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ABSTRACT
We address a classical identification problem that consists in es-

timating a vector of constant unknown parameters from a given

linear input/output relationship. The proposed method relies on a

network of gradient-descent-based estimators, each of which ex-

ploits only a portion of the input-output data. A key feature of the

method is that the input-output signals are hybrid, so they may

evolve in continuous time (i.e., they may flow ), or they may change

at isolated time instances (i.e., they may jump ). The estimators

are interconnected over a weakly-connected directed graph, so the

alternation of flows and jumps combined with the distributed char-

acter of the algorithm introduce a rich behavior that is impossible to

obtain using continuous- or discrete-time estimators. A condition of

persistence of excitation in hybrid form ensures exponential conver-

gence of the estimation errors. The proposed approach generalizes

the existing centralized gradient-descent algorithms and yields re-

laxed sufficient conditions for (uniform-exponential) parameter

estimation. In addition, we address the observation/identification

problem for a class of hybrid systems with unknown parameters

using a distributed network of adaptive observers/identifiers.
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1 INTRODUCTION
Estimation theory is key in many applications such as autonomous

navigation [2, 28], weather predictions [8, 14], applied economics

[4], etc. In many cases, the estimation problem consists in estimat-

ing the parameters \ ∈ R𝑚\
of the linear regression model of a

measurable output 𝑦 ∈ R satisfying the relationship 𝑦 = 𝜓⊤\ [27].

In such model,𝜓 , which is generally referred to as the regressor, is a
map from its domain, denoted by ‘dom𝜓 ’, to an Euclidean space of

dimension𝑚\ . An elementary, but efficient estimation algorithm is

the so-called gradient-based, which updates the value of a param-

eter estimate
ˆ\ using the gradient of the cost function 𝐽 (𝑒) := 𝑒2

2
,

where 𝑒 := 𝑦 − 𝑦 and 𝑦 := 𝜓⊤ ˆ\ is the estimated output, function of

the parameter estimate
ˆ\ . Thus, the estimation problem consists in

designing an update algorithm for
ˆ\ in function of the computable

error 𝑒 .

There are several ways to update the estimate
ˆ\ . Most commonly,

time is tracked by a real variable 𝑡 ∈ R≥0 —[11, 25] or by a sequence

of discrete instances 𝑗 ∈ N—[27]. In the first case, dom𝜓 = R≥0, so,

for each 𝑡 ∈ R≥0, 𝑒 (𝑡) := 𝑦 (𝑡) −𝑦 (𝑡) = ˜\ (𝑡)⊤𝜓 (𝑡), where ˜\ := ˆ\ −\ .
Then, the gradient-descent algorithm is defined by the ordinary

differential equation

¤̂
\ (𝑡) = −𝛾∇

ˆ\
𝐽 (𝑒 (𝑡)) = −𝛾𝜓 (𝑡)

[
𝜓 (𝑡)⊤ ˆ\ (𝑡) − 𝑦 (𝑡)

]
, (1)

where 𝛾 > 0 is a design parameter and ∇
ˆ\
𝐽 denotes the gradient of

𝐽 (𝑒) with respect to
ˆ\ [16], so the behavior of

˜\ (𝑡) is governed by

¤̃
\ (𝑡) = −𝛾𝜓 (𝑡)𝜓 (𝑡)⊤ ˜\ (𝑡) . (2)

The convergence of the estimation errors
˜\ (𝑡) may be assessed by

establishing the stronger property of uniform (in the initial time)

exponential stability (UES) of the origin { ˜\ = 0} for (2). In the case

that 𝜓 is bounded on its domain, UES is known (see, e.g., [15]) to
be equivalent to𝜓 possessing the continuous-time persistency-of-

excitation (CT-PE) property:

Assumption 1 (CT-PE). There exist 𝑇 , ` > 0 such that, for each
𝑡𝑜 ≥ 0,

∫ 𝑡𝑜+𝑇
𝑡𝑜

𝜓 (𝑠)𝜓 (𝑠)⊤𝑑𝑠 ≥ `𝐼𝑚\
.

When 𝑦 is measured at certain sampled instants of time, that is,

dom𝑦 = dom𝜓 = N, the gradient algorithm may be implemented

in discrete time, using the difference equation

ˆ\ ( 𝑗 + 1) = ˆ\ ( 𝑗) − 𝜎 ( 𝑗)∇
ˆ\
𝐽 (𝑒 ( 𝑗)), (3)

where 𝜎 ( 𝑗) :=
𝛾

1+𝛾 |𝜓 ( 𝑗) |2 and 𝛾 > 0 is the adaptation rate [27]. As

a result, the dynamics of the estimation error is given by

˜\ ( 𝑗 + 1) =
(
𝐼 − 𝛾𝜓 ( 𝑗)𝜓 ( 𝑗)⊤

1 + 𝛾 |𝜓 ( 𝑗) |2

)
˜\ ( 𝑗) . (4)

https://doi.org/....
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It is known, at least since [1], that the following hypothesis is

necessary and sufficient to ensure UES of the set { ˜\ = 0} for (4).

Assumption 2 (DT-PE). There exist 𝐽 , ` > 0, such that, for each
𝑗𝑜 ≥ 0,

∑𝑗𝑜+𝐽
𝑗=𝑗𝑜

𝜓 ( 𝑗)𝜓 ( 𝑗)⊤ ≥ `𝐼𝑚\
.

While the necessity of persistency of excitation is well estab-

lished in the literature, we can see that the form of such condition is

determined by how𝜓 is defined mathematically. Clearly, the nature

of dom𝜓 leads to different mathematical conditions.

In [24], the regressor function𝜓 is viewed as a general ‘hybrid sig-

nal’ (in the sense of [9]), so it is allowed to exhibit both continuous

and discrete behaviors. That is, the linear regression model becomes

𝑦 (𝑡, 𝑗) = 𝜓 (𝑡, 𝑗)⊤\ , where dom𝜓 (hence dom𝑦) is a hybrid time

domain in which 𝑡 is the ordinary time capturing the continuous

evolution of𝜓 and 𝑗 captures the instantaneous jumps of𝜓 . Corre-

spondingly, the estimate 𝑦 is defined as 𝑦 (𝑡, 𝑗) := 𝜓 (𝑡, 𝑗)⊤ ˆ\ (𝑡, 𝑗). As
a result, for ((𝑡, 𝑗), (𝑡, 𝑗 + 1)) ∈ dom𝜓 × dom𝜓 , i.e., when𝜓 jumps,

ˆ\ is updated according to the discrete-time law (3), which in hybrid

time becomes

ˆ\ (𝑡, 𝑗+1) = ˆ\ (𝑡, 𝑗)−𝜎 (𝑡, 𝑗)𝜓 (𝑡, 𝑗)𝑒 (𝑡, 𝑗), 𝜎 (𝑡, 𝑗) :=
𝛾

1 + 𝛾 |𝜓 (𝑡, 𝑗) |2
.

On the other hand, when 𝜓 flows, i.e., for all (𝑡, 𝑗) ∈ dom𝜓 with

(𝑡, 𝑗 + 1) ∉ dom𝜓 , we update ˆ\ according to the continuous-time

adaptation law (1), that is,

¤̂
\ (𝑡, 𝑗) = −𝛾𝜓 (𝑡, 𝑗)𝜓 (𝑡, 𝑗)⊤ ˜\ (𝑡, 𝑗) .

The choice of using a hybrid gradient algorithm is not of pure

academic interest. It is showed in [24] that parametric convergence,

and more precisely UES of the set { ˜\ = 0}, is guaranteed under a

relaxed form of persistence of excitation tailored for hybrid systems,

which is less restrictive than the CT- or the DT-PE. In [24], the

global behavior of
˜\ is modeled and analyzed using the hybrid-

systems framework in [9]. In particular, UES of the set { ˜\ = 0} is
guaranteed under the following hybrid persistence of excitation

(HPE) condition that generalizes Assumptions 1 and 2.

Assumption 3 (HPE). There exist 𝐾 , ` > 0 such that, for each⋃𝐽
𝑗=𝑗𝑜

(
[𝑡 𝑗 , 𝑡 𝑗+1] × { 𝑗}

)
⊂ dom𝜓 with (𝑡 𝐽 +1 − 𝑡 𝑗𝑜 ) + (𝐽 − 𝑗𝑜 ) ≥ 𝐾 ,

we have
𝐽∑︁

𝑗=𝑗𝑜

[∫ 𝑡 𝑗+1

𝑡 𝑗

𝜓 (𝜏, 𝑗)𝜓 (𝜏, 𝑗)⊤𝑑𝜏 +
𝛾𝜓 (𝑡 𝑗+1, 𝑗)𝜓 (𝑡 𝑗+1, 𝑗)⊤

2 + 2𝛾 |𝜓 (𝑡 𝑗+1, 𝑗) |2

]
≥ `𝐼𝑚\

.

Roughly speaking, the HPE condition in Assumption 3 is less

conservative than its counter-parts CT- and DT-PE since it captures

the fact that the richness of a signal may be enhanced by an ap-

propriate mingling of exciting flows and jumps, which, otherwise,

are insufficient to guarantee that either the CT- or the DT-PE hold

—see [24] for an example.

In this paper, inspired by [5, 12, 19], we carry a step further the

relaxation of the conditions for parameter estimation using the

hybrid-gradient estimation algorithm. We propose an algorithm

that relies on a network of estimators, each of which is designed

using a hybrid gradient-based adaptation law and has access to

only limited data, involving the parameters of the global process.

However, to compensate for the lack of data, the different estima-

tors are interconnected, so that they share their estimates, with

the goal of achieving consensus. Furthermore, we use our main

result as a building block to address the observation/identification

problem for a class of nonlinear hybrid systems with unknown

parameters. After decomposing the hybrid system into (reduced-

order) interconnected subsystems, a reduced-order hybrid adaptive

observer/estimator is assigned to each subsystem. To that end, we

borrow inspiration from [10, 30]. The different observers/estimators

form a network and exchange their estimates of the parameters to

reconstruct the state as well as the unknown parameters.

The considered distributed-estimation framework is useful in

many contexts, including the following:

(1) For large-scale systems, where local estimators are mounted on

local sensors, so each estimator has access only to local data

involving the parameters of the global system. Interconnecting

the local estimators, so that they share their estimates, serves

the estimation process. The idea per se is not new; distributed
observers have been proposed in the literature of continuous-

and discrete-time systems separately, e.g., in [13, 26, 29], but our

hybrid algorithms are illustrated to perform better.

(2) When reinforcing a single real-time estimator using old data.

For example, when a single estimator processing real-time data

has also access to old data, the old data may be exploited by

designing several virtual estimators to interact with the one

treating the real-time data; see the forthcoming Section 3.2

for more details. Such estimation-design approach fits within

the paradigm of exploration vs exploitation as it is the case in

concurrent-learning control strategies [7, 20].

(3) In homogeneous networks of dynamical systems, where the

agents need to estimate some of there (equal) parameters while

achieving a cooperative task. Instead of each agent estimating

the parameters on its own, a cooperative strategy can yield

better convergence properties under relaxed conditions [5].

The considered distributed estimation framework has been stud-

ied in the literature for the continuous-time case only [5, 12, 19].

Indeed, under different graph conditions, distributed (continuous-

time) persistence of excitation conditions are shown to be necessary

and sufficient to guarantee UES of the set { ˜\ = 0}. However, to
the best of our knowledge, estimating the convergence rate has

not been addressed in existing literature. Furthermore, the whole

problem is unsolved in the hybrid case.

The rest of the paper is organized as follows. In Section 2, we

recall some basic concepts of hybrid systems and graph theory. In

Section 3, we formulate the gradient-based estimation problem in a

distributed setting and provide our main statement. In Section 4,

we address the cooperative observation/identification problem for

a class of hybrid systems with unknown parameters and, in Section

5, we present several illustrative examples.

2 PRELIMINARIES
Notations. R≥0 := [0,∞), N := {0, 1, . . . ,∞}. Given a nonempty

set 𝐾 ⊂ R𝑚𝑥
, |𝑥 |𝐾 := inf𝑦∈𝐾 |𝑥 −𝑦 |, int(𝐾) denotes the interior of

𝐾 , and cl(𝐾) denotes its closure. For a nonempty set 𝑂 ⊂ R𝑛 , 𝐾\𝑂
denotes the subset of elements of 𝐾 that are not in 𝑂 . For a map

𝜙 : R≥0×N→ R𝑚𝑥 ∪{∅}, dom𝜙 ⊂ R≥0×N denotes the domain of

definition of 𝜙 . Furthermore, |𝜙 |∞ := sup{𝜙 (𝑡, 𝑗) : (𝑡, 𝑗) ∈ dom𝜙}.
For a differentiable map (𝑥) ↦→ 𝑉 (𝑥) ∈ R, ∇𝑉 denotes the gradient
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of𝑉 with respect to 𝑥 . For a symmetric semi-positive definite matrix

Γ ∈ R𝑚𝑥×𝑚𝑥
, _𝑚𝑖𝑛 (Γ) and |Γ | := _𝑚𝑎𝑥 (Γ) denote the smallest

and the largest eigenvalues of Γ, and the trace of Γ, respectively.
By 1𝑚𝑥

∈ R𝑚𝑥
, we denote the vector whose entries are equal to

1/√𝑚𝑥 . For a sequence {𝐴𝑖 }
𝑚𝑦

𝑖=1
⊂ R𝑚𝑥×𝑚𝑥

, blkdiag

𝑖∈{1,2,...,𝑚𝑦 }
{𝐴𝑖 } is the

block-diagonal matrix whose 𝑖th diagonal block corresponds to the

matrix 𝐴𝑖 . Finally, ⊗ denotes the Kronecker product.

2.1 On hybrid systems
Following [9], we view a hybrid dynamical system, denoted by

H := (𝐶, 𝐹, 𝐷,𝐺), as a combination of a constrained differential

and a constrained difference equations given by

H :

{
¤𝑥 = 𝐹 (𝑥) 𝑥 ∈ 𝐶
𝑥+ = 𝐺 (𝑥) 𝑥 ∈ 𝐷, (5)

with the state variable 𝑥 ∈ X ⊂ R𝑚𝑥
, the flow set 𝐶 ⊂ X, the

jump set 𝐷 ⊂ X, the flow and jump maps 𝐹 : 𝐶 → R𝑚𝑥
and

𝐺 : 𝐷 → R𝑚𝑥
, respectively.

Solutions to hybrid systems as defined above, are defined using

the following concept.

Definition 2.1 (Hybrid arc). A map 𝜙 : dom𝜙 → R𝑚𝑥
with

dom𝜙 ⊂ R≥0×N is a hybrid arc if𝜙 is parameterized by an ordinary

time variable 𝑡 ∈ R≥0 and a discrete jump variable 𝑗 ∈ N and dom𝜙

is such that, for each (𝑇, 𝐽 ) ∈ dom𝜙 , dom𝜙∩([0,𝑇 ] × {0, 1, . . . , 𝐽 }) =
∪𝐽
𝑗=0

(
[𝑡 𝑗 , 𝑡 𝑗+1] × { 𝑗}

)
for a sequence

{
𝑡 𝑗

} 𝐽 +1

𝑗=0
, such that 𝑡 𝑗+1 ≥ 𝑡 𝑗 ,

𝑡0 = 0, and 𝑡 𝐽 +1 = 𝑇 .

Definition 2.2 (Concept of solution toH ). Ahybrid arc𝜙 : dom𝜙 →
R𝑚𝑥

is a solution toH if

(S0) 𝜙 (0, 0) ∈ cl(𝐶) ∪ 𝐷 ;
(S1) for all 𝑗 ∈ N such that 𝐼 𝑗 := {𝑡 : (𝑡, 𝑗) ∈ dom𝜙} has nonempty

interior, 𝑡 ↦→ 𝜙 (𝑡, 𝑗) is locally absolutely continuous and

𝜙 (𝑡, 𝑗) ∈ 𝐶 for all 𝑡 ∈ int(𝐼 𝑗 ),
¤𝜙 (𝑡, 𝑗) = 𝐹 (𝜙 (𝑡, 𝑗)) for almost all 𝑡 ∈ 𝐼 𝑗 ;

(S2) for all (𝑡, 𝑗) ∈ dom𝜙 such that (𝑡, 𝑗 + 1) ∈ dom𝜙 , we have

𝜙 (𝑡, 𝑗) ∈ 𝐷 and 𝜙 (𝑡, 𝑗 + 1) = 𝐺 (𝜙 (𝑡, 𝑗)).
Next, we recall from [23] the definition of uniform exponential

stability (UES) of a general closed set for a hybrid system.

Definition 2.3 (UES). Consider the hybrid systemH := (𝐶, 𝐹, 𝐷,𝐺)
and let S ⊂ X be a closed set. The set S is said to be UES for H
on X𝑜 ⊂ X if there exist ^, _ > 0 such that, each solution 𝜙 to H
starting from 𝜙 (0, 0) ∈ X𝑜 , we have

|𝜙 (𝑡, 𝑗) |S ≤ ^ exp
−_ (𝑡+𝑗) |𝜙 (0, 0) |S ∀(𝑡, 𝑗) ∈ dom𝜙. (6)

When X𝑜 = X, we say S is said to be UES forH .

The constant _ in (6) is called a convergence rate of the solutions

to H towards S. Finally, we recall a characterization of UES for

hybrid systems using Lyapunov functions.

Lemma 2.4. A closed subset S ⊂ X is UES for H on X𝑜 if there
exists a function 𝑉 : R≥0 × N × X → R≥0 and positive constants
( ¯_, _, _𝑐 , _𝑑 ) such that

_ |𝑥 |2S ≤ 𝑉 (𝑡, 𝑗, 𝑥) ≤ ¯_ |𝑥 |2S, (7)

and, along each solution 𝜙 toH starting from X𝑜 , we have

• For each 𝑗 ∈ N such that int(𝐼 𝑗 ) ≠ ∅, 𝑡 ↦→ 𝑉 (𝑡, 𝑗, 𝜙 (𝑡, 𝑗)) is
absolutely continuous on 𝐼 𝑗 and
¤𝑉 (𝑡, 𝑗, 𝜙 (𝑡, 𝑗)) ≤ −_𝑐 |𝜙 (𝑡, 𝑗) |S for almost all 𝑡 ∈ 𝐼 𝑗 .

• For each ((𝑡, 𝑗), (𝑡, 𝑗 + 1)) ∈ dom𝜙 × dom𝜙 ,

𝑉 (𝑡, 𝑗 + 1, 𝜙 (𝑡, 𝑗 + 1)) −𝑉 (𝑡, 𝑗, 𝜙 (𝑡, 𝑗)) ≤ −_𝑑 |𝜙 (𝑡, 𝑗) |S .

Note that when the conditions in Theorem 4.1 are satisfied, a

lower bound of the convergence rate is given by

_ := min

{
_𝑐
¯_
,− ln

[
1 − _𝑑

¯_

]}
.

2.2 On Graph theory
To formulate our distributed hybrid excitation condition, we lay on

some graph-theoretical notions [22]. A directed graph or a digraph

G(V, E) is characterized by the set of nodes V = {1, 2, ...,𝑚𝑦},
and the set of directed edges E. The edge set E consists of ordered

pairs of the form (𝑘, 𝑖), which indicates a directed link from node

𝑘 to node 𝑖 . We assume that the digraphs are simple, i.e., there are

no self-arcs. Note that when there exists a directed edge (𝑘, 𝑖) ∈ E,
then node 𝑘 is called an in-neighbor of node 𝑖 . We assign a positive

weight 𝑎𝑖𝑘 to each edge (𝑘, 𝑖). That is, 𝑎𝑖𝑘 = 0 if (𝑘, 𝑖) is not an edge.

A digraph is strongly connected if for any two distinct nodes 𝑖 and

𝑗 , there is a path from 𝑖 to 𝑗 . A digraph G is weakly connected if

the undirected graph obtained by ignoring the orientations of the

edges is connected.

3 DISTRIBUTED HYBRID GRADIENT
ALGORITHM

For simplicity, in the introduction, we discussed a classical pa-

rameter estimation problem based on one measurable output and

a vectorial regressor function 𝜓 . Nonetheless, the gradient algo-

rithms previously presented also apply to multi-output systems,

where 𝑦 ∈ R𝑚𝑦
for some integer𝑚𝑦 > 1. In this case,𝜓 ∈ R𝑚\×𝑚𝑦

,

so 𝜓𝜓⊤ ∈ R𝑚\×𝑚\
. Now let 𝑦 := [𝑦1 · · · 𝑦𝑚𝑦

]⊤ and assume that

each component 𝑦𝑖 is available to a different estimator, but the

different estimators exchange the values of their estimates over a

network. With this in mind, we consider𝑚𝑦 estimators and, for

each 𝑖 ∈ {1, 2, ...,𝑚𝑦}, we introduce a hybrid regressor function,

denoted by𝜓𝑖 : dom𝜓𝑖 → R𝑚\
, and an estimate of \ , denoted by

ˆ\𝑖 , which is yet to be defined dynamically. Now, akin to the case of

a single hybrid estimator described in the introduction, we define

the output of the 𝑖th estimator as

𝑦𝑖 (𝑡, 𝑗) = 𝜓𝑖 (𝑡, 𝑗)⊤ ˆ\𝑖 (𝑡, 𝑗) 𝑖 ∈ {1, 2, ...,𝑚𝑦}. (8)

Correspondingly, the error between the actual and the estimated

output for the 𝑖-th estimator is given by

𝑒𝑖 (𝑡, 𝑗) := 𝑦𝑖 (𝑡, 𝑗) − 𝑦𝑖 (𝑡, 𝑗) = 𝜓𝑖 (𝑡, 𝑗)⊤ ˜\𝑖 (𝑡, 𝑗), ˜\𝑖 := ˆ\𝑖 − \ . (9)

At this point, we introduce a standing assumption on the regu-

larity of𝜓𝑖 for all 𝑖 .

(SA1) For each 𝑗 ∈ N, the map 𝑡 ↦→ 𝜓 (𝑡, 𝑗) is continuous on int(𝐼 𝑗 ),
where 𝐼 𝑗 := {𝑡 : (𝑡, 𝑗) ∈ dom𝜓 }. Furthermore, there exists

¯𝜓 > 0 such that |𝜓 |∞ ≤ ¯𝜓 .

Remark 1. (SA1) is not restrictive, especially when the regressor𝜓
is excited by an external input that is a design parameter.
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To achieve the identification of \ , the different estimators are de-

signed to exchange their estimates, in real (hybrid) time, according

to a communication graph denoted by G. That is, similarly to the

algorithm proposed in [12] for distributed estimation in continuous

time, we design an update law for each
ˆ\𝑖 along the discrete-time

evolution and along the continuous-time evolution of𝜓 as follows.

• For all (𝑡, 𝑗) ∈ dom𝜓𝑖 and (𝑡, 𝑗 + 1) ∈ dom𝜓 (i.e., when 𝜓

jumps), inspired by [17], we set the update law for
ˆ\𝑖 to

ˆ\+𝑖 = ˆ\𝑖 − 𝜎𝑖 (𝑡, 𝑗)𝜓𝑖 (𝑡, 𝑗)𝑒𝑖 − 𝛿
𝑚𝑦∑︁
𝑘=1

𝑎𝑖𝑘 ( ˆ\𝑖 − ˆ\𝑘 ), (10)

where 𝛿 > 0 is an interconnection gain, 𝛾 > 0, and 𝜎𝑖 (𝑡, 𝑗) :=
𝛾

1+𝛾 |𝜓𝑖 (𝑡, 𝑗) |2 .

• On the other hand, when (𝑡, 𝑗) ∈ dom𝜓 and (𝑡, 𝑗+1) ∉ dom𝜓

(i.e.,𝜓 flows), we update
ˆ\ according to

¤̂
\𝑖 = −𝛾1𝜓𝑖 (𝑡, 𝑗)𝑒⊤𝑖 − 𝛾2

𝑚𝑦∑︁
𝑘=1

𝑎𝑖𝑘 ( ˆ\𝑖 − ˆ\𝑘 ) . (11)

The coefficients 𝑎𝑖𝑘 ≥ 0 are positive if a reliable directed (that is,
in general, 𝑎𝑖𝑘 ≠ 𝑎𝑘𝑖 ) interconnection exists between the 𝑖th and

𝑘th nodes and equal to zero otherwise. Thus, the estimators are

assumed to be interconnected forming a network of multi-agent

systems that can be modeled using a directed graph G –see Section

2.2. For this graph, we introduce the following standing assumption:

(SA2) The graph G is unidirectional and weakly connected.

Recall that a weakly connected digraph G can be decomposed

into 𝑆 strongly connected subgraphs {G𝑠 (V𝑠 , E𝑠 )}𝑆𝑠=1
, for some

𝑆 ∈ {1, 2, ...,𝑚𝑦}. Among the strongly connected subgraphs in G,
we identify the leading strongly connected subgraphs {G𝑠 }𝑠∈S𝑙

,

S𝑙 ⊂ {1, 2, ..., 𝑆}, with no in-neighbors from any other strongly

connected subgraph.

Remark 2. (SA2) is the least restrictive graph requirement, since
the lack of it implies that some nodes are disconnected from the net-
work.

Now we introduce the Laplacian matrix L := [𝑙𝑖𝑘 ] ∈ R𝑚𝑦×𝑚𝑦

with 𝑙𝑖𝑘 := −𝑎𝑖𝑘 ≤ 0 for 𝑘 ≠ 𝑖 and
∑𝑚𝑦

𝑘=1
𝑎𝑖𝑘 otherwise. Thus, we

may express the right-hand sides of (10) and (11) as

¤̃
\ = −𝛾1Φ𝑐 (𝑡, 𝑗) − 𝛾2

(
L ⊗ 𝐼𝑚\

)
˜\, (12a)

Φ𝑐 (𝑡, 𝑗) := blkdiag{Φ𝑐1 (𝑡, 𝑗),Φ𝑐2 (𝑡, 𝑗)}, (12b)

Φ𝑐1 (𝑡, 𝑗) := 𝛾1blkdiag

𝑖∈V1

{
𝜓𝑖 (𝑡, 𝑗)𝜓𝑖 (𝑡, 𝑗)⊤

}
, (12c)

Φ𝑐2 (𝑡, 𝑗) := 𝛾1blkdiag

𝑖∈V\V1

{
𝜓𝑖 (𝑡, 𝑗)𝜓𝑖 (𝑡, 𝑗)⊤

}
, (12d)

for all times such that the solutions flow, and as

˜\+ = ˜\ − Φ𝑑 (𝑡, 𝑗) ˜\ − 𝛿 (L ⊗ 𝐼𝑚\
) ˜\, (13a)

Φ𝑑 (𝑡, 𝑗) := blkdiag{Φ𝑑1
(𝑡, 𝑗),Φ𝑑2

(𝑡, 𝑗)}, (13b)

Φ𝑑1
(𝑡, 𝑗) := blkdiag

𝑖∈V1

{
𝛾𝜓𝑖 (𝑡, 𝑗)𝜓𝑖 (𝑡, 𝑗)⊤

1 + 𝛾 |𝜓𝑖 (𝑡, 𝑗) |2

}
, (13c)

Φ𝑑2
(𝑡, 𝑗) := blkdiag

𝑖∈V\V1

{
𝛾𝜓𝑖 (𝑡, 𝑗)𝜓𝑖 (𝑡, 𝑗)⊤

1 + 𝛾 |𝜓𝑖 (𝑡, 𝑗) |2

}
. (13d)

for all times such that the solutions jump.

Remark 3. Instead of the discrete-time distributed gradient algo-
rithm in (10), one can use, for each 𝑖 ∈ {1, 2, ...,𝑚𝑦},

ˆ\𝑖 (𝑡, 𝑗 + 1) =
ˆ\𝑖 (𝑡, 𝑗) +

∑𝑚𝑦

𝑘=1
𝑎𝑖𝑘

ˆ\𝑘 (𝑡, 𝑗)

1 + ∑𝑚𝑦

𝑘=1
𝑎𝑖𝑘

− 𝜎𝑖 (𝑡, 𝑗)𝜓𝑖 (𝑡, 𝑗)𝑒𝑖 , (14)

where 𝜎𝑖 (𝑡, 𝑗) :=
𝛾

1+𝛾 |𝜓𝑖 (𝑡, 𝑗) |2 . Hence, in the error coordinates, (14)
becomes

˜\+ = − Φ𝑑 (𝑡, 𝑗) ˜\ +
(
(𝐼𝑚𝑦

+ D)−1 (𝐼𝑚𝑦
+ A) ⊗ 𝐼𝑚\

)
˜\,

where A := [𝑎𝑖𝑘 ] ∈ R𝑚𝑦×𝑚𝑦 is the adjacency matrix associated
with the digraph by setting 𝑎𝑖𝑖 := 0 for all 𝑖 ∈ {1, 2, ...,𝑚𝑦} and D :=

blkdiag
𝑖∈{1,2,...,𝑚𝑦 }

{∑𝑚𝑦

𝑘=1
𝑎𝑖𝑘

}
. Note that solving the estimation problem

under the discrete update in (14) is an open problem.

3.1 Main Result I
Our main statement is that the distributed hybrid estimation laws

(12)-(13) guarantee the estimation of \ provided a property that we

call distributed hybrid persistency of excitation (DHPE) holds.

Assumption 4 (DHPE). For each 𝑠 ∈ S𝑙 , there exist 𝐾𝑠 , `𝑠 > 0

such that, for each hybrid time domain
⋃𝐽
𝑗=𝑗𝑜

(
[𝑡 𝑗 , 𝑡 𝑗+1] × { 𝑗}

)
⊂

dom𝜓 with (𝑡 𝐽 +1 − 𝑡 𝑗𝑜 ) + (𝐽 − 𝑗𝑜 ) ≥ 𝐾𝑠 , we have∑︁
𝑖∈V𝑠

𝐽∑︁
𝑗=𝑗𝑜

[∫ 𝑡 𝑗+1

𝑡 𝑗

𝜓𝑖 (𝜏, 𝑗)𝜓𝑖 (𝜏, 𝑗)⊤𝑑𝜏 +
𝛾𝜓𝑖 (𝑡 𝑗+1, 𝑗)𝜓𝑖 (𝑡 𝑗+1, 𝑗)⊤

2 + 2𝛾 |𝜓𝑖 (𝑡 𝑗+1, 𝑗) |2

]
≥ 𝑚𝑠`𝑠 𝐼𝑚\

.

Remark 4. Note that Assumption 4 is the hybrid counterpart of the
distributed persistence of excitation condition used in [12], which is
shown to be necessary and sufficient for convergence in the continuous-
time setting.

Under the DHPE condition, we establish uniform exponential

stability of { ˜\ = 0} in the hybrid sense (see Def. 2.3) for the fol-

lowing hybrid dynamical system defined after the set of equations

(12a) and (13a). That is,

H𝑑𝑔 :




¤̃
\ = −𝛾1Φ𝑐 (𝑡, 𝑗) ˜\ − 𝛾2

(
L ⊗ 𝐼𝑚\

)
˜\

¤𝑡 = 1

¤𝑗 = 0 ( ˜\, 𝑡, 𝑗) ∈ 𝐶𝑔
(15a)


˜\+ = ˜\ − Φ𝑑 (𝑡, 𝑗) ˜\ − 𝛿 (L ⊗ 𝐼𝑚\

) ˜\

𝑡+ = 𝑡

𝑗+ = 𝑗 + 1 ( ˜\, 𝑡, 𝑗) ∈ 𝐷𝑔,
(15b)

where 𝐷𝑔 := {( ˜\, 𝑡, 𝑗) ∈ R𝑚\ × dom𝜓 : (𝑡, 𝑗 + 1) ∈ dom𝜓 } and
𝐶𝑔 := cl((R𝑚\ × dom𝜓 )\𝐷𝑔).

The formulation of our main statement relies on a specific repre-

sentation of the Laplacian that holds under the standing assumption

(SA2). More precisely, we recall that by an appropriate reordering

of the nodes of G, the Laplacian matrix L of a weakly connected

digraph G can be written in the lower-block triangular form

L =

[
blkdiag

𝑠∈S𝑙

{L𝑠 } 0

𝑀𝑙 𝑀𝑟

]
,
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where each L𝑠 ∈ R𝑚𝑠×𝑚𝑠
is the Laplacian matrix of the strongly

connected component G𝑠 , the lower-left block𝑀𝑙 ∈ R𝑘×𝑚𝑦−𝑘
, 𝑘 :=

𝑚𝑦 −
∑
𝑠∈S𝑙

𝑚𝑠 , is a non-positive matrix, and the lower-right block

𝑀𝑟 ∈ R𝑘×𝑘 is a non-singular M-matrix; namely, 𝑀𝑟 := 𝛾𝑟 𝐼𝑘 −𝐶𝑟 ,
where 𝐶𝑟 ∈ R𝑘×𝑘 is a non-negative matrix, 𝛾𝑟 > 𝜌 (𝐶𝑟 ) > 0, and

𝜌 (𝐶𝑟 ) is the spectral radius of 𝐶𝑟 ; see [6, 12] for more details.

For the sequel, we assume the following.

(SA3) The graph G admits only one leading strongly connected

component G1 (V1, E1); namely, S𝑙 = {1}.
Under (SA3), the Laplacian matrix L enjoys the previous lower-

triangular structure with a simple northeast block, that is,

L =

[
L1 0

𝑀𝑙 𝑀𝑟

]
, (16)

where L1 ∈ R𝑚1×𝑚1
is the Laplacian matrix of the strongly con-

nected component G1. It is to be noted that our approach extends

trivially if we omit assume (SA3).

As a result, we decompose the state
˜\ ofH𝑑𝑔 into

˜\ := ( ˜\𝑠 , ˜\ 𝑓 ),
where

˜\𝑠 contains the state of the elements in the strongly con-

nected graph G1 and
˜\ 𝑓 contains the state of the elements of G that

are not in G1. Using this decomposition, the hybrid system H𝑑𝑔

can be expressed in the following cascaded form

H𝑑𝑔 :




¤̃
\ 𝑓 =−𝛾1Φ𝑐2 (𝑡, 𝑗) ˜\ 𝑓 − 𝛾2

(
𝑀𝑟 ⊗ 𝐼𝑚\

)
˜\ 𝑓 − 𝛾2

(
𝑀𝑙 ⊗ 𝐼𝑚\

)
˜\𝑠

¤̃
\𝑠 =−𝛾1Φ𝑐1 (𝑡, 𝑗) ˜\𝑠 − 𝛾2

(
L1 ⊗ 𝐼𝑚\

)
˜\𝑠

¤𝑡 = 1

¤𝑗 = 0 ( ˜\, 𝑡, 𝑗) ∈ 𝐶𝑔
˜\+
𝑓
= ˜\ 𝑓 − Φ𝑑2

(𝑡, 𝑗) ˜\ 𝑓 − 𝛿
(
𝑀𝑟 ⊗ 𝐼𝑚\

)
˜\ 𝑓 − 𝛿

(
𝑀𝑙 ⊗ 𝐼𝑚\

)
˜\𝑠

˜\+𝑠 = ˜\𝑠 − Φ𝑑1
(𝑡, 𝑗) ˜\𝑠 − 𝛿

(
L1 ⊗ 𝐼𝑚\

)
˜\𝑠

𝑡+ = 𝑡
𝑗+ = 𝑗 + 1 ( ˜\, 𝑡, 𝑗) ∈ 𝐷𝑔 .

Theorem 3.1. Consider the hybrid systemH𝑑𝑔 under Assumption
4. Let SA2 generate L1,𝑀𝑙 , and𝑀𝑟 such that (16) hold and let 𝛿 > 0

be such that

𝑄𝑟 := 𝑃𝑟𝑀𝑟 +𝑀⊤
𝑟 𝑃𝑟 ≥ 4𝛿𝑀⊤

𝑟 𝑃𝑟𝑀𝑟 , (17)

where 𝑃𝑟 :=

(
blkdiag

𝑖∈{1,2,...,𝑘 }

{
𝑀−1

𝑟 1𝑘

})−1

,

𝑃L1 + L⊤
1
𝑃 − 4𝛿L⊤

1
𝑃L1 ≥ 0, (18)

𝑃 := blkdiag
𝑖∈{1,2,...,𝑚1 }

{𝑤𝑖 }, and𝑤 is the left eigenvector of L1 associated to

its null eigenvalue. Then, the set

S := {( ˜\, 𝑡, 𝑗) ∈ R𝑚𝑦𝑚\ × dom𝜓 :
˜\ = 0}

is UES in the sense of Definition 2.3.
Moreover,𝑍 : dom𝜓×R𝑚\𝑚𝑦 → R≥0, given below, is a Lyapunov

function for the closed-loop system:

𝑍 (𝑡, 𝑗, ˜\ ) := ˜\⊤
𝑓

(
𝑃𝑟 ⊗ 𝐼𝑚\

)
˜\ 𝑓 + Z 𝛽 ˜\⊤𝑠 (𝑃 ⊗ 𝐼𝑚\

) ˜\𝑠 ,

+ Z ˜\⊤𝑠 (1𝑚1
⊗ 𝐼𝑚\

)
[
𝛼𝐼𝑚\

+ Q(𝑡, 𝑗)
]
(1⊤𝑚1

⊗ 𝐼𝑚\
) ˜\𝑠

where Q : dom𝜓 → R𝑚\×𝑚\ is given by

Q(𝑡, 𝑗) :=

(
3

¯𝜓2

2 − 2 exp
−1

)
𝐼𝑚\

−𝑄Φ (𝑡, 𝑗, +∞),

𝑄Φ (𝑡, 𝑗,∞) :=

𝑚∞∑︁
𝑖=𝑗

∫ 𝑡𝑖+1

𝑡𝑖

exp
(𝑡+𝑗)−(𝑠+𝑖) Φ(𝑠, 𝑖)𝑑𝑠

+ 1

2

𝑚∞∑︁
𝑖=𝑗

∫ 𝑡𝑖+2

𝑡𝑖+1

exp
(𝑡+𝑗)−(𝑠+𝑖) 𝑑𝑠Φ(𝑡𝑖+1, 𝑖),

Φ(𝑡, 𝑗) :=


1

𝑚1

𝑚1∑︁
𝑖=1

𝜓𝑖 (𝑡, 𝑗)𝜓𝑖 (𝑡, 𝑗)⊤ if 𝑡 ∈ int(𝐼 𝑗 ),

1

𝑚1

𝑚1∑︁
𝑖=1

𝛾𝜓𝑖 (𝑡, 𝑗)𝜓𝑖 (𝑡, 𝑗)⊤
1 + 𝛾 |𝜓𝑖 (𝑡, 𝑗) |2

otherwise,

𝑚∞ ∈ N ∪ {+∞} is the maximum amount of jumps achieved on
dom𝜓 ∩ [𝑡, +∞) × { 𝑗, 𝑗 + 1, ...} := [𝑡, 𝑡 𝑗+1] × { 𝑗} ∪ [𝑡 𝑗+1, 𝑡 𝑗+2] × { 𝑗 +
1} ∪ · · · , and (𝛼, 𝛽, Z ) are positive constants appropriately chosen
such that (7) holds and, along the solutions toH𝑑𝑔 , we have

• For each (𝑡, 𝑗) ∈ dom𝜓 such that (𝑡, 𝑗 + 1) ∉ dom𝜓 ,

¤𝑍 (𝑡, 𝑗, ˜\ ) ≤ −𝛾2_𝑚𝑖𝑛 (𝑄𝑟 )
2

| ˜\ |2 .

• For each (𝑡, 𝑗) ∈ dom𝜓 such that (𝑡, 𝑗 + 1) ∈ dom𝜓 ,

𝑍 (𝑡, 𝑗 + 1, ˜\+) − 𝑍 (𝑡, 𝑗, ˜\ ) ≤ −𝛿_𝑚𝑖𝑛 (𝑄𝑟 )
4

| ˜\ |2 .

Remark 5. Note that the first term in 𝑍 provides a strict Lya-
punov function for the hybrid dynamics of ˜\ 𝑓 when ˜\𝑠 = 0. Fur-
thermore, the third term provides a non-strict Lyapunov function for
the hybrid dynamics of ˜\𝑠 , which we strictify by adding the second
term in 𝑍 . Indeed, the variations of the third term in 𝑍 along the
solutions to H𝑑𝑔 yield to a negative (quadratic) term in the errors

𝑒𝑠 :=

[
˜\𝑠 − (1𝑚1

⊗ 𝐼𝑚\
) (1⊤𝑚1

⊗ 𝐼𝑚\
) ˜\𝑠

]
. Then, it is necessary to an-

alyze the behavior of the average state 𝑥𝑠 := (1⊤𝑚1

⊗ 𝐼𝑚\
) ˜\𝑠 when

𝑒𝑠 = 0—cf. [18]. This is the purpose of the second term in 𝑍 .

Remark 6. Note that we can always find 𝛿 > 0 such that conditions
(17) and (18) hold. Indeed, the matrix 𝑄𝑟 is positive definite, which
implies that we can always find 𝛿 > 0 sufficiently small such that (17)
holds. Moreover, we show in another step that Ker(𝑃L1 + L⊤

1
𝑃) =

Span (1𝑚1
); hence, Ker(𝑃L1 + L⊤

1
𝑃) ⊂ Ker(L⊤

1
𝑃L1). As a result,

we can always design 𝛿 > 0 sufficiently small such that (18) holds.

3.2 Connection to concurrent-learning-based
estimation

Consider the scenario where a single estimator is used, let (𝜓1, 𝑦1)
be input-output data received in real time. Assume that the esti-

mator has access to old data forming the sequence {(𝜓𝑖 , 𝑦𝑖 )}
𝑚𝑦

𝑖=2
. In

this case, the hybrid update of
ˆ\1 given in (10)-(11), while replacing

𝑖 therein by 1, can viewed as a sum of two types of terms:

(1) exploration terms, which are −𝛾1𝜓1 (𝑡, 𝑗)𝑒⊤
1
along flows and

ˆ\1 − 𝜎1 (𝑡, 𝑗)𝜓1 (𝑡, 𝑗)𝑒1 along jumps and

(2) exploitation terms, which are −𝛾2

∑𝑚𝑦

𝑘=1
𝑎

1𝑘 ( ˆ\1 − ˆ\𝑘 ) along
flows and −𝛿 ∑𝑚𝑦

𝑘=1
𝑎

1𝑘 ( ˆ\1 − ˆ\𝑘 ) along jumps.
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According to Theorem 3.1, the estimator can estimate \ exponen-

tially fast, even if the real-time input𝜓1 is not hybrid persistently

exciting. In contrast, estimating the parameters is impossible with-

out exploiting the old data {(𝜓𝑖 , 𝑦𝑖 )}
𝑚𝑦

𝑖=2
. Furthermore, when the

real-time input𝜓1 is hybrid persistently exciting, it is important to

design well the graph topology so that adding virtual estimators

improve, or at least do not degrade, the convergence properties. All

these behaviors are illustrated, via simulations, in Section 5.

4 COOPERATIVE ADAPTIVE
OBSERVATION/IDENTIFICATION

Based on the approach described in Section 3, we study the observation-

plus-identification problem for hybrid systems of the form

H :


¤𝑥 = 𝐴𝑐𝑥 + Ψ𝑐 (𝑦,𝑢)\ (𝑥,𝑢) ∈ 𝐶

𝑥+ = 𝐴𝑑𝑥 + Ψ𝑑 (𝑦,𝑢)\ (𝑥,𝑢) ∈ 𝐷
𝑦 = 𝐸𝑥,

(19)

where 𝑥 ∈ X ⊂ R𝑚𝑥
is the state, 𝑦 ∈ R𝑚𝑦

, with 𝑚𝑦 ≤ 𝑚𝑥 , is

the output, \ ∈ R𝑚\
is a constant vector of unknown parameters,

𝐸 ∈ R𝑚𝑦×𝑚𝑥
is the output matrix, (𝐶, 𝐷) ⊂ R𝑚𝑥𝑚𝑢 × R𝑚𝑥𝑚𝑢

are

the flow and the jump sets, respectively, and Ψ𝑐 ,Ψ𝑑 : R𝑚𝑦 ×R𝑚𝑢 →
R𝑚𝑥×𝑚\

are the continuous- and the discrete-time regressor func-

tions, respectively, satisfying the following assumption.

(SA4) The regressors Ψ𝑐 and Ψ𝑑 are continuous.

Our approach is based on designing a network of reduced-order

adaptive observers/identifiers that exchange their parameter es-

timates according to a communication graph. To do so, we start

assuming that the hybrid system H can be decomposed into𝑚𝑦
subsystems of the form

H𝑖 :


¤𝑥𝑖 = 𝐴𝑐𝑖𝑥𝑖 + Ψ𝑐𝑖 (𝑦,𝑢)\ (𝑥,𝑢) ∈ 𝐶
𝑥+
𝑖

= 𝐴𝑑𝑖𝑥𝑖 + Ψ𝑑𝑖 (𝑦,𝑢)\ (𝑥,𝑢) ∈ 𝐷
𝑦𝑖 = 𝐸𝑖𝑥𝑖 ,

where, for each 𝑖 ∈ {1, 2, ...,𝑚𝑦}, 𝑥𝑖 ∈ R𝑚𝑥𝑖
, 𝑦𝑖 ∈ R, and Ψ𝑖 :

R𝑚𝑦 × R𝑚𝑢 → R𝑚𝑥𝑖×𝑚\
, and 𝐸𝑖 ∈ R𝑚𝑥𝑖

. Furthermore, we let the

following standing assumption holds.

(SA5) There exist scalars𝑎𝑐 , 𝑎𝑑 ≤ 0 and 𝛽,𝑀 ≥ 0, matrices𝐾𝑐𝑖 , 𝐾𝑑𝑖 ∈
R𝑚𝑥𝑖

, and a positive definite matrix 𝑃𝑖 = 𝑃⊤
𝑖

∈ R𝑚𝑥𝑖×𝑚𝑥𝑖

such that

𝐴⊤
𝑐𝑐𝑙𝑖

𝑃𝑖 + 𝑃𝑖𝐴𝑐𝑐𝑙𝑖 ≤ 𝑎𝑐𝑃𝑖 , (20a)

𝐴⊤
𝑑𝑐𝑙𝑖

𝑃𝑖𝐴𝑑𝑐𝑙𝑖 ≤ 𝑒𝑎𝑑 𝑃𝑖 , (20b)

where 𝐴𝑐𝑐𝑙𝑖 := 𝐴𝑐𝑖 − 𝐾𝑐𝑖𝐸𝑖 and 𝐴𝑑𝑐𝑙𝑖 := 𝐴𝑑𝑖 − 𝐾𝑑𝑖𝐸𝑖 , and
𝑎𝑐𝑡 + 𝑎𝑑 𝑗 ≤ 𝑀 − 𝛽 (𝑡 + 𝑗) ∀(𝑡, 𝑗) ∈ R≥0 × N≥0 .

1
(21)

Remark 7. According to (SA5), for each 𝑖 ∈ {1, 2, . . . ,𝑚𝑦}, the
pairs (𝐴𝑐𝑖 , 𝐸𝑖 ) and (𝐴𝑑𝑖 , 𝐸𝑖 ) are observable and admit a common
quadratic Lyapunov function characterized by the matrix 𝑃𝑖 . Note
that (SA5) can be relaxed under an extra knowledge on dom𝜙 ; see [21].
For example, when 𝜙 is eventually discrete, eventually continuous,
jumps periodically, has a persistent flow, or has a persistent jump.

The goal in this section is to design multiple reduced-order

(SA6) Each observer/identifierH𝑜𝑖 knows thematrices (𝐴𝑐𝑖 , 𝐴𝑑𝑖 , 𝐸𝑖 ),
the maps (Ψ𝑐𝑖 ,Ψ𝑑𝑖 ), and the pair (𝑦,𝑢).

1
One can easily check that for given 𝑎𝑐 , 𝑎𝑑 ≤ 0, there always exist𝑀, 𝛽 ≥ 0 such

that (21) holds.

(SA7) The different observers/identifiers exchange their estimates

of \ according to a graph G satisfying (SA2) and (SA3).

(SA8) Knowing the pair (𝑦,𝑢), we can detect instantaneously when
the corresponding solution 𝜙 toH jumps.

Remark 8. Note that the decomposition of H into {H𝑖 }
𝑚𝑦

𝑖=1
as-

sumes a particular structure for H . Extending our result using a
more general decomposition based on the canonical form of observ-
ability could be a promising perspective to this work. Furthermore,
one could envision relaxing (SA8) by assuming the jump times to be
approximately known —cf. [3].

4.1 Networked Hybrid Adaptive
Observers/Identifiers

As in the classical observer-design paradigm, we assume that each

observer/identifier H𝑜𝑖 contains a copy of H𝑖 only. Hence, it is

reasonable to expect that, when the dimension H is large (note

that𝑚𝑥 =
∑𝑚𝑦

𝑖=1
𝑚𝑥𝑖 ), the proposed approach should impose rely

on shorter computation time as opposed to using a single ob-

server/identifier containing a copy of the entire systemH .

Consider a solution 𝜙 : dom𝜙 → R𝑚𝑥
toH and the correspond-

ing input-output pair (𝑢,𝑦). For each 𝑖 ∈ {1, 2, ...,𝑚𝑦}, the state

vector of the 𝑖th estimatorH𝑜𝑖 is

𝑋𝑜𝑖 := (𝑡, 𝑗, 𝑥𝑖 , ˆ\𝑖 , Γ𝑐𝑖 , Γ𝑑𝑖 ) ∈ X𝑜𝑖 ,
where X𝑜𝑖 := dom𝜙 × R𝑚𝑥𝑖×𝑚\ × R𝑚𝑥𝑖×𝑚\ × R𝑚𝑥𝑖 × R𝑚\ .

Furthermore, to simplify the notation, we introduce the hybrid

arcs Ψ𝑖 , Γ𝑖 : dom𝜙 → R𝑚𝑥𝑖×𝑚\
and𝜓𝑖 : dom𝜙 → R𝑚\

given by

Ψ𝑖 (𝑡, 𝑗) :=

{
Ψ𝑐𝑖 (𝑦 (𝑡, 𝑗), 𝑢 (𝑡, 𝑗)) if 𝑡 ∈ int(𝐼 𝑗 )
Ψ𝑑𝑖 (𝑦 (𝑡, 𝑗), 𝑢 (𝑡, 𝑗)) otherwise,

(22)

Γ𝑖 (𝑡, 𝑗) :=

{
Γ𝑐𝑖 (𝑡, 𝑗) if 𝑡 ∈ int(𝐼 𝑗 )
Γ𝑑𝑖 (𝑡, 𝑗) otherwise,

(23)

𝜓𝑖 (𝑡, 𝑗) := Γ𝑖 (𝑡, 𝑗)⊤𝐸⊤𝑖 , (24)

where 𝐼 𝑗 := {𝑡 : (𝑡, 𝑗) ∈ dom𝜙}.
Then, the hybrid dynamics of eachH𝑜𝑖 is given by

H𝑜𝑖 :





¤𝑡 = 1, ¤𝑗 = 0,
¤̂𝑥𝑖 = 𝐴𝑐𝑖𝑥𝑖 + Ψ𝑖 ˆ\𝑖 + (𝐾𝑐𝑖 + 𝛾1Γ𝑖𝜓𝑖 ) (𝑦𝑖 − 𝐸𝑖𝑥𝑖 )

−𝛾2

∑𝑚𝑦

𝑗=1
𝑎𝑖 𝑗 Γ𝑖 ( ˆ\𝑖 − ˆ\ 𝑗 )

¤̂
\𝑖 = 𝛾1𝜓𝑖 (𝑦𝑖 − 𝐸𝑖𝑥𝑖 ) − 𝛾2

∑𝑚𝑦

𝑗=1
𝑎𝑖 𝑗 ( ˆ\𝑖 − ˆ\ 𝑗 )

¤Γ𝑐𝑖 = 𝐴𝑐𝑐𝑙𝑖Γ𝑐𝑖 + Ψ𝑖 ¤Γ𝑑𝑖 = 0, 𝑋𝑜𝑖 ∈ 𝐶𝑜𝑖

(25a)



𝑡+ = 𝑡, 𝑗+ = 𝑗 + 1,

𝑥+
𝑖
= 𝐴𝑑𝑖𝑥𝑖 + Ψ𝑖 ˆ\𝑖 +

(
𝐾𝑑𝑖 + 𝜎𝑖Γ+𝑖 𝜓𝑖

)
(𝑦𝑖 − 𝐸𝑖𝑥𝑖 )

−𝛿 ∑𝑚𝑦

𝑗=1
𝑎𝑖 𝑗 Γ

+
𝑖
( ˆ\𝑖 − ˆ\ 𝑗 )

ˆ\+
𝑖
= ˆ\𝑖 + 𝜎𝑖𝜓𝑖 (𝑦𝑖 − 𝐸𝑖𝑥𝑖 ) − 𝛿

∑𝑚𝑦

𝑗=1
𝑎𝑖 𝑗 ( ˆ\𝑖 − ˆ\ 𝑗 )

Γ+
𝑐𝑖

= Γ𝑐𝑖 , Γ+
𝑑𝑖

= 𝐴𝑑𝑐𝑙𝑖Γ𝑑𝑖 + Ψ𝑖 𝑋𝑜𝑖 ∈ 𝐷𝑜𝑖 ,

(25b)

where

𝐶𝑜𝑖 := {𝑋𝑜𝑖 ∈ X𝑜𝑖 : (𝑡, 𝑗) ∈ dom𝜙 and (𝑡, 𝑗 + 1) ∉ dom𝜙},
𝐷𝑜𝑖 := {𝑋𝑜𝑖 ∈ X𝑜𝑖 : (𝑡, 𝑗) ∈ dom𝜙 and (𝑡, 𝑗 + 1) ∈ dom𝜙},

the matrices 𝐾𝑐𝑖 and 𝐾𝑑𝑖 are designed such that (SA5) hold, 𝛾1,2

and 𝛿 > 0 are constant adaptation rates, and 𝜎𝑖 : dom𝜙 → R is

given by 𝜎𝑖 (𝑡, 𝑗) :=
𝛾

1+𝛾 |𝜓𝑖 (𝑡, 𝑗) |2 , where 𝛾 > 0 is a constant design

parameter.
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4.2 Main Result II
Before presenting our main result, we introduce the error coor-

dinates 𝑒𝑖 := 𝑥𝑖 − 𝑥𝑖 and ˜\𝑖 := ˆ\𝑖 − \𝑖 for all 𝑖 ∈ {1, 2, ...,𝑚𝑦}.
Furthermore, for compact notation, we let 𝑒 := (𝑒1, 𝑒2, ..., 𝑒𝑚𝑦

), ˜\ :=

( ˜\1, ˜\2, ..., ˜\𝑚𝑦
),𝑋𝑜 := (𝑋𝑜1, 𝑋𝑜2, ..., 𝑋𝑜𝑚𝑦

), Γ𝑐 := (Γ𝑐1, Γ𝑐2, ..., Γ𝑐𝑚𝑦
),

Γ𝑑 := (Γ𝑑1
, Γ𝑑2

, ..., Γ𝑑𝑚𝑦
), andX𝑜 := (X𝑜1×X𝑜2×...×X𝑜𝑚𝑦

). Further-
more, we introduce the set S𝑒\ := {(𝑋𝑜 , 𝑥) ∈ X𝑜 × X : 𝑒 = ˜\ = 0}
to render UES and, for a given Γ̄𝑜 > 0, we introduce the set of initial

conditions

X𝑖𝑛 := {(𝑋𝑜 , 𝑥) ∈ X𝑜 × X : max{|Γ𝑐 |, |Γ𝑑 |} ≤ Φ̄𝑜 }.

Finally, we introduce what we refer to as distributed hybrid

persistence of excitation (DHPE) condition along solutions.

Assumption 5 (DHPE along solutions). There exist 𝐾1, `1 > 0

such that, for each (𝑋𝑜 , 𝑥) ∈ X𝑖𝑛 and for each hybrid time domain⋃𝐽
𝑗=𝑗𝑜

(
[𝑡 𝑗 , 𝑡 𝑗+1] × { 𝑗}

)
⊂ dom𝑢 = dom𝑦, with (𝑡 𝐽 +1 − 𝑡 𝑗𝑜 ) + (𝐽 −

𝑗𝑜 ) ≥ 𝐾1, we have∑︁
𝑖∈V1

𝐽∑︁
𝑗=𝑗𝑜

[∫ 𝑡 𝑗+1

𝑡 𝑗

𝜓𝑖 (𝜏, 𝑗)𝜓𝑖 (𝜏, 𝑗)⊤𝑑𝜏 +
𝛾𝜓𝑖 (𝑡 𝑗+1, 𝑗)𝜓𝑖 (𝑡 𝑗+1, 𝑗)⊤

2 + 2𝛾 |𝜓𝑖 (𝑡 𝑗+1, 𝑗) |2

]
≥ 𝑚1`1𝐼𝑚\

,

where𝜓𝑖 is given in (24).

Remark 9. Note that each 𝜓𝑖 in (24) is the output to the hybrid
linear filter whose input is the arc Ψ𝑖 . That is, if we consider the linear
filter

H𝜓𝑖 :


{ ¤𝑡 = 1, ¤𝑗 = 0, ¤Γ𝑑𝑖 = 0,
¤Γ𝑐𝑖 =𝐴𝑐𝑐𝑙𝑖Γ𝑐𝑖 + Ψ𝑖 , (𝑡, 𝑗, Γ𝑐𝑖 , Γ𝑑𝑖 ) ∈ 𝐶𝜓𝑖{
𝑡+ = 𝑡, 𝑗+ = 𝑗 + 1, Γ𝑐𝑖

+ = Γ𝑐𝑖 ,
Γ𝑑𝑖

+ =𝐴𝑑𝑐𝑙𝑖Γ𝑑𝑖 + Ψ𝑖 , (𝑡, 𝑗, Γ𝑐𝑖 , Γ𝑑𝑖 ) ∈ 𝐷𝜓𝑖 ,

the hybrid arc𝜓𝑖 can be seen as the output ofH𝜓𝑖 given by

𝜓𝑖 (𝑡, 𝑗) =
{
Γ𝑐𝑖 (𝑡, 𝑗)⊤𝐸⊤ if 𝑡 ∈ int(𝐼 𝑗 )
Γ𝑑𝑖 (𝑡, 𝑗)⊤𝐸⊤ otherwise,

where

𝐶𝜓𝑖 := {(𝑡, 𝑗, Γ𝑑𝑖 , Γ𝑐𝑖 ) : (𝑡, 𝑗) ∈ dom𝜙 and (𝑡, 𝑗 + 1) ∉ dom𝜙},
𝐷𝜓𝑖 := {(𝑡, 𝑗, Γ𝑑𝑖 , Γ𝑐𝑖 ) : (𝑡, 𝑗) ∈ dom𝜙 and (𝑡, 𝑗 + 1) ∈ dom𝜙}.

Hence, it is interesting to investigate conditions on the inputs {Ψ𝑖 }
𝑚𝑦

𝑖=1

and the data of {H𝜓𝑖 }
𝑚𝑦

𝑖=1
such that {𝜓𝑖 }

𝑚𝑦

𝑖=1
verifies Assumption 5.

Theorem 4.1. Given a solution 𝜙 : dom𝜙 → R𝑚𝑥 to H in (19),
such that the corresponding input-output pair (𝑢,𝑦) is bounded, and
the network of observers/identifiersH𝑜 := {H𝑜𝑖 }

𝑚𝑦

𝑖=1
. Then, the closed

set S𝑒\ is UES on X𝑖𝑛 for the hybrid system (H ,H𝑜 ) provided that
Assumption 5 holds.

Sketch of proof of Theorem 4.1. We start introducing the coor-

dinate vector 𝑋𝑒\𝑖 := (𝑡, 𝑗, Γ𝑐𝑖 , Γ𝑑𝑖 , 𝑒𝑖 , ˜\𝑖 ) ∈ X𝑜𝑖 , whose dynamics is

given by

H[\𝑖 :




¤𝑡 = 1, ¤𝑗 = 0, ¤Γ𝑑𝑖 = 0, ¤Γ𝑐𝑖 = 𝐴𝑐𝑐𝑙𝑖Γ𝑐𝑖 + Ψ𝑖

¤𝑒𝑖 =𝐴𝑐𝑐𝑙𝑖𝑒𝑖 − Ψ𝑖 ˜\𝑖 − 𝛾1Γ𝑖𝜓𝑖𝐸𝑖𝑒𝑖 + 𝛾2

∑𝑚𝑦

𝑗=1
𝑎𝑖 𝑗 Γ𝑖 ( ˜\𝑖 − ˜\ 𝑗 )

¤̃
\𝑖 =𝛾1𝜓𝑖𝐸𝑖𝑒𝑖 − 𝛾2

∑𝑚𝑦

𝑗=1
𝑎𝑖 𝑗 ( ˜\𝑖 − ˜\ 𝑗 ) 𝑋𝑒\𝑖 ∈ 𝐶𝑜𝑖

𝑡+ = 𝑡, 𝑗+ = 𝑗 + 1, Γ+
𝑐𝑖

= Γ𝑐𝑖 , Γ+
𝑑𝑖

= 𝐴𝑑𝑐𝑙𝑖Γ𝑑𝑖 + Ψ𝑖

𝑒+
𝑖
=𝐴𝑑𝑐𝑙𝑖𝑒𝑖 − Ψ𝑖 ˜\𝑖 − 𝜎𝑖Γ+𝑖 𝜓𝑖𝐸𝑖𝑒𝑖 + 𝛿

∑𝑚𝑦

𝑗=1
𝑎𝑖 𝑗 Γ

+
𝑖
( ˜\𝑖 − ˜\ 𝑗 )

˜\+
𝑖
= ˜\𝑖 + 𝜎𝑖𝜓𝑖𝐸𝑖𝑒𝑖 − 𝛿

∑𝑚𝑦

𝑗=1
𝑎𝑖 𝑗 ( ˜\𝑖 − ˜\ 𝑗 ) 𝑋𝑒\𝑖 ∈ 𝐷𝑜𝑖 .

Next, we introduce the change of variable [𝑖 := 𝑒𝑖 + Γ𝑖 (𝑡, 𝑗) ˜\𝑖 ,

where Γ𝑖 : dom𝜙 → R𝑚𝑥𝑖
×𝑚\

is defined in (23), and we let the

new coordinate vector 𝑋[\𝑖 := (𝑡, 𝑗, Γ𝑑𝑖 , Γ𝑐𝑖 , [𝑖 , ˜\𝑖 ) ∈ X𝑜𝑖 , whose
dynamics is governed by

H[\𝑖 :




¤𝑡 = 1, ¤𝑗 = 0, ¤[𝑖 = 𝐴𝑐𝑐𝑙𝑖[𝑖
¤̃
\𝑖 =−𝛾1𝜓

⊤
𝑖
(𝜓𝑖 ˜\𝑖 − 𝐸𝑖[𝑖 ) − 𝛾2

∑𝑚𝑦

𝑗=1
𝑎𝑖 𝑗 ( ˜\𝑖 − ˜\ 𝑗 )

¤Γ𝑐𝑖 =𝐴𝑐𝑐𝑙𝑖Γ𝑐𝑖 + Ψ𝑖 , ¤Γ𝑑𝑖 = 0, 𝑋[\𝑖 ∈ 𝐶𝑜𝑖
𝑡+ = 𝑡, 𝑗+ = 𝑗 + 1, [+

𝑖
= 𝐴𝑑𝑐𝑙𝑖[𝑖

˜\+
𝑖
= ˜\𝑖 − 𝜎𝑖𝜓⊤

𝑖
(𝜓𝑖 ˜\𝑖 − 𝐸𝑖[𝑖 ) − 𝛿

∑𝑚𝑦

𝑗=1
𝑎𝑖 𝑗 ( ˜\𝑖 − ˜\ 𝑗 )

Γ+
𝑐𝑖
= Γ𝑐𝑖 Γ+

𝑑𝑖
𝐴𝑑𝑐𝑙𝑖 = Γ𝑑𝑖 + Ψ𝑖 , 𝑋[\𝑖 ∈ 𝐷𝑜𝑖 .

Under (SA5), we use [9, Proposition 3.29] combined with the

Lyapunov function 𝑉 ([𝑖 ) = [⊤𝑖 𝑃𝑖[𝑖 , to conclude that [𝑖 converges

to zero exponentially for all 𝑖 ∈ {1, 2, ...,𝑚𝑦}.
As a result, it is enough to analyze the parameter-estimation

system whose state variable is 𝑋\𝑖 := (𝑡, 𝑗, Γ𝑑𝑖 , Γ𝑐𝑖 , ˜\𝑖 ) ∈ X\𝑖 , where
X\𝑖 := dom𝜙 × R𝑚𝑥𝑖×𝑚\ × R𝑚𝑥𝑖×𝑚\ × R𝑚\

, and whose dynamics

is given by

H[\𝑖 :




¤𝑡 = 1, ¤𝑗 = 0,

¤̃
\𝑖 =−𝛾1𝜓𝑖𝜓

⊤
𝑖

˜\𝑖 − 𝛾2

∑𝑚𝑦

𝑗=1
𝑎𝑖 𝑗 ( ˜\𝑖 − ˜\ 𝑗 )

¤Γ𝑐𝑖 =𝐴𝑐𝑐𝑙𝑖Γ𝑐𝑖 + Ψ𝑖 , ¤Γ𝑑𝑖 = 0 𝑋\𝑖 ∈ 𝐶\𝑖
𝑡+ = 𝑡, 𝑗+ = 𝑗 + 1,

˜\+
𝑖
=

[
𝐼𝑚\

− 𝛾𝜓𝑖𝜓
⊤
𝑖

1+𝛾𝜓⊤
𝑖
𝜓𝑖

]
˜\𝑖 − 𝛿

∑𝑚𝑦

𝑗=1
𝑎𝑖 𝑗 ( ˜\𝑖 − ˜\ 𝑗 )

Γ+
𝑐𝑖
= Γ𝑐𝑖 , Γ+

𝑑𝑖
= 𝐴𝑑𝑐𝑙𝑖Γ𝑑𝑖 + Ψ𝑖 , 𝑋\𝑖 ∈ 𝐷\𝑖 ,

where

𝐶\𝑖 := {𝑋\𝑖 ∈ X\𝑖 : (𝑡, 𝑗) ∈ dom𝜙 and (𝑡, 𝑗 + 1) ∉ dom𝜙},

𝐷\𝑖 := {𝑋\𝑖 ∈ X\𝑖 : (𝑡, 𝑗) ∈ dom𝜙 and (𝑡, 𝑗 + 1) ∈ dom𝜙}.
Note that, for each 𝑖 ∈ {1, 2, ...,𝑚𝑦}, the matrices 𝐴𝑐𝑐𝑙𝑖 and

𝐴𝑑𝑐𝑙𝑖 are exponentially stable in the sense of continuous-time

and discrete-time systems, respectively, (SA4) holds, and the pair

(𝑢,𝑦) are bounded. As a result, max{|Γ𝑐 (0, 0) |, |Γ𝑑 (0, 0) |} ≤ Γ̄𝑜 , then
there exists Γ̄ > 0 such that sup{|Γ𝑐 (𝑡, 𝑗) |∞, |Γ𝑑 (𝑡, 𝑗) |∞} ≤ Φ̄. Thus,
𝜓 := [𝜓1,𝜓2, ...,𝜓𝑚𝑦

] satisfies (SA1). Now, using Theorem 3.1, un-

der Assumption 5, we conclude that the parameter estimation error

˜\ converges to zero exponentially. Finally, once both [ and
˜\ con-

verge to zero exponentially, we conclude that the same property

holds for the observation error 𝑒 .
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4.3 Observation/Identification Via Adaptive
Concurrent Learning

Following the discussion in Section 3.2, we use the method de-

scribed in Section 4.1 to reinforce the design of a single adaptive

observer/identifier using old data. That is, we consider a hybrid

system in the form of H in (19) with 𝑚𝑦 = 1 (we are not going

to decomposeH into subsystems). Let the pair (𝑢1, 𝑦1) represent
the input-output data available in real time and let {(𝑢𝑖 , 𝑦𝑖 )}𝑁𝑖=2

, for

some 𝑁 > 0, be a sequence of old data. For simplicity, we assume

that all the input-output pairs have the same hybrid time domain.

Assumption 6. dom𝑦1 = dom𝑢1 = · · · = dom𝑦𝑁 = dom𝑢𝑁 .

At this point, we introduce the sequence of hybrid systems

{H𝑖 }𝑁𝑖=1
, where each H𝑖 corresponds to H subject the input 𝑢𝑖

and thus generating the output 𝑦𝑖 . Under (SA8), each H𝑖 can be

expressed as

H𝜓𝑖 :



{ ¤𝑡 = 1, ¤𝑗 = 0,

¤𝑥𝑖 = 𝐴𝑐𝑥𝑖 + Ψ𝑖 (𝑡, 𝑗)\ (𝑡, 𝑗, 𝑥𝑖 ) ∈ 𝐶𝑖
𝑡+ = 𝑡, 𝑗+ = 𝑗 + 1,

𝑥+
𝑖

= 𝐴𝑑𝑥𝑖 + Ψ𝑖 (𝑡, 𝑗)\ (𝑡, 𝑗, 𝑥𝑖 ) ∈ 𝐷𝑖
𝑦𝑖 = 𝐸𝑥𝑖 ,

where Ψ𝑖 : dom𝑢𝑖 → R𝑚𝑥𝑖×𝑚\
, in this case, is defined as

Ψ𝑖 (𝑡, 𝑗) :=

{
Ψ𝑐 (𝑦𝑖 (𝑡, 𝑗), 𝑢𝑖 (𝑡, 𝑗)) if 𝑡 ∈ int(𝐼 𝑗 )
Ψ𝑑 (𝑦𝑖 (𝑡, 𝑗), 𝑢𝑖 (𝑡, 𝑗)) otherwise,

and

𝐶𝑖 := {(𝑡, 𝑗) ∈ domΨ𝑖 : (𝑡, 𝑗 + 1) ∉ domΨ𝑖 } × R𝑚𝑥 ,

𝐷𝑖 := {(𝑡, 𝑗) ∈ domΨ𝑖 : (𝑡, 𝑗 + 1) ∈ domΨ𝑖 } × R𝑚𝑥 .

The proposed concurrent-learning-based observer/identifier uses

a network {H𝑜𝑖 }𝑁𝑖=1
, where each H𝑜𝑖 is designed as in (25) while

replacing (𝐴𝑐𝑖 , 𝐴𝑑𝑖 ) therein by (𝐴𝑐 , 𝐴𝑑 ). Theorem 4.1 applies in this

case, so we conclude that each H𝑜𝑖 tracks the state 𝑥𝑖 of H𝑖 and

estimates the parameter \ . More precisely, we have the following.

Corollary 4.2. Given the hybrid system H in (19) with𝑚𝑦 = 1.
Assume that the real-time input-output pair (𝑢1, 𝑦1) and the sequence
of old input-output data {(𝑢𝑖 , 𝑦𝑖 )}𝑁𝑖=2

are bounded and satisfy As-
sumption 6. Consider the concurrent-learning-based observer/identifier
H𝑜 := {H𝑜𝑖 }𝑁𝑖=1

, where each H𝑜𝑖 is designed as in (25) while replac-
ing (𝐴𝑐𝑖 , 𝐴𝑑𝑖 ) therein by (𝐴𝑐 , 𝐴𝑑 ). Then, the closed set S𝑒\ is UES
on X𝑖𝑛 for the hybrid system (H ,H𝑜 ) provided that Assumption 5
holds.

Remark 10. According to Corollary 4.2, it is possible that the real-
time data (𝑢1, 𝑦1) fails to generate a signal𝜓1 that is hybrid persis-
tently exciting. Yet, the concurrent-learning-based observer/identifier
H𝑜 can estimate the vector of parameters \ exponentially. In contrast,
estimating the parameters is impossible using only the real-time data
(𝑦1, 𝑢1).

Remark 11. Assumption 6 is hard to satisfy in the general context
of hybrid systems. However, we can always unify the domain of
our data by creating fictitious jumps (static jumps) for all the data
whenever one of them jumps. This procedure will affect the matrix𝐴𝑑
in each of the systems {H𝑖 }𝑁𝑖=1

; thus, the analysis will require other
machinery that is omitted in this version due to space limitation.

5 ILLUSTRATIVE NUMERICAL EXAMPLES
5.1 Comparison between the continuous-, the

discrete-time, and the hybrid gradient
algorithms

Consider the linear input-output relationship

𝑦 (𝑡, 𝑗) = 𝜓 (𝑡, 𝑗)⊤\,

where the hybrid regressor𝜓 : dom𝜓 → R2
is given by

𝜓1 (𝑡, 𝑗) :=

{ [cos(2𝑡) 0]⊤ ∀ 𝑡 ∈ (2 𝑗𝜋, 2( 𝑗 + 1)𝜋), 𝑗 ∈ N
[0.3 0.9]⊤ ∀ 𝑡 = 2 𝑗𝜋, 𝑗 ∈ N.

First, when viewing the regressor 𝜓 as a discrete-time function

defined on {0, 1, ...}, we can see that the regressor

𝜓 ( 𝑗)𝜓 ( 𝑗)⊤ :=

[
0.09 0.27

0.27 0.81

]
𝑗 ∈ {0, 1, ...}

is constant and not full rank. Hence, the DT-PE condition in As-

sumption 2 is not satisfied. Similarly, when viewing the regressor

𝜓 as a continuous-time function defined on R≥0, we can see that

𝜓 (𝑡)𝜓 (𝑡)⊤ :=


[
cos(2𝑡)2

0

0 0

]
𝑡 ∈ (2 𝑗𝜋, 2( 𝑗 + 1)𝜋), 𝑗 ∈ N[

0.09 0.27

0.27 0.81

]
otherwise.

Hence, for each 𝑡𝑜 > 0 and 𝑇 > 0, we have∫ 𝑡𝑜+𝑇

𝑡𝑜

𝜓 (𝑠)𝜓 (𝑠)⊤𝑑𝑠 =
[∫ 𝑡𝑜+𝑇
𝑡𝑜

cos(2𝑠)2𝑑𝑠 0

0 0

]
,

so the CT-PE condition in Assumption 1 is not satisfied. Yet, the

HPE condition in Assumption 3 holds with 𝐾 = 2𝜋 + 1 and ` = 0.21.

Figure 1 provides a comparison between the classical continuous-,

discrete-time, and the hybrid gradient-descent algorithms in terms

of convergence of the parameter estimation errors.

0 20 40 60 80
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2

4

6

8

10

Figure 1: Evolution of | ˜\ | using the continuous- (in green),
the discrete-time (in red), and the hybrid (in blue) gradient-
descent algorithms.

The initial condition for the simulation is
˜\ (0) := [6 7]⊤. It can

be seen that while the discrete and continuous-time algorithms fail

to make the errors
˜\ converge to zero, the hybrid gradient-descent

algorithm succeeds.
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5.2 The distributed gradient algorithm
guarantees convergence when the
centralized one fails

Consider the network of three linear estimators in the form of

(8). For the three estimators, the corresponding hybrid regressors

{𝜓1,𝜓2,𝜓3} are given by

𝜓1 (𝑡, 𝑗) :=

{
[sin(𝑡) 0]⊤ ∀ 𝑡 ∈ (2 𝑗𝜋, 2( 𝑗 + 1)𝜋), 𝑗 ∈ N
[0 0]⊤ ∀ 𝑡 = 2 𝑗𝜋, 𝑗 ∈ N,

𝜓2 (𝑡, 𝑗) :=

{
[cos(𝑡) 0]⊤ ∀ 𝑡 ∈ (2 𝑗𝜋, 2( 𝑗 + 1)𝜋), 𝑗 ∈ N

[0 0]⊤ ∀ 𝑡 = 2 𝑗𝜋, 𝑗 ∈ N,

𝜓3 (𝑡, 𝑗) :=

{
[0 0]⊤ ∀ 𝑡 ∈ (2 𝑗𝜋, 2( 𝑗 + 1)𝜋), 𝑗 ∈ N
[0.5 1]⊤ ∀ 𝑡 = 2 𝑗𝜋, 𝑗 ∈ N.

Using a similar reasoning as the one used in the previous example,

one can easily check that none of the regressors {𝜓1,𝜓2,𝜓3} is HPE
according to Assumption 3. Now, we apply the distributed scenario

presented in this paper, where the different estimators exchange

their estimates according to a communication graph G = (V, E),
withV = {1, 2, 3} and E = {(1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2)},
which corresponds to a fully connected graph with an adjacency

matrix A := [𝑎𝑖𝑘 ] ∈ R3×3
defined by 𝑎𝑖𝑘 = 1 if 𝑖 ≠ 𝑘 and 𝑎𝑖𝑖 = 0.

For this distributed algorithm, the DHPE condition in Assumption 4

is satisfied with 𝐾1 = 2𝜋 + 1,𝑚1 = 3 and `1 = 0.11.

Figures 2 and 3 provide a comparison between the centralized

and the distributed hybrid gradient algorithms.

Figure 2: Evolution of | ˜\1 | (in blue), | ˜\2 | (in green), and | ˜\3 | (in
red) using the centralized hybrid gradient algorithm.

The initial estimation errors are
˜\1 (0) = ˜\2 (0) = ˜\3 (0) :=

[6 7]⊤. It can be seen that while the centralized hybrid gradient-

descent algorithm does not allow the convergence of
˜\𝑖 , for each

𝑖 = {1, 2, 3}, to zero, the proposed distributed hybrid gradient de-

scent algorithm ensures this property. This can be explained by the

fact that none of the regressors𝜓1,𝜓2 and𝜓3 is hybrid persistently

exciting, however, when considering the distributed scenario, where

the three estimators exchange their estimates according to the com-

munication graph G = (V, E) defined above, the distributed hybrid
persistence of excitation condition is satisfied.

Figure 3: Evolution of | ˜\1 | (in blue), | ˜\2 | (in green) and | ˜\3 | (in
red) using the distributed hybrid gradient algorithm.

5.3 The distributed hybrid gradient algorithm
improves the convergence speed of the
centralized one

Consider a network composed of three linear estimators in the form

(8). The corresponding hybrid regressors are given by

𝜓1 (𝑡, 𝑗) :=



[
sin(𝑡)

0

]
∀ 𝑡 ∈ (2 𝑗𝜋, 2( 𝑗 + 1)𝜋) ∩ [0, 300],

𝑗 ∈ N[
0.05 sin(𝑡)

0

]
∀ 𝑡 ∈ (2 𝑗𝜋, 2( 𝑗 + 1)𝜋) ∩ (300, +∞),

𝑗 ∈ N
[0 0]⊤ ∀ 𝑡 = 2 𝑗𝜋, 𝑗 ∈ N ∩ [0, 50]
[1 − 1]⊤ ∀ 𝑡 = 2 𝑗𝜋, 𝑗 ∈ N ∩ (50, +∞)

𝜓2 (𝑡, 𝑗) :=



[
0.05 cos(𝑡)

0

]
∀ 𝑡 ∈ (2 𝑗𝜋, 2( 𝑗 + 1)𝜋) ∩ [0, 300],

𝑗 ∈ N[
cos(𝑡)

0

]
∀ 𝑡 ∈ (2 𝑗𝜋, 2( 𝑗 + 1)𝜋) ∩ (300, +∞),

𝑗 ∈ N
[1 − 1]⊤ ∀ 𝑡 = 2 𝑗𝜋, 𝑗 ∈ N.

𝜓3 (𝑡, 𝑗) :=

{
[0.05 sin(𝑡) 0]⊤ ∀ 𝑡 ∈ (2 𝑗𝜋, 2( 𝑗 + 1)𝜋), 𝑗 ∈ N

[1 − 1]⊤ ∀ 𝑡 = 2 𝑗𝜋, 𝑗 ∈ N.

We can easily check that the three regressors {𝜓1,𝜓2,𝜓3} satisfy
the HPE condition in Assumption 3. Now, we consider a distributed

scenario, where the different estimators exchange their estimates ac-

cording to the communication graph G = (V, E) withV = {1, 2, 3}
and E = {(1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2)}, which corresponds

to a fully connected graph with 𝑎𝑖𝑘 = 1 if 𝑖 ≠ 𝑘 and 𝑎𝑖𝑖 = 0. For such

distributed scenario, one can also check that the DHPE condition

in Assumption 4 is satisfied.

The initial estimation errors are
˜\1 (0) = ˜\2 (0) = ˜\3 (0) :=

[6 7]⊤. Figures 4 and 5, below, provide a comparison between the

centralized hybrid gradient-descent algorithm and its distributed

version in terms of the convergence speed. It can be seen that

while the centralized hybrid gradient descent algorithm allows the

convergence of
˜\𝑖 , 𝑖 = {1, 2, 3} to zero, in about 450 seconds, the

distributed hybrid gradient-descent algorithm ensures a faster con-

vergence, in less than 200 seconds, and which can be explained

by the fact that in the distributed scenario, the three estimators

collaborate, through the exchange of their estimates according to

the communication graph G.



HSCC ’22, April 04–06, 2022, Milan, Italy Mohamed Maghenem, Adnane Saoud, and Antonio Loría

Figure 4: Evolution of | ˜\1 | (in blue), | ˜\2 | (in green) and | ˜\3 | (in
red) using the centralized hybrid gradient algorithm.

Figure 5: Evolution of | ˜\1 | (in blue), | ˆ\2 | (in green) and | ˆ\3 | (in
red) using the distributed hybrid gradient algorithm.

6 CONCLUSION
We proposed an estimation method involving a network of gradient-

descent-based estimators, each of which exploits only a portion

of the input-output data, which are viewed as hybrid signals. The

different estimators exchange their estimates according to a weakly-

connected directed graph. The alternation of flows and jumps com-

binedwith the distributed character of the proposed algorithm allow

us to introduce a hybrid form of the well-known persistence of exci-
tation condition. Under such a condition, we establish exponential

convergence of the estimation errors. The proposed approach gen-

eralizes the existing ones, yields to relaxed sufficient conditions for

(uniform-exponential) parameter estimation. Furthermore, we ap-

plied it to address the observation/identification problem for a class

of hybrid systems with unknown parameters using a distributed

network of adaptive observers/identifiers.

REFERENCES
[1] K. J. Åstrom and Bohn. 1965. Numerical identification of linear dynamic systems

from normal operating records. In Proc. of the 2nd IFAC Symp. on Theory of

Self-adaptive Control Systems, P. H. Hammond (Ed.). Nat. Phys. Lab., Teddington,

England, 96–111.

[2] J. A. Bagnell, D. Bradley, D. Silver, B. Sofman, and A. Stentz. 2010. Learning

for autonomous navigation. IEEE Robotics & Automation Magazine 17, 2 (2010),
74–84.

[3] P. Bernard and R. Sanfelice. 2019. Robust Observer Design for Hybrid Dynamical

Systems with Linear Maps and Approximately Known Jump Times. (Oct. 2019).

https://hal.archives-ouvertes.fr/hal-02187411 working paper or preprint.

[4] A. Brown and A. Deaton. 1972. Surveys in applied economics: models of consumer

behaviour. The Economic Journal 82, 328 (1972), 1145–1236.

[5] W. Chen, C. Wen, S. Hua, and C. Sun. 2014. Distributed Cooperative Adaptive

Identification and Control for a Group of Continuous-Time Systems With a

Cooperative PE Condition via Consensus. IEEE Trans. Automat. Control 59, 1
(2014), 91–106.

[6] X. Chen, B. Xudong, M-A. Belabbas, and T. Basar. 2017. Controllability of For-

mations Over Directed Time-Varying Graphs. IEEE Transactions on Control of
Network Systems 4, 3 (2017), 407–416. https://doi.org/10.1109/TCNS.2015.2504034

[7] G. Chowdhary, T. Yucelen, M. Mühlegg, and E. N. Johnson. 2013. Concurrent

learning adaptive control of linear systemswith exponentially convergent bounds.

International Journal of Adaptive Control and Signal Processing 27, 4 (2013), 280–

301.

[8] M. Ghil, S. Cohn, J. Tavantzis, K. Bube, and E. Isaacson. 1981. Applications of

estimation theory to numerical weather prediction. In Dynamic meteorology:
Data assimilation methods. Springer, New York, Heidelberg, Berlin, 139–224.

[9] R. Goebel, R. G. Sanfelice, and A. R. Teel. 2012. Hybrid Dynamical Systems:
Modeling, stability, and robustness. Princeton University Press, Princeton, USA.

[10] A. Guyader and Q. Zhang. 2003. Adaptive observer for discrete time linear time

varying systems. IFAC Proceedings Volumes 36, 16 (2003), 1705–1710.
[11] P. Ioannou and J. Sun. 1996. Robust adaptive control. Prentice Hall, New Jersey,

USA.

[12] M. U. Javed, J. I. Poveda, and X. Chen. 2021. Excitation Conditions for Uni-

form Exponential Stability of the Cooperative Gradient Algorithm over Weakly

Connected Digraphs. IEEE Control Systems Letters 6 (2021), 67–72. https:

//doi.org/10.1109/LCSYS.2021.3049153

[13] T. Kim, C. Lee, and H. Shim. 2020. Completely Decentralized Design of Distributed

Observer for Linear Systems. IEEE Trans. Automat. Control 65, 11 (2020), 4664–
4678.

[14] A. C. Lorenc. 1986. Analysis methods for numerical weather prediction. Quarterly
Journal of the Royal Meteorological Society 112, 474 (1986), 1177–1194.

[15] K. S. Narendra and A. M. Annaswamy. 1987. Persistent excitation in adaptive

systems. Int. J. of Contr. 45, 1 (1987), 127–160.
[16] K. S. Narendra and A. M. Annaswamy. 2012. Stable Adaptive Systems. Prentice

Hall, Englewood Cliffs, NJ, USA.

[17] R. Olfati-Saber, J. A. Fax, and R. M. Murray. 2007. Consensus and cooperation in

networked multi-agent systems. Proc. IEEE 95, 1 (2007), 215–233.

[18] E. Panteley and A. Loría. 2017. Synchronization and Dynamic Consensus of

Heterogeneous Networked Systems. IEEE Trans. on Automatic Control 62, 8
(2017), 3758–3773.

[19] I. Papusha, E. Lavretsky, and R. M. Murray. 2014. Collaborative system identifi-

cation via parameter consensus. In 2014 American Control Conference. Portland,
OR, USA, 13–19.

[20] J. I. Poveda, M. Benosman, and K. G. Vamvoudakis. 2021. Data-enabled extremum

seeking: a cooperative concurrent learning-based approach. International Journal
of Adaptive Control and Signal Processing 35, 7 (2021), 1256–1284.

[21] C. Prieur, A. R. Teel, and L. Zaccarian. 2014. Relaxed persistent flow/jump

conditions for uniform global asymptotic stability. IEEE Trans. Automat. Control
59, 10 (2014), 2766–2771.

[22] Z. Qu. 2009. Cooperative control of dynamical systems: applications to autonomous
vehicles. Springer Verlag, London, UK.

[23] R. G. Sanfelice. 2021. Hybrid Feedback Control. Princeton University Press,

Princeton, NJ, USA.

[24] A. Saoud, M. Maghenem, and R. G. Sanfelice. 2021. A Hybrid Gradient Algorithm

for Linear Regression with Hybrid Signals. In 2021 American Control Conference
(ACC). Austin, TX, USA, 4997–5002.

[25] S. Sastry and S. Bodson. 2011. Adaptive control: stability, convergence and robust-
ness. Courier Dover Publications, USA. 31–32 pages.

[26] M. S. Stanković, S. S. Stanković, and D. M. Stipanović. 2015. Consensus-based

decentralized real-time identification of large-scale systems. Automatica 60 (2015),
219–226.

[27] G. Tao. 2003. Adaptive Control Design and Analysis. Vol. 37. John Wiley & Sons,

Hooken, NJ, USA.

[28] D.Wooden, M. Malchano, K. Blankespoor, A. Howardy, A. A. Rizzi, andM. Raibert.

2010. Autonomous navigation for BigDog. In IEEE international conference on
robotics and automation. Anchorage, AL, USA, 4736–4741.

[29] Y. Wu, A. Isidori, and R. Lu. 2021. On the Design of Distributed Observers for

Nonlinear Systems. IEEE Trans. Automat. Control (2021), 1–1. https://doi.org/10.

1109/TAC.2021.3103864

[30] Q. Zhang. 2002. Adaptive observer for multiple-input-multiple-output (MIMO)

linear time-varying systems. IEEE Trans. Automat. Control 47, 3 (2002), 525–529.

https://hal.archives-ouvertes.fr/hal-02187411
https://doi.org/10.1109/TCNS.2015.2504034
https://doi.org/10.1109/LCSYS.2021.3049153
https://doi.org/10.1109/LCSYS.2021.3049153
https://doi.org/10.1109/TAC.2021.3103864
https://doi.org/10.1109/TAC.2021.3103864

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 On hybrid systems
	2.2 On Graph theory

	3 Distributed Hybrid Gradient Algorithm
	3.1 Main Result I
	3.2 Connection to concurrent-learning-based estimation

	4 Cooperative Adaptive Observation/Identification
	4.1 Networked Hybrid Adaptive Observers/Identifiers
	4.2 Main Result II
	4.3 Observation/Identification Via Adaptive Concurrent Learning

	5 Illustrative Numerical examples
	5.1 Comparison between the continuous-, the discrete-time, and the hybrid gradient algorithms
	5.2 The distributed gradient algorithm guarantees convergence when the centralized one fails
	5.3 The distributed hybrid gradient algorithm improves the convergence speed of the centralized one

	6 Conclusion
	References



