty set we define K ⊂ Rmx , |x|K :=
infy∈K |x − y| defines the distance between x and the set K,
int(K) denotes the interior of K. For a subset O ⊂ Rn, K\O
denotes the subset of elements of K that are not in O. For a
map φ : R≥0 × N→ Rmx ∪ {∅}, domφ ⊂ R≥0 × N denotes
the domain of definition of φ, namely, φ(t, j) 6= ∅ if and
only if (t, j) ∈ domφ. Furthermore, |φ|∞ := sup{φ(t, j) :
(t, j) ∈ domφ}. For a symmetric semi-positive definite matrix
Γ ∈ Rmx×mx , λmin(Γ) and |Γ| := λmax(Γ) denote the
smallest and the largest eigenvalues of Γ, respectively.

A. Hybrid Dynamical Systems
Following [11], we view a hybrid dynamical system, denoted

H := (C,F,D,G), as a combination of a constrained differen-
tial and a constrained difference equations given by

H :

{
ẋ = F (x) x ∈ C

x+ = G(x) x ∈ D, (3)

with the state variable x ∈ X ⊂ Rmx , the flow set C ⊂ X , the
jump set D ⊂ X , the flow and jump maps F : C → Rmx and
G : D → Rmx , respectively.

Next, we introduce the concept of a hybrid arc.

Definition 1 (Hybrid arc): A map φ : domφ → Rmx with
domφ ⊂ R≥0 × N is a hybrid arc if φ is parameterized by an
ordinary time variable t ∈ R≥0 and a discrete jump variable
j ∈ N and domφ is such that for each (T, J) ∈ domφ,
domφ ∩ ([0, T ]× {0, 1, . . . , J}) = ∪Jj=0 ([tj , tj+1]× {j})
for a sequence {tj}J+1

j=0 , such that tj+1 ≥ tj , t0 = 0, and
tj+1 = T .

Having the notion of hybrid arcs, we define the concept of
solution toH.

Definition 2 (Concept of solution toH): A hybrid arc φ :
domφ→ Rmx is a solution toH if
(S0) φ(0, 0) ∈ cl(C) ∪D;
(S1) for all j ∈ N such that Ij := {t : (t, j) ∈ domφ}

has nonempty interior, t 7→ φ(t, j) is locally absolutely
continuous and

φ(t, j) ∈ C for all t ∈ int(Ij),
φ̇(t, j) = F (φ(t, j)) for almost all t ∈ Ij ;

(S2) for all (t, j) ∈ domφ such that (t, j + 1) ∈ domφ,

φ(t, j) ∈ D, φ(t, j + 1) = G(φ(t, j)).

Well-posed hybrid systems [11, Definition 6.2] refer to a
class of hybrid systems where the solutions enjoy very useful
structural properties [11, Chapter 6]. A hybrid system H =
(C,F,D,G) is well-posed if the following conditions, known
as the hybrid basic conditions, are satisfied; see [11, Assumption
6.5] and [11, Theorem. 6.8] for more details.
(A1) The sets C and D are closed.
(A2) The maps F and G are continuous.

For a control hybrid system of the form

Hu :

{
ẋ = F (x, uc) x ∈ C

x+ = G(x, ud) x ∈ D, (4)

with u := (uc, ud) ∈ Rmuc × Rmud , we introduce the notion
of a solution pair (x, u) toHu.

Definition 3 (Concept of solution pair toHu): The hybrid
arcs φ : domφ → Rmx and u : domu → Rmu form a
solution pair toHu if domu = domφ and

(Sp0) φ(0, 0) ∈ cl(C) ∪D;
(Sp1) for all j ∈ N such that Ij := {t : (t, j) ∈ domφ}

has nonempty interior, t 7→ φ(t, j) is locally absolutely
continuous and

φ(t, j) ∈ C for all t ∈ int(Ij),
φ̇(t, j) = F (φ(t, j), uc(t, j)) for almost all t ∈ Ij ;

(Sp2) for all (t, j) ∈ domφ such that (t, j + 1) ∈ domφ,

φ(t, j) ∈ D, φ(t, j + 1) = G(φ(t, j), ud(t, j)).

B. Stability Notions in Hybrid Systems

In this section, we recall some stability notions; see [11].
Definition 4 (UGS): A closed subset A ⊂ X is said to be

uniformly globally stable (UGS) for H if there exists β ∈ K∞
such that, for each φ solution toH starting at (to, jo) ∈ domφ,
we have

|φ(t, j)|A ≤ β(|φ(to, jo)|A) ∀(t, j) ∈ domφ.

Definition 5 (UGAS): A closed subset A ⊂ X is said to
be uniformly globally asymptotically stable (UGAS) for H if
there exists β ∈ KL such that, for each φ solution toH starting
at (to, jo) ∈ domφ we have

|φ(t, j)|A ≤ β(t−to+j−jo, |φ(to, jo)|A) ∀(t, j) ∈ domφ.

Definition 6 (UGES): A close set A ⊂ X is said to be
uniformly globally exponentially stable (UGES) for H if there
exist κ > 0 and λ > 0 such that, for each φ solution to H
starting at (to, jo) and for each (t, j) ∈ domφ, we have

|φ(t, j)|A ≤ κ exp−λ(t+j−to−jo) |φ(to, jo)|A.
In the following theorems, we recall characterizations of UGS
and UGES for hybrid systems using Lyapunov functions.

Theorem 1 (Lyapunov characterization of UGS): A closed
subset A ⊂ X is UGS for H if there exists a continuously-
differentiable function V : X → R≥0 and class K∞ functions
(λ̄, λ), such that

λ
(
|x|2A

)
≤ V (x) ≤ λ̄

(
|x|2A

)
,

and along each solution φ toH, we have

• For each j ∈ N such that int(Ij) 6= ∅, we have
V̇ (φ(t, j)) ≤ 0 for a.a. t ∈ Ij .

• For each ((t, j), (t, j + 1)) ∈ domφ× domφ,

V (φ(t, j + 1))− V (φ(t, j)) ≤ 0.

Theorem 2 (Lyapunov characterization of UGES): A closed
subset A ⊂ X is UGES for H if there exists a function V :
R≥0×N×X → R≥0 and positive constants (λ̄, λ, λc, λd) such
that λ|x|2A ≤ V (t, j, x) ≤ λ̄|x|2A, and, along each solution φ to
H, it holds that:

• for each j ∈ N such that int(Ij) 6= ∅, t 7→ V (t, j, φ(t, j))
is absolutely continuous on Ij and

V̇ (t, j, φ(t, j)) ≤ −λcV (t, j, φ(t, j)) for a.a. t ∈ Ij ,



• for each ((t, j), (t, j + 1)) ∈ domφ× domφ,

V (t, j + 1, φ(t, j + 1))−V (t, j, φ(t, j))

≤ −λdV (t, j, φ(t, j)).

III. MOTIVATION : A DIRECT-ADAPTIVE-CONTROL
FRAMEWORK FOR HYBRID SYSTEMS

Consider the class of uncertain control hybrid systems

Hu :

{
ẋ = fc(θ, x) + gc(x)uc x ∈ C

x+ = fd(θ, x) + gd(x)ud x ∈ D, (5)

where θ ∈ Rmθ is a vector of constant unknown parameters,
x ∈ Rmx is the state, u := (uc, ud) ∈ Rmuc × Rmud includes
the continuous and the discrete inputs, fc, fd : Rmx → Rmx
are the flow and the jump drifts, respectively, gc, gd : Rmx →
Rmx×muc are the continuous and the discrete input matrices,
respectively, finally, (C,D) ∈ Rmx ×Rmx are the flow and the
jump sets, respectively. Without loss of generality, we assume
that the sets C and D are closed.

Assume that we want to find an input u? such that, each
solution φ to the closed-loop system Hu? tracks a solution to
φ̇r = A?cφr along the flows and tracks a solution to φ+

r =
A?dφr along the jumps. The matrices (A?c , A

?
d) ∈ Rmx×mx ×

Rmx×mx are given. In particular, given a solution pair (φ, u) :
domφ(= domu) → Rmx × Rmu to Hu, we introduce the
corresponding hybrid reference model given by

Hr :


{
φ̇r =A?cφr
ṫ= 1, j̇ = 0, (t, j, φr) ∈ Cr{

φ+
r =A?dφr
t+ = t, j+ = j + 1, (t, j, φr) ∈ Dr,

where
Cr := {(t, j, φr) : (t, j) ∈ domφ and (t, j + 1) /∈ domφ},
Dr := {(t, j, φr) : (t, j) ∈ domφ and (t, j + 1) ∈ domφ}.

Furthermore, we let φr : domφr(= domφ) → Rmx be
a resulting solution to Hr and we define the tracking error
e := φ − φr. The goal is to find u?, under which, the error
e is governed by the hybrid dynamics:

He :


{
ė=Ace
ṫ= 1, j̇ = 0, (t, j, e) ∈ Ce,{
e+ =Ade
t+ = t, j+ = j + 1, (t, j, e) ∈ De,

where
Ce := {(t, j, e) : (t, j) ∈ domφ and (t, j + 1) /∈ domφ},
De := {(t, j, e) : (t, j) ∈ domφ and (t, j + 1) ∈ domφ},

and (Ac, Ad) ∈ Rmx×mx × Rmx×mx are design matrices.
By designing u? := (u?c , u

?
d) as a feedback law satisfying

gc(x)u?c = A?cφr − fc(θ, x) +Ace

gd(x)u?d = A?dφr − fd(θ, x) +Ade,
(8)

we conclude that the error between φ and φr is governed by
He. Now, we assume that the input u? satisfying (8) can be
expressed as follows:{

uc := κc(θ, x, φr) := Ψc(x)θ +Gc(x, φr, e)
ud := κd(θ, x, φr) := Ψd(x)θ +Gd(x, φr, e),

(9)

where Ψc : Rmx → Rmuc×mθ , Ψd : Rmx → Rmud×mθ ,
Gc : Rmx × Rmx × Rmx → Rmuc , and Gd : Rmx × Rmx ×
Rmx → Rmud are known functions satisfying:

gc(x)Ψc(x)θ = −fc(x, θ),
gd(x)Ψd(x)θ = −fd(x, θ),

gc(x)Gc(x, φr, e) = A?cφr +Ace,

gd(x)Gd(x, φr, e) = A?dφr +Ade.

However, since θ is unknown, instead of applying the control
law in (9), we apply

u?c := κc(θ̂, x, φr) and u?d := κd(θ̂, x, φr), (10)

where θ̂ is an estimate of θ. Hence, the tracking error e is
governed by

He :


{
ė=Ace+ gc(x)Ψc(x)θ̃
ṫ= 1, j̇ = 0, (t, j, e) ∈ Ce,{
e+ =Ade+ gd(x)Ψd(x)θ̃
t+ = t, j+ = j + 1, (t, j, e) ∈ De,

where θ̃ := θ̂−θ is the estimation error. Then, for each (t, j) ∈
domφr, we let

ψc(t, j, e) := gc(e+ φr(t, j))Ψc(e+ φr(t, j)),

ψd(t, j, e) := gd(e+ φr(t, j))Ψd(e+ φr(t, j)),

so the systemHe can be expressed as

He :


{
ė=Ace+ ψc(t, j, e)θ̃
ṫ= 1, j̇ = 0, (t, j, e) ∈ Ce{
e+ =Ade+ ψd(t, j, e)θ̃
t+ = t, j+ = j + 1, (t, j, e) ∈ De

The objective, in this case, is to solve the following problem:
Problem 1: Design an update law for θ̂ along the flows, of

the form ˙̂
θ := Ac(t, j, e), and an update law along the jumps of

the form θ̂+ := θ̂ + Ad(t, j, e, e+) such that, for the resulting
closed-loop system, we have UGAS of the set

A := {(e, θ̃, t, j) : e = θ̃ = 0} (13)
Remark 1: Solving Problem 1, on the one hand, extends the

existing results in the continuous-time case to the more general
context of hybrid systems, and, on the other hand, improves
the stability guarantees established in the existing literature on
discrete time systems; see Remark 7 below for further detail.

IV. PROBLEM FORMULATION

The adaptive control problem described in Section III moti-
vates the study of a class of systems that comprise those ap-
pearing in model-reference adaptive control for hybrid systems.
This more general kind of systems are given by the equations

Heθ :




ė=Ace+ ψc(t, j, e)θ̃
˙̃
θ=Ac(t, j, e)
ṫ= 1, j̇ = 0, (t, j, e, θ̃) ∈ Ceθ,
e+ =Ade+ ψd(t, j, e)θ̃

θ̃+ = θ̃ +Ad(t, j, e, e+)

t+ = t, j+ = j + 1, (t, j, e, θ̃) ∈ Deθ,



where (t, j, e, θ̃) ∈ Xeθ, Xeθ := domψc(= domψd) × Rmθ ,
(Ac, Ad) ∈ Rme×me × Rme×me , the sets (Ceθ, Deθ) ⊂
Xeθ×Xeθ are the flow and the jump sets, respectively, the maps
Ac : domψc → Rmθ and Ad : domψd × Rme → Rmθ are,
respectively, the continuous and the discrete-time adaptation
laws to be designed, finally, the hybrid arcsψc, ψd : domψd(=
domψc) → Rme×mθ are, respectively, the continuous and the
discrete regressor functions. Our goal is to solve the following
problem forHeθ.

Problem 2: Design the adaptation laws Ac and Ad to guar-
antee well-posedness of the resulting hybrid systemHeθ as well
as UGAS of the set A in (13).

Remark 2: Adaptive control of various classes of uncertain
systems to achieve different control tasks can be transformed
into solving Problem 2 for a dynamical system in the form of
Heθ; see [9], [10], [12], [13]. In particular, in [12] and [13],
multi-layered neural networks are used to approximate a general
unknown nonlinear dynamics. The unknown parameters of the
neural network, that is the best to approximate the dynamics,
are estimated via a direct adaptive-control scheme leading to a
structure, in the error coordinates, that is similar to the one in
Heθ.

In this paper, we solve Problem 2 under the following as-
sumption on ψd.

Assumption 1: There exists ψ̄d > 0 such that
|ψd(t, j, e)| ≤ ψ̄d ∀(t, j, e, θ̃) ∈ Deθ.

Remark 3: When ψd is bounded, the adaptation law Ad we
propose is static and relatively simple. Note that, Problem 2 is
addressed in Part II [1] for systems with ψd of linear growth in
e, but this is done using a higher order adaptation law.

A. Additional Assumptions
Before addressing Problem 2, we introduce a set of key

assumptions on the hybrid systemHeθ.
Assumption 2: There exist P , Q ∈ Rme×me symmetric and

positive definite such that
Ac
>P + PAc ≤ −Q

Ad
>PAd − P ≤ −Q.

(15)

Remark 4: Assumption 2 allows to build a common
quadratic Lyapunov function that is non-increasing along the
flows as well as along the jumps of Heθ. A similar assumption
is used in [10] for impulsive systems.

Next, we consider the following regularity assumption on the
continuous- and the discrete-time regressors (ψc, ψd).

Assumption 3: The maps ψc and ψd are continuous.
Remark 5: As it can be seen from (A2), Assumption 3 is

necessary to guarantee well-posedness ofHeθ.
Next, we specify the following functions

φc(t, j) := ψc(t, j, 0),

φd(t, j) := ψd(t, j, 0),

∆c(t, j, e) := ψc(t, j, e)− ψc(t, j, 0),

∆d(t, j, e) := ψd(t, j, e)− ψd(t, j, 0).

Assumption 4 (Regularity of φc): For each j ∈ N, the map
t 7→ φc(t, j) is absolutely continuous on Ij := {t : (t, j) ∈
domφc}, and there exists φ̄ > 0 such that |φc(t, j)|∞ ≤ φ̄,
and ess sup{|φ̇c(t, j)| : t ∈ Ij} ≤ φ̄.

Remark 6: Note that the first inequality in Assumption 4
is crucial to guarantee parameter estimation for continuous-
time adaptive control systems; see [14], [15]. However, the

second inequality allows us to construct a Lyapunov function
that involves the term φc.

Assumption 5 (Growth rate of ∆c and ∆d): There exists a
positive non-decreasing function κo : R≥0 → R≥0 such
that, for each (t, j, e) ∈ domψc = domψd, we have
max{|∆c(t, j, e)|, |∆d(t, j, e)|} ≤ κo(|e|)|e|.
Finally, we introduce the following hybrid persistence of exci-
tation (HPE) condition on the pair (φc, φd).

Assumption 6 (HPE of (φc, φd)): There exist K, µ > 0
such that, for each hybrid time domain

J⋃
j=jo

([tj , tj+1]× {j}) ⊂ domφc

such that (tJ+1 − to) + (J − jo) ≥ K, we have

J∑
j=jo

∫ tj+1

tj

φc(s, j)
>φc(s, j)ds+

J∑
j=jo

φd(tj+1, j)
>φd(tj+1, j)

≥ µImθ .
Assumption 6 is a generalization of the classical continuous

and discrete-time persistence of excitation (PE) conditions to
the proposed hybrid framework. In particular, when the arcs φc
and φd are eventually continuous, Assumption 6 reduces to the
classical continuous-time PE condition [16]. Similarly, when
the arcs φc and φd are eventually discrete or Zeno, Assumption
6 reduces to the classical discrete-time PE condition [17]. To the
best of our knowledge, HPE was introduced for the first time in
[18] to study the hybrid gradient algorithm. Finally, we stress
that PE is a necessary condition to guarantee UGAS of the set
A in direct adaptive-control schemes [14].

V. MAIN RESULT

In this paper, we study the continuous and the discrete-time
adaptation laws given by

Ac(t, j, e) := −Γψc(t, j, e)
>Pe

Ad(t, j, e, e+) := −Γψd(t, j, e)
>Pe+,

(16)

where Γ ∈ Rmθ×mθ is a symmetric and positive-definite design
matrix and P ∈ Rme×me comes from Assumption 2.

Remark 7: The choice of the continuous-time regressor Ac
in (16) is commonly used in continuous-time adaptive-control
literature; see [4], [19]. Furthermore, the discrete-time regressor
Ad in (16) is inspired from [20]. According to the latter refer-
ence, quantifying the convergence properties using this choice
of Ad is not available in the literature of discrete-time systems.
This is one of the contributions of this paper.

Using (16), the systemHeθ can be expressed as

Heθ :




ė=Ace+ ψc(t, j, e)θ̃
˙̃
θ=−Γψc(t, j, e)

>Pe

ṫ= 1, j̇ = 0, (t, j, e, θ̃) ∈ Ceθ
e+ =Ade+ ψd(t, j, e)θ̃

θ̃+ = θ̃ − Γψd(t, j, e)
>Pe+

t+ = t, j+ = j + 1, (t, j, e, θ̃) ∈ Deθ

Theorem 3: Consider system Heθ such that Assumptions 1-
6 hold. Let Γ ∈ Rmθ×mθ be a symmetric and positive definite



matrix satisfying the following inequalities

|Γ| ≤ 1

2ψ̄2
d|P |

,

8|Γ|2|P |ψ̄4
d + 2|Γ|ψ̄2

d ≤
1∣∣Q−1/2A>d P

2AdQ−1/2
∣∣ , (18)

where (P,Q) come from Assumption 2 and ψ̄d comes from
Assumption 1. Then, Heθ satisfies the hybrid basic conditions
(A1)-(A2) and the set A in (13) is UGAS.

A. Proof of Theorem 3

The hybrid basic conditions are trivially satisfied under As-
sumption 3 and since the sets Ceθ and Deθ are assumed to be
closed.

UGAS is established in two main steps: first, to recognize that
the origin is uniform globally stabile, which implies uniform
global boundedness of the hybrid solutions and, second, to
follow output injection arguments, to establish uniform global
attractivity. Below, we present the main guidelines.

1) Uniform Global Stability: We establish UGS of the
set A for Heθ using Theorem 1. To do so, we introduce the
Lyapunov function candidate

V (e, θ̃) := e>Pe+ θ̃>Γ−θ̃, (19)

where Γ = Γ> ∈ Rmθ×mθ is positive definite and (P,Q) come
from Assumption 2.

Proposition 1: Consider system Heθ such that Assumption
1, Assumption 2, and (18) hold. Then, the set A is UGS for
Heθ. In particular, along each solution φ := (e, θ̃, t, j) to Heθ,
the following properties hold:
• For each j ∈ N such that int(Ij) 6= ∅, we have

V̇ (e, θ̃) ≤ −e>Qe for almost all t ∈ Ij .

• For each ((t, j), (t, j + 1)) ∈ domφ× domφ, we have

V (e+, θ̃+)− V (e, θ̃) ≤ −1

2
e>Qe− 1

4
θ̃>ψ>d Pψdθ̃.

2) Output-Injection-Based Decomposition: Following the
approach of [21], we re-express system Heθ as a (hybrid)
system that is linear in the variables e and θ̃, denoted Hneθ,
subject to an additive nonlinear term that vanishes when e = 0.
To do so, we note that

Heθ :




[
ė
˙̃
θ

]
=

[
Ace+ φc(t, j)θ̃

−Γφc(t, j)
>Pe

]
+Kc(t, j, e, θ̃)

ṫ= 1, j̇ = 0, (t, j, e, θ̃) ∈ Ceθ
[
e+

θ̃+

]
=

[
Ade+ φd(t, j)θ̃

θ̃ − Γφd(t, j)
>Pe+

]
+Kd(t, j, e, θ̃, e

+)

t+ = t, j+ = j + 1, (t, j, e, θ̃) ∈ Deθ,

where

Kc(·) :=

[
∆c(·)θ̃

−Γ∆c(·)>Pe

]
Kd(·) :=

[
∆d(·)θ̃

−Γ∆d(·)>Pe+

]
.

Note that, under Assumptions 1 and 5, we can find a positive
non-decreasing function κ : R≥0 → R≥0 such that

sup{|Kc(t, j, e, θ̃)|, |Kd(t, j, e, θ̃, e
+)| :(t, j) ∈ domφc}

≤ κ(|(e, θ̃)|)|e|.

3) Uniform Exponential Stability When Kc = Kd = 0:
We use Theorem 2 to show UES of the set A for the hybrid
system:

Hneθ :




[
ė
˙̃
θ

]
=

[
Ace+ φc(t, j)θ̃

−Γφc(t, j)
>Pe

]
ṫ= 1, j̇ = 0, (t, j, e, θ̃) ∈ Ceθ

[
e+

θ̃+

]
=

[
Ade+ φd(t, j)θ̃

θ̃ − Γφd(t, j)
>Pe+

]
t+ = t, j+ = j + 1, (t, j, e, θ̃) ∈ Deθ.

To do so, we introduce the Lyapunov function candidate

W (t, j, e, θ̃) := aV (e, θ̃)− be>φc(t, j)
[
θ̃ + Γφ̂d(t, j)

>Pe
]

−
[
θ̃ + Γφ̂d(t, j)

>Pe
]>
QΦ(t, j,∞)

[
θ̃ + Γφ̂d(t, j)

>Pe
]
.

(22)
where a, b > 0 are constants specified in the rest of the proof,
V is introduced in (19), the arc φ̂d : domφd → Rme×mθ is
given by

φ̂d(t, j) :=

{
φd(tj , j − 1) if (t, j) ∈ (tj+1, j) ∪ int(Ij)
φd(tj+1, j) if (t, j) = (tj+1, j + 1),

the arc Φ : domφc(= domφd)→ Rmθ×mθ is given by

Φ(t, j) := φcd(t, j)
>φcd(t, j)

with φcd : domφc(= domφd)→ Rme×mθ satisfies

φcd(t, j) :=

{
φc(t, j) if t ∈ int(Ij)
φd(t, j) otherwise, (23)

finally, the arc QΦ(·,∞) : domφc(= domφd)→ Rmθ×mθ is
given by

QΦ(t, j,∞) :=
m∞∑
i=j

∫ ti+1

ti

exp(t+j)−(s+i) Φ(s, i)ds

+
1

2

m∞∑
i=j

[∫ ti+2

ti+1

exp(t+j)−(s+i) ds

]
Φ(ti+1, i),

(24)

where m∞ ∈ N ∪ ∞ is the maximum number of jumps of Φ
and {ti}m∞

i=j is the corresponding sequence of jump instants.
Proposition 2: Consider system Hneθ such that Assumptions

1, 2, 4, 6 and the inequalities in (18) hold. Then, the set A in
(13) is UES for Hneθ. In particular, for an appropriate choice
of the positive constants (a, b), we can find positive constants(
λ̄, λ̄1, λ, λc, λd

)
such that the Lyapunov function candidateW

in (22) satisfies the following properties:

1) For each (t, j) ∈ domφd, we have

λ|(e, θ̃)|2 ≤W ≤ λ̄|(e, θ̃)|2,∣∣∇(e,θ̃)W
∣∣ ≤ λ̄|(e, θ̃)|,

and, for each k ∈ R2 and (t, j) ∈ domφc, we have

W (t, j, e+ + k1, θ̃
+ + k2)−W (t, j, e+, θ̃+)

≤ λ̄1|k|(|e, θ̃|+ |k|).

2) Along each solution φ := (e, θ̃, t, j), we have



• For each ((t, j), (t, j + 1)) ∈ domφ× domφ,

W (t, j+1, e+, θ̃+)−W (t, j, e, θ̃) ≤ −λdW (t, j, e, θ̃).

• For each j ∈ N such that int(Ij) 6= ∅, we have

Ẇ (t, j, e, θ̃) ≤ −λcW (t, j, e, θ̃) for a.a. t ∈ Ij .
Remark 8: It is important to note that the proof of Proposi-

tion 2 provides an explicit approach to design the parameters
a and b so that the two items in Proposition 2 hold. Thus, our
approach allows for an explicit estimation of the convergence
rate [22].

4) UGAS for Heθ: To prove UGAS of the set A for
Heθ, we consider a solution φ := (e, θ̃, t, j) to Heθ starting
from (eo, θ̃o, to, jo) ∈ Xeθ. Furthermore, we introduce the
Lyapunov-like function

Z(t, j, e, θ̃) := W (t, j, e, θ̃) + ρ(|(eo, θ̃o)|)V (e, θ̃), (25)

where ρ : R≥0 → R≥0 is a continuous and non-decreasing
function that we specify later, and the functions (V,W ) are
defined in (19) and (22), respectively.

From Proposition 1 it follows that along every solution φ to
Heθ starting from (eo, θ̃o, to, jo), we have

|(e(t, j), θ̃(t, j))| ≤ Ro|(eo, θ̃o)| ∀(t, j) ∈ domφ.

On the other hand, from Proposition 2 it follows that, along
every solution φ to Heθ starting from (eo, θ̃o, to, jo), and for
each j ∈ N such that int(Ij) 6= ∅ and for almost all t ∈ Ij , we
have

Ż(t, j, e, θ̃) ≤− λcλ|(e, θ̃)|2 + λ̄κ
(
Ro|(eo, θ̃o)|

)
|(e, θ̃)||e|

− ρ(|(eo, θ̃o)|)e>Qe,

and for an appropriate choice of ρ(·) the sum of the terms on
right-hand-side of the previous inequality is negative definite.

Now, during jumps note that, for each ((t, j), (t, j + 1)) ∈
domφ× domφ, we have

Z(t, j + 1, e+, θ̃+)− Z(t, j, e, θ̃)

≤W (t, j + 1, e+, θ̃+)−W (t, j + 1, e+ −Kd1, θ̃
+ −Kd2)

+W (t, j + 1, e+ −Kd1, θ̃
+ −Kd2)−W (t, j, e, θ̃)

− ρ(|eo, θ̃o|)e>Qe.
In addition, from Proposition 2, it holds that

Z(t, j + 1,e+, θ̃+)− Z(t, j, e, θ̃) ≤
− λdλ|(e, θ̃)|2 + κ2(Ro|(eo, θ̃o)|)|e||(e, θ̃)|
− ρ(|eo, θ̃o|)e>Qe,

where κ2 : R≥0 → R≥0 is a non-decreasing function. Again,
the right-hand side of the inequality above is negative definite
for an appropriate choice of ρ(·). Hence, the result follows.

VI. CONCLUSION

In this paper, we proposed a direct adaptive-control frame-
work for uncertain hybrid systems. The proposed framework
is Lyapunov-based and establishes UGAS of the set A for
the resulting closed-loop hybrid system. Future work aims at
relaxing the structure of Heθ by considering right-hand sides
that are nonlinear in both e and θ̃, then imposing the needed
properties for UGAS via a set of Lyapunov-based inequalities.

REFERENCES

[1] M. Maghenem, A. Saoud, and A. Lorı́a, “Adaptive Con-
trol/Identification for Hybrid Systems, Part II: A Linearly Growing
Discrete Regressor,” in Proc. American Control Conference, 2022,
paper No. 653.

[2] S. Sastry and S. Bodson, Adaptive control: stability, convergence and
robustness. Courier Dover Publications, 2011.

[3] P. Ioannou and J. Sun, Robust adaptive control. New Jersey, USA:
Prentice Hall, 1996.

[4] A. Lorı́a, E. Panteley, and M. Maghenem, “Strict Lyapunov functions
for model-reference adaptive control: application to Lagrangian sys-
tems,” IEEE Trans. on Automatic Control, vol. 64, no. 7, pp. 3040–
3045, 2019.

[5] W. M. Haddad, T. Hayakawa, and A. Leonessa, “Direct adaptive
control for discrete-time nonlinear uncertain dynamical systems,” in
Proc. American Control Conference, vol. 3, 2002, pp. 1773–1778.

[6] A. Leonessa, V. Chellaboina, W. M. Haddad, and T. Hayakawa, “Direct
discrete-time adaptive control with guaranteed parameter error con-
vergence,” in Proceedings of the 2003 American Control Conference,
vol. 4. IEEE, pp. 2925–2930.

[7] R. Kanellakopoulos, “A discrete-time adaptive nonlinear system,” in
Proceedings of 1994 American Control Conference-ACC’94, vol. 1.
IEEE, 1994, pp. 867–869.

[8] R. Johansson, “Global lyapunov stability and exponential convergence
of direct adaptive control,” International Journal of Control, vol. 50,
no. 3, pp. 859–869, 1989.

[9] S. Hiroshi, F. Toru, and S. Yu, “A discrete-time algorithm for simple
adaptive control,” IFAC Proceedings Volumes, vol. 30, no. 3, pp.
349–354, 1997, 4th IFAC Workshop on Algorithms and Architectures
For Real-Time Control 1997 (AARTC ’97), Vilamoura, Portugal, 9-
11 April. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S1474667017445204

[10] W. M. Haddad, T. Hayakawa, S. G. Nersesov, and V. Chellaboina,
“Hybrid adaptive control for non-linear uncertain impulsive dynam-
ical systems,” International journal of adaptive control and signal
processing, vol. 19, no. 6, pp. 445–469, 2005.

[11] R. Goebel, R. G. Sanfelice, and A. R. Teel, Hybrid Dynamical
Systems: Modeling, stability, and robustness. Princeton University
Press, 2012.

[12] L. Jin, P. Nikiforuk, and M. Gupta, “Adaptive control of discrete-time
nonlinear systems using recurrent neural networks,” IEE Proceedings-
Control Theory and Applications, vol. 141, no. 3, pp. 169–176, 1994.

[13] F.-C. Chen and H. Khalil, “Adaptive control of a class of nonlinear
discrete-time systems using neural networks,” IEEE Transactions on
Automatic Control, vol. 40, no. 5, pp. 791–801, 1995.

[14] K. S. Narendra and A. M. Annaswamy, “Persistent excitation in
adaptive systems,” Int. J. of Contr., vol. 45, no. 1, pp. 127–160, 1987.

[15] N. Barabanov, R. Ortega, and A. Astolfi, “Is normalization necessary
for stable model reference adaptive control?” IEEE transactions on
automatic control, vol. 50, no. 9, pp. 1384–1390, 2005.

[16] A. P. Morgan and K. S. Narendra, “On the uniform asymptotic stability
of certain linear nonautonomous differential equations,” SIAM J. on
Contr. and Opt., vol. 15, no. 1, pp. 5–24, 1977.
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