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Abstract

Stochastic simulators are computational models that produce different results when
evaluated repeatedly with the same input parameters. In this respect, the model response
conditional on the input is a random variable, and thus it is necessary to run the model
many times to fully characterize the associated response. Due to the large number of
necessary model runs, performing uncertainty quantification or optimization of a costly
stochastic simulator is intractable directly. To alleviate the computational burden, we extend
polynomial chaos expansions to metamodeling the entire response probability distribution of
stochastic simulators. In this novel approach, we introduce a latent variable and an additional
noise, on top of the well-defined input variables, to mimic the intrinsic stochasticity of the
simulator. We develop a method to construct such a surrogate without requiring repeated
runs of the simulator for the same input parameters. The performance of the proposed
surrogate model is compared with one of the state-of-the-art kernel estimator on an analytical
example from mathematical finance.

1 Introduction

Computational models, a.k.a. simulators, are virtual prototypes that represent operational
or physical processes through computer simulations. They have been widely used in modern
engineering and applied science for analyzing complex systems. Conventional simulators usually
depict a deterministic relation between the model input and output, i.e., for a given set of input
parameters the model output is a deterministic value. In contrast, various runs of a stochastic
simulator for the same input parameters result in different values of the model response. In other
words, the output of a stochastic simulator conditional on the input is a random variable. Such a
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stochastic behavior results from some latent variables that are not explicitly taken into account
as part of the input. As a result, when the input parameters are fixed but the latent variables
vary randomly, the associated model response remains uncertain.

A stochastic simulator can be mathematically defined by

Ms : DX × Ω → R

(x, ω) 7→ Ms(x, ω),
(1)

where DX is the domain of definition of the stochastic simulator, and Ω denotes the sample space
accounting for the intrinsic stochasticity. The stochastic simulator is a deterministic function
of the input vector x and the element ω of the sample space. However, one can only control x

but not ω when evaluating the model. Hence, each model run for a given x provides a single
realization of the model output corresponding to a particular ω ∈ Ω.

Due to the random nature of the model response, it is necessary to repeatedly evaluate a stochastic
model for the same input parameters, called replications, to characterize the associated output
distribution. This leads to an extra dimension of requirement for model evaluations in the context
of uncertainty quantification or optimization, where simulators are required to be evaluated for
various input values. As a consequence, a large number of model evaluations are necessary, which
is impracticable for costly simulators. In this respect, surrogate models shall be constructed with
a limited number of model runs to approximate the original model, and therefore replace the
latter.

In this field, large efforts have been devoted to estimating some summary quantities of the
response distribution, e.g., the mean and variance [1–3], and the quantiles [4–6], as deterministic
functions of the input. However, not many methods have been developed to emulate the entire
probability distribution. We classify these methods in the literature into three groups.

The first one [7, 8] capitalizes on replications to estimate (parametrically or nonparametrically) the
response distribution for various input values. The estimated distributions (based on replications)
are represented by an appropriate parametrization. Then, the associated parameters are cast as
deterministic functions of the input variables, which can be represented by classical surrogate
models already available for deterministic simulator (e.g., polynomial chaos expansions). Since
this approach applies a two-step procedure, it calls for many replications to produce surrogate
models of a good accuracy [8].

The second approach views a stochastic simulator as a random field indexed by the input variables
[9]. As suggested by Eq. (1), the stochastic simulator is a deterministic function of x for a
fixed ω, which can be considered as a trajectory. This deterministic function can be emulated
by conventional deterministic surrogate models. Based on a set of (emulated) trajectories, one
can approximate the underlying random field using the Karhunen-Loève expansion. Since this
approach can approximate and produce trajectories, the resulting model allows for representing
not only the response distribution but also the general dependence structure of the simulator.
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However, this comes with assumptions on the regularity of the trajectories and with the ability
to fix the internal randomness, which is practically achieved by controlling the random seed of
the simulator.

The third approach consists of methods developed in statistics for estimating conditional distri-
butions from real data. As a result, they do not call for replications or controlling the random
seed. In fact, a stochastic simulator can be considered as a conditional sampler: one first decides
(or samples) the input parameters, and then conditioned on the latter, the simulator samples the
associated random model output. As a result, the response distribution is a mere conditional
distribution. If the type of the response distribution is known and belongs to the exponential
family, one can apply the generalized linear model or the generalized additive model. If the
response distribution is arbitrary, nonparametric estimators [10–12] can be used. However, it is
well-known that nonparametric estimators suffer from the curse of dimensionality: the accuracy
decays fast with increasing dimensionality. To balance between the flexibility and the efficiency,
Zhu and Sudret [13] develop the so-called generalized lambda model, which uses the generalized
lambda distribution to approximate the response. The distribution parameters as functions of
the input are represented by polynomial chaos expansions. This surrogate model is parametric
and shown to be flexible, but it is unable to represent multi-model distributions.

To have more flexible parametric surrogate models, we propose to extend the classical polynomial
chaos expansions to emulating stochastic simulators in this paper. We introduce a latent variable
and a noise variable to represent the random behavior of the model output. We propose combining
the maximum likelihood estimation with cross-validation to construct such a surrogate model.

The paper is organized as follows. We present the general formulation of the stochastic polynomial
chaos expansion after a short recap of classical polynomial chaos expansions in Section 2. In
Section 3, we present the developed method to build the surrogate model. We illustrate the
performance of the proposed method on an analytical example from mathematical finance in
Section 4. Finally, we conclude the main findings of the paper and provide outlooks for future
research in Section 5.

2 Stochastic polynomial chaos expansions

2.1 Polynomial chaos expansions

Polynomial chaos expansion is a well-established surrogate model for deterministic simulators.
Let us consider a deterministic model

Md : DX ⊂ RM → R

x 7→ Md(x).
(2)

For uncertainty quantification analysis, the input x is modeled by a random vector X characterized
by the joint probability density function (PDF) fX . Due to the uncertain input, the model
output Y = Md(X) becomes a random variable.
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If Y is a second-order random variable, i.e., Var [Y ] < +∞, Md(X) belongs to the Hilbert space
H of square-integrable functions, the inner product of which is defined by

⟨u, v⟩H
def= E [u(X)v(X)]

=
∫

DX

u(x)v(x)fX(x)dx.
(3)

In this study, we assume that the components of X are mutually independent, which implies
that the joint PDF fX is a product of marginal distributions:

fX =
M∏

j=1
fXj (xj), (4)

where fXj is the marginal distribution of the j-th component Xj . Under some conditions for
each marginal PDF fXj , the Hilbert space H is separable with a polynomial basis [14]. Thus,
Md can be expanded in terms of an orthogonal polynomial basis

Y = Md(x) =
∑

α∈NM

cαψα(x), (5)

where cα is the coefficient of the basis function ψα that is defined by

ψα(x) =
M∏

j=1
ϕ(j)

αj
(xj). (6)

Here, αj indicates the degree of the multivariate polynomial ψα(x) in its j-th component xj , and{
ϕ

(j)
k : k ∈ N

}
is the orthogonal basis with respect to the marginal distribution fXj of Xj , i.e.,

E
[
ϕ

(j)
k (Xj)ϕ(j)

l (Xj)
]

= δkl, (7)

where the Kronecker delta δkl values 1 if k = l and 0 otherwise.

The expansion in Eq. (5) involves an infinite sum, which is practically truncated to finite terms.
The common truncation scheme is to include all the basis functions whose total degree is inferior
to a given value p, i.e., Ap =

{
α ∈ NM ,

∑M
j=1 αj ≤ p

}
.

2.2 Latent variable model

Polynomial chaos expansions have been widely used to represent deterministic simulators. Due
to the deterministic input-output relation represented in Eq. (5), however, it cannot directly be
used to emulate stochastic simulators. In this section, we present the extension of polynomial
chaos expansions to a latent variable model.

For the purpose of clarity, we denote Yx the model response of the stochastic simulator for the
input parameters x. When considering the uncertain input variables, i.e., modeled by a random
vector X, we define Y as the model output aggregating all the uncertainties from both the input
and the intrinsic stochasticity.
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In order to mimic the intrinsic stochasticity of stochastic simulators, we include a latent variable
Z in the polynomial expansion as follows:

Yx
d=

∑

α∈NM+1

cαΨα(x, Z). (8)

For a given x, the expansion on the right-hand side is a function of the latent variable Z, thus a
random variable. The equality in Eq. (8) is to be understood in distribution, in the sense that two
random variables follow the same probability distribution. As a result, the latent variable Z is
only introduced to reproduce the randomness. It does not represent the detailed data generation
process (involving the intrinsic stochasticity) of the simulator.

Remark. The latent variable model applies a polynomial transform of a random Z to represent
the response of stochastic simulators. This is inspired by the isoprobabilistic transform that is
common in structural reliability analysis [15]: we can transform a random variable Z to any
desired distribution. Denote FYx(y) the cumulative distribution function (CDF) of Yx. By using
the isoprobabilistic transform, we have

Yx
d= F−1

Yx
(FZ(Z)), (9)

where FZ is the CDF of Z. Here, F−1
Yx

(FZ(Z)) is a deterministic function of both x and z.

Equation (8) can be seemingly interpreted as a representation of Eq. (9). However, Eq. (8) is more
general: it does not require the explicit expansion in Eq. (9) but only calls for approximating the
response distribution. Because there can be many transforms that achieve the goal, the expansion
in Eq. (8) is not unique.

When applying a truncation scheme A to the polynomial chaos expansion, we introduce an
additional noise variable ϵ to represent the approximation error. Thereby, we express the
stochastic polynomial chaos expansion for representing stochastic simulators by

Yx
d≈ Ỹx =

∑

α∈A
cαΨα(x, Z) + ϵ, (10)

where ϵ is a centered Gaussian random variable, i.e., ϵ ∼ N (
0, σ2).

The choice of the truncation scheme and the type of the latent variable Z depend on the prior
knowledge we may have on the stochastic simulator. In the following example, we set the
truncated set A = Ap with the maximum degree p = 3. The latent variable Z is selected to be
standard normal, i.e., Z ∼ N (0, 1).

3 Estimation method

With a given truncation scheme A and distribution fZ of the latent variable Z, one needs now to
determine the coefficients c and the standard deviation σ of the noise variable to construct the
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surrogate model defined in Eq. (10). Because the response distribution is unknown, we cannot
emulate directly Eq. (9). In this section, we present a method developed for calibrating these
parameters from data without requiring replications.

First, we evaluate the simulator to generate data for the estimation. We consider an experimental
design X =

{
x(1), . . . ,x(N)

}
. The stochastic model is evaluated once for each point x(i), and

the associated model response y(i) = Ms

(
x(i), ω(i)

)
is collected in Y =

{
y(1), . . . , y(N)

}
. The

notation ω(i) means that a different random seed may be used for each run (i.e., we do not
control the random seed).

3.1 Maximum likelihood estimation

In this first part, we assume that the variance σ2 of the noise variable ϵ is known. Its estimation
will be presented in Section 3.3. According to the definition in Eq. (10), the PDF of Ỹx can be
expressed by

fỸx
(y) =

∫

DZ

fYx|Z(y | z) f(z) dz

= fϵ

(
y −

∑

α∈A
cαΨα(x, z)

)
fZ(z) dz,

(11)

where fZ and fϵ are the PDFs of Z and ϵ, respectively. As ϵ ∼ N (
0, σ2), fϵ has an explicit form,

and thus the conditional likelihood for (x, y) becomes

l(c; x, y, σ) =
∫

DZ

1√
2πσ

exp

(
−
(
y −

∑
α∈A cαΨα(x, z)

)2

2σ2

)
fZ(z)dz.

(12)

This integral does not have a closed-form solution. We can use Gaussian quadrature [16] to
evaluate it numerically:

l(c; x, y, σ) ≈ l̃(c; x, y, σ)

=
NQ∑

j=1

1√
2πσ

exp
(

−
(
y −∑α∈A cαΨα(x, zj)

)2

2σ2

)
wj ,

(13)

where NQ is the number of integration points, and zj and wj denote the j-th node and the
associated weight, respectively. Based on Eq. (13), we propose using maximum likelihood
estimation (MLE) to calibrate the coefficients c from the data (X ,Y)

ĉ = arg max
c

N∑

i

log
(
l̃
(
c; x(i), y(i), σ

))
. (14)

The derivative of Eq. (13) with respect to c, and therefore of the objective function in Eq. (14), can
be analytically derived. Hence, we opt for the gradient-based Broyden-Fletcher-Goldfarb-Shanno
algorithm [17] to solve Eq. (14).

6



3.2 Starting point

The optimization problem in Eq. (14) can be non-convex and highly nonlinear. As a result, it is
important to initiate the optimization algorithm with a good starting point. Using the properties
of the orthogonal polynomials, the mean function of the surrogate Ỹx can be expressed as

E
[
ỸX

]
= EZ,ϵ

[∑

α∈A
cαΨα(x, Z) + ϵ

]

=
∑

α∈A,αz=0
cαΨα(x),

(15)

where αz is the degree of the basis function in Z. As indicated by αz = 0, the mean function
of the surrogate model contains all the terms not involving z. Because the surrogate model
aims at representing the distribution of Yx, Eq. (15) should approximate the mean function
of the model response E [Yx]. Therefore, we can fit the mean function with the basis defined
by Am = {α ∈ A : αz = 0}. The estimated coefficients are then used as a starting point for
{cα : α ∈ Am}. For other coefficients defined by A \ Am, we randomly initialize their value.

To estimate the mean function, we apply the hybrid least-angle regression (LAR) developed
in Blatman and Sudret [18]. This algorithm is a sparse solver that selects the most important
basis among a candidate set, i.e., Am. To reduce the number of unknowns in Eq. (14), we set
the coefficients to zero for the basis functions that are not selected by the sparse algorithm. In
other words, we only estimate the coefficients associated with the basis functions that are either
selected by the hybrid LAR for the mean function estimation or defined by A \ Am.

3.3 Estimation of σ

One may consider estimating σ in the same way as c. However, if we include σ into the maximum
likelihood estimation Eq. (14), the likelihood function can reach +∞ for σ = 0 and certain
choices of c. To see this, let us consider a simple stochastic simulator without input variables,
which gives a realization of Y upon each model evaluation. We set σ = 0, so the noise variable
vanishes. The stochastic surrogate model is Ỹ = g(Z) = ∑

α∈A cαΨα(Z). Based on a change of
variable, the PDF of Ỹ = g(Z) is

fỸ (y) = fZ(z)
|g′(z)|1g(z)=y, (16)

where 1 denotes the indicator function, and g′ is the derivative of g. For a given y0 and z0 with
fZ(z0) > 0, the two equations g(z0) = y0 and g′(z0) = 0 are linear in c and under-determined
for c having more than 3 components. As a result, we can find a set of the coefficients c such
that the denominator of Eq. (16) is equal to 0, and thus the likelihood fỸ (y0) values +∞. The
example above shows that ϵ plays the rule of a regularizer: if it is not contained in Eq. (10), the
MLE presented in Section 3.1 would fail. Consequently, σ is a hyperparameter and should be
fitted separately from c.
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In this paper, we tune σ by cross-validation [19]. To this end, the available data are randomly
split into K equal sized groups {Vk : k = 1, . . . ,K}. For each group Vk of data, we hold it out as
a validation set. The other K − 1 groups are used to build a surrogate model by solving Eq. (14).
The estimated coefficients are denoted by ĉk(σ), where we explicitly express σ as an argument to
emphasize the dependence of ĉ on σ. The likelihood of the constructed model is evaluated on
the validation set Vk

lk(σ) =
∑

i∈Vk

log
(
l̃
(
ĉk(σ), σ; x(i), y(i)

))
. (17)

We repeat this process for each fold of the partition {Vk : k = 1, . . . ,K}, which gives K scores
from Eq. (17). The optimal σ is selected as the one that maximizes the out-of-sample performance,
that is,

σ̂ = arg max
σ

K∑

k=1
lk(σ). (18)

Equation (18) is a one-dimensional optimization problem for σ. However, the derivative of the
objective function is generally difficult to derive due to the nested optimization for ĉ. Therefore,
we choose to use the derivative-free Nelder-Mead method [20] for σ selection.

4 Numerical experiment

To illustrate the performance of the stochastic polynomial chaos expansion (SPCE), we consider
an example of the geometric Brownian motion

dSt = x1 St dt+ x2 St dWt, (19)

where Wt is a standard Wiener process, and the model parameters x = (x1, x2)T are called
the drift and volatility, respectively. Without loss of generality, the initial value at t = 0 is set
to S0 = 1. Because Wt is a random process that introduces stochasticity into the differential
equation, Eq. (19) is a stochastic simulator: St is a random process for a given input vector x.

The geometric Brownian motion defined in Eq. (19) is usually used in mathematical finance to
model the dynamics of the value St of a stock [21]. In this case, x1 and x2 correspond to the
expected return rate and the volatility of the stock, respectively. We set X1 ∼ U(0, 0.1) and
X2 ∼ U(0.1, 0.4) to account for the input uncertainty, where the ranges cover the parameters
calibrated from real data of the stock market [22].

In this example, we are interested in the value of St at t = 1, i.e., Yx = S1. The response
distribution of Yx = S1 can be derived by solving Eq. (19) using Itô calculus:

Yx ∼ LN
(
x1 − x2

2
2 , x2

)
. (20)

As the distribution of Yx is lognormal, we can evaluate the stochastic simulator by sampling
directly from the response distribution Eq. (20).
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To generate data for surrogate modelling, we use Latin hypercube sampling (LHS) [23] to create
the experimental design (ED). The stochastic simulator is evaluated once for each point of the
ED. We apply the method developed in Section 3 to build the surrogate. For the purpose of
comparison, we consider a state-of-the-art non-parametric kernel conditional density estimator
(KCDE) from the package np [24] implemented in R.

(a) PDF for x = (0.07, 0.13)T (b) PDF for x = (0.02, 0.38)T

Figure 1: Comparisons of emulated PDFs, N = 400.

Figure 1 shows two response PDFs predicted by the two surrogate models SPCE and KCDE
constructed from an experimental design of size N = 400. We observe that SPCE gives more
accurate predictions: on the left panel Fig. 1a with low volatility (0.13), SPCE represents better
the mode and the tails of the response distribution; on the right panel Fig. 1b with high volatility
(0.38), KCDE yields spurious oscillations but SPCE stably captures the variation of the response
PDF.

To quantitatively assess the performance of the surrogate model, we use the expected normalized
Wasserstein distance defined in Zhu and Sudret [13] as an error metric. More precisely, it is
defined by

e = EX



dWS

(
YX , ỸX

)

√
Var [Y ]


 (21)

where YX is the model response of the simulator, ỸX denote that of the emulator, and dWS is
the Wasserstein distance of order two [25] defined by

dWS (Y1, Y2) def= ∥Q1 −Q2∥2

=
√∫ 1

0
(Q1(u) −Q2(u))2 du ,

(22)

where Q1 and Q2 are the quantile functions of two random variables Y1 and Y2, respectively.

To evaluate the expectation in Eq. (21), we generate a test set Xtest of size Ntest = 1,000 using
LHS. The normalized Wasserstein distance is calculated for each point x ∈ Xtest and then
averaged over Ntest.

Experimental designs of various sizes N ∈ {100; 200; 400; 800; 1,600} are investigated to study
the convergence property of the surrogate models in comparison. Each scenario is run 20 times
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with independent experimental designs to account for uncertainties in the LHS design and the
intrinsic stochasticity of the stochastic model. As a consequence, error estimates for each N are
represented by box plots.

For quantitative comparisons, we consider an additional surrogate model, where we represent
the response distribution with a Gaussian distribution. The associated mean and variance as
functions of the input x are set to the true values of the simulator. Therefore, the error associated
to this surrogate model only comes from the model misspecification, which measures how close
the response distribution is to normal. Because the true mean and variance are used, this model
is the “oracle” of Gaussian-type mean-variance models, such as the ones presented in Marrel et
al. [2] and Binois et al. [3].

Figure 2 summarizes the error metric e defined in Eq. (21) with respect to the size of experimental
design. Because the response distribution is lognormal, the Gaussian approximation is not exact.
The average error of SPCE built on N = 400 model runs is similar to the oracle Gaussian
approximation, which is merely achieved by KCDE for N = 1,600. For N > 400, SPCE clearly
provides more accurate results than the oracle Gaussian model. Compared with KCDE, the
average performance of SPCE is always better for all sizes of ED. For large N , namely N = 1,600,
the average error of SPCE is less than half of that of KCDE. Furthermore, SPCE demonstrates
much a faster decay of the error.

Figure 2: Comparison of the convergence of SPCE and KCDE in terms of the expected normalized
Wasserstein distance as a function of the size of the experimental design. The dashed lines denote
the average value over 20 repetitions of the full analysis. The black dash-dotted line represents
the error of the model assuming that the response distribution is Gaussian with the true mean
and variance.

5 Conclusions

In this paper, we extend the classical polynomial chaos expansion to emulating the response
distribution of stochastic simulator. The novel surrogate model, called stochastic polynomial
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chaos expansions, includes a latent variable in the expansion together with the well-defined input
variables. Moreover, we introduce an additive noise, which not only represents the truncation error
but also regularizes the likelihood function. We propose using maximum likelihood estimation to
calibrate the polynomial coefficients from data. The standard deviation of the noise term is a
hyperparameter selected by cross-validation. The developed estimation procedure features no
need for replications.

The performance of SPCE is illustrated on an analytical example from mathematical finance.
The results show that SPCE is able to well represent the model response with a reasonable
number of model runs. In this example with the response distribution being lognomal, SPCE
fitted from finite data outperforms the oracle Gaussian approximation. Compared with one
state-of-the-art kernel estimator, SPCE yields more accurate results and demonstrates a better
convergence rate.

In the current development, the truncation scheme and the distribution of the latent variable are
manually selected. We are developing adaptive algorithms that enable an automatic selection
procedure for these two quantities from the data. More realistic models will be considered to test
the performance of the proposed method. In future research, it would be valuable to develop sparse
algorithms to improve the performance of the surrogate model in high-dimensional problems.
Finally, some statistical properties of the estimation method (e.g., consistency, asymptotics, error
bound) remain to be investigated.
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