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We address a classical identification problem that consists in estimating a vector of constant unknown parameters from a given linear input/output relationship. The proposed method relies on a network of gradient-descent-based estimators, each of which exploits only a portion of the input-output data. A key feature of the method is that the input-output signals are hybrid, so they may evolve in continuous time (i.e., they may flow ), or they may change at isolated time instances (i.e., they may jump ). The estimators are interconnected over a weakly-connected directed graph, so the alternation of flows and jumps combined with the distributed character of the algorithm introduce a rich behavior that is impossible to obtain using continuous-or discrete-time estimators. A condition of persistence of excitation in hybrid form ensures exponential convergence of the estimation errors. The proposed approach generalizes the existing centralized gradient-descent algorithms and yields relaxed sufficient conditions for (uniform-exponential) parameter estimation. In addition, we address the observation/identification problem for a class of hybrid systems with unknown parameters using a distributed network of adaptive observers/identifiers.

INTRODUCTION

Estimation theory is key in many applications such as autonomous navigation [START_REF] Bagnell | Learning for autonomous navigation[END_REF][START_REF] Wooden | Autonomous navigation for BigDog[END_REF], weather predictions [START_REF] Ghil | Applications of estimation theory to numerical weather prediction[END_REF][START_REF] Lorenc | Analysis methods for numerical weather prediction[END_REF], applied economics [START_REF] Brown | Surveys in applied economics: models of consumer behaviour[END_REF], etc. In many cases, the estimation problem consists in estimating the parameters 𝜃 ∈ R 𝑚 𝜃 of the linear regression model of a measurable output 𝑦 ∈ R satisfying the relationship 𝑦 = 𝜓 ⊤ 𝜃 [START_REF] Tao | Adaptive Control Design and Analysis[END_REF]. In such model, 𝜓 , which is generally referred to as the regressor, is a map from its domain, denoted by 'dom𝜓 ', to an Euclidean space of dimension 𝑚 𝜃 . An elementary, but efficient estimation algorithm is the so-called gradient-based, which updates the value of a parameter estimate θ using the gradient of the cost function 𝐽 (𝑒) := 𝑒 2 2 , where 𝑒 := ŷ -𝑦 and ŷ := 𝜓 ⊤ θ is the estimated output, function of the parameter estimate θ . Thus, the estimation problem consists in designing an update algorithm for θ in function of the computable error 𝑒.

There are several ways to update the estimate θ . Most commonly, time is tracked by a real variable 𝑡 ∈ R ≥0 - [START_REF] Ioannou | Robust adaptive control[END_REF][START_REF] Sastry | Adaptive control: stability, convergence and robustness[END_REF] or by a sequence of discrete instances 𝑗 ∈ N - [START_REF] Tao | Adaptive Control Design and Analysis[END_REF]. In the first case, dom𝜓 = R ≥0 , so, for each 𝑡 ∈ R ≥0 , 𝑒 (𝑡) := ŷ (𝑡) -𝑦 (𝑡) = θ (𝑡) ⊤ 𝜓 (𝑡), where θ := θ -𝜃 . Then, the gradient-descent algorithm is defined by the ordinary differential equation θ (𝑡) = -𝛾 ∇ θ 𝐽 (𝑒 (𝑡)) = -𝛾𝜓 (𝑡) 𝜓 (𝑡) ⊤ θ (𝑡) -𝑦 (𝑡) ,

where 𝛾 > 0 is a design parameter and ∇ θ 𝐽 denotes the gradient of 𝐽 (𝑒) with respect to θ [START_REF] Narendra | Stable Adaptive Systems[END_REF], so the behavior of θ (𝑡) is governed by θ (𝑡) = -𝛾𝜓 (𝑡)𝜓 (𝑡) ⊤ θ (𝑡).

(

) 2 
The convergence of the estimation errors θ (𝑡) may be assessed by establishing the stronger property of uniform (in the initial time) exponential stability (UES) of the origin { θ = 0} for (2). In the case that 𝜓 is bounded on its domain, UES is known (see, e.g., [START_REF] Narendra | Persistent excitation in adaptive systems[END_REF]) to be equivalent to 𝜓 possessing the continuous-time persistency-ofexcitation (CT-PE) property:

Assumption 1 (CT-PE). There exist 𝑇 , 𝜇 > 0 such that, for each

𝑡 𝑜 ≥ 0, ∫ 𝑡 𝑜 +𝑇 𝑡 𝑜 𝜓 (𝑠)𝜓 (𝑠) ⊤ 𝑑𝑠 ≥ 𝜇𝐼 𝑚 𝜃 .
When 𝑦 is measured at certain sampled instants of time, that is, dom 𝑦 = dom𝜓 = N, the gradient algorithm may be implemented in discrete time, using the difference equation θ ( 𝑗 + 1) = θ ( 𝑗) -𝜎 ( 𝑗)∇ θ 𝐽 (𝑒 ( 𝑗)),

where 𝜎 ( 𝑗) := 𝛾 1+𝛾 |𝜓 ( 𝑗) | 2 and 𝛾 > 0 is the adaptation rate [START_REF] Tao | Adaptive Control Design and Analysis[END_REF]. As a result, the dynamics of the estimation error is given by It is known, at least since [START_REF] Åstrom | Numerical identification of linear dynamic systems from normal operating records[END_REF], that the following hypothesis is necessary and sufficient to ensure UES of the set { θ = 0} for (4).

Assumption 2 (DT-PE).

There exist 𝐽 , 𝜇 > 0, such that, for each 𝑗 𝑜 ≥ 0, 𝑗 𝑜 +𝐽 𝑗=𝑗 𝑜 𝜓 ( 𝑗)𝜓 ( 𝑗) ⊤ ≥ 𝜇𝐼 𝑚 𝜃 . While the necessity of persistency of excitation is well established in the literature, we can see that the form of such condition is determined by how 𝜓 is defined mathematically. Clearly, the nature of dom 𝜓 leads to different mathematical conditions.

In [START_REF] Saoud | A Hybrid Gradient Algorithm for Linear Regression with Hybrid Signals[END_REF], the regressor function𝜓 is viewed as a general 'hybrid signal' (in the sense of [START_REF] Goebel | Hybrid Dynamical Systems: Modeling, stability, and robustness[END_REF]), so it is allowed to exhibit both continuous and discrete behaviors. That is, the linear regression model becomes 𝑦 (𝑡, 𝑗) = 𝜓 (𝑡, 𝑗) ⊤ 𝜃 , where dom𝜓 (hence dom 𝑦) is a hybrid time domain in which 𝑡 is the ordinary time capturing the continuous evolution of 𝜓 and 𝑗 captures the instantaneous jumps of 𝜓 . Correspondingly, the estimate ŷ is defined as ŷ (𝑡, 𝑗) := 𝜓 (𝑡, 𝑗) ⊤ θ (𝑡, 𝑗). As a result, for ((𝑡, 𝑗), (𝑡, 𝑗 + 1)) ∈ dom𝜓 × dom𝜓 , i.e., when 𝜓 jumps, θ is updated according to the discrete-time law [START_REF] Bernard | Robust Observer Design for Hybrid Dynamical Systems with Linear Maps and Approximately Known Jump Times[END_REF], which in hybrid time becomes θ (𝑡, 𝑗 +1) = θ (𝑡, 𝑗)-𝜎 (𝑡, 𝑗)𝜓 (𝑡, 𝑗)𝑒 (𝑡, 𝑗), 𝜎 (𝑡, 𝑗)

:= 𝛾 1 + 𝛾 |𝜓 (𝑡, 𝑗)| 2 .
On the other hand, when 𝜓 flows, i.e., for all (𝑡, 𝑗) ∈ dom𝜓 with (𝑡, 𝑗 + 1) ∉ dom𝜓 , we update θ according to the continuous-time adaptation law [START_REF] Åstrom | Numerical identification of linear dynamic systems from normal operating records[END_REF], that is,

θ (𝑡, 𝑗) = -𝛾𝜓 (𝑡, 𝑗)𝜓 (𝑡, 𝑗) ⊤ θ (𝑡, 𝑗).
The choice of using a hybrid gradient algorithm is not of pure academic interest. It is showed in [START_REF] Saoud | A Hybrid Gradient Algorithm for Linear Regression with Hybrid Signals[END_REF] that parametric convergence, and more precisely UES of the set { θ = 0}, is guaranteed under a relaxed form of persistence of excitation tailored for hybrid systems, which is less restrictive than the CT-or the DT-PE. In [START_REF] Saoud | A Hybrid Gradient Algorithm for Linear Regression with Hybrid Signals[END_REF], the global behavior of θ is modeled and analyzed using the hybridsystems framework in [START_REF] Goebel | Hybrid Dynamical Systems: Modeling, stability, and robustness[END_REF]. In particular, UES of the set { θ = 0} is guaranteed under the following hybrid persistence of excitation (HPE) condition that generalizes Assumptions 1 and 2.

Assumption 3 (HPE).

There exist 𝐾, 𝜇 > 0 such that, for each

𝐽 𝑗=𝑗 𝑜 [𝑡 𝑗 , 𝑡 𝑗+1 ] × { 𝑗 } ⊂ dom𝜓 with (𝑡 𝐽 +1 -𝑡 𝑗 𝑜 ) + (𝐽 -𝑗 𝑜 ) ≥ 𝐾, we have 𝐽 ∑︁ 𝑗=𝑗 𝑜 ∫ 𝑡 𝑗 +1 𝑡 𝑗 𝜓 (𝜏, 𝑗)𝜓 (𝜏, 𝑗) ⊤ 𝑑𝜏 + 𝛾𝜓 (𝑡 𝑗+1 , 𝑗)𝜓 (𝑡 𝑗+1 , 𝑗) ⊤ 2 + 2𝛾 |𝜓 (𝑡 𝑗+1 , 𝑗)| 2 ≥ 𝜇𝐼 𝑚 𝜃 .
Roughly speaking, the HPE condition in Assumption 3 is less conservative than its counter-parts CT-and DT-PE since it captures the fact that the richness of a signal may be enhanced by an appropriate mingling of exciting flows and jumps, which, otherwise, are insufficient to guarantee that either the CT-or the DT-PE hold -see [START_REF] Saoud | A Hybrid Gradient Algorithm for Linear Regression with Hybrid Signals[END_REF] for an example.

In this paper, inspired by [START_REF] Chen | Distributed Cooperative Adaptive Identification and Control for a Group of Continuous-Time Systems With a Cooperative PE Condition via Consensus[END_REF][START_REF] Javed | Excitation Conditions for Uniform Exponential Stability of the Cooperative Gradient Algorithm over Weakly Connected Digraphs[END_REF][START_REF] Papusha | Collaborative system identification via parameter consensus[END_REF], we carry a step further the relaxation of the conditions for parameter estimation using the hybrid-gradient estimation algorithm. We propose an algorithm that relies on a network of estimators, each of which is designed using a hybrid gradient-based adaptation law and has access to only limited data, involving the parameters of the global process. However, to compensate for the lack of data, the different estimators are interconnected, so that they share their estimates, with the goal of achieving consensus. Furthermore, we use our main result as a building block to address the observation/identification problem for a class of nonlinear hybrid systems with unknown parameters. After decomposing the hybrid system into (reducedorder) interconnected subsystems, a reduced-order hybrid adaptive observer/estimator is assigned to each subsystem. To that end, we borrow inspiration from [START_REF] Guyader | Adaptive observer for discrete time linear time varying systems[END_REF][START_REF] Zhang | Adaptive observer for multiple-input-multiple-output (MIMO) linear time-varying systems[END_REF]. The different observers/estimators form a network and exchange their estimates of the parameters to reconstruct the state as well as the unknown parameters.

The considered distributed-estimation framework is useful in many contexts, including the following:

(1) For large-scale systems, where local estimators are mounted on local sensors, so each estimator has access only to local data involving the parameters of the global system. Interconnecting the local estimators, so that they share their estimates, serves the estimation process. The idea per se is not new; distributed observers have been proposed in the literature of continuousand discrete-time systems separately, e.g., in [START_REF] Kim | Completely Decentralized Design of Distributed Observer for Linear Systems[END_REF][START_REF] Stanković | Consensus-based decentralized real-time identification of large-scale systems[END_REF][START_REF] Wu | On the Design of Distributed Observers for Nonlinear Systems[END_REF], but our hybrid algorithms are illustrated to perform better. (2) When reinforcing a single real-time estimator using old data.

For example, when a single estimator processing real-time data has also access to old data, the old data may be exploited by designing several virtual estimators to interact with the one treating the real-time data; see the forthcoming Section 3.2 for more details. Such estimation-design approach fits within the paradigm of exploration vs exploitation as it is the case in concurrent-learning control strategies [START_REF] Chowdhary | Concurrent learning adaptive control of linear systems with exponentially convergent bounds[END_REF][START_REF] Poveda | Data-enabled extremum seeking: a cooperative concurrent learning-based approach[END_REF]. [START_REF] Bernard | Robust Observer Design for Hybrid Dynamical Systems with Linear Maps and Approximately Known Jump Times[END_REF] In homogeneous networks of dynamical systems, where the agents need to estimate some of there (equal) parameters while achieving a cooperative task. Instead of each agent estimating the parameters on its own, a cooperative strategy can yield better convergence properties under relaxed conditions [START_REF] Chen | Distributed Cooperative Adaptive Identification and Control for a Group of Continuous-Time Systems With a Cooperative PE Condition via Consensus[END_REF].

The considered distributed estimation framework has been studied in the literature for the continuous-time case only [START_REF] Chen | Distributed Cooperative Adaptive Identification and Control for a Group of Continuous-Time Systems With a Cooperative PE Condition via Consensus[END_REF][START_REF] Javed | Excitation Conditions for Uniform Exponential Stability of the Cooperative Gradient Algorithm over Weakly Connected Digraphs[END_REF][START_REF] Papusha | Collaborative system identification via parameter consensus[END_REF]. Indeed, under different graph conditions, distributed (continuoustime) persistence of excitation conditions are shown to be necessary and sufficient to guarantee UES of the set { θ = 0}. However, to the best of our knowledge, estimating the convergence rate has not been addressed in existing literature. Furthermore, the whole problem is unsolved in the hybrid case.

The rest of the paper is organized as follows. In Section 2, we recall some basic concepts of hybrid systems and graph theory. In Section 3, we formulate the gradient-based estimation problem in a distributed setting and provide our main statement. In Section 4, we address the cooperative observation/identification problem for a class of hybrid systems with unknown parameters and, in Section 5, we present several illustrative examples.

PRELIMINARIES

Notations. R ≥0 := [0, ∞), N := {0, 1, . . . , ∞}. Given a nonempty set 𝐾 ⊂ R 𝑚 𝑥 , |𝑥 | 𝐾 := inf 𝑦 ∈𝐾 |𝑥 -𝑦|, int(𝐾) denotes the interior of 𝐾, and cl(𝐾) denotes its closure. For a nonempty set 𝑂 ⊂ R 𝑛 , 𝐾\𝑂 denotes the subset of elements of 𝐾 that are not in 𝑂. For a map 𝜙 : R ≥0 ×N → R 𝑚 𝑥 ∪ {∅}, dom 𝜙 ⊂ R ≥0 ×N denotes the domain of definition of 𝜙. Furthermore, |𝜙 | ∞ := sup{𝜙 (𝑡, 𝑗) : (𝑡, 𝑗) ∈ dom 𝜙 }. For a differentiable map (𝑥) ↦ → 𝑉 (𝑥) ∈ R, ∇𝑉 denotes the gradient of 𝑉 with respect to 𝑥. For a symmetric semi-positive definite matrix Γ ∈ R 𝑚 𝑥 ×𝑚 𝑥 , 𝜆 𝑚𝑖𝑛 (Γ) and |Γ| := 𝜆 𝑚𝑎𝑥 (Γ) denote the smallest and the largest eigenvalues of Γ, and the trace of Γ, respectively. By 1 𝑚 𝑥 ∈ R 𝑚 𝑥 , we denote the vector whose entries are equal to 1/

√ 𝑚 𝑥 . For a sequence {𝐴 𝑖 } 𝑚 𝑦 𝑖=1 ⊂ R 𝑚 𝑥 ×𝑚 𝑥 , blkdiag 𝑖 ∈ {1,2,...,𝑚 𝑦 }
{𝐴 𝑖 } is the block-diagonal matrix whose 𝑖th diagonal block corresponds to the matrix 𝐴 𝑖 . Finally, ⊗ denotes the Kronecker product.

On hybrid systems

Following [START_REF] Goebel | Hybrid Dynamical Systems: Modeling, stability, and robustness[END_REF], we view a hybrid dynamical system, denoted by H := (𝐶, 𝐹, 𝐷, 𝐺), as a combination of a constrained differential and a constrained difference equations given by

H : 𝑥 = 𝐹 (𝑥) 𝑥 ∈ 𝐶 𝑥 + = 𝐺 (𝑥) 𝑥 ∈ 𝐷, (5) 
with the state variable 𝑥 ∈ X ⊂ R 𝑚 𝑥 , the flow set 𝐶 ⊂ X, the jump set 𝐷 ⊂ X, the flow and jump maps 𝐹 : 𝐶 → R 𝑚 𝑥 and 𝐺 : 𝐷 → R 𝑚 𝑥 , respectively.

Solutions to hybrid systems as defined above, are defined using the following concept. Next, we recall from [START_REF] Sanfelice | Hybrid Feedback Control[END_REF] the definition of uniform exponential stability (UES) of a general closed set for a hybrid system.

Definition 2.1 (Hybrid arc). A map 𝜙

: dom 𝜙 → R 𝑚 𝑥 with dom 𝜙 ⊂ R ≥0 ×N is a hybrid arc if 𝜙 is parameterized by an ordinary time variable 𝑡 ∈ R ≥0 and a discrete jump variable 𝑗 ∈ N and dom 𝜙 is such that, for each (𝑇 , 𝐽 ) ∈ dom 𝜙, dom 𝜙∩( [0,𝑇 ] × {0, 1, . . . , 𝐽 }) = ∪ 𝐽 𝑗=0 [𝑡 𝑗 , 𝑡 𝑗+1 ] × { 𝑗 } for a sequence 𝑡 𝑗 𝐽 +1 𝑗=0 , such that 𝑡 𝑗+1 ≥ 𝑡 𝑗 , 𝑡 0 = 0, and 𝑡 𝐽 +1 = 𝑇 . Definition 2.2 (Concept of solution to H ). A hybrid arc 𝜙 : dom 𝜙 → R 𝑚 𝑥 is a solution to H if (S0) 𝜙 (0, 0) ∈ cl(𝐶) ∪ 𝐷; ( 

Definition 2.3 (UES)

. Consider the hybrid system H := (𝐶, 𝐹, 𝐷, 𝐺) and let S ⊂ X be a closed set. The set S is said to be UES for H on X 𝑜 ⊂ X if there exist 𝜅, 𝜆 > 0 such that, each solution 𝜙 to H starting from 𝜙 (0, 0) ∈ X 𝑜 , we have

|𝜙 (𝑡, 𝑗)| S ≤ 𝜅 exp -𝜆 (𝑡 +𝑗) |𝜙 (0, 0)| S ∀(𝑡, 𝑗) ∈ dom 𝜙 . (6) 
When X 𝑜 = X, we say S is said to be UES for H .

The constant 𝜆 in ( 6) is called a convergence rate of the solutions to H towards S. Finally, we recall a characterization of UES for hybrid systems using Lyapunov functions. Lemma 2.4. A closed subset S ⊂ X is UES for H on X 𝑜 if there exists a function 𝑉 : R ≥0 × N × X → R ≥0 and positive constants ( λ, 𝜆, 𝜆 𝑐 , 𝜆 𝑑 ) such that

𝜆|𝑥 | 2 S ≤ 𝑉 (𝑡, 𝑗, 𝑥) ≤ λ|𝑥 | 2 S , (7) 
and, along each solution 𝜙 to H starting from X 𝑜 , we have

• For each 𝑗 ∈ N such that int(𝐼 𝑗 ) ≠ ∅, 𝑡 ↦ → 𝑉 (𝑡, 𝑗, 𝜙 (𝑡, 𝑗)) is absolutely continuous on 𝐼 𝑗 and 𝑉 (𝑡, 𝑗, 𝜙 (𝑡, 𝑗)) ≤ -𝜆 𝑐 |𝜙 (𝑡, 𝑗)| S for almost all 𝑡 ∈ 𝐼 𝑗 . • For each ((𝑡, 𝑗), (𝑡, 𝑗 + 1)) ∈ dom 𝜙 × dom 𝜙, 𝑉 (𝑡, 𝑗 + 1, 𝜙 (𝑡, 𝑗 + 1)) -𝑉 (𝑡, 𝑗, 𝜙 (𝑡, 𝑗)) ≤ -𝜆 𝑑 |𝜙 (𝑡, 𝑗)| S .
Note that when the conditions in Theorem 4.1 are satisfied, a lower bound of the convergence rate is given by

𝜆 := min 𝜆 𝑐 λ , -ln 1 - 𝜆 𝑑 λ .

On Graph theory

To formulate our distributed hybrid excitation condition, we lay on some graph-theoretical notions [START_REF] Qu | Cooperative control of dynamical systems: applications to autonomous vehicles[END_REF] 

DISTRIBUTED HYBRID GRADIENT ALGORITHM

For simplicity, in the introduction, we discussed a classical parameter estimation problem based on one measurable output and a vectorial regressor function 𝜓 . Nonetheless, the gradient algorithms previously presented also apply to multi-output systems, where 𝑦 ∈ R 𝑚 𝑦 for some integer 𝑚 𝑦 > 1. In this case, 𝜓 ∈ R 𝑚 𝜃 ×𝑚 𝑦 , so 𝜓𝜓 ⊤ ∈ R 𝑚 𝜃 ×𝑚 𝜃 . Now let 𝑦 := [𝑦 

Correspondingly, the error between the actual and the estimated output for the 𝑖-th estimator is given by

𝑒 𝑖 (𝑡, 𝑗) := ŷ𝑖 (𝑡, 𝑗) -𝑦 𝑖 (𝑡, 𝑗) = 𝜓 𝑖 (𝑡, 𝑗) ⊤ θ𝑖 (𝑡, 𝑗), θ𝑖 := θ𝑖 -𝜃 . ( 9 
)
At this point, we introduce a standing assumption on the regularity of 𝜓 𝑖 for all 𝑖. (SA1) For each 𝑗 ∈ N, the map 𝑡 ↦ → 𝜓 (𝑡, 𝑗) is continuous on int(𝐼 𝑗 ),

where 𝐼 𝑗 := {𝑡 : (𝑡, 𝑗) ∈ dom𝜓 }. Furthermore, there exists ψ > 0 such that |𝜓 | ∞ ≤ ψ .

Remark 1. (SA1) is not restrictive, especially when the regressor 𝜓 is excited by an external input that is a design parameter.

To achieve the identification of 𝜃 , the different estimators are designed to exchange their estimates, in real (hybrid) time, according to a communication graph denoted by G. That is, similarly to the algorithm proposed in [START_REF] Javed | Excitation Conditions for Uniform Exponential Stability of the Cooperative Gradient Algorithm over Weakly Connected Digraphs[END_REF] for distributed estimation in continuous time, we design an update law for each θ𝑖 along the discrete-time evolution and along the continuous-time evolution of 𝜓 as follows.

• For all (𝑡, 𝑗) ∈ dom𝜓 𝑖 and (𝑡, 𝑗 + 1) ∈ dom𝜓 (i.e., when 𝜓 jumps), inspired by [START_REF] Olfati-Saber | Consensus and cooperation in networked multi-agent systems[END_REF], we set the update law for θ𝑖 to

θ + 𝑖 = θ𝑖 -𝜎 𝑖 (𝑡, 𝑗)𝜓 𝑖 (𝑡, 𝑗)𝑒 𝑖 -𝛿 𝑚 𝑦 ∑︁ 𝑘=1 𝑎 𝑖𝑘 ( θ𝑖 -θ𝑘 ), (10) 
where 𝛿 > 0 is an interconnection gain, 𝛾 > 0, and 𝜎 𝑖 (𝑡, 𝑗) :

= 𝛾 1+𝛾 |𝜓 𝑖 (𝑡,𝑗) | 2 .
• On the other hand, when (𝑡, 𝑗) ∈ dom𝜓 and (𝑡, 𝑗+1) ∉ dom𝜓 (i.e., 𝜓 flows), we update θ according to

θ𝑖 = -𝛾 1 𝜓 𝑖 (𝑡, 𝑗)𝑒 ⊤ 𝑖 -𝛾 2 𝑚 𝑦 ∑︁ 𝑘=1 𝑎 𝑖𝑘 ( θ𝑖 -θ𝑘 ). (11) 
The coefficients 𝑎 𝑖𝑘 ≥ 0 are positive if a reliable directed (that is, in general, 𝑎 𝑖𝑘 ≠ 𝑎 𝑘𝑖 ) interconnection exists between the 𝑖th and 𝑘th nodes and equal to zero otherwise. Thus, the estimators are assumed to be interconnected forming a network of multi-agent systems that can be modeled using a directed graph G -see Section 2.2. For this graph, we introduce the following standing assumption: (SA2) The graph G is unidirectional and weakly connected.

Recall that a weakly connected digraph G can be decomposed into 𝑆 strongly connected subgraphs {G 𝑠 (V 𝑠 , E 𝑠 )} 𝑆 𝑠=1 , for some 𝑆 ∈ {1, 2, ..., 𝑚 𝑦 }. Among the strongly connected subgraphs in G, we identify the leading strongly connected subgraphs {G 𝑠 } 𝑠 ∈S 𝑙 , S 𝑙 ⊂ {1, 2, ..., 𝑆 }, with no in-neighbors from any other strongly connected subgraph. Remark 2. (SA2) is the least restrictive graph requirement, since the lack of it implies that some nodes are disconnected from the network.

Now we introduce the Laplacian matrix

L := [𝑙 𝑖𝑘 ] ∈ R 𝑚 𝑦 ×𝑚 𝑦 with 𝑙 𝑖𝑘 := -𝑎 𝑖𝑘 ≤ 0 for 𝑘 ≠ 𝑖 and 𝑚 𝑦
𝑘=1 𝑎 𝑖𝑘 otherwise. Thus, we may express the right-hand sides of ( 10) and [START_REF] Ioannou | Robust adaptive control[END_REF] 

as θ = -𝛾 1 Φ 𝑐 (𝑡, 𝑗) -𝛾 2 L ⊗ 𝐼 𝑚 𝜃 θ, (12a) Φ 𝑐 (𝑡, 𝑗) := blkdiag{Φ 𝑐1 (𝑡, 𝑗), Φ 𝑐2 (𝑡, 𝑗)}, (12b) Φ 𝑐1 (𝑡, 𝑗) := 𝛾 1 blkdiag 𝑖 ∈V 1 𝜓 𝑖 (𝑡, 𝑗)𝜓 𝑖 (𝑡, 𝑗) ⊤ , (12c) 
Φ 𝑐2 (𝑡, 𝑗) := 𝛾 1 blkdiag 𝑖 ∈V\V 1 𝜓 𝑖 (𝑡, 𝑗)𝜓 𝑖 (𝑡, 𝑗) ⊤ , (12d) 
for all times such that the solutions flow, and as

θ + = θ -Φ 𝑑 (𝑡, 𝑗) θ -𝛿 (L ⊗ 𝐼 𝑚 𝜃 ) θ, (13a) Φ 𝑑 (𝑡, 𝑗) := blkdiag{Φ 𝑑1 (𝑡, 𝑗), Φ 𝑑2 (𝑡, 𝑗)}, (13b) 
Φ 𝑑1 (𝑡, 𝑗) := blkdiag 𝑖 ∈V 1 𝛾𝜓 𝑖 (𝑡, 𝑗)𝜓 𝑖 (𝑡, 𝑗) ⊤ 1 + 𝛾 |𝜓 𝑖 (𝑡, 𝑗)| 2 , (13c) 
Φ 𝑑2 (𝑡, 𝑗) := blkdiag 𝑖 ∈V\V 1 𝛾𝜓 𝑖 (𝑡, 𝑗)𝜓 𝑖 (𝑡, 𝑗) ⊤ 1 + 𝛾 |𝜓 𝑖 (𝑡, 𝑗)| 2 . ( 13d 
)
for all times such that the solutions jump. 

Main Result I

Our main statement is that the distributed hybrid estimation laws ( 12)-( 13) guarantee the estimation of 𝜃 provided a property that we call distributed hybrid persistency of excitation (DHPE) holds. Assumption 4 (DHPE). For each 𝑠 ∈ S 𝑙 , there exist 𝐾 𝑠 , 𝜇 𝑠 > 0 such that, for each hybrid time domain

𝐽 𝑗=𝑗 𝑜 [𝑡 𝑗 , 𝑡 𝑗+1 ] × { 𝑗 } ⊂ dom𝜓 with (𝑡 𝐽 +1 -𝑡 𝑗 𝑜 ) + (𝐽 -𝑗 𝑜 ) ≥ 𝐾 𝑠 , we have ∑︁ 𝑖 ∈V 𝑠 𝐽 ∑︁ 𝑗=𝑗 𝑜 ∫ 𝑡 𝑗 +1 𝑡 𝑗 𝜓 𝑖 (𝜏, 𝑗)𝜓 𝑖 (𝜏, 𝑗) ⊤ 𝑑𝜏 + 𝛾𝜓 𝑖 (𝑡 𝑗+1 , 𝑗)𝜓 𝑖 (𝑡 𝑗+1 , 𝑗) ⊤ 2 + 2𝛾 |𝜓 𝑖 (𝑡 𝑗+1 , 𝑗)| 2 ≥ 𝑚 𝑠 𝜇 𝑠 𝐼 𝑚 𝜃 .
Remark 4. Note that Assumption 4 is the hybrid counterpart of the distributed persistence of excitation condition used in [START_REF] Javed | Excitation Conditions for Uniform Exponential Stability of the Cooperative Gradient Algorithm over Weakly Connected Digraphs[END_REF], which is shown to be necessary and sufficient for convergence in the continuoustime setting.

Under the DHPE condition, we establish uniform exponential stability of { θ = 0} in the hybrid sense (see Def. 2.3) for the following hybrid dynamical system defined after the set of equations (12a) and (13a). That is,

H 𝑑𝑔 :                                   θ = -𝛾 1 Φ 𝑐 (𝑡, 𝑗) θ -𝛾 2 L ⊗ 𝐼 𝑚 𝜃 θ 𝑡 = 1 𝑗 = 0 ( θ, 𝑡, 𝑗) ∈ 𝐶 𝑔 (15a)        θ + = θ -Φ 𝑑 (𝑡, 𝑗) θ -𝛿 (L ⊗ 𝐼 𝑚 𝜃 ) θ 𝑡 + = 𝑡 𝑗 + = 𝑗 + 1 ( θ, 𝑡, 𝑗) ∈ 𝐷 𝑔 , (15b) 
where 𝐷 𝑔 := {( θ, 𝑡, 𝑗) ∈ R 𝑚 𝜃 × dom𝜓 : (𝑡, 𝑗 + 1) ∈ dom𝜓 } and

𝐶 𝑔 := cl((R 𝑚 𝜃 × dom𝜓 )\𝐷 𝑔 ).
The formulation of our main statement relies on a specific representation of the Laplacian that holds under the standing assumption (SA2). More precisely, we recall that by an appropriate reordering of the nodes of G, the Laplacian matrix L of a weakly connected digraph G can be written in the lower-block triangular form

L = blkdiag 𝑠 ∈S 𝑙 {L 𝑠 } 0 𝑀 𝑙 𝑀 𝑟 ,
where each L 𝑠 ∈ R 𝑚 𝑠 ×𝑚 𝑠 is the Laplacian matrix of the strongly connected component G 𝑠 , the lower-left block 𝑀 𝑙 ∈ R 𝑘×𝑚 𝑦 -𝑘 , 𝑘 := 𝑚 𝑦 -𝑠 ∈S 𝑙 𝑚 𝑠 , is a non-positive matrix, and the lower-right block 𝑀 𝑟 ∈ R 𝑘×𝑘 is a non-singular M-matrix; namely, 𝑀 𝑟 := 𝛾 𝑟 𝐼 𝑘 -𝐶 𝑟 , where 𝐶 𝑟 ∈ R 𝑘×𝑘 is a non-negative matrix, 𝛾 𝑟 > 𝜌 (𝐶 𝑟 ) > 0, and 𝜌 (𝐶 𝑟 ) is the spectral radius of 𝐶 𝑟 ; see [START_REF] Chen | Controllability of Formations Over Directed Time-Varying Graphs[END_REF][START_REF] Javed | Excitation Conditions for Uniform Exponential Stability of the Cooperative Gradient Algorithm over Weakly Connected Digraphs[END_REF] for more details.

For the sequel, we assume the following.

(SA3) The graph G admits only one leading strongly connected component G 1 (V 1 , E 1 ); namely, S 𝑙 = {1}.

Under (SA3), the Laplacian matrix L enjoys the previous lowertriangular structure with a simple northeast block, that is,

L = L 1 0 𝑀 𝑙 𝑀 𝑟 , (16) 
where L 1 ∈ R 𝑚 1 ×𝑚 1 is the Laplacian matrix of the strongly connected component G 1 . It is to be noted that our approach extends trivially if we omit assume (SA3).

As a result, we decompose the state θ of H 𝑑𝑔 into θ := ( θ𝑠 , θ 𝑓 ), where θ𝑠 contains the state of the elements in the strongly connected graph G 1 and θ 𝑓 contains the state of the elements of G that are not in G 1 . Using this decomposition, the hybrid system H 𝑑𝑔 can be expressed in the following cascaded form

H 𝑑𝑔 :                                                 θ 𝑓 = -𝛾 1 Φ 𝑐2 (𝑡, 𝑗) θ 𝑓 -𝛾 2 𝑀 𝑟 ⊗ 𝐼 𝑚 𝜃 θ 𝑓 -𝛾 2 𝑀 𝑙 ⊗ 𝐼 𝑚 𝜃 θ𝑠 θ𝑠 = -𝛾 1 Φ 𝑐1 (𝑡, 𝑗) θ𝑠 -𝛾 2 1 ⊗ 𝐼 𝑚 𝜃 θ𝑠 𝑡 = 1 𝑗 = 0 ( θ, 𝑡, 𝑗) ∈ 𝐶 𝑔              θ + 𝑓 = θ 𝑓 -Φ 𝑑2 (𝑡, 𝑗) θ 𝑓 -𝛿 𝑀 𝑟 ⊗ 𝐼 𝑚 𝜃 θ 𝑓 -𝛿 𝑀 𝑙 ⊗ 𝐼 𝑚 𝜃 θ𝑠 θ + 𝑠 = θ𝑠 -Φ 𝑑1 (𝑡, 𝑗) θ𝑠 -𝛿 L 1 ⊗ 𝐼 𝑚 𝜃 θ𝑠 𝑡 + = 𝑡 𝑗 + = 𝑗 + 1 ( θ, 𝑡, 𝑗) ∈ 𝐷 𝑔 .
Theorem 3.1. Consider the hybrid system H 𝑑𝑔 under Assumption 4. Let SA2 generate L 1 , 𝑀 𝑙 , and 𝑀 𝑟 such that (16) hold and let 𝛿 > 0 be such that

𝑄 𝑟 := 𝑃 𝑟 𝑀 𝑟 + 𝑀 ⊤ 𝑟 𝑃 𝑟 ≥ 4𝛿𝑀 ⊤ 𝑟 𝑃 𝑟 𝑀 𝑟 , (17) 
where

𝑃 𝑟 := blkdiag 𝑖 ∈ {1,2,...,𝑘 } 𝑀 -1 𝑟 1 𝑘 -1 , 𝑃 L 1 + L ⊤ 1 𝑃 -4𝛿 L ⊤ 1 𝑃 L 1 ≥ 0, ( 18 
)
𝑃 := blkdiag 𝑖 ∈ {1,2,...,𝑚 1 }
{𝑤 𝑖 }, and 𝑤 is the left eigenvector of L 1 associated to its null eigenvalue. Then, the set

S := {( θ, 𝑡, 𝑗) ∈ R 𝑚 𝑦 𝑚 𝜃 × dom𝜓 : θ = 0}
is UES in the sense of Definition 2.3. Moreover, 𝑍 : dom𝜓 ×R 𝑚 𝜃 𝑚 𝑦 → R ≥0 , given below, is a Lyapunov function for the closed-loop system:

𝑍 (𝑡, 𝑗, θ ) := θ ⊤ 𝑓 𝑃 𝑟 ⊗ 𝐼 𝑚 𝜃 θ 𝑓 + 𝜁 𝛽 θ ⊤ 𝑠 (𝑃 ⊗ 𝐼 𝑚 𝜃 ) θ𝑠 , + 𝜁 θ ⊤ 𝑠 (1 𝑚 1 ⊗ 𝐼 𝑚 𝜃 ) 𝛼𝐼 𝑚 𝜃 + Q (𝑡, 𝑗) (1 ⊤ 𝑚 1 ⊗ 𝐼 𝑚 𝜃 ) θ𝑠 where Q : dom𝜓 → R 𝑚 𝜃 ×𝑚 𝜃 is given by Q (𝑡, 𝑗) := 3 ψ 2 2 -2 exp -1 𝐼 𝑚 𝜃 -𝑄 Φ (𝑡, 𝑗, +∞), 𝑄 Φ (𝑡, 𝑗, ∞) := 𝑚 ∞ ∑︁ 𝑖=𝑗 ∫ 𝑡 𝑖+1 𝑡 𝑖 exp (𝑡 +𝑗)-(𝑠+𝑖) Φ(𝑠, 𝑖)𝑑𝑠 + 1 2 𝑚 ∞ ∑︁ 𝑖=𝑗 ∫ 𝑡 𝑖+2 𝑡 𝑖+1 exp (𝑡 +𝑗)-(𝑠+𝑖) 𝑑𝑠Φ(𝑡 𝑖+1 , 𝑖), Φ(𝑡, 𝑗) :=              1 𝑚 1 𝑚 1 ∑︁ 𝑖=1 𝜓 𝑖 (𝑡, 𝑗)𝜓 𝑖 (𝑡, 𝑗) ⊤ if 𝑡 ∈ int(𝐼 𝑗 ), 1 𝑚 1 𝑚 1 ∑︁ 𝑖=1 𝛾𝜓 𝑖 (𝑡, 𝑗)𝜓 𝑖 (𝑡, 𝑗) ⊤ 1 + 𝛾 |𝜓 𝑖 (𝑡, 𝑗) | 2 otherwise, 𝑚 ∞ ∈ N ∪ {+∞} is the maximum amount of jumps achieved on dom𝜓 ∩ [𝑡, +∞) × { 𝑗, 𝑗 + 1, ...} := [𝑡, 𝑡 𝑗+1 ] × { 𝑗 } ∪ [𝑡 𝑗+1 , 𝑡 𝑗+2 ] × { 𝑗 + 1} ∪ • • •
, and (𝛼, 𝛽, 𝜁 ) are positive constants appropriately chosen such that (7) holds and, along the solutions to H 𝑑𝑔 , we have

• For each (𝑡, 𝑗) ∈ dom𝜓 such that (𝑡, 𝑗 + 1) ∉ dom𝜓 , 𝑍 (𝑡, 𝑗, θ ) ≤ - 𝛾 2 𝜆 𝑚𝑖𝑛 (𝑄 𝑟 ) 2 | θ | 2 .
• For each (𝑡, 𝑗) ∈ dom𝜓 such that (𝑡, 𝑗 + 1) ∈ dom𝜓 ,

𝑍 (𝑡, 𝑗 + 1, θ + ) -𝑍 (𝑡, 𝑗, θ ) ≤ - 𝛿𝜆 𝑚𝑖𝑛 (𝑄 𝑟 ) 4 | θ | 2 .
Remark 5. Note that the first term in 𝑍 provides a strict Lyapunov function for the hybrid dynamics of θ 𝑓 when θ𝑠 = 0. Furthermore, the third term provides a non-strict Lyapunov function for the hybrid dynamics of θ𝑠 , which we strictify by adding the second term in 𝑍 . Indeed, the variations of the third term in 𝑍 along the solutions to H 𝑑𝑔 yield to a negative (quadratic) term in the errors

𝑒 𝑠 := θ𝑠 -(1 𝑚 1 ⊗ 𝐼 𝑚 𝜃 )(1 ⊤ 𝑚 1 ⊗ 𝐼 𝑚 𝜃 ) θ𝑠 .
Then, it is necessary to analyze the behavior of the average state 𝑥 𝑠 := (1 ⊤ 𝑚 1 ⊗ 𝐼 𝑚 𝜃 ) θ𝑠 when 𝑒 𝑠 = 0-cf. [START_REF] Panteley | Synchronization and Dynamic Consensus of Heterogeneous Networked Systems[END_REF]. This is the purpose of the second term in 𝑍 . Remark 6. Note that we can always find 𝛿 > 0 such that conditions (17) and (18) hold. Indeed, the matrix 𝑄 𝑟 is positive definite, which implies that we can always find 𝛿 > 0 sufficiently small such that (17) holds. Moreover, we show in another step that Ker(𝑃

L 1 + L ⊤ 1 𝑃) = Span (1 𝑚 1 ); hence, Ker(𝑃 L 1 + L ⊤ 1 𝑃) ⊂ Ker(L ⊤ 1 𝑃 L 1 ).
As a result, we can always design 𝛿 > 0 sufficiently small such that (18) holds.

Connection to concurrent-learning-based estimation

Consider the scenario where a single estimator is used, let (𝜓 1 , 𝑦 1 ) be input-output data received in real time. Assume that the estimator has access to old data forming the sequence {(𝜓 𝑖 , 𝑦 𝑖 )} 𝑚 𝑦 𝑖=2 . In this case, the hybrid update of θ1 given in ( 10)- [START_REF] Ioannou | Robust adaptive control[END_REF], while replacing 𝑖 therein by 1, can viewed as a sum of two types of terms:

(1) exploration terms, which are -𝛾 1 𝜓 1 (𝑡, 𝑗)𝑒 ⊤ 1 along flows and θ1 -𝜎 1 (𝑡, 𝑗)𝜓 1 (𝑡, 𝑗)𝑒 1 along jumps and According to Theorem 3.1, the estimator can estimate 𝜃 exponentially fast, even if the real-time input 𝜓 1 is not hybrid persistently exciting. In contrast, estimating the parameters is impossible without exploiting the old data {(𝜓 𝑖 , 𝑦 𝑖 )} 𝑚 𝑦 𝑖=2 . Furthermore, when the real-time input 𝜓 1 is hybrid persistently exciting, it is important to design well the graph topology so that adding virtual estimators improve, or at least do not degrade, the convergence properties. All these behaviors are illustrated, via simulations, in Section 5.

COOPERATIVE ADAPTIVE OBSERVATION/IDENTIFICATION

Based on the approach described in Section 3, we study the observationplus-identification problem for hybrid systems of the form

H :        𝑥 = 𝐴 𝑐 𝑥 + Ψ 𝑐 (𝑦, 𝑢)𝜃 (𝑥, 𝑢) ∈ 𝐶 𝑥 + = 𝐴 𝑑 𝑥 + Ψ 𝑑 (𝑦, 𝑢)𝜃 (𝑥, 𝑢) ∈ 𝐷 𝑦 = 𝐸𝑥, (19) 
where 𝑥 ∈ X ⊂ R 𝑚 𝑥 is the state, 𝑦 ∈ R 𝑚 𝑦 , with 𝑚 𝑦 ≤ 𝑚 𝑥 , is the output, ∈ R 𝑚 𝜃 is a constant vector of unknown parameters, 𝐸 ∈ R 𝑚 𝑦 ×𝑚 𝑥 is the output matrix, (𝐶, 𝐷) ⊂ R 𝑚 𝑥 𝑚 𝑢 × R 𝑚 𝑥 𝑚 𝑢 are the flow and the jump sets, respectively, and Ψ 𝑐 , Ψ 𝑑 : R 𝑚 𝑦 ×R 𝑚 𝑢 → R 𝑚 𝑥 ×𝑚 𝜃 are the continuous-and the discrete-time regressor functions, respectively, satisfying the following assumption. (SA4) The regressors Ψ 𝑐 and Ψ 𝑑 are continuous.

Our approach is based on designing a network of reduced-order adaptive observers/identifiers that exchange their parameter estimates according to a communication graph. To do so, we start assuming that the hybrid system H can be decomposed into 𝑚 𝑦 subsystems of the form

H 𝑖 :        𝑥 𝑖 = 𝐴 𝑐𝑖 𝑥 𝑖 + Ψ 𝑐𝑖 (𝑦, 𝑢)𝜃 (𝑥, 𝑢) ∈ 𝐶 𝑥 + 𝑖 = 𝐴 𝑑𝑖 𝑥 𝑖 + Ψ 𝑑𝑖 (𝑦, 𝑢)𝜃 (𝑥, 𝑢) ∈ 𝐷 𝑦 𝑖 = 𝐸 𝑖 𝑥 𝑖 ,
where, for each 𝑖 ∈ {1, 2, ..., 𝑚 𝑦 }, 𝑥 𝑖 ∈ R 𝑚 𝑥𝑖 , 𝑦 𝑖 ∈ R, and Ψ 𝑖 : R 𝑚 𝑦 × R 𝑚 𝑢 → R 𝑚 𝑥𝑖 ×𝑚 𝜃 , and 𝐸 𝑖 ∈ R 𝑚 𝑥𝑖 . Furthermore, we let the following standing assumption holds. (SA5) There exist scalars 𝑎 𝑐 , 𝑎 𝑑 ≤ 0 and 𝛽, 𝑀 ≥ 0, matrices 𝐾 𝑐𝑖 , 𝐾 𝑑𝑖 ∈ R 𝑚 𝑥𝑖 , and a positive definite matrix

𝑃 𝑖 = 𝑃 ⊤ 𝑖 ∈ R 𝑚 𝑥𝑖 ×𝑚 𝑥𝑖 such that 𝐴 ⊤ 𝑐𝑐𝑙𝑖 𝑃 𝑖 + 𝑃 𝑖 𝐴 𝑐𝑐𝑙𝑖 ≤ 𝑎 𝑐 𝑃 𝑖 , (20a) 
𝐴 ⊤ 𝑑𝑐𝑙𝑖 𝑃 𝑖 𝐴 𝑑𝑐𝑙𝑖 ≤ 𝑒 𝑎 𝑑 𝑃 𝑖 , (20b) 
where 𝐴 𝑐𝑐𝑙𝑖 := 𝐴 𝑐𝑖 -𝐾 𝑐𝑖 𝐸 𝑖 and 𝐴 𝑑𝑐𝑙𝑖 := 𝐴 𝑑𝑖 -𝐾 𝑑𝑖 𝐸 𝑖 , and

𝑎 𝑐 𝑡 + 𝑎 𝑑 𝑗 ≤ 𝑀 -𝛽 (𝑡 + 𝑗) ∀(𝑡, 𝑗) ∈ R ≥0 × N ≥0 . 1 (21) 
Remark 7. According to (SA5), for each 𝑖 ∈ {1, 2, . . . , 𝑚 𝑦 }, the pairs (𝐴 𝑐𝑖 , 𝐸 𝑖 ) and (𝐴 𝑑𝑖 , 𝐸 𝑖 ) are observable and admit a common quadratic Lyapunov function characterized by the matrix 𝑃 𝑖 . Note that (SA5) can be relaxed under an extra knowledge on dom 𝜙; see [START_REF] Prieur | Relaxed persistent flow/jump conditions for uniform global asymptotic stability[END_REF]. For example, when 𝜙 is eventually discrete, eventually continuous, jumps periodically, has a persistent flow, or has a persistent jump.

The goal in this section is to design multiple reduced-order (SA6) Each observer/identifier H 𝑜𝑖 knows the matrices (𝐴 𝑐𝑖 , 𝐴 𝑑𝑖 , 𝐸 𝑖 ), the maps (Ψ 𝑐𝑖 , Ψ 𝑑𝑖 ), and the pair (𝑦, 𝑢).

(SA7) The different observers/identifiers exchange their estimates of 𝜃 according to a graph G satisfying (SA2) and (SA3). (SA8) Knowing the pair (𝑦, 𝑢), we can detect instantaneously when the corresponding solution 𝜙 to H jumps.

Remark 8. Note that the decomposition of H into {H 𝑖 } 𝑚 𝑦 𝑖=1 assumes a particular structure for H . Extending our result using a more general decomposition based on the canonical form of observability could be a promising perspective to this work. Furthermore, one could envision relaxing (SA8) by assuming the jump times to be approximately known -cf. [START_REF] Bernard | Robust Observer Design for Hybrid Dynamical Systems with Linear Maps and Approximately Known Jump Times[END_REF].

Networked Hybrid Adaptive Observers/Identifiers

As in the classical observer-design paradigm, we assume that each observer/identifier H 𝑜𝑖 contains a copy of H 𝑖 only. Hence, it is reasonable to expect that, when the dimension H is large (note that 𝑚 𝑥 = 𝑚 𝑦 𝑖=1 𝑚 𝑥 𝑖 ), the proposed approach should impose rely on shorter computation time as opposed to using a single observer/identifier containing a copy of the entire system H .

Consider a solution 𝜙 : dom 𝜙 → R 𝑚 𝑥 to H and the corresponding input-output pair (𝑢, 𝑦). For each 𝑖 ∈ {1, 2, ..., 𝑚 𝑦 }, the state vector of the 𝑖th estimator H 𝑜𝑖 is

𝑋 𝑜𝑖 := (𝑡, 𝑗, x𝑖 , θ𝑖 , Γ 𝑐𝑖 , Γ 𝑑𝑖 ) ∈ X 𝑜𝑖 ,
where

X 𝑜𝑖 := dom 𝜙 × R 𝑚 𝑥𝑖 ×𝑚 𝜃 × R 𝑚 𝑥𝑖 ×𝑚 𝜃 × R 𝑚 𝑥𝑖 × R 𝑚 𝜃 .
Furthermore, to simplify the notation, we introduce the hybrid arcs Ψ 𝑖 , Γ 𝑖 : dom 𝜙 → R 𝑚 𝑥𝑖 ×𝑚 𝜃 and 𝜓 𝑖 : dom 𝜙 → R 𝑚 𝜃 given by

Observation/Identification Via Adaptive Concurrent Learning

Following the discussion in Section 3.2, we use the method described in Section 4.1 to reinforce the design of a single adaptive observer/identifier using old data. That is, we consider a hybrid system in the form of H in [START_REF] Papusha | Collaborative system identification via parameter consensus[END_REF] with 𝑚 𝑦 = 1 (we are not going to decompose H into subsystems). Let the pair (𝑢 1 , 𝑦 1 ) represent the input-output data available in real time and let {(𝑢 𝑖 , 𝑦 𝑖 )} 𝑁 𝑖=2 , for some 𝑁 > 0, be a sequence of old data. For simplicity, we assume that all the input-output pairs have the same hybrid time domain. Assumption 6. dom

𝑦 1 = dom 𝑢 1 = • • • = dom 𝑦 𝑁 = dom 𝑢 𝑁 .
At this point, we introduce the sequence of hybrid systems {H 𝑖 } 𝑁 𝑖=1 , where each H 𝑖 corresponds to H subject the input 𝑢 𝑖 and thus generating the output 𝑦 𝑖 . Under (SA8), each H 𝑖 be expressed as

H 𝜓 𝑖 :                    𝑡 = 1, 𝑗 = 0, 𝑥 𝑖 = 𝐴 𝑐 𝑥 𝑖 + Ψ 𝑖 (𝑡, 𝑗)𝜃 (𝑡, 𝑗, 𝑥 𝑖 ) ∈ 𝐶 𝑖        𝑡 + = 𝑡, 𝑗 + = 𝑗 + 1, 𝑥 + 𝑖 = 𝐴 𝑑 𝑥 𝑖 + Ψ 𝑖 (𝑡, 𝑗)𝜃 (𝑡, 𝑗, 𝑥 𝑖 ) ∈ 𝐷 𝑖 𝑦 𝑖 = 𝐸𝑥 𝑖 ,
where Ψ 𝑖 : dom 𝑢 𝑖 → R 𝑚 𝑥𝑖 ×𝑚 𝜃 , in this case, is defined as

Ψ 𝑖 (𝑡, 𝑗) := Ψ 𝑐 (𝑦 𝑖 (𝑡, 𝑗), 𝑢 𝑖 (𝑡, 𝑗)) if 𝑡 ∈ int(𝐼 𝑗 ) Ψ 𝑑 (𝑦 𝑖 (𝑡, 𝑗), 𝑢 𝑖 (𝑡, 𝑗)) otherwise,
and

𝐶 𝑖 := {(𝑡, 𝑗) ∈ dom Ψ 𝑖 : (𝑡, 𝑗 + 1) ∉ dom Ψ 𝑖 } × R 𝑚 𝑥 , 𝐷 𝑖 := {(𝑡, 𝑗) ∈ dom Ψ 𝑖 : (𝑡, 𝑗 + 1) ∈ dom Ψ 𝑖 } × R 𝑚 𝑥 .
The proposed concurrent-learning-based observer/identifier uses a network {H 𝑜𝑖 } 𝑁 𝑖=1 , where each H 𝑜𝑖 is designed as in (25) while replacing (𝐴 𝑐𝑖 , 𝐴 𝑑𝑖 ) therein by (𝐴 𝑐 , 𝐴 𝑑 ). Theorem 4.1 applies in this case, so we conclude that each H 𝑜𝑖 tracks the state 𝑥 𝑖 of H 𝑖 and estimates the parameter 𝜃 . More precisely, we have the following. Corollary 4.2. Given the hybrid system H in [START_REF] Papusha | Collaborative system identification via parameter consensus[END_REF] with 𝑚 𝑦 = 1. Assume that the real-time input-output pair (𝑢 1 , 𝑦 1 ) and the sequence of old input-output data {(𝑢 𝑖 , 𝑦 𝑖 )} 𝑁 𝑖=2 are bounded and satisfy Assumption 6. Consider the concurrent-learning-based observer/identifier H 𝑜 := {H 𝑜𝑖 } 𝑁 𝑖=1 , where each H 𝑜𝑖 is designed as in (25) while replacing (𝐴 𝑐𝑖 , 𝐴 𝑑𝑖 ) therein by (𝐴 𝑐 , 𝐴 𝑑 ). Then, the closed set S 𝑒𝜃 is UES on X 𝑖𝑛 for the hybrid system (H, H 𝑜 ) provided that Assumption 5 holds.

Remark 10. According to Corollary 4.2, it is possible that the realtime data (𝑢 1 , 𝑦 1 ) fails to generate a signal 𝜓 1 that is hybrid persistently exciting. Yet, the concurrent-learning-based observer/identifier H 𝑜 can estimate the vector of parameters 𝜃 exponentially. In contrast, estimating the parameters is impossible using only the real-time data (𝑦 1 , 𝑢 1 ). Remark 11. Assumption 6 is hard to satisfy in the general context of hybrid systems. However, we can always unify the domain of our data by creating fictitious jumps (static jumps) for all the data whenever one of them jumps. This procedure will affect the matrix 𝐴 𝑑 in each of the systems {H 𝑖 } 𝑁 𝑖=1 ; thus, the analysis will require other machinery that is omitted in this version due to space limitation. The initial condition for the simulation is θ (0) := [6 7] ⊤ . It can be seen that while the discrete and continuous-time algorithms fail to make the errors θ converge to zero, the hybrid gradient-descent algorithm succeeds. 

CONCLUSION

We proposed an estimation method involving a network of gradientdescent-based estimators, each of which exploits only a portion of the input-output data, which are viewed as hybrid signals. The different estimators exchange their estimates according to a weaklyconnected directed graph. The alternation of flows and jumps combined with the distributed character of the proposed algorithm allow us to introduce a hybrid form of the well-known persistence of excitation condition. Under such a condition, we establish exponential convergence of the estimation errors. The proposed approach generalizes the existing ones, yields to relaxed sufficient conditions for (uniform-exponential) parameter estimation. Furthermore, we applied it to address the observation/identification problem for a class of hybrid systems with unknown parameters using a distributed network of adaptive observers/identifiers.

  S1) for all 𝑗 ∈ N such that 𝐼 𝑗 := {𝑡 : (𝑡, 𝑗) ∈ dom 𝜙 } has nonempty interior, 𝑡 ↦ → 𝜙 (𝑡, 𝑗) is locally absolutely continuous and 𝜙 (𝑡, 𝑗) ∈ 𝐶 for all 𝑡 ∈ int(𝐼 𝑗 ), 𝜙 (𝑡, 𝑗) = 𝐹 (𝜙 (𝑡, 𝑗)) for almost all 𝑡 ∈ 𝐼 𝑗 ; (S2) for all (𝑡, 𝑗) ∈ dom 𝜙 such that (𝑡, 𝑗 + 1) ∈ dom 𝜙, we have 𝜙 (𝑡, 𝑗) ∈ 𝐷 and 𝜙 (𝑡, 𝑗 + 1) = 𝐺 (𝜙 (𝑡, 𝑗)).

Remark 3 .

 3 Instead of the discrete-time distributed gradient algorithm in[START_REF] Guyader | Adaptive observer for discrete time linear time varying systems[END_REF], one can use, for each 𝑖 ∈ {1, 2, ..., 𝑚 𝑦 },θ𝑖 (𝑡, 𝑗 + 1) = θ𝑖 (𝑡, 𝑗) + 𝑚 𝑦 𝑘=1 𝑎 𝑖𝑘 θ𝑘 (𝑡, 𝑗) 1 + 𝑚 𝑦 𝑘=1 𝑎 𝑖𝑘 -𝜎 𝑖 (𝑡, 𝑗)𝜓 𝑖 (𝑡, 𝑗)𝑒 𝑖 ,[START_REF] Lorenc | Analysis methods for numerical weather prediction[END_REF] where 𝜎 𝑖 (𝑡, 𝑗) := 𝛾 1+𝛾 |𝜓 𝑖 (𝑡,𝑗) | 2 . Hence, in the error coordinates, (14) becomes θ + = -Φ 𝑑 (𝑡, 𝑗) θ + (𝐼 𝑚 𝑦 + D) -1 (𝐼 𝑚 𝑦 + A) ⊗ 𝐼 𝑚 𝜃 θ, where A := [𝑎 𝑖𝑘 ] ∈ R 𝑚 𝑦 ×𝑚 𝑦 is the adjacency matrix associated with the digraph by setting 𝑎 𝑖𝑖 := 0 for all 𝑖 ∈ {1, 2, ..., 𝑚 𝑦 } and D := blkdiag 𝑖 ∈ {1,2,...,𝑚 𝑦 } 𝑚 𝑦 𝑘=1 𝑎 𝑖𝑘 . Note that solving the estimation problem under the discrete update in (14) is an open problem.

( 2 )

 2 exploitation terms, which are -𝛾 2 𝑚 𝑦 𝑘=1 𝑎 1𝑘 ( θ1 -θ𝑘 ) along flows and -𝛿 𝑚 𝑦 𝑘=1 𝑎 1𝑘 ( θ1 -θ𝑘 ) along jumps.

5 ILLUSTRATIVE NUMERICAL EXAMPLES 5 . 1 0 ,

 510 Comparison between the continuous-, the discrete-time, and the hybrid gradient algorithmsConsider the linear input-output relationship𝑦 (𝑡, 𝑗) = 𝜓 (𝑡, 𝑗) ⊤ 𝜃,where the hybrid regressor 𝜓 : dom𝜓 → R 2 is given by𝜓 1 (𝑡, 𝑗) := [cos(2𝑡) 0] ⊤ ∀ 𝑡 ∈ (2𝑗𝜋, 2( 𝑗 + 1)𝜋), 𝑗 ∈ N [0.3 0.9] ⊤ ∀ 𝑡 = 2𝑗𝜋, 𝑗 ∈ N.First, when viewing the regressor 𝜓 as a discrete-time function defined on {0, 1, ...}, we can see that the regressor 𝜓 ( 𝑗)𝜓 ( 𝑗) ⊤ := 0.09 0.27 0.27 0.81 𝑗 ∈ {0, 1, ...} is constant and not full rank. Hence, the DT-PE condition in Assumption 2 is not satisfied. Similarly, when viewing the regressor 𝜓 as a continuous-time function defined on R ≥0 , we can see that 𝜓 (𝑡)𝜓 (𝑡) ⊤ := 2𝑗𝜋, 2( 𝑗 + 1)𝜋), 𝑗 ∈ N each 𝑡 𝑜 > 0 and 𝑇 > 0, we have∫ 𝑡 𝑜 +𝑇 𝑡 𝑜 𝜓 (𝑠)𝜓 (𝑠) ⊤ 𝑑𝑠 = ∫ 𝑡 𝑜 +𝑇 𝑡 𝑜 cos(2𝑠)2 𝑑𝑠 0 0 so the CT-PE condition in Assumption 1 is not satisfied. Yet, the HPE condition in Assumption 3 holds with 𝐾 = 2𝜋 + 1 and 𝜇 = 0.21.Figure1provides a comparison between the classical continuous-, discrete-time, and the hybrid gradient-descent algorithms in terms of convergence of the parameter estimation errors.

Figure 1 :

 1 Figure 1: Evolution of | θ | using the continuous-(in green), the discrete-time (in red), and the hybrid (in blue) gradientdescent algorithms.

Figure 4 :

 4 Figure 4: Evolution of | θ1 | (in blue), | θ2 | (in green) and | θ3 | (in red) using the centralized hybrid gradient algorithm.

Figure 5 :

 5 Figure 5: Evolution of | θ1 | (in blue), | θ2 | (in green) and | θ3 | (in red) using the distributed hybrid gradient algorithm.

  . A directed graph or a digraph G(V, E) is characterized by the set of nodes V = {1, 2, ..., 𝑚

𝑦 }, and the set of directed edges E. The edge set E consists of ordered pairs of the form (𝑘, 𝑖), which indicates a directed link from node 𝑘 to node 𝑖. We assume that the digraphs are simple, i.e., there are no self-arcs. Note that when there exists a directed edge (𝑘, 𝑖) ∈ E, then node 𝑘 is called an in-neighbor of node 𝑖. We assign a positive weight 𝑎 𝑖𝑘 to each edge (𝑘, 𝑖). That is, 𝑎 𝑖𝑘 = 0 if (𝑘, 𝑖) is not an edge. A digraph is strongly connected if for any two distinct nodes 𝑖 and 𝑗, there is a path from 𝑖 to 𝑗. A digraph G is weakly connected if the undirected graph obtained by ignoring the orientations of the edges is connected.

One can easily check that for given 𝑎 𝑐 , 𝑎 𝑑 ≤ 0, there always exist 𝑀, 𝛽 ≥ 0 such that (21) holds.

Ψ 𝑖 (𝑡, 𝑗) := Ψ 𝑐𝑖 (𝑦 (𝑡, 𝑗), 𝑢 (𝑡, 𝑗)) if 𝑡 ∈ int(𝐼 𝑗 ) Ψ 𝑑𝑖 (𝑦 (𝑡, 𝑗), 𝑢 (𝑡, 𝑗)) otherwise,

The work of M. Maghenem and A. Loría was supported by the ANR (project "HANDY") under the contract ANR-18-CE40-0010.

 [START_REF] Qu | Cooperative control of dynamical systems: applications to autonomous vehicles[END_REF]Γ 𝑖 (𝑡, 𝑗) := Γ 𝑐𝑖 (𝑡, 𝑗) if 𝑡 ∈ int(𝐼 𝑗 ) Γ 𝑑𝑖 (𝑡, 𝑗) otherwise, [START_REF] Sanfelice | Hybrid Feedback Control[END_REF] 𝜓 𝑖 (𝑡, 𝑗) := Γ 𝑖 (𝑡, 𝑗) ⊤ 𝐸 ⊤ 𝑖 ,

where 𝐼 𝑗 := {𝑡 : (𝑡, 𝑗) ∈ dom 𝜙 }.

Then, the hybrid dynamics of each H 𝑜𝑖 is given by

where

𝐷 𝑜𝑖 := {𝑋 𝑜𝑖 ∈ X 𝑜𝑖 : (𝑡, 𝑗) ∈ dom 𝜙 and (𝑡, 𝑗 + 1) ∈ dom 𝜙 }, the matrices 𝐾 𝑐𝑖 and 𝐾 𝑑𝑖 are designed such that (SA5) hold, 𝛾 1,2 and 𝛿 > 0 are constant adaptation rates, and 𝜎 𝑖 : dom 𝜙 → R is given by 𝜎 𝑖 (𝑡, 𝑗) := 𝛾 1+𝛾 |𝜓 𝑖 (𝑡,𝑗) | 2 , where 𝛾 > 0 is a constant design parameter.

Main Result II

Before presenting our main result, we introduce the error coordinates 𝑒 𝑖 := 𝑥 𝑖 -x𝑖 and θ𝑖 := θ𝑖 -𝜃 𝑖 for all 𝑖 ∈ {1, 2, ..., 𝑚 𝑦 }. Furthermore, for compact notation, we let 𝑒 := (𝑒 1 , 𝑒 2 , ..., 𝑒 𝑚 𝑦 ), θ := ( θ1 , θ2 , ..., θ𝑚 𝑦 ), 𝑋 𝑜 := (𝑋 𝑜1 , 𝑋 𝑜2 , ..., 𝑋 𝑜𝑚 𝑦 ), Γ 𝑐 := (Γ 𝑐1 , Γ 𝑐2 , ..., Γ 𝑐𝑚 𝑦 ), Γ 𝑑 := (Γ 𝑑1 , Γ 𝑑2 , ..., Γ 𝑑𝑚 𝑦 ), and X 𝑜 := (X 𝑜1 ×X 𝑜2 ×...×X 𝑜𝑚 𝑦 ). Furthermore, we introduce the set S 𝑒𝜃 := {(𝑋 𝑜 , 𝑥) ∈ X 𝑜 × X : 𝑒 = θ = 0} to render UES and, for a given Γ𝑜 > 0, we introduce the set of initial conditions

Finally, we what we refer to as distributed hybrid persistence of excitation (DHPE) condition along solutions.

Assumption 5 (DHPE along solutions).

There exist 𝐾 1 , 𝜇 1 > 0 such that, for each (𝑋 𝑜 , 𝑥) ∈ X 𝑖𝑛 and for each hybrid time domain

where 𝜓 𝑖 is given in [START_REF] Saoud | A Hybrid Gradient Algorithm for Linear Regression with Hybrid Signals[END_REF].

Remark 9. Note that each 𝜓 𝑖 in [START_REF] Saoud | A Hybrid Gradient Algorithm for Linear Regression with Hybrid Signals[END_REF] is the output to the hybrid linear filter whose input is the arc Ψ 𝑖 . That is, if we consider the linear filter

the hybrid arc 𝜓 𝑖 can be seen as the output of H 𝜓 𝑖 given by

where

Hence, it is interesting to investigate conditions on the inputs

and the data of

Theorem 4.1. Given a solution 𝜙 : dom 𝜙 → R 𝑚 𝑥 to H in [START_REF] Papusha | Collaborative system identification via parameter consensus[END_REF], such that the corresponding input-output pair (𝑢, 𝑦) is bounded, and the network of observers/identifiers H 𝑜 := {H 𝑜𝑖 } 𝑚 𝑦 𝑖=1 . Then, the closed set S 𝑒𝜃 is UES on X 𝑖𝑛 for the hybrid system (H, H 𝑜 ) provided that Assumption 5 holds. Sketch of proof of Theorem 4.1. We start introducing the coordinate vector 𝑋 𝑒𝜃𝑖 := (𝑡, 𝑗, Γ 𝑐𝑖 , Γ 𝑑𝑖 , 𝑒 𝑖 , θ𝑖 ) ∈ X 𝑜𝑖 , whose dynamics is given by

Next, we introduce the change of variable 𝜂 𝑖 := 𝑒 𝑖 + Γ 𝑖 (𝑡, 𝑗) θ𝑖 , where Γ 𝑖 : dom 𝜙 → R 𝑚 𝑥 𝑖 ×𝑚 𝜃 is defined in [START_REF] Sanfelice | Hybrid Feedback Control[END_REF], and we let the new coordinate vector 𝑋 𝜂𝜃𝑖 := (𝑡, 𝑗, Γ 𝑑𝑖 , Γ 𝑐𝑖 , 𝜂 𝑖 , θ𝑖 ) ∈ X 𝑜𝑖 , whose dynamics is governed by

Under (SA5), we use [9, Proposition 3.29] combined with the Lyapunov function 𝑉 (𝜂 𝑖 ) = 𝜂 ⊤ 𝑖 𝑃 𝑖 𝜂 𝑖 , to conclude that 𝜂 𝑖 converges to zero exponentially for all 𝑖 ∈ {1, 2, ..., 𝑚 𝑦 }.

As a result, it is enough to analyze the parameter-estimation system whose state variable is 𝑋 𝜃𝑖 := (𝑡, 𝑗, Γ 𝑑𝑖 , Γ 𝑐𝑖 , θ𝑖 ) ∈ X 𝜃𝑖 , where X 𝜃𝑖 := dom 𝜙 × R 𝑚 𝑥𝑖 ×𝑚 𝜃 × R 𝑚 𝑥𝑖 ×𝑚 𝜃 × R 𝑚 𝜃 , and whose dynamics is given by

where

Note that, for each 𝑖 ∈ {1, 2, ..., 𝑚 𝑦 }, the matrices 𝐴 𝑐𝑐𝑙𝑖 and 𝐴 𝑑𝑐𝑙𝑖 are exponentially stable in the sense of continuous-time and discrete-time systems, respectively, (SA4) holds, and the pair (𝑢, 𝑦) are bounded. As a result, max{|Γ 𝑐 (0, 0)|, |Γ 𝑑 (0, 0)|} ≤ Γ𝑜 , then there exists Γ > 0 such that sup{|Γ 𝑐 (𝑡, 𝑗)| ∞ , |Γ 𝑑 (𝑡, 𝑗)| ∞ } ≤ Φ. Thus, 𝜓 := [𝜓 1 ,𝜓 2 , ...,𝜓 𝑚 𝑦 ] satisfies (SA1). Now, using Theorem 3.1, under Assumption 5, we conclude that the parameter estimation error θ converges to zero exponentially. Finally, once both 𝜂 and θ converge to zero exponentially, we conclude that the same property holds for the observation error 𝑒.

The distributed gradient algorithm guarantees convergence when the centralized one fails

Consider the network of three linear estimators in the form of [START_REF] Ghil | Applications of estimation theory to numerical weather prediction[END_REF]. For the three estimators, the corresponding hybrid regressors {𝜓 1 ,𝜓 2 ,𝜓 3 } are given by

Using a similar reasoning as the one used in the previous example, one can easily check that none of the regressors {𝜓 1 ,𝜓 2 ,𝜓 The initial estimation errors are θ1 (0) = θ2 (0) = θ3 (0) := [6 7] ⊤ . It can be seen that while the centralized hybrid gradientdescent algorithm does not allow the convergence of θ𝑖 , for each 𝑖 = {1, 2, 3}, to zero, the proposed distributed hybrid gradient descent algorithm ensures this property. This can be explained by the fact that none of the regressors 𝜓 1 , 𝜓 2 and 𝜓 3 is hybrid persistently exciting, however, when considering the distributed scenario, where the three estimators exchange their estimates according to the communication graph G = (V, E) defined above, the distributed hybrid persistence of excitation condition is satisfied. The initial estimation errors are θ1 (0) = θ2 (0) = θ3 (0) := [6 7] ⊤ . Figures 4 and5, below, provide a comparison between the centralized hybrid gradient-descent algorithm and its distributed version in terms of the convergence speed. It can be seen that while the centralized hybrid gradient descent algorithm allows the convergence of θ𝑖 , 𝑖 = {1, 2, 3} to zero, in about 450 seconds, the distributed hybrid gradient-descent algorithm ensures a faster convergence, in less than 200 seconds, and which can be explained by the fact that in the distributed scenario, the three estimators collaborate, through the exchange of their estimates according to the communication graph G.