
HAL Id: hal-03788933
https://hal.science/hal-03788933

Submitted on 27 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Hybrid Observer-based Controller for a
Non-uniformly Observable System

Mohamed Maghenem, William Pasillas-Lépine, Antonio Loria, Missie
Aguado-Rojas

To cite this version:
Mohamed Maghenem, William Pasillas-Lépine, Antonio Loria, Missie Aguado-Rojas. A Hybrid
Observer-based Controller for a Non-uniformly Observable System. 61st IEEE Conference on Decision
and Control (CDC 2022), Dec 2022, Cancún, Mexico. pp.4467-4472, �10.1109/cdc51059.2022.9992799�.
�hal-03788933�

https://hal.science/hal-03788933
https://hal.archives-ouvertes.fr


A Hybrid Observer-based Controller for a
Non-uniformly Observable System

M. Maghenem W. Pasillas-Lépine A. Lorı́a M. Aguado-Rojas

Abstract— For systems that are not observable at an equilib-
rium to be stabilized, output-feedback stabilization is consid-
erably challenging. This paper solves this control problem for
the case-study of a second-order system that is bilinear and
affine, both in the input and the output, but it is unobservable
at the target equilibrium. The case-study defines a class of
non-uniformly observable systems and stems from automotive-
control applications. Our main contribution is a novel observer-
based hybrid controller that achieves asymptotic stabilization
semiglobally. The controller relies on a switched observer that
estimates the state, provided that the latter is ‘kept away’
from the singular equilibrium. To achieve both competing tasks,
stabilization and estimation, the controller relies on the keen
construction of a piecewise-constant, converging, output refer-
ence. Our main results are illustrated via numerical simulations
on a meaningful example.

Index Terms— Non-uniformly observable systems; observers;
hybrid control; ABS.

I. INTRODUCTION

“Stabilizing a system and estimating the state are two
competing processes that need to happen simultaneously in
order to stabilize a partially measured system in closed loop”
[1]. This statement is particularly meaningful when the control
goal is to stabilize an equilibrium, at which, observability
is lost. The study of such systems, for about three decades,
has yielded an ever-growing literature—see, e.g., [1]–[5].
Beyond the mathematical difficulty imposed by designing an
observer [6]–[8], the stabilization problem is well-motivated
by concrete engineering applications, such as sensorless motor
control [9], bioreactor systems [10], [11], electrical systems
[12], and automotive applications [13].

Despite elegant solutions for particular instances, such
as the one studied in [14], the asymptotic output-feedback
stabilization of an unobservable equilibrium for nonlinear
systems remains, in general, an open question. This is the
case for the representative case-study, of interest here, given
by the equations

ż1 = −az1z2 + u (1a)
ż2 = (cz2 + d)z1, z1, z2 ∈ R, (1b)

where a, c, and d > 0, u is the control input, and y = Cz = z1

is the measured output.
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This system belongs to the class of bilinear systems of the
form ẋ = A(y)x+Bu—cf. [4], which are not observable at
{y = 0}. Furthermore, up to a change of time-scale, (1) repre-
sents the dynamics of the so-called extended-braking stiffness
system [13], [15], where the regulation of the unmeasured
variable z2 translates into maximizing the braking force in
the antiblock braking system (ABS) [16]. This being said,
stabilizing the origin {z1 = z2 = 0} for (1), measuring only
z1 (which is the linear acceleration of the tire at the wheel-
ground contact point, relative to the longitudinal acceleration
of the vehicle) is the open problem that we solve here.

In this paper, we propose a novel hybrid controller that
relies on the exponentially convergent observer previously
proposed in [13], [15]. As explained in [17] and docu-
mented in the bilinear-systems literature [4], [18], such a
state estimator relies on the output y = z1 being persistently
exciting, which is in clear conflict with the stabilization
task. To circumvent this inadequacy, we propose a control
strategy inspired from [15], [19] that consists in steering y
to a vanishing piecewise-constant output reference z∗. This
reference takes values in a discrete set that is symmetrical
with respect to 0. The reference z∗ converges to 0 at a
controlled rate that maintain the output y sufficiently excited
on specific windows of time. On each window, the estimation
error decreases at a rate that depends on the level of excitation
of y and, thus, on the magnitude of z∗. During each window,
z2 is maintained in a specific ball around 0, by switching z∗

between a value and its opposite. In particular, the range of z2

shrinks from one window to another as well as the size of z∗.
Finally, we control the length of the different time windows
by inspecting the decrease ratio of the estimation errors. This
way, we guarantee convergence of the estimation errors as
well as the system’s variables to zero. Such a controller is
hybrid in nature and successfully stabilizes the origin provided
that an upper bound on the initial condition is known.

This paper is a natural follow up on long-standing work
led by the second author [5], [13], [15], [17], which are
exclusively devoted to the observer-design problem.

II. SWITCHED-OBSERVER DESIGN

We revisit the switched observer for system (1) originally
introduced in [13] and we refine the main result therein by
providing an explicit estimation of the convergence rate.

Let ẑ := (ẑ1, ẑ2) denote the estimate of z := (z1, z2) and
consider the observer

˙̂z1 = −az1ẑ2 + u+ k1(z1)z1(z1 − ẑ1)
˙̂z2 = cz1ẑ2 + dz1 + k2(z1)z1(z1 − ẑ1),



where

ki(z1) :=

k
+
i if z1 > 0
k−i if z1 < 0
0 if z1 = 0,

i ∈ {1, 2}.

and, following [15], we set k+
1 > c, k+

2 < − c
ak

+
1 , k−2 <

− c
ak
−
1 , k−1 = 2c− k+

1 , ck+
1 + ak+

2 = ck−1 + ak−2 .
Then, the estimation error z̃i := ẑi − zi is governed by[

˙̃z1

˙̃z2

]
= z1(t)

[
−k1(z1(t)) −a
−k2(z1(t)) c

] [
z̃1

z̃2

]
, (3)

and depends on the measurable output trajectory t 7→ z1(t).
Now, we consider the following hypothesis on the measured

output z1.
Assumption 1: There exist positive constants τd, τs, z, and

z̄, and an infinite union of disjoint intervals, denoted Id, such
that:
• |z1(t)| ≥ z for all t ∈ Id,
• |z1(t)| ≤ z̄ for all t ∈ R≥0\Id,
• the length of each connected interval in Id is no smaller

than τd, and
• the length of each connected interval in R≥0\Id is

smaller than τs.
Assumption 1 relaxes the hypotheses imposed in [5], where

it is additionally required that t 7→ z1(t) passes by 0 only at
isolated instants. As it is showed in the next section, Assump-
tion 1 holds by design (of a particular output reference) on
specific windows of time.

Next, for the purpose of analysis, we introduce the new
time scale—cf. [5],

τ :=

∫ t

to

|z1(s)|ds =: fz1(t), (4)

which is well defined under Assumption 1, in the sense that,
fz1 is continuous, nondecreasing, and limt→∞ fz1(t) = ∞.
Moreover, we note that Assumption 1 implies the existence
of µ and T > 0 such that∫ t

to

|z1(s)|ds ≥ µ(t− to) ∀t ≥ to + T, ∀to ≥ 0. (5)

In the new time-scale, system (3) is equivalent to

w̃′ :=
dw̃

dτ
= A(w1(τ))w̃ ∀τ ∈ Im(fz1), (6)

where

A(w1) :=

A+ if w1 > 0
A− if w1 < 0
0 if w1 = 0,

Im(fz1) := fz1([to,∞)) denotes the image of fz1 , w1 :
Im(fz1)→ R and w̃ : Im(fz1)→ R2 are given by

w1(τ):=

{
z1(f−1

z1 (τ)) if card(f−1
z1 (τ)) = 1

0 otherwise, (7)

w̃(τ):=

{
z̃(f−1

z1 (τ)) if card(f−1
z1 (τ)) = 1

z̃(min{f−1
z1 (τ)}) otherwise, (8)

where card(f−1
z1 (τ)) is the number of elements in

f−1
z1 (τ) := {t ∈ [to,+∞) : fz1(t) = τ},

and A+ and A− correspond, respectively, to the matrix in (3)
with ki = k+

i and ki = k−i .
Note that, by definition, w1(τ) = 0 only for τ in a null-

measure set. Hence,

A(w1(τ)) ∈ {A1, A2} for almost all τ ∈ Im(fz1).

Furthermore, under Assumption 1, Im(fz1) = R≥0 and τ 7→
w1(τ) satisfies the following property:

Property 1: There exist an infinite union of disjoint inter-
vals, denoted Īd, such that
• |w1(τ)| > 0 for all t ∈ Īd,
• the length of each connected interval in Īd is no smaller

than (τdz),
• the length of each connected interval in R≥0\Īd is

smaller than (τsz̄).
Lemma 1: Consider the non-autonomous system (6) such

that w1 : Im(fz1)→ R satisfies Property 1. Then,

|w̃(τ)| ≤ κ1|w̃(0)| exp−κ2τ ∀τ ∈ Im(fz1),

where, given λ > 0, κ1 := γ k̄+2c̄2γ
ρ(1+k̄)

, κ2 := − ln(ρ)/L,

γ := λmax(P )/λmin(P ), c̄ := expmax{|A1|,|A2|}z̄τs ,

k := max{|K1|, |K2|}, k̄ := λmax(P )c̄2k2/λ,

L is such that

ρ :=
2γc̄2 exp−2λL +k̄

1 + k̄
< 1,

and K1, K2 ∈ R2 are such that, for each i ∈ {1, 2}, we have∣∣∣ exp(Ai+KiC)τ
∣∣∣ ≤ 1

c̄
exp−2λ(τ− τdz2 ) ∀t ≥ τdz

2
.

Consequently, under Assumption 1—see (5),

|z̃(t)| ≤ κ1|z̃(to)| exp−κ2

∫ t
to
|z1(s)|ds

≤ κ1|z̃(to)| exp−κ2µ(t−to) ∀t ≥ to + T, to ≥ 0. (9)

III. OBSERVER-BASED HYBRID CONTROL ALGORITHM

As explained in the Introduction, the difficulty in stabilizing
the origin for (1) via output feedback resides in that, roughly
speaking, the observer (2) relies on the output z1(t) remaining
away from the origin, which is in clear conflict with the
control objective. To circumvent this paradox we propose an
observer-based hybrid controller, whose design starts with the
simple control law

u := az1ẑ2 − k(z1 − z∗), (10)

in which, z∗ is a piece-wise constant and vanishing reference
trajectory, that is carefully designed in function of the bound
on the estimation errors |z̃(t)|. More precisely, the design
of z∗ is driven by the analysis of the closed-loop of (1a)
using the controller in (10), driven by the estimation error z̃2.

Defining the tracking error z1e := z1−z∗, this corresponds
to

ż1e = −(k + az̃2)z1e + az∗z̃2. (11)

Note that the latter constitutes a linear time-invariant system
with a bounded perturbation z̃2. Indeed, after [5], one can



compute a positive definite matrix P ∈ R2×2 such that the
time derivative of

Vobs(z̃) := z̃>P z̃, (12)

along the solutions to (3), verifies

V̇obs(z̃(t)) ≤ 0 ∀ t ≥ 0. (13)

Let R > 0 be arbitrarily fixed. Then, for any initial
condition z(0) such that |z(0)| ≤ R, we may fix ẑ(0) such
that |z̃(0)| ≤ R̃, where R̃ > 0 is known. Therefore, from (13)
we have

Vobs(z̃(0)) ≤ λmax(P )R̃2,

which implies that

z̃2(t)2 ≤ γ2z̃(0)2 ≤ γ2R̃2 ∀t ≥ 0, (14)

with γ :=
√

λmax(P )
λmin(P ) .

This is useful to estimate an ultimate bound on the tracking
errors z1e. Indeed, using the function V (z1e) := (1/2)z2

1e and
setting

k := γaR̃+ k′, k′ > 0, (15)

we see that, in view of (14), the derivative of V along the
trajectories of (11) satisfies

V̇ (z1e) ≤ −k′z2
1e + a|z∗|∞|z̃2|∞|z1e|, (16)

where |φ|∞ := ess supt≥0|φ(t)|.
Roughly speaking, we have that the tracking errors con-

verge to a ball of radius that depend on the bounds on |z∗(t)|
and |z̃2(t)|. Therefore, the achievement of the control goal
resides, as mentioned above, on the appropriate design of a
reference z∗ that, on the one hand, converges to zero and, on
the other hand, it does so at a rate sufficiently “slow” that
Assumption 1 holds on specific windows of time. As a result,
the estimation errors at the end of each window diminish the
size they had at the beginning of the window at a specific
rate.

To that end, we design the reference z∗ as a piecewise-
constant function taking values, sequentially, in the set

S∗ :=

∞⋃
i=0

{
−z
∗
in

2i
,
z∗in
2i

}
, (17)

where z∗in > 0 is an initialization value and i denotes an
increasing cycle index. More precisely, z∗ changes value
according to the following algorithm:
Initialization step: We initially set z∗(t) = z∗in for all t ∈
[0, t1], where t1 is to be defined, and ẑ(0) such that |z̃(0)| ≤
R̃. Then,

|z̃2(t)| ≤ γR̃ ∀t ≥ 0.

From (14) and (16), we conclude the existence of T > 0
such that

|z1e(t)| ≤
2aR̃√
k′
|z∗(t)| ∀t ≥ T,

so, by setting k′ ≥ 16a2R̃2, it follows that

|z1e(t)| ≤ z∗in/2 ∀t ≥ T,

so z1(t) ∈ [
z∗in
2 , z∗in] and, consequently, Assumption 1 holds.

On the other hand, there exist κ1o, κ2o > 0 such that—see
(9),

|z̃(t)| ≤ |z̃(0)|κ1o exp
(
− κ2oz

∗
int

2

)
∀t ≥ 0,

so, for any ε > 0, there exists To ≥ T > 0 such that

|z̃(t)| ≤ g(0)(ε/γ) ∀t ≥ To, g(0) := 1,

and, from the first inequality in (14), we have |z̃2(t)| ≤ ε for
all t ≥ To. Next, we define t1 := To and generate the first
cycle.

Remark 1: Note that on the interval [0, To], z2 remains
bounded since z1 is bounded and the dynamics of z2 is linear
in z2. Furthermore, z2 remains away from the singular point
−dc provided that z2(0) > −dc . The latter property always
holds for real-world ABS systems.
First cycle: From t1 := To, we set z∗ to satisfy |z∗| =

z∗in
2 ,

moreover, the tracking error z1e satisfies (16) with |z̃2| ≤ ε.
As a result, a limit cycle is generated by switching z∗ between
−z∗in/2 and z∗in/2 each time ẑ2(t) reaches d/2c or −d/2c,
as described below:
1) If ẑ2(t1) ≤ 0, z∗(t1) is set to z∗in/2. Then, at t′1 ≥ t1

such that ẑ2(t′1) = d
2c , which means that z2(t′1) ∈ [ d2c −

ε, d2c + ε], the reference z∗ is set to z∗(t′1) = − z
∗
in

2 . Then,
at t′′1 ≥ t′1 such that ẑ2(t′′1) = − d

2c , which means that
z2(t′′1) ∈ [−ε− d

2c , ε−
d
2c ], the reference z∗ is set back to

z∗in
2 .

2) If ẑ2(t1) ≥ 0, the reference is set to z∗(t1) = −z∗in/2 and
the same switching rules as above apply mutatis mutandis.
Along this cycle, Assumption 1 holds on [t1,+∞); thus,

there exist positive constants (κ11, κ21) such that

|z̃(t)| ≤ κ11|z̃(t1)| exp
−κ21

∫ t
t1
|z1(s)|ds ∀t ≥ t1.

The first cycle is ended at t2 := To + T1 > 0, where T1 is
chosen so that

|ẑ2(t)| ≤ d/2c and |z̃(t)| ≤ (ε/γ)g(1) ∀t ≥ t2,

where g(1) ∈ (0, 1). Thus, from t2, we start a new cycle.
Moreover, the latter is repeated successively by defining ti :=
To + T1 + · · ·+ Ti−1 and the ith cycle as follows.
ith cycle: From ti = To+T1 + · · ·+Ti−1, the reference z∗ is
set to satisfy |z∗| = z∗in/2

i, moreover, z1e satisfies (16) with
|z̃2| ≤ εg(i−1) for some g(i−1) ∈ (0, 1). As a result, a limit
cycle is created by switching z∗ between −z∗in/2i and z∗in/2

i

each time ẑ2(t) equals to d/2ic or to −d/2ic, as described
below:
1) If ẑ2(ti) ≤ 0, z∗(ti) is set to z∗in/2

i. Then, at t′i ≥ ti
such that ẑ2(t′i) = d

2ic , which means that z2(t′i) ∈ [ d2ic −
ε, d

2ic + ε], the reference z∗ is set to z∗(t′i) = − z
∗
in

2i . Then,
at t′′i ≥ t′i such that ẑ2(t′′i ) = − d

2ic , which means that
z2(t′′i ) ∈ [− d

2ic − ε,−
d

2ic + ε], the reference z∗ is set back
to z∗in

2i .
2) Similarly, if ẑ2(ti) ≥ 0, the reference is set to z∗(ti) =
−z∗in/2i and the same switching rules as in the previous
item are applied.



During the ith cycle, Assumption 1 holds on [ti,+∞), so
there exist positive constants (κ1i, κ2i) such that

|z̃(t)| ≤ κ1i|z̃(ti)| exp
−κ2i

∫ t
ti
|z1(s)|ds ∀t ≥ ti.

The cycle ends at ti+1 := To + T1 + ... + Ti > 0, where Ti
is chosen so that

|ẑ2(t)| ≤ d/2ic and |z̃(t)| ≤ (ε/γ)g(i) ∀t ≥ ti+1,

where g(i) ∈ (0, 1). Hence, a new cycle starts over and the
algorithm carries on.

During each cycle, the measured output z1 satisfies As-
sumption 1 and the observer is “excited” enough to make |z̃|
decrease. On the other hand, the certainty-equivalence con-
troller (10) makes |z1e| decrease too. The design of the
switched reference z∗ ensures that |z̃|, at the beginning of
the (i+ 1)th cycle, shrinks the size it has at the beginning of
the ith cycle, provided that the sequence g is well designed.
In addition to switching, the reference decreases to zero so
that z1 also converge.

IV. MAIN STATEMENT

The ABS system (1), under the previously described control
algorithm may be implemented and formally analyzed as a
hybrid system. To make a precise statement on asymptotic
stability of the origin we rely on the framework of definition
of hybrid systems, as laid in [20]. Following the latter, we
first show that the closed-loop composed of the plant (1), the
controller (10), and the observer (2), may be expressed as
a hybrid system that consists in the combination of a con-
strained differential and a constrained difference equations,

H :

{
ẋ = F (x) x ∈ C
x+ = G(x) x ∈ D, (18)

where the state variable x ∈ X ⊂ Rn has a continuous
evolution while in the flow set C ⊂ X and it is allowed
to jump if in the jump set D ⊂ X . The continuous- and the
discrete-time evolution of x are governed by the flow and
the jump maps F : C → R≥0 × {0} × R2 × R2 × {0} and
G : D → X , respectively. Furthermore, the closed-loop state
is defined as

x := (τ, i, z, z̃, z∗) ∈ X ,

X := R≥0 × N× R×
(
−d

c
,+∞

)
× R2 × S∗.

Then, the jump and flow sets are defined as follows. The flow
set C := cl (X\D), where cl( · ) denotes closure relative to
X and the jump set D := Dc ∪ Dnc. The set Dc, which
determines the jump conditions within the ith cycle, is given
by

Dc :=

{
x ∈ X : |ẑ2| ≥

d|z∗|
cz∗in

, ẑ2z
∗ ≥ 0

}
(19)

and the set Dnc, which determines the jump condition from
the ith to the (i+ 1)th cycle, is given by

Dnc :=

{
x ∈ X : |ẑ2| ≤

d|z∗|
cz∗in

, ẑ2z
∗ ≤ 0,

|Φi(τ, 0)>PΦi(τ, 0)| 12 ≤ λmin(P )
1
2h(i)

}
, (20)

where Φi is the transition matrix corresponding to the system

dw̃

dτ
= A(w1(τ + τi))w̃ τ ≥ 0,

and τi :=
∫ ti

0
|z1(s)|ds. Moreover h(0) := ε/(γR̃), and

h(i) := g(i)/g(i− 1) ∈ (0, 1) for all i ≥ 1.
The definition of the jump sets Dc and Dnc follows the

rationale developed in the previous section, but certain tech-
nical aspects are also considered in order to cast the analysis
in the framework of [20]. The respective first inequalities in
Dc and Dnc correspond to the switch conditions explained in
Section III. The constraint ẑ2z

∗ ≤ 0, which requires that the
signs of ẑ2 and z∗ be different, is imposed in the definition
of Dnc, while the opposite is used to define Dc, to render
the intersection of these sets empty (the apparent intersection
{ẑ2 = z∗ = 0} is void since z∗ 6= 0 by design). A somewhat
more natural manner to define the jump sets Dnc and Dc,
which is in more strict concordance with the algorithm loosely
described in the previous section, would not include such
condition and would simply impose a strict inequality in either
set. However, such definition would lead to the hybrid system
being not well-posed [20].

The third inequality in the definition of Dnc,

|Φi(τ, 0)>PΦi(τ, 0)| ≤ λmin(P )h(i)2, (21)

is a conservative, yet verifiable, condition that essentially tests
the size of the otherwise non-measurable estimation errors
z̃(t) ≡ w̃(τ). To better see this, consider the function Vobs
in (12). Its total derivative along the solutions to (6) satisfies
V̇obs(w̃(τ)) ≤ 0, so Vobs(w̃(τ)) ≤ Vobs(w̃(0)) for all τ ≥ 0.
Hence, equivalently,

w̃(τ)>Pw̃(τ) ≤ w̃(0)>Pw̃(0).

Therefore, using w̃(τ) = Φi(τ, 0)w̃(0), we see that (21)
implies that, for any w̃(0) ∈ R2,

w̃(τ)>Pw̃(τ) ≤ λmin(P )h(i)2w̃(0)2,

that is, |w̃(τ)|2 ≤ h(i)2|w̃(0)|2.
Then, with these definitions of the flow and jump sets, we

introduce the flow map

F (x) :=



|z1|
0[

−(k + az̃2)z1e + az∗z̃2

(cz2 + d)z1

]
z1

[
−k1(z1) −a
−k2(z1) c

]
z̃

0


. (22)

Note that in the definition of F , the dynamics of the discrete
variables (i, z∗) is null, the dynamics of τ corresponds to
(4). Finally, the dynamics of z and z̃ are simply repeated
from (11) and (3), respectively.



On the other hand, the jump map is given by

G(x) :=



{
0 if x ∈ Dnc

τ if x ∈ Dc{
i+ 1 if x ∈ Dnc

i if x ∈ Dc

z
z̃{

z∗/2 if x ∈ Dnc

−z∗ if x ∈ Dc


. (23)

The map G is designed to reset the value of τ to 0 each
time a new cycle starts and updates the cycle index i. The
variables z and z̃ are continuous variables, so they do not
change their values during jumps. According to the algorithm
previously explained, the variable z∗ halves its size in absolute
value whenever a jump to a new cycle occurs, otherwise
(while switching within a cycle), z∗ only alternates sign. It
is important to note that since Dc ∩Dnc = ∅, then the map
G is continuous on D. This is important for the system to be
well-posed [20].

In addition, the initial state xo := (τo, io, zo, z̃o, z
∗
o) ∈ X

is defined as follows. By assumption, a number R is known
such that |zo| ≤ R. Then, the estimation errors z̃o are set so
that |z̃o| ≤ R̃ for a given R̃ > 0. Hence, when a reliable
estimate of |zo| is available, the Initialization step described
on p. 3 may be skipped by defining the initial cycle index as
io := max{0, κ1(R̃)}, where

κ1(R̃) := max

{
i ∈ Z : R̃ ≤ εg(i− 1)

γ

}
.

Furthermore, according to (4), τo = 0. Finally, the vanishing
reference trajectory z∗ is initialized to

z∗o :=




z∗in
2io

if ẑ2o < 0

−z∗in
2io

otherwise

 if io ≥ 1

z∗in if io = 0.

Our main statement establishes semi-global attractivity of
the setA := {x ∈ X : z = z̃ = 0} for the closed-loop system.
That is, that for any ball of initial conditions of radius R, there
exists a control gain k(R), as defined in (15), such that all
trajectories converge to the set A. In particular, the domain
of attraction may be enlarged by increasing the control gain.

Theorem 1: Consider the closed-loop hybrid system H =
(C,F,D,G) defined by (18)–(20), (22), and (23). Let R, R̃ >
0 be such that |zo| ≤ R and |z̃o| ≤ R̃, and let (io, z

∗
o , τo) be

defined as above. Then, for each R, there exists k > 0 such
that:

(i) each solution to1 H satisfies

lim
(t+j)→+∞

|x(t, j)|A = 0,

provided that limi→∞ g(i) = 0;

1Note that (t, j) 7→ x(t, j) are defined as absolutely continuous functions
mapping their hybrid domain, dom x ⊂ R≥0 × N, into R2. See [20] for
details.

(ii) the set A is locally stable in the sense that there exist a
sufficiently small constant δ > 0 and a class-K function2

κ such that |(z, z̃)|∞ ≤ κ(|zo|+ δ);
(iii) the system H is well posed—see [20], and its solutions

are uniformly non-Zeno, that is, there exist T > 0 and
J ∈ N such that, on any time period of length T , at most
J jumps can occur.

In a general setting, the assumption in item (ii) is restrictive.
However, this is not the case for commercial ABS systems,
for which the initial condition z1o is usually known and there
exists a small δ such that z2o ∈ [−δ, δ]. Note that, in this case,
items (i) and (ii) imply semi-global asymptotic stability in
the hybrid sense [20]. This, together with item (iii) goes well
beyond that of mere convergence of estimation errors z̃ and
the state variable z since it guarantees certain robustness—see
the latter reference for details.

V. A NUMERICAL EXAMPLE

To illustrate our theoretical findings, we performed some
numerical simulations on a model of extended braking stiff-
ness dynamics, described in detail in [15]. The switching
logic is determined by the conditions in (19) and (20), with
a = 375, c = 24, and d = 12.5. The scenario defined by these
parameters corresponding to that of a hard braking on a dry
road. We took, moreover, a gain k = 500 for the controller
and gains k+

1 = 40 and k+
2 = −3 for the observer. The

initial wheel acceleration reference z∗o was set to 75 and the
sequence h was chosen as

h(i) :=

{
1/(1 + 1

4i ) if i ∈ {1, 2, ..., 8},
1/2 if i ∈ {9, 10, ...}.

This choice of h results from extensive numerical tests, which
showed that the natural choice h(i) ≡ 1/2, which satisfies the
conditions of Theorem 1, leads to relatively slow convergence
of z, while h(i) = 1/(1 + 1

4i ) for all i ∈ N violates the
condition t limi→∞ g(i) = 0, with g(i) =

∏i
1 h(j), in Item

(i) of Theorem 1.
The numerical results are illustrated in Figs. 1 and 2.

The NE plot in Fig. 1 shows (in black) the trajectories
of the measured output, z1, and the corresponding estimate
generated by the observer (in blue). The yellow (apparently)
solid lines correspond to the piece-wise constant reference
z∗ taking values in the discrete set S∗ defined in (17),
hence the “staircase-type” graph. It is noticeable that, e.g.,
approximately ∀ t ∈ (0, 8), |z∗(t)| ≈ 75, while ∀ t ∈ (15, 28)
|z∗(t)| ≈ 2.3. Other values are discernible over other inter-
vals. These correspond to the duration of the different cycles
triggered as explained in Section III. Within each cycle, the
reference keeps switching between the positive and negative
value of the same constant. In the zoomed windows, one
can appreciate that, even if the system’s output does not
attain the imposed reference (because the latter switches) the
observer keeps tracking the plant’s states; the trajectories of
z2 and ẑ2 are depicted in the NW plot. It is the “persistent
excitation” induced by the switchings that the observer keeps

2i.e. κ is continuous, strictly increasing, and κ(0) = 0.



up with a close estimate of the states. Then, as described in
the algorithm, successive cycles, at the beginning of which
the reference z∗ is halved, are generated. Thus, the reference,
the plant’s states and the observer errors, all tend to zero
asymptotically. In Fig. 2 one may appreciate the stabilization
mechanism by looking at the response on the phase plane.
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Fig. 1. System’s and observer’s response
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Fig. 2. System’s response on the phase-plane

VI. CONCLUSION AND FUTURE WORK

Simultaneous estimation and stabilization at an equilibrium
where observability is lost is a challenging, but not impossible
task. Our main statement focuses on a particular bilinear
system, but of great interest in control practice. It sets the
basis for future work oriented towards broadening the appli-
cability of our switching-observer-based hybrid controller to
other bilinear and, more generally, non-uniformly observable
systems. Beyond these remaining open theoretical questions,
a deeper study regarding control implementation is required

to determine different cycle-jump conditions that deliver good
performance while satisfying the technical conditions imposed
by the analysis.
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