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Abstract

Muscle contraction is triggered by the activation of the actin sites of the thin filament by calcium
ions. It results that the thin filament activation level varies over time. Moreover, this activation
process is also used as a regulation mechanism of the developed force. Our objective is to build
a model of varying actin site activation level within the classical Huxley’57 two-state framework.
This new model is obtained as an enhancement of a previously proposed formulation of the varying
thick filament activation within the same framework [1]. We assume that the state of an actin site
depends on whether it is activated and whether it forms a cross-bridge with the associated myosin
head, which results in four possible states. The transitions between the actin site states are controlled
by the global actin sites activation level and the dynamics of these transitions is coupled with the
attachment-detachment process. A preliminary calibration of the model with experimental twitch
contraction data obtained at varying sarcomere lengths is performed.

Keywords – Cardiac modeling; Mathematical modeling; Thick and thin filament activation; Huxley’57
model

Introduction
Cardiac muscle contraction originates from the interaction between two types of aligned filaments located
at the microscale of the tissue: myosin filaments (also called thick filaments) and actin filaments (also
called thin filaments). These two types of filaments, structured in an array, are the main components
of the sarcomeres, which are the elementary contractile units of the muscle fibers. The myosin proteins
forming the thick filaments have heads that cyclically bind to the actin sites of the adjacent thin filaments,
forming the so-called cross-bridges. Once formed, cross-bridges exert an active traction force between the
filaments. At rest, the attachment of the myosin heads is blocked by the troponin-tropomyosin complex.
The electrical activation wave travelling through the muscle tissue triggers the release of calcium ions
inside the cell. They bind to the troponin-tropomyosin complex, which results in a conformation change
ultimately unblocking the actin sites. We call this transition the thin filament activation. The myosin
heads can now attach and the force rises. Shortly after the release, calcium ions are taken off the cytosol,
which contributes to the detachment of the calcium ions from the thin filament. Subsequently, the
myosin heads detach from the actin sites, which finally leads to the tissue relaxation. This sequence of
activation-deactivation of the actin sites constitutes a so-called twitch contraction in ex vivo experimental
preparations mirroring the in vivo heartbeat. The force magnitude and the dynamics of the twitch
contraction depend on the amount of calcium released in the cell (see Section 1). We call level of calcium
supply the ratio between the amount of calcium actually released in the intracellular medium and the
maximal amount that could be possibly released – that thus corresponds to the maximal force that can
be generated.

In parallel to this activation-deactivation by calcium, the degree of activation of thin filament is also
controlled by the sarcomere extension [2, 3, 4, 5]. This effect is called the length dependent activation

1



(a) Sarcomere

(b) Sliding filament model

Modeling framework

(c)  
Huxley’57 

 model

(d) Filaments 
regulation

1P0P

1N0N

Myosin filament

Actin f ilament

(f) Thin f ilament regulation

(e) Thick f ilament regulation

100 1

N NNPP P

Figure 1: Presentation of our novel modeling framework. It aims to couple the actin-myosin interaction
(c) and the thin and thick filament activations (d) in a mathematically consistent manner. (a) Structure
of a sarcomere (∼µm). Using the symmetries in the sarcomere structure, its description can be made
considering a half-myosin filament. (b) Actin sites and myosin heads interact with each other to form
cross-bridges (cycling rate ∼10ms). (e) Thick filament regulation. As a result of sarcomere extension,
a myosin head transitions between a state where it is not available for attachment (indexed by 0) to a
state in which it is available for attachment (indexed by 1). (f) Thin filament regulation. As a result of
sarcomere extension and calcium supply, an actin site transitions between a permissive state (denoted
by P ) in which it is available for myosin attachment and a non-permissive state (denoted by N) in which
is not available for myosin attachment.

(LDA). Recent experimental results show that the length-dependent activation is an intrinsic mechanism
[2, 5], meaning in particular that it operates without feedbacks from the formation of cross-bridges. The
thick filament is also subjected to an activation process varying the number of myosin heads that are
available for attachment controlled by the sarcomere extension [6, 4]. For both filaments, an increase in
sarcomere extension is associated with an increase of the activation level, and therefore eventually with
an increase of the developed force.

In addition to this intrinsic regulation by the sarcomere length, the thin filament is also subjected
to extrinsic regulation mechanisms driven by the neuroendocrine system in vivo, that affect the way the
thin filament responds to variations of the sarcomere length and that modulate the supply of calcium
ions. As a starting point, we choose to focus in this paper on modeling the muscle behavior observed
with ex vivo samples. These samples are separated from the neuroendocrine system, hence the extrinsic
regulation mechanisms will not be considered in this work. Our model will thus aim at the mechanisms
by which activation varies with the sarcomere length and with the level of calcium supply.

The mechanism by which activation varies with the sarcomere length and with the level of calcium
supply has been widely investigated using mechanical tests in various activation conditions, possibly
coupled with structural analysis by X-ray crystallography [7, 2, 8, 5, 9, 10, 11], but remains only partially
understood [3, 4]. In particular, although it is now known that it is intrinsic, the exact origin of length-
dependent activation of the thin filament remains subject to debate. The complete role of titin in this
process is not fully elucidated either. In parallel, a controversy is still open about the implication in the
thick filament regulation of the myosin head transition between the on- and off-states – in particular in
the light of the dynamical aspects of this transition.

The investigation of the active force regulation can also be considered from a modeling point of view by
formulating a simulation tool where the force is seen as a proxy to investigate the thick and thin filament
activation processes. Most models that have been developed to that purpose are phenomenological, and
derive from the seminal work of [12, 13, 14, 15] (see [16] for a review).

In the original papers [12, 13, 14, 15, 17], the actin sites are grouped into regulatory units (made of
the seven consecutive actin sites that are covered by a single troponin-tropomyosin complex) and it is
assumed that there is only one attachment site for the myosin heads per regulatory unit (RU). Having thus
paired myosin heads and regulatory units, these formulations propose continuous-time mean-field Markov
models mixing the description of a representative myosin head (attached or not) and the description of
a representative regulatory unit (linked with calcium or not, activated or not, associated with a myosin
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head or not). In these models, the transition rates between the model states can be modulated by the
state itself to represent the cooperativity effects – i.e. the fact that the activation of some regulatory
units may have a positive feedback effect on the other regulatory units, favoring their activation.

A subsequent major contribution is the model of J.J. Rice and co-authors [18], which explicitly in-
troduces spatial extension of the cooperativity processes into the modeling framework, while focusing
on the description of the thin filament alone. To account for the cooperativity effect observed experi-
mentally, they propose to link the value of the transition rates between the states of individual sites to
the configuration of the first adjacent regulatory units, with an increased probability of being activated
when these units are already activated. With this new modeling ingredient, the thin filament cannot be
modeled by a representative regulatory unit anymore. Instead, all regulatory units must be considered.
This model was extended to incorporate a simplified myosin attachment-detachment process that, in
particular, does not take into account the strain of the cross-bridges [19]. Variations have been proposed
to incorporate specific mechanisms and test their ability to capture the observed cooperativity effects,
such as the coupling of adjacent tropomyosins [20]. A difficulty that arises with these models is the large
number of possible states. Indeed, a thin filament is made of 26 regulatory units [18], which leads to a
number of possible states of 426 = 4.5× 1015. A first method to overcome this difficulty (proposed in the
original paper) consists in assuming that the thin filament is periodic, although it does not correspond
to the actual structure. This assumption allows an analytical resolution of the system’s steady-state.
Several other approaches have then been proposed to tackle the issue. They include simulating the
whole system using high performance computing [21] or a reduction of the model again with a single
representative regulatory unit but with adjusted transitions rates so that cooperativity effects can be
reproduced [22].

This modeling framework has further been refined by assuming that the level of overlap between
thick and thin filaments impacts the transition rates in the thin filament model [23]. This hypothesis
can lead to realistic predictions, which supports the idea that the length-dependent activation originates
from mechanisms associated with the level of overlap between the thin and the thick filaments. Recently,
a novel and powerful technique for the efficient simulation of the latter model by introducing wise
simplifying assumptions has been proposed along with an improvement of the model formalization [24].

In addition to the main family of models, alternative approaches have been proposed to model the thin
filament activation based on a mechano-chemical description. They propose to consider the proteins as
a single long flexible chain whose deformations are associated with an elastic energy [25, 26, 27, 28] or to
modulate the properties of the actin site with the mechanical force carried by the thin filament [29]. These
approaches may seem more appealing than the phenomenological approach because they are related to
the actual structure of the thin filament. However, since the origin of the length-dependent activation
remains partially unknown, the establishment of non-phenomenological models and their evaluation with
respect to phenomenological ones is difficult.

A drawback of the above approaches is the impossibility to use as actin-myosin interaction model the
complete partial differential equation based model proposed by A.H. Huxley, which includes the effect of
the relative actin and myosin filaments sliding on the states densities evolution [30]. The inclusion of the
actin-myosin dynamics with a contribution of filaments sliding is important to model the sarcomere for
two reasons. First, filaments sliding is a key phenomenon of the cardiac muscle behavior, in particular
– in the context of heart modeling – in the blood ejection phase when the left ventricle shrinks. Secondly,
there does not exist any experimental protocol capable of measuring the time transient variations of the
thin filament activation – i.e. the conformational changes of the thin filament that allow myosin heads
to bind to the actin sites – happening in a twitch contraction. Therefore, models have to be calibrated
from force transient measurements, which, in part, depends on the relative filament sliding. There is
thus the additional dynamics between the regulatory units activation and the myosin heads binding that
has to be considered to avoid calibrating the models on biased data.

The aim of this paper is precisely to set the framework for combining detailed actin-myosin interaction
models with filament activation models.

Many models of the actin-myosin interaction including the filament sliding contribution have been
developed based on the work of A.F. Huxley [30] proposing various levels of refinement [31, 32, 33, 34,
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47]. Our goal in this paper is to link models targeting the
level of the thick and thin filament activation with the family of the Huxley’57 model in a rigorous way
– which has never been done before in a general framework – in order to build a complete contraction
model that takes into account both the actin-myosin interaction dynamics and the activation-regulation
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mechanisms of the contraction. The point is not to bring new modeling elements for actin-myosin
interaction or the activation processes themselves but instead to build a framework able to couple them
in a strong manner, the thick and thin filament activations being strain-dependent. In particular, the
intracellular calcium concentration [Ca2+]i is neither a parameter nor a variable of our model, and we
use as input the filament activations. The developed modeling framework is illustrated in Figure 1. We
validate the potential of our approach by comparing the simulation results with experimental twitch
contractions signals using a state-of-the-art Huxley’57 model and surrogate models of the thick and thin
filament activation calibrated to phenomenologically reproduce some features of the existing dedicated
models. This approach could then pave the way for finely investigating potential regulation underlying
mechanisms and ultimately allowing to obtain a complete model of the sarcomere that could be used in
organ simulations.

Several works have already followed the path of embedding the thin filament activation in the Hux-
ley’57 model family, but they use a phenomenological approach, typically representing the degree of
filament activation as a multiplicative modulation of the attachment rate [48, 49, 1] or as an ad hoc
modification directly put in factor of the active force [50]. We propose here to overcome such limitations
with a formulation where thick and thin filament activations and the Huxley’57 model are explicitly
coupled.

The closest contribution in the literature to our work is the recent paper of F. Regazzoni and co-
authors [51]. Both approaches combine the thick and thin filaments regulation with the actin-myosin in-
teraction and use similar ground assumptions. They nevertheless differ in several major points. F. Regaz-
zoni and co-authors assume a particular mechanism for the thick filament regulation and focuses its
description on the actin site while our approach is compatible with many thick filament regulation
mechanisms, and it focuses on the myosin head. Moreover, in the modeling process, they introduce
assumptions along the derivation of the model while we consider a priori assumptions.

Another recent paper tackles a similar issue of coupling the activation of the thin filament and
the actin-myosin interaction [52]. This work introduces new modeling bricks in the form of additional
chemical states and provides a comprehensive description of the whole activation-contraction coupling.
In our work, we focus on a subpart of this coupling from the thin filament activation to the contraction.
To do so, we complement the seminal Huxley’57 partial differential equation to integrate the thick and
thin filament activation, while properly handling mass conservation. Moreover, our approach has the
advantage of being embedded into a multiscale framework paving the way for organ level simulations
[53].

This paper is organized as follows. Section 1 presents the experimental data that support our modeling
ingredient choices and with which the model calibration is performed. In Section 2, we first present a
review of the Huxley’57 model and its previously proposed extension that accounts for the thick filament
activation [1]. Then, we introduce our description of the thin filament, and we derive our further
enhancement of these models from the conservation of matter. In Section 3, we exhibit a possible
calibration of our model that we validate with experimental data. Sections 4 and 5 then present the
discussion of our results and our conclusions, respectively.

1 Physiological review
We recall here the essential properties of the thin filament activation that we will need for the development
of our model.

1.1 Activation of the thin filament
The baseline evolution of the thin filament activation (the conformation change of the thin filament
enabling myosin heads attachment) is a transient process. It cannot be directly measured experimentally
and must therefore be inferred from the force transient measurements through models. Note that the
sarcomere extension being an important parameter affecting the muscle contraction (see Section 1.2),
it must be controlled in the experimental setup. The ex vivo experimental results presented in this
paper are obtained in sarcomere length controlled conditions. While the muscle contracts, the sarcomere
length is measured and a feedback loop adjusts the length of the contracting muscle sample so that the
sarcomere length remains constant [54, 55].
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Figure 2: (a) Comparison of the steady-state force (black symbols) and the twitch peak force (blue
symbols) in high level of calcium supply. (Black triangle) intact tetanized rat cardiac cell at 26 ◦C [59],
(square) skinned rat cardiac cells at 22-24 ◦C [60], (black diamond) skinned rat cardiac cells at 15 ◦C
[61], (blue circles) intact rat cardiac cells at 25 ◦C [56], (blue squares) intact rat cardiac cells at 25 ◦C
[55]. In steady-state conditions, the variation of the force in maximal calcium activation conditions
originates solely from the variation of the thick filament activation – i.e. the variations of the myosin
heads availability. The normalized force thus allows to calibrate the function n0(ec) (red line), which
represents the ratio of available myosin heads (see also Section 2.1). (b) Variation of the thin filament
activation with respect to the sarcomere extension for various concentrations of intracellular calcium
obtained from intact tetanized rat cell force measurement and using the function n0(ec) presented in

(a). In the experimental conditions several levels of extracellular calcium concentration are considered.
The resulting measured free intracellular concentration is reported near the curves. Approximate data

fits are displayed with solid lines to enhance readability. Data from [59].

1.2 Regulation mechanisms
In this paper, we focus on the intrinsic regulation mechanisms, which can be observed on ex vivo samples.
These regulation mechanisms operate through the sarcomere length and the supply of calcium.

The sarcomere length regulation affects both the thick and thin filaments activation but leaves the
properties of the cross-bridges unchanged and in particular does not affect the force generated per cross-
bridge [56, 57, 58]. For both the thick and the thin filaments, an increase in sarcomere extension results
in an increase of the activation level, hence of the maximal force developed by cardiac muscles. The
calcium supply affects the activation of the thin filament only and is positively linked to the developed
active force.

1.2.1 Modulation of the maximum force

The effects of sarcomere length and amount of calcium supply on the maximum forces produced under
steady state conditions and during twitch contraction are illustrated in Figure 2. We there define the
sarcomere extension ec = SL/(2ℓhs)− 1, where SL denotes the sarcomere length, and ℓhs is the reference
half-sarcomere length taken equal to 0.925 µm for rat cardiac muscle [54].

Steady-state conditions We first consider the steady-state regime, in which the thin filament acti-
vation remains at a constant level to discard the dynamical effects. These non-physiological conditions
are obtained experimentally with skinned cells and tetanized intact cells. In these conditions, the force
is proportional to the levels of thick and thin filaments activation.

To extract information on the thin filament activation from the force experimental data, the contri-
bution of the varying thick filament activation must be eliminated. This contribution is identified by
considering the maximum force obtained in steady state contraction at saturating calcium concentration,
see Figure 2(a, black symbols). In such conditions, the thin filament is maximally activated at all sar-
comere lengths, and the variation of the maximum force is solely due to the thick filament regulation. We
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then identify the thick filament dependency of the activation level at maximum calcium concentration
by the function n0(ec) illustrated in Figure 2(a, red line).

In Figure 2(b, black lines and symbols), we show the steady state tension obtained at various non-
saturating calcium concentration and at different sarcomere length. The curves are normalized by the
function n0(ec) to illustrate highlight the effect of the thin filament activation level.

These data show that the thin filament activation level always increases with the level of calcium
supply, but in a way that depends on the sarcomere length. The origin of this effect remains partially
unknown [4], but there are now evidences that it is a mechanism intrinsic to the thin filament [5].

Non-steady-state conditions Physiological cardiac muscle contractions are series of twitches, in
which force generation and relaxation phases alternate. During a twitch, the peak force remains below
the maximum steady-state force at all tested sarcomere lengths and calcium concentrations, see blue
lines and symbols in Figure 2(a). This effect is due to the sarcomere length and calcium concentration
dependence of the dynamics of the activation itself: the relaxation process starts before the steady-state
activation level is reached.

1.2.2 Modulation of the force transients

The sarcomere length and the amount of calcium supply also have an impact on the time evolution of
the thin filament activation as assessed by the observed variations of the force transient evolution, see
Figure 3 (dashed lines). The traces are obtained from twitch contraction at imposed sarcomere length and
two different calcium ions concentration. The time taken to reach the peak force is not strongly affected
by the sarcomere length, but the relaxation duration is increased with increasing sarcomere lengths.
These data also show that the level of calcium activation only slightly affects the time dependency of the
force (after rescaling to its maximum value) in particular with a delay of the peak time at higher levels
of calcium supply, but this feature is not observed in all experimental data, see [62]. This result suggests
that the activation dynamics is marginally dependent on the level of calcium supply.
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Figure 3: Comparison of simulated twitch contractions at various sarcomere extension with experi-
mental data (from top to bottom, ec = {0.19, 0.162, 0.135, 0.108, 0.081, 0.054, 0.027} or SL =
{2.2 µm, 2.15 µm, 2.1 µm, 2.05 µm, 2 µm, 1.95 µm, 1.9µm}) (a) High contractility conditions, (b) low con-
tractility conditions. The experimental data are obtained with a strict sarcomere length control through-
out the experiment [55].

As mentioned in Section 1.2, the dynamics of the actin-myosin interactions is left unchanged by
sarcomere length variations and the level of calcium supply [56, 57, 58].

By applying rapid (5ms) preconditioning length steps immediately before a twitch contraction and
observing no changes in the time-course of the force, it has been showed that the regulation by the
sarcomere length operates on a timescale much faster than both the thin filament activation (timescale
of 100ms) and the myosin motors attachment-detachment dynamics (the shortest timescale involved
being of 5ms, see [47]) [63].
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We conclude from this experimental analysis that both the thick filament and the thin filament
activation variations due to changes in the sarcomere length can be considered to be instantaneous as a
first approximation.

2 Model presentation
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Figure 4: Representation of the main model ingredients. (a) Parametrization of the Huxley’57 model.
The myosin and actin filaments are assumed to be rigid and slide past each other at a relative velocity
ẋc. The myosin head can interact only with its closest actin site. The variable s denotes the distance
to this nearest actin site. The distance s is thus defined in an interval [s−, s+] of width da. The myosin
head is presented in the detached state (black) and in the attached state (gray). (b) Definition of the
transition rates between the attached and detached states. (c) The ratios of available myosin heads in
the thick filament and of activated actin sites in the thin filament are given by the quantities n0 and na,
respectively. An increase in n0 is associated with an increase in the number of available myosin heads.
An increase in na is associated with an increase in the number of activated actin sites. (d) For each
myosin head, the interval in which it can reach actin sites is represented in blue. Due to the difference
in length of periodicity between myosin heads and actin sites, some actin sites are thus not paired with
any myosin head (actin site represented in gray).

2.1 Actin-myosin interaction and thick filament activation
We start our model presentation by recalling the classical framework used to describe the actin-myosin
interaction. This framework is based on the original Huxley’57 model [30], which considers that all
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myosin heads and all actin sites are activated. This framework also considers that the thick and thin
filaments are rigid in the overlap region, which implies that the cross-bridges operate in parallel.

Considering the group of myosin heads located at a distance s from their nearest actin site, the ratio
of these heads that are attached at time t is denoted by P1(s, t). The actin sites accessible for the myosin
heads are supposed to be regularly located along the thin filament with a spatial period da, and therefore
the value of the parameter s can vary in a possibly non-symmetric interval [s−, s+] with s+ − s− = da,
see Figure 4(a). The dynamics of the system is given by

∂tP1(s, t) + ẋc∂sP1(s, t) = f(s)
(
1− P1(s, t)

)
− g(s)P1(s, t), (1)

where ẋc is the relative sliding velocity between the actin and myosin filaments (taken positive when
the sarcomere length increases), f and g are the attachment and detachment rates, respectively, see
Figure 4(b). The number of myosin heads per unit surface in a cross-section of half-sarcomere thickness
(ℓhs) is denoted by ρsurf, and each myosin develops a force dw1

ds , where w1 is the free energy of the attached
state. The active stress developed in a muscle cross-section of thickness ℓhs is thus given by [64, 47]

Tc =
ρsurf

da

s+∫
s−

dw1

ds
(s)P1(s, t) ds.

The availability of the myosin heads is then introduced by considering two pools of heads [1]: those
that are available for attachment and those that are not. Each head is characterized by an additional
discrete parameter γ describing the belonging to one of the two pools. The parameter γ takes the value
1 in the pool of the available heads and the value 0 in the other pool. The fraction of heads that are
available is denoted by n0, as in Figure 2. In this work, n0 will only depend on the sarcomere extension
ec but could take a more general form depending on the thick filament activation model considered.

To preserve mathematical consistency, the function n0 must belong to ]0,1[ and we will consider
that the heads that are not available can still attach—albeit with a much lower rate. In each pool, the
probability of being attached is then denoted by P1(s, t, γ), and the attachment and detachment rates
in each pool are denoted by fγ and gγ , respectively. Defining

|x|+ =

{
x, if x ≥ 0,

0, otherwise,
and |x|− =

{
−x, if x ≤ 0,

0, otherwise,

the dynamics of the system is now given by (see [1] for the details)

∂tP1(s, t, 1) + ẋc∂sP1(s, t, 1) +
|ṅ0|+
n0

[
P1(s, t, 1)− P1(s, t, 0)

]
=

f1(s)
(
1− P1(s, t, 1)

)
− g1(s)P1(s, t, 1),

∂tP1(s, t, 0) + ẋc∂sP1(s, t, 0) +
|ṅ0|−
1− n0

[
P1(s, t, 0)− P1(s, t, 1)

]
=

f0(s)
(
1− P1(s, t, 0)

)
− g0(s)P1(s, t, 0).

One can note that additional terms, compared with (1), appear in the equation to account for the transfer
of myosin heads from one pool to the other as the thick filament activation function n0 varies. The active
tension is finally given as the weighted average between the two pools, hence we have

Tc =
ρsurf

da

s+∫
s−

dw1

ds
(s)

[
n0P1(s, t, 1) + (1− n0)P1(s, t, 0)

]
ds. (2)

2.2 Thin filament activation
We now extend this model to rigorously incorporate the variation of the thin filament activation.
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2.2.1 Geometry of the system

A first step is to describe the geometry of our system. The longitudinal periodicity of the myosin heads
along the thick filament is 43 nm while the periodicity along the helix direction is 14.3 nm [65]. Similarly,
the thin filament also has two types of periodicity: the longitudinal periodicity 38.5 nm corresponding
to the length of the regulatory units, and the 5.5 nm periodicity along the helix direction [65].

The thick and thin filament are organized in a pseudo-crystalline structure where a myosin head
could possibly interact with several actin filaments and, conversely, an actin filament could be linked to
multiple myosin filaments. In these conditions, it is not straightforward to define what are the relevant
periodicity lengths that should be considered when describing a group of myosin heads and actin sites
interacting with each other.

In this work, we consider that the periodicity of the myosin heads is 43 nm and that of the actin
sites is da = 38.5 nm. Since the periodicity length is larger for the myosin heads, some actin sites are
not paired with any myosin head, see Figure 4(d). These actin sites do not interact with myosin heads,
and their states can thus be easily described: they are necessarily not part of a cross-bridge and their
probability of being activated is equal to the global thin filament activation level. For this reason, we
choose to center our description on the myosin heads, and it follows that the number of considered actin
sites is the same as the number of myosin heads, although there are more actin sites in the real physical
system.

If the relevant periodicity length were larger for actin sites than for myosin heads, the point of view
of the description could be moved to the actin sites as in [51] but the modeling principles would not
change.

The signed distance from a myosin head rest position to its nearest actin site is still denoted by s.
This relation pairs a myosin head and an actin site. The signed distance between the actin site and its
paired myosin head is denoted by s and satisfies the relation s = −s (see Figure 4(d)). Since we only
considered actin sites that are paired with a myosin head, we can express every quantity as a function
of the distance s.

2.2.2 Actin sites states and fluxes between them

We assume that each actin site has four possible states (see Figure 5). It is either

• non-activated and non-occupied by a myosin head,

• activated and non-occupied,

• non-activated but occupied by a myosin head,

• or activated and occupied.

For the subset of actin sites located at distance s of their associated myosin head, we denote the respective
ratios of each state at time t: n̂a(s, t, γ), na(s, t, γ), ňa(s, t, γ) and ña(s, t, γ). Naturally, these ratios must
satisfy the condition

n̂a(s, t, γ) + na(s, t, γ) + ña(s, t, γ) + ňa(s, t, γ) = 1, ∀t, ∀s ∈ [−s−, s+], ∀γ ∈ {0, 1}.

Actin sites can transition from one state to another. We denote the flux of actin sites from state A
to state B normalized by the total number of myosin heads by JA→B (we recall that in our model the
description is made from the point of view of the myosin head and each myosin head is associated with
a single actin site). We represent the four states of our model and the fluxes between them in Figure 5.

The ratio of activated actin sites is defined by na = na(s, t, γ) + ña(s, t, γ) ∀γ ∈ {0, 1}, which we
consider as a prescribed parameter in our system. The ratio na must belong to ]0,1[ for mathematical
consistency.

We assume that this parameter is homogeneous over the whole filaments and may thus depend
explicitly on time and on other macroscale variables.
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We further assume that when na(t) varies, the changes occur indistinctly between occupied and
non-occupied actin sites. With this assumption, we have

Jna,xb→a,xb(s, t, γ) =
|ṅa|+

ňa(s, t, γ) + n̂a(s, t, γ)
ňa(s, t, γ),

Ja,xb→na,xb(s, t, γ) =
|ṅa|−

ña(s, t, γ) + na(s, t, γ)
ña(s, t, γ),

Jna,nxb→a,nxb(s, t, γ) =
|ṅa|+

ňa(s, t, γ) + n̂a(s, t, γ)
n̂a(s, t, γ),

Ja,nxb→na,nxb(s, t, γ) =
|ṅa|−

ña(s, t, γ) + na(s, t, γ)
na(s, t, γ).

The remaining transition rates are related to the attachment-detachment process. Similarly to the
fact that it is possible for a myosin head to attach when it is in the pool γ = 0, we still do not assume
that it is impossible to bind on a non-activated actin site. However, the rate of this transition is lower
than when the actin site is activated. We define the attachment rates with an activated actin site by
fγ,a and by fγ,na when the actin site is not activated.

We now consider the flux of actin sites changing from an activated non-occupied state to an activated
occupied state, which is equal to the flux of myosin heads attaching to activated actin sites. Myosin heads
that can undergo this transition are a subgroup of the detached heads (the detached heads represent a
ratio of 1−P1), that are paired with an activated actin site. The ratio of myosin heads that, among the
detached heads, are paired with an activated actin site is denoted by ra|nxb. We thus have

Ja,nxb→a,xb(s, t, γ) = fγ,a(s)
(
1− P1(s, t, γ)

)
ra|nxb = fγ,a(s)

(
1− P1(s, t, γ)

) na(s, t, γ)

na(s, t, γ) + n̂a(s, t, γ)
.

Similarly, we obtain

Jna,nxb→na,xb(s, t, γ) = fγ,na(s)
(
1− P1(s, t, γ)

)
rna|nxb = fγ,na(s)

(
1− P1(s, t, γ)

) n̂a(s, t, γ)

na(s, t, γ) + n̂a(s, t, γ)
.

Using the same reasoning for the actin sites paired with attached myosin heads (the attached myosin
heads represent a ratio of P1), we have

Ja,xb→a,nxb(s, t, γ) = gγ,a(s)P1(s, t, γ)ra|xb = gγ,a(s)P1(s, t, γ)
ña(s, t, γ)

ña(s, t, γ) + ňa(s, t, γ)
,

Jna,xb→na,nxb(s, t, γ) = gγ,na(s)P1(s, t, γ)rna|xb = gγ,na(s)P1(s, t, γ)
ňa(s, t, γ)

ña(s, t, γ) + ňa(s, t, γ)
.

2.2.3 Conservation laws and active tension

Having considered the fluxes between the different states, the dynamics of each population is given by
the following system (the explicit variable dependency is omitted here in the right-hand side for the sake
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of readability):

d

dt
P1(s, t, γ) = fγ,a

na

na + n̂a

(
1− P1

)
+ fγ,na

n̂a

na + n̂a

(
1− P1

)
− gγ,aP1

ña

ña + ňa
− gγ,naP1

ňa

ña + ňa
,

d

dt
na(s, t, γ) = −fγ,a

(
1− P1

) na

na + n̂a
+ gγ,aP1

ña

ña + ňa
+

|ṅa|+
ňa + n̂a

n̂a −
|ṅa|−

ña + na
na,

d

dt
ña(s, t, γ) = fγ,a

(
1− P1

) na

na + n̂a
− gγ,aP1

ña

ña + ňa
+

|ṅa|+
ňa + n̂a

ňa −
|ṅa|−

ña + na
ña,

d

dt
ňa(s, t, γ) = fγ,na

(
1− P1

) n̂a

na + n̂a
− gγ,naP1

ňa

ña + ňa
+

|ṅa|−
ña + na

ña −
|ṅa|+

ňa + n̂a
ňa,

d

dt
n̂a(s, t, γ) = −fγ,na

(
1− P1

) n̂a

na + n̂a
+ gγ,naP1

ňa

ña + ňa
+

|ṅa|−
ña + na

na −
|ṅa|+

ňa + n̂a
n̂a.

(3a)

(3b)

(3c)

(3d)

(3e)

From this system, we obtain the desired relations by direct summation
n̂a(s, t, γ) + na(s, t, γ) + ña(s, t, γ) + ňa(s, t, γ) = 1,

ña(s, t, γ) + na(s, t, γ) = na,

ña(s, t, γ) + ňa(s, t, γ) = P1(s, t, γ).

(4a)
(4b)
(4c)

The first one is the conservation of actin sites; the second one corresponds to the definition that the ratio
of activated actin sites (occupied or not) is given by na; and the third one reflects the fact that the ratio
of attached head and the ratio of occupied actin sites is the same.

Using Equations (4), the system (3) can be reduced to

d

dt
P1(s, t, γ) = fγ,ana + fγ,na

(
1− P1 − na

)
− gγ,a

(
na − na

)
− gγ,na

(
na − na + P1

)
,

d

dt
na(s, t, γ) =

|ṅa|+
1− na

(
1− P1 − na

)
+ gγ,a

(
na − na

)
− |ṅa|−

na
na − fγ,ana,

n̂a(s, t, γ) = 1− na − P1,

ña(s, t, γ) = na − na,

ňa(s, t, γ) = P1 − na − na.

(5a)

(5b)

(5c)
(5d)
(5e)

The derivative used here is a total time derivative, meaning that it describes the time variations
following a group of myosin heads. To fully establish the system dynamics, these total time derivatives
need to be made explicit. The system is described from the point of view of the myosin heads, and

therefore the pool exchange terms are written as in [1] and, since we have
ds

dt
= −ds

dt
= ẋc, the total

time derivatives in (5) are given by∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

d

dt
P1(s, t, 1) = ∂tP1(s, t, 1) + ẋc∂sP1(s, t, 1) +

|ṅ0|+
n0

[
P1(s, t, 1)− P1(s, t, 0)

]
,

d

dt
P1(s, t, 0) = ∂tP1(s, t, 0) + ẋc∂sP1(s, t, 0) +

|ṅ0|−
1− n0

[
P1(s, t, 0)− P1(s, t, 1)

]
,

d

dt
na(s, t, 1) = ∂tna(s, t, 1)− ẋc∂s na(s, t, 1) +

|ṅ0|+
n0

[
na(s, t, 1)− na(s, t, 0)

]
,

d

dt
na(s, t, 0) = ∂tna(s, t, 0)− ẋc∂s na(s, t, 0) +

|ṅ0|−
1− n0

[
na(s, t, 0)− na(s, t, 1)

]
.

The active force is still given by (2)

Tc =
ρsurf

da

s+∫
s−

dw1

ds
(s)

[
n0P1(s, t, 1) + (1− n0)P1(s, t, 0)

]
ds.
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2.2.4 Example of a steady state isometric contraction

We consider as an example the steady-state regime of our model in isometric condition, i.e. we assume
that ṅ0 = 0, ṅa = 0 and ẋc = 0. The system (5) yields∣∣∣∣∣∣∣∣∣

na(s, γ) =
gγ,a(s)

fγ,a(s) + gγ,a(s)
na,

P1(s, γ) = na
fγ,a(s)

fγ,a(s) + gγ,a(s)
+ (1− na)

fγ,na(s)

fγ,na(s) + gγ,na(s)

The global probability of being attached is then given by

P1(s) = n0P1(s, 1) + (1− n0)P1(s, 0),

= n0

[
na

f1,a(s)

f1,a(s) + g1,a(s)
+ (1− na)

f1,na(s)

f1,na(s) + g1,na(s)

]
+ (1− n0)

[
na

f0,a(s)

f0,a(s) + g0,a(s)
+ (1− na)

f0,na(s)

f0,na(s) + g0,na(s)

]
.

The probability of being attached is the weighted average of the probability of being attached in each
configuration (actin site activated or not, myosin head attached or not). With the natural approximations

f0,a
g0,a

≪ 1,
f0,na

g0,na
≪ 1,

f1,na

g1,na
≪ 1,

we obtain
P1(s) = n0na

f1,a(s)

f1,a(s) + g1,a(s)
,

and the ratio of attached heads is finally given by

natt =
1

da

∫ s+

s−
P1(s) ds = n0na

∫ s+

s−

f1,a(s)

f1,a(s)g1,a(s)
ds.

The number of attached heads is therefore proportional to the level of thick filament activation and the
level of thin filament activation, which is consistent with our modeling assumptions.

3 Model calibration
To validate our proposed model extension that takes into account the variations of the thin filament
activation level, we need to specify the form of the thin filament activation function na. Our goal here
is to give a preliminary calibration of the newly introduced modeling framework. To do so, we build
surrogate models of the thick and thin filament activations, i.e. we prescribe an analytical form for the
functions n0 and na such that they capture the basic features expected for the thick and thin filament
activation models, respectively. In a further stage, these surrogate models should be replaced by specific
predictive models.

To account for the available physiological data reviewed in Section 1, na should be a function of
the time, the sarcomere extension and the level of calcium supply. In experiments, the extracellular or
intracellular calcium concentrations may be controlled. Since the interaction between the thin filament
and the calcium ions are not modeled here, we cannot use these quantities as variables.

Instead, we introduce the parameter C to represent the level of calcium supply, which we have defined
as the ratio between the amount of calcium actually released in the cell and the maximal amount that
could be possibly released. The parameter C thus takes its values between 0 and 1: when C = 0, there
is no calcium supply; when C = 1, the calcium supply is maximal. This parameter can be related in a
bijective manner to the contractility Σ0, which is the relevant clinical quantity of interest. This relation
is given as follows: the contractility is defined as the maximal tension that can be developed for a given
level of calcium supply – this tension is naturally obtained at the optimal sarcomere extension and in
steady-state conditions.
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Based on these considerations, we assume that the thin filament activation can be multiplicatively
decomposed as

na(ec, t, C) = na,∞(ec, C)na,t(ec, t)

where na,∞ accounts for the steady-state variation of the thin filament activation with the sarcomere
extension and the level of calcium supply – scaled in such a way that it tends to 1 when C becomes
large – and where na,t accounts for the transient evolution, which is affected by the sarcomere extension.
The time transient function na,t(ec, t) is itself decomposed as na,t(ec, t) = na,peak(ec)na,t,norm(ec, t),
where na,t,norm represents the shape of the transient activation normalized by the peak value and na,peak
modulates peak activation level and accounts for the fact that the thin filament may not have time to
reach its complete activation. The function na,peak(ec) can then be calibrated based on experimental
data, see Figure 7(d). To avoid the overfitting of the twitch contraction data, we choose to have a
time evolution that does not depend on the level of calcium supply. The details of the surrogate model
functions definition are provided in Appendix A.

We choose the transition rates and the attached free energy level as calibrated in [47]. They are
presented in Figure 6. Moreover, we choose the modeling assumptions∣∣∣∣∣∣fγ,na =

1

500
fγ,a ∀γ ∈ {0, 1}, f1,a =

1

100
f0,a, f1,na =

1

100
f0,na,

g1,a = g1,na = g0,a = g0,na.

The functions na,∞, na,t,norm and na,peak defined with these parameters along with the relation between
the level of calcium supply C and the contractility Σ0 are presented in Figure 7.
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Figure 6: (a) Attached state free energy level w1. (b) Transition rates. The derivation of these quantities
functions is presented in [47].

We validate our model by comparing its outputs with the experimental data presented in Figure 2
(steady-state) and Figure 3 (transient). As a direct consequence of the calibration of the function na,∞,
the model in steady-state condition is able to match the observed relations between the developed force
and the sarcomere extension at different level of calcium supply, see Figure 8.

We then simulate twitch contractions in “high” and “low” contractility conditions (we use a level of
calcium supply C of 0.95 and 0.46, respectively) in isometric conditions, i.e. with ẋc = 0, see Figure 3.

At both high and low level of calcium supply, the peak force obtained at the largest sarcomere
extension (ec = 0.19) is consistent with the value of the contractility. At such a sarcomere extension, we
have n0 ≈ na,peak ≈ 1. The contractility is thus directly controlled by the function na,∞ corresponding
to this extension, see Figure 7(a, light blue).

In high contractility conditions, we have na,∞ ≈ 1 for ec > 0, see Figure 7(a). Since all the tested
sarcomere extensions are positive, the level of the peak force attained during the twitch contraction is
essentially prescribed by the functions n0 and na,peak. The former is calibrated beforehand, based on
steady state data obtained with tetanized samples, see Figure 2. The latter is assumed to be independent
of the contractility, see Figure 7(d), and adjusted precisely to match the peak force in the high contrac-
tility conditions, hence the good match with the observed peak force shown in Figure 3. Notice that the
time to reach the peak force is the same for all sarcomere extensions as prescribed by the definition of
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Figure 7: (a) Steady-state thin filament activation function na,∞ for various sarcomere extensions. (b)
Relation between the contractility Σ0 and the level of calcium supply C. (c) Normalized thin filament
activation function na,t,norm for various sarcomere extensions. (d) Function na,peak compared with ex-
perimental data. (Closed symbols) Peak twitch forces in high calcium supply conditions for cardiac rat
cells normalized by the steady-state force predicted by the model – with the prior calibration of n0 and
na,∞ – in the corresponding calcium activation conditions (C = 0.95); (circle) data from [56], (square)
data from [55].
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various levels of calcium supply C. Note that the values of C chosen in the simulations are adjusted to
match the data.

the function na,t,norm, see Figure 2(a). The relaxation dynamics is also well reproduced thanks to the
dedicated calibration of na,t,norm on the sarcomere stretch ec, see Figure 7(c).

In the low contractility condition C = 0.46, the function na,∞ now has a significant dependency
on ec. Since na,peak is already calibrated to reproduce the data at high contractility (Figure 3(a)), the
simulated decay of the peak force with the sarcomere extension is larger than the observed one, especially
at short sarcomere extension (see Figure 3(b)), due to the rapid decay of na,peak with ec for ec < 0.1,
see Figure 8.

Note that no confidence intervals are provided in reference [55] from which the experimental data
shown in Figure 3 are taken. However, some statistical estimates can be inferred for the late systolic
phase duration, defined as the duration between the time at which the transient force reaches its peak
and that at which it has decreased half-way from the peak value. More specifically, the standard de-
viation of the measured late systolic phase duration appears to be 38ms and 16ms in high and low
contractility conditions, respectively. In comparison, the standard deviation of the differences in late
systolic phase duration between the model predictions and the experiments are 9ms and 6ms in high
and low contractility conditions, respectively, which shows that the model predictions are statistically
relevant.

4 Discussion

4.1 Limits of the calibration
As observed above, the decrease of the peak force with the sarcomere extension is stronger in the
simulations than in the data in low contractility condition, see Figure 8. The results could be improved
by adjusting the value of na,∞ in the corresponding sarcomere extension interval (ec ≈ 0.02 − 0.2).
However, this change would be rather artificial as the data used for this calibration are obtained with a
range of sarcomere extensions between −0.15 and 0.05 whereas the twitch contractions are performed at
sarcomere extensions between 0.02 and 0.19, i.e. in a region where the function na,∞ extrapolates the
data. Of course this problem could easily be solved by making either na,peak or na,t,norm depend on C.

A reason why we did not pursue this fine-tuning of the calibration is that the data in steady-state
conditions and the experimental twitch contractions have not been obtained in the same study, and there
may thus be some intrinsic incompatibilities between them due to different experimental conditions.
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It is also worth noting that the calibration presented in this paper only focuses on experimental data
obtained from rat muscle samples at sub-physiological temperatures. To extend the scope of this work,
confrontation with data obtained with human cardiomyocytes obtained at body temperature should be
conducted [66], but these data are not available yet for the experimental setup required to perform the
model validation.

In this theoretical work, we restrict our calibration to rat data to benefit from the vast number of
available data sets and a lower dispersion of the data.

Moreover, our calibration considers that the actin-myosin interaction is not altered by variations of
sarcomere length, as supported by experimental facts [56, 57, 58] (although some alternative points of
view can be found in the literature, which account for the reduction of force due to the thin filament
double overlap with a reduction of the effective myosin attachment rate [67]). In our modeling framework,
the observed variation of the force due to sarcomere length variation is therefore solely attributed to the
modulation of the thick and thin filaments activation. In particular, for the thick filament, myosin heads
located in the thin filament double overlap double region are considered unactivated since they would
on average not contribute to the force. This effect, possibly superimposed with a transition between the
on- and off-states, is embedded in the calibration of the activation function n0.

Finally, our model does not consider the intracellular calcium concentration [Ca2+]i as a model
parameter or variable. As a consequence, when using experimental data to calibrate the model, all
variability with the sarcomere length is projected onto the filaments activation levels. It has been shown
experimentally that the peak [Ca2+]i is not affected by sarcomere length and so is thus our calibrated
thin filament activation level at the peak of the twitch contraction [68, 69]. However, in the relaxation
phase, variations of the order of 10% may appear in the case of a 7 times reduction of the force [69].
This difference would result in small variations of the force (through the thin filament activation level),
which are not captured in our calibration. Nevertheless, the main variation of the twitch force magnitude
is thus related to the thin and thick filament regulation, which validates the approach pursued in our
paper.

4.2 Compared influences of cross-bridge and calcium activation dynamics on
the twitch dynamics
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Figure 9: Comparison of the time evolution of the thin filament activation function na (blue lines) and
the active tension Tc (black lines). The simulations are performed in isometric conditions (ẋc = 0) with
ec = 0.108 and C = 0.33. We choose two sets of transitions rates. (a) Transition rates based on the
force-velocity calibration from [47]. (b) Transition rates divided by a factor six with respect to (a). These
rates are similar to those proposed by [70] that are calibrated on the tension development dynamics.

We now compare the effects of the dynamics of the thin filament activation and the dynamics of
actin-myosin interaction on the tension development. There is no consensus on the calibration of the
transition rates of the Huxley’57 model family [47]. These rates can be calibrated to match the isotonic
sliding velocity data (force-velocity curve) or to match the rate of tension redevelopment after a quick
sarcomere shortening at a constant level of activation [70].
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The twitch contractions obtained with both calibration approaches are shown in Figure 9. If the
calibration favors the match with the force-velocity relation – which corresponds to the choice made
in Figure 3 – the transition rates are six times higher than if the data from tension redevelopment are
used for calibration. In that case, the tension trace closely follows the activation trace (see Figure 9(a))
showing that the contraction dynamics is mostly controlled by activation. Here, the detailed modeling
of the actin-myosin interaction and in particular of the filament sliding only brings a small contribution
to the active force dynamics.

Keeping the same calibration of the thin filament activation na (the point is not to match experimental
data), we show the tension dynamics resulting from a six-fold reduction in the attachment-detachment
rates in Figure 9(b). Not surprisingly, the delay between the thin filament activation and the active
tension is longer when the attachment-detachment rate is slower. In this case, the interplay between the
two dynamics, and thus the underlying models, has to be considered.

5 Conclusions
In this paper, we proposed a framework to rigorously incorporate the varying actin sites activation level
into the classical Huxley’57 model family. This framework may be coupled with a separately defined thin
filament activation model or, as done in this work, used as a standalone model with the time-dependent
thin filament activation being provided as a model input. The model is calibrated on experimental
twitch contractions obtained in controlled sarcomere length conditions and a preliminary calibration is
performed. However, additional validations are required to fully assess the capabilities of the model, in
particular in conditions where the sarcomere extension varies during the contraction as it is the case in
a heartbeat.

Our novel framework opens new possibilities to develop thin filament activation models by allowing to
couple them with an actin-myosin interaction model, therefore enabling a rigorous calibration. Moreover,
in the context of heart simulation, our model may also prove to be an important element as it bridges
the electrophysiological part and the mechanical part of the description. Once thoroughly calibrated
and coupled within the heart simulation framework, our model may allow to investigate the relation
between the force and calcium concentration measured in vitro and that required in vivo in physiological
conditions. If a discrepancy appears (possibly due to the absence of neuroendocrine regulation in the
model apart from its effects on the level of calcium supply), it will encourage the development of new
experimental protocols to understand this discrepancy and allow the development of associated models.

Moreover, our modeling framework has the full capability to be embedded in a micro-macro coupled
formulation of the muscle description. To perform this coupling, the sarcomere extension ec must be
related to the deformation of the complete tissue at the macro-level [49, 53]. This paves the way for
the use of this novel modeling framework as a basis for modeling the active muscle contraction for
cardiomyocyte or complete heart simulations.

Ethical statement The authors declare no conflict of interest. They consciously assure that the
material presented in the manuscript is the authors’ own original work and reflects the authors’ own
research and analysis in a truthful and complete manner.

A Appendix
In this section, we provide the detailed definition of the functions used to build the surrogate thin
filament activation model. The model parameters used for the definition of these functions are presented
in Table 1.

Getting our inspiration from experiments on skinned cells showing that the force varies with a sigmoid
shape with respect to the level of calcium supply [60, 61], we choose a family of sigmoid functions to
represent the variation of the force with respect to the contractility, parametrized by the sarcomere
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extension. We define

na,∞(ec, C) =

(
C
)nHa(

C
)nHa +

(
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where C50 represents the effect of the sarcomere extension on the thin filament activation. It is chosen as
a regularized piecewise linear function. The regularization interpolation functions φi and interpolation
coefficients are given by 
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Parameter Value Parameter Value

nHa 5.5 τrise 0.14 s

CH
50 0.35 τHrelax 0.38 s

CM
50 0.40 τLrelax 0.15 s

CL
50 0.60 eHc,relax 0.18

eHc,50 0.252 eLc,relax 6.5× 10−3

eMc,50 0.05 t0 0.117 s

eLc,50 −0.177 eLc,t 0.028

e1c,50 0 eMc,t 0.1895

e2c,50 0.1 nMa,peak 1

C3
50 0 nLa,peak 0.50

na,0 1× 10−3

Table 1: Model parameters for the thin filament activation function.

respectively. The transient part of the thin filament activation function is defined by

na,t(ec, t) = na,peak(ec)na,t,norm(ec, t), with

na,t,norm(ec, t) =



1− na,0

2

(
sin

( π

τrise
(t− t0)−

π

2

)
+ 1

)
+ na,0,

if t0 ≤ t ≤ t0 + τrise,

1− na,0

2

(
sin

( π

τrelax(ec)
(t− t0 − τrise) +

π

2

)
+ 1

)
+ na,0,

if t0 + τrise ≤ t ≤ t0 + τrise + τrelax(ec),

0, otherwise,

τrelax(ec) =
τH
relax − τL

relax

eH
c,relax − eL

c,relax
(ec − eL

c,relax) + τL
relax,

na,peak(ec) =


nM
a,peak − nL

a,peak

eM
c,t − eL

c,t

(ec − eM
c,t) + nL

a,peak, if ec < eM
c,t,

nM
a,peak, if ec ≥ eM

c,t,

where τrise it the constant activation rising time, τrelax accounts for the varying relaxation duration,
na,peak represents the fact that the thin filament may not have time to reach the complete activation
state for non-maximal sarcomere extensions and na,0, satisfying 0 < na,0 ≪ 1, ensures that na is never
equal to zero, which is forbidden in the system (5).

References
[1] F. Kimmig, P. Moireau, and D. Chapelle, “Hierarchical modeling of length-dependent force gener-

ation in muscles and associated thermodynamically-consistent numerical schemes.,” Computational
Mechanics, vol. 68, no. 4, pp. 885–920, 2021.

[2] G. P. Farman, E. J. Allen, K. Q. Schoenfelt, P. H. Backx, and P. P. de Tombe, “The role of thin
filament cooperativity in cardiac length-dependent calcium activation.,” Biophysical Journal, vol. 99,
no. 9, pp. 2978–2986, 2010.

[3] P. de Tombe, R. Mateja, K. Tachampa, Y. Mou, G. Farman, and T. Irving, “Myofilament length
dependent activation.,” Journal of Molecular and Cellular Cardiology, vol. 48, no. 5, pp. 851–858,
2010.

19



[4] P. de Tombe and H. ter Keurs, “Cardiac muscle mechanics: sarcomere length matters.,” Journal of
Molecular and Cellular Cardiology, vol. 91, no. C, pp. 148–150, 2016.

[5] Y. Ait-Mou, K. Hsu, G. Farman, M. Kumar, M. Greaser, T. Irving, and P. de Tombe, “Titin strain
contributes to the Frank–Starling law of the heart by structural rearrangements of both thin- and
thick-filament proteins.,” Proceedings of the National Academy of Sciences, vol. 113, no. 8, pp. 2306–
2311, 2016.

[6] D. G. Allen and J. C. Kentish, “The cellular basis of the length-tension relation in cardiac muscle,”
Journal of Molecular and Cellular Cardiology, vol. 17, no. 9, pp. 821–840, 1985.

[7] J. P. Konhilas, T. C. Irving, and P. P. de Tombe, “Myofilament calcium sensitivity in skinned rat
cardiac trabeculae.,” Circulation Research, vol. 90, no. 1, pp. 59–65, 2002.

[8] M. Reconditi, E. Brunello, L. Fusi, M. Linari, M. F. Martinez, V. Lombardi, M. Irving, and G. Pi-
azzesi, “Sarcomere-length dependence of myosin filament structure in skeletal muscle fibres of the
frog.,” The Journal of Physiology, vol. 592, no. 5, pp. 1119–1137, 2014.

[9] M. Reconditi, M. Caremani, F. Pinzauti, J. D. Powers, T. Narayanan, G. J. M. Stienen, M. Linari,
V. Lombardi, and G. Piazzesi, “Myosin filament activation in the heart is tuned to the mechanical
task.,” Proceedings of the National Academy of Sciences, vol. 114, no. 12, pp. 3240–3245, 2017.

[10] G. Piazzesi, M. Caremani, M. Linari, M. Reconditi, and V. Lombardi, “Thick filament mechano-
sensing in skeletal and cardiac muscles: a common mechanism able to adapt the energetic cost of
the contraction to the task.,” Frontiers in Physiology, vol. 9, 2018.

[11] M. Caremani, F. Pinzauti, J. D. Powers, S. Governali, T. Narayanan, G. J. M. Stienen, M. Reconditi,
M. Linari, V. Lombardi, and G. Piazzesi, “Inotropic interventions do not change the resting state
of myosin motors during cardiac diastole.,” The Journal of General Physiology, vol. 151, no. 1,
pp. 53–65, 2019.

[12] A. Landesberg and S. Sideman, “Coupling calcium binding to troponin C and cross-bridge cycling
in skinned cardiac cells.,” The American Journal of Physiology, vol. 266, no. 3 Pt 2, pp. H1260–71,
1994.

[13] A. Landesberg and S. Sideman, “Mechanical regulation of cardiac muscle by coupling calcium ki-
netics with cross-bridge cycling: a dynamic model.,” The American Journal of Physiology, vol. 267,
no. 2 Pt 2, pp. H779–95, 1994.

[14] J. Rice, R. Winslow, and W. Hunter, “Comparison of putative cooperative mechanisms in car-
diac muscle: length dependence and dynamic responses.,” AJP: Heart and Circulatory Physiology,
vol. 276, no. 5, pp. H1734–H1754, 1999.

[15] M. V. Razumova, A. E. Bukatina, and K. B. Campbell, “Different myofilament nearest-neighbor
interactions have distinctive effects on contractile behavior.,” Biophysical Journal, vol. 78, no. 6,
pp. 3120–3137, 2000.

[16] N. Trayanova and J. Rice, “Cardiac electromechanical models: from cell to organ.,” Frontiers in
Physiology, vol. 2, p. 43, 2011.

[17] Y. Yaniv, W. C. Stanley, G. M. Saidel, M. E. Cabrera, and A. Landesberg, “The role of Ca2+ in
coupling cardiac metabolism with regulation of contraction: in silico modeling.,” Annals of the New
York Academy of Sciences, vol. 1123, no. 1, pp. 69–78, 2008.

[18] J. Rice, G. Stolovitzky, Y. Tu, and P. de Tombe, “Ising model of cardiac thin filament activation
with nearest-neighbor cooperative interactions.,” Biophysical Journal, vol. 84, no. 2, pp. 897–909,
2003.

[19] J. Rice and P. de Tombe, “Approaches to modeling crossbridges and calcium-dependent activation
in cardiac muscle.,” Progress in Biophysics and Molecular Biology, vol. 85, no. 2-3, pp. 179–195,
2004.

20



[20] S. G. Campbell, F. V. Lionetti, K. S. Campbell, and A. D. McCulloch, “Coupling of adjacent
tropomyosins enhances cross-bridge-mediated cooperative activation in a Markov model of the car-
diac thin filament.,” Biophysical Journal, vol. 98, no. 10, pp. 2254–2264, 2010.

[21] J. Hussan, P. de Tombe, and J. Rice, “A spatially detailed myofilament model as a basis for large-
scale biological simulations.,” IBM Journal of Research and Development, vol. 50, no. 6, pp. 583–600,
2006.

[22] J. Rice, F. Wang, D. Bers, and P. de Tombe, “Approximate model of cooperative activation and
crossbridge cycling in cardiac muscle using ordinary differential equations.,” Biophysical Journal,
vol. 95, no. 5, pp. 2368–2390, 2008.

[23] T. Washio, J.-I. Okada, S. Sugiura, and T. Hisada, “Approximation for cooperative interactions of
a spatially-detailed cardiac sarcomere model.,” Cellular and Molecular Bioengineering, vol. 5, no. 1,
pp. 113–126, 2011.

[24] F. Regazzoni, L. Dedè, and A. Quarteroni, “Active contraction of cardiac cells: a reduced model for
sarcomere dynamics with cooperative interactions.,” Biomechanics and Modeling in Mechanobiology,
vol. 17, no. 6, pp. 1663–1686, 2018.

[25] M. Geeves, H. Griffiths, S. Mijailovich, and D. Smith, “Cooperative [Ca2+]-dependent regulation of
the rate of myosin binding to actin: solution data and the tropomyosin chain model.,” Biophysical
Journal, vol. 100, no. 11, pp. 2679–2687, 2011.

[26] S. Mijailovich, O. Kayser-Herold, X. Li, H. Griffiths, and M. Geeves, “Cooperative regulation of
myosin-S1 binding to actin filaments by a continuous flexible Tm–Tn chain.,” European Biophysics
Journal, vol. 41, no. 12, pp. 1015–1032, 2012.

[27] N. Metalnikova and A. Tsaturyan, “A mechanistic model of Ca regulation of thin filaments in cardiac
muscle.,” Biophysical Journal, vol. 105, no. 4, pp. 941–950, 2013.

[28] S. Land and S. Niederer, “A spatially detailed myofilament model as a basis for large-scale biological
simulations.,” PLOS Computational Biology, vol. 11, no. 8, pp. e1004376–28, 2015.

[29] L. J. Dupuis, J. Lumens, T. Arts, and T. Delhaas, “Mechano-chemical interactions in cardiac sarcom-
ere contraction: a computational modeling study.,” PLOS Computational Biology, vol. 12, no. 10,
pp. e1005126–20, 2016.

[30] A. F. Huxley, “Muscle structures and theories of contraction.,” Progress in Biophysics and Biophys-
ical Chemistry, vol. 7, pp. 255–318, 1957.

[31] A. F. Huxley and R. M. Simmons, “Proposed mechanism of force generation in striated muscle.,”
Nature, vol. 233, no. 5321, pp. 533–538, 1971.

[32] T. L. Hill, “Theoretical formalism for the sliding filament model of contraction of striated muscle
Part I.,” Progress in Biophysics and Molecular Biology, vol. 28, pp. 267–340, 1974.

[33] T. L. Hill, “Theoretical formalism for the sliding filament model of contraction of striated muscle
part II.,” Progress in Biophysics and Molecular Biology, vol. 29, pp. 105–159, 1976.

[34] E. Eisenberg and T. L. Hill, “A cross-bridge model of muscle contraction.,” Progress in Biophysics
and Molecular Biology, vol. 33, no. 1, pp. 55–82, 1978.

[35] E. Eisenberg, T. L. Hill, and Y. Chen, “Cross-bridge model of muscle contraction. Quantitative
analysis.,” Biophysical Journal, vol. 29, no. 2, pp. 195–227, 1980.

[36] G. Piazzesi and V. Lombardi, “A cross-bridge model that is able to explain mechanical and energetic
properties of shortening muscle.,” Biophysical Journal, vol. 68, no. 5, pp. 1966–1979, 1995.

[37] G. I. Zahalak, “The two-state cross-bridge model of muscle is an asymptotic limit of multi-state
models.,” Journal of Theoretical Biology, vol. 204, no. 1, pp. 67–82, 2000.

21



[38] D. A. Smith, M. A. Geeves, J. Sleep, and S. M. Mijailovich, “Towards a unified theory of muscle
contraction. I: foundations.,” Annals of Biomedical Engineering, vol. 36, no. 10, pp. 1624–1640, 2008.

[39] L. Marcucci and L. Truskinovsky, “Mechanics of the power stroke in myosin II.,” Physical Review
E, vol. 81, no. 5, pp. 051915–8, 2010.

[40] M. Caruel, J.-M. Allain, and L. Truskinovsky, “Muscle as a metamaterial operating near a critical
point.,” Physical Review Letters, vol. 110, no. 24, p. 248103, 2013.

[41] R. Sheshka and L. Truskinovsky, “Power-stroke-driven actomyosin contractility.,” Physical Review
E, vol. 89, no. 1, p. 012708, 2014.

[42] M. Caremani, L. Melli, M. Dolfi, V. Lombardi, and M. Linari, “Force and number of myosin motors
during muscle shortening and the coupling with the release of the ATP hydrolysis products.,” The
Journal of Physiology, vol. 593, no. 15, pp. 3313–3332, 2015.

[43] A. Månsson, D. Rassier, and G. Tsiavaliaris, “Poorly understood aspects of striated muscle contrac-
tion.,” BioMed Research International, vol. 2015, 2015.

[44] S. M. Mijailovich, O. Kayser-Herold, B. Stojanovic, D. Nedic, T. C. Irving, and M. A. Geeves,
“Three-dimensional stochastic model of actin–myosin binding in the sarcomere lattice.,” The Journal
of General Physiology, vol. 148, no. 6, pp. 459–488, 2016.

[45] M. Caruel, P. Moireau, and D. Chapelle, “Stochastic modeling of chemical-mechanical coupling in
striated muscles.,” Biomechanics and Modeling in Mechanobiology, vol. 18, no. 3, pp. 563–587, 2019.

[46] A. Månsson, M. Persson, N. Shalabi, and D. E. Rassier, “Nonlinear actomyosin elasticity in muscle?,”
Biophysical Journal, vol. 116, no. 2, pp. 330–346, 2019.

[47] F. Kimmig and M. Caruel, “Hierarchical modeling of force generation in cardiac muscle.,” Biome-
chanics and Modeling in Mechanobiology, vol. 19, no. 6, pp. 2567–2601, 2020.

[48] G. I. Zahalak and I. Motabarzadeh, “A re-examination of calcium activation in the Huxley cross-
bridge model.,” Journal of Biomechanical Engineering, vol. 119, no. 1, pp. 20–29, 1997.

[49] D. Chapelle, P. Moireau, M. Sorine, and P. Le Tallec, “Energy-preserving muscle tissue model:
formulation and compatible discretizations.,” International Journal for Multiscale Computational
Engineering, vol. 10, no. 2, pp. 189–211, 2012.

[50] G. I. Zahalak, “A distribution-moment approximation for kinetic theories of muscular contraction.,”
Mathematical Biosciences, vol. 55, no. 1-2, pp. 89–114, 1981.

[51] F. Regazzoni, L. Dedè, and A. Quarteroni, “Biophysically detailed mathematical models of multiscale
cardiac active mechanics.,” PLOS Computational Biology, vol. 16, no. 10, p. e1008294, 2020.

[52] S. M. Mijailovich, M. Prodanovic, C. Poggesi, M. A. Geeves, and M. Regnier, “Multiscale modeling
of twitch contractions in cardiac trabeculae.,” The Journal of General Physiology, vol. 153, no. 3,
p. e202012604, 2021.

[53] F. Kimmig, D. Chapelle, and P. Moireau, “Thermodynamic properties of muscle contraction models
and associated discrete-time principles.,” Advanced Modeling and Simulation in Engineering Sci-
ences, vol. 6, no. 1, p. 6, 2019.

[54] H. E. D. J. Ter Keurs, W. H. Rijnsburger, R. Van Heuningen, and M. J. Nagelsmit, “Tension
Development and Sarcomere Length in Rat Cardiac Trabeculae: Evidence of Length-Dependent
Activation.,” in Cardiac Dynamics, pp. 25–36, Dordrecht: Springer Netherlands, 1980.

[55] P. M. Janssen and W. C. Hunter, “Force, not sarcomere length, correlates with prolongation of
isosarcometric contraction.,” AJP: Heart and Circulatory Physiology, vol. 269, no. 2, pp. H676–
H685, 1995.

22



[56] M. Caremani, F. Pinzauti, M. Reconditi, G. Piazzesi, G. J. M. Stienen, V. Lombardi, and M. Linari,
“Size and speed of the working stroke of cardiac myosin in situ.,” Proceedings of the National Academy
of Sciences, vol. 113, no. 13, pp. 3675–3680, 2016.

[57] D. Amiad Pavlov and A. Landesberg, “The cross-bridge dynamics is determined by two length-
independent kinetics: implications on muscle economy and Frank–Starling law.,” Journal of Molec-
ular and Cellular Cardiology, vol. 90, pp. 94–101, 2016.

[58] F. Pinzauti, I. Pertici, M. Reconditi, T. Narayanan, G. J. M. Stienen, G. Piazzesi, V. Lombardi,
M. Linari, and M. Caremani, “The force and stiffness of myosin motors in the isometric twitch
of a cardiac trabecula and the effect of the extracellular calcium concentration.,” The Journal of
Physiology, vol. 596, no. 13, pp. 2581–2596, 2018.

[59] H. E. D. J. Ter Keurs, T. Shinozaki, Y. M. Zhang, M. L. Zhang, Y. Wakayama, Y. Sugai, Y. Kagaya,
M. Miura, P. A. Boyden, B. D. M. Stuyvers, and A. Landesberg, “Sarcomere mechanics in uniform
and non-uniform cardiac muscle: A link between pump function and arrhythmias.,” Progress in
Biophysics and Molecular Biology, vol. 97, no. 2-3, pp. 312–331, 2008.

[60] J. C. Kentish, H. Ter Keurs, and L. Ricciardi, “Comparison between the sarcomere length-force
relations of intact and skinned trabeculae from rat right ventricle. Influence of calcium concentrations
on these relations.,” Circulation Research, 1986.

[61] D. P. Dobesh, J. P. Konhilas, and P. P. de Tombe, “Cooperative activation in cardiac muscle: impact
of sarcomere length.,” AJP: Heart and Circulatory Physiology, vol. 282, no. 3, pp. H1055–H1062,
2002.

[62] R. Van Heuningen, W. H. Rijnsburger, and H. E. ter Keurs, “Sarcomere length control in striated
muscle.,” The American Journal of Physiology, vol. 242, no. 3, pp. H411–20, 1982.

[63] R. D. Mateja and P. P. de Tombe, “Myofilament length-dependent activation develops within
5&nbsp;ms in Guinea-pig myocardium-,” Biophysical Journal, vol. 103, no. 1, pp. L13–L15, 2012.

[64] T. L. Hill, Free Energy Transduction in Biology. Academic press, 1977.

[65] R. Craig and R. Padrón, “Molecular structure of the sarcomere.,” Myology, vol. 3, pp. 129–144, 2004.

[66] S. Land, S.-J. Park-Holohan, N. Smith, C. dos Remedios, J. Kentish, and S. Niederer, “A model
of cardiac contraction based on novel measurements of tension development in human cardiomy-
ocytes.,” Journal of Molecular and Cellular Cardiology, vol. 106, pp. 68–83, 2017.

[67] S. Mijailovich, B. Stojanovic, D. Nedic, M. Svicevic, M. Geeves, T. Irving, and H. Granzier, “Nebulin
and titin modulate cross-bridge cycling and length-dependent calcium sensitivity,” The Journal of
General Physiology, vol. 151, no. 5, pp. 680–704, 2019.

[68] D. G. Allen and S. Kurihara, “The effects of muscle length on intracellular calcium transients in
mammalian cardiac muscle.,” The Journal of Physiology, vol. 327, June 1982.

[69] P. H. Backx and H. E. ter Keurs, “Fluorescent properties of rat cardiac trabeculae microinjected
with fura-2 salt,” AJP: Heart and Circulatory Physiology, vol. 264, pp. H1098–H1110, Apr. 1993.

[70] P. de Tombe and G. Stienen, “Impact of temperature on cross-bridge cycling kinetics in rat my-
ocardium.,” The Journal of Physiology, vol. 584, no. 2, pp. 591–600, 2007.

23


	Physiological review
	Activation of the thin filament
	Regulation mechanisms
	Modulation of the maximum force
	Modulation of the force transients


	Model presentation
	Actin-myosin interaction and thick filament activation
	Thin filament activation
	Geometry of the system
	Actin sites states and fluxes between them
	Conservation laws and active tension
	Example of a steady state isometric contraction


	Model calibration
	Discussion
	Limits of the calibration
	Compared influences of cross-bridge and calcium activation dynamics on the twitch dynamics

	Conclusions
	Appendix

