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1. INTRODUCTION

The purpose of this technical note is to discuss some
aspects of the bias distribution in Pseudo-Linear Regres-
sion (PLR) identification algorithms. PLR algorithms have
been widely used in adaptive control (3), and a recent
contribution make them able to identify multi-frequency
scale systems in discrete-time (7). In (6) the concept of
equivalent prediction error was introduced: it is a non-
measurable signal whose variance is asymptotically mini-
mized by some PLR schemes (output error and ARMAX
models, either in open- or closed-loop operations), and
the bias distribution of theses algorithms is inferred from
the expressions of this equivalent prediction error (whose
expression, specific to each algorithm is given in Table 2 of
(6)). In Lemma 2 of (6), it is claimed that the stationarity
condition of the PLR schemes (namely the orthogonality
between the prediction error and the regressor) entails the
orthogonality between the equivalent prediction error and
its gradient (independent of the estimated parameters)
called the equivalent regressor.

In a personal communication to the authors, Pr. Xavier
Bombois pointed out that this assertion is correct if the
true system is in the model set, but that Lemma 2 of (6)
does not prove that it is still exact if the true systems is
no longer in the model set (which is the situation when
a bias occurs). This question is worthwhile since the bias
analysis proposed in (6) depends on this property. This
paper sheds light on this matter, and it is proven under
some assumptions that the effective stationarity condition
is very close to the one claimed in (6).

2. NOTATION

In the sequel , the following notation related to signal,
transfer functions and transfer functions operators is used:
q the forward shift operator,
z the symbol of the z-transform
G : z 7→ G(z) a system , for example G(z) = b1z+b2

z2+a1z+a2
G∗ : z 7→ G∗(z) the reciprocal system of G, for example
G∗(z) = b1+b2z

1+a1z+a2z2

Ǧ : z 7→ G(z−1) for example Ǧ(z) = b1z
−1+b2

z−2+a1z−1+a2
and

Ǧ∗(z−1) = b1+b2z
−1

1+a1z−1+a2z−2

1 : z 7→ 1.
In this paper all the signal are assumed to be quasi-
stationary signals, and

Ē[x(t)] = limN→∞
1

N+1

∑N
τ=0 E[τ ]

3. ANALYSIS

Three assumptions are made

(1) H1 The excitation sequences are persistently exciting
signals, meaning that Φu(z) > 0 ∀z and Φru(z) >
0 ∀|z| = 1, where Φu(z) and Φru(z) are the Power
Spectrum Density (PSD) of respectively {u(t)} (the
input excitation signal in open-loop) and {ru(t)} (the
additive excitation signal on the system input in
closed-loop).

(2) H2 One defines na = deg(A(q)), nb = deg(B(q)),
nc = deg(C(q)) the degrees of A,B,C respectively,
and for sake of simplicity (but without any restric-
tion) one chooses in this article nb = na − 1, and
nc = na.

(3) H3 The controller K(q) is stable (S(q) has all its
zeros strictly inside de unit circle)

In the sequel H2 is the set of square summable transfer
functions analytic outside the unit circle including infinity,
and H2− is the subset of H2 including only the functions
having a relative degree higher or equal to 1. Moreover,
the inner product of two transfer functions H1 and H2,
denoted 〈H1, H2〉 is equal to

1

2πi

∮
T

H1(z−1)H2(z)
dz

z

where T is the unit circle, and one has 〈H1, H2〉 =
〈1, Ȟ1H2〉.

Since the publication of (6), it has been proposed more
recently in (7) some improved versions of PLR algorithms
where the predictor is parametrized on generalized or-
thonormal bases transfer function (GOBF) in closed-loop,
the schemes being called H-CLOE and H-XCLOE, and
as mentioned in this latter article the corresponding algo-
rithms in an open-loop context can directly be inferred by
taking a controller null (where R∗(q−1) = 0, S∗(q−1) = 1).
The corresponding output-error algorithm has been de-
tailed in (8) and is called H-OLOE, and a similar simpli-
fication of H-XCLOE to the open-loop case (for ARMAX
models) will be presented in a further publication.

It is thus necessary to recall (very quickly) the properties
of GOBF, the reader interested in this topic can report to
(2). These functions stem from a balanced realization of an



all-pass function Gb(z) =
∏np−1
j=0

−z.p̄j+1
z−pj where pj (|pj | <

1) are the basis poles and np the basis poles number.
There exists a balanced state space realization such that
Gb(z) = Db + Cb (zI −Ab)−1

Bb (for the construction
of the state space matrices see chap. 2 of (2)). The
orthonormal transfer function vectors Vk(z) with k =
1, 2, · · · and of size (np, 1) are given by the relation Vk(z) =

(zI −Ab)−1
BbG

k−1
b (z). Because of the orthonormal state

space realisation of Gb(z), orthonormality between these
functions holds . Particular configurations of np and pk
correspond to well known cases: np = 1, p0 = 0 is
the classical z−1, z−2, · · · basis, and np = 1, |p0| < 1
correspond to the Laguerre basis. The following result
related to GOBF is employed in the sequel:

Theorem 1. Consider any function F : z 7→ F (z). One has

〈Vk, F 〉 = 0 ⇐⇒ F (z) = Gkb (z)L(z)

where L ∈ H2−.

Proof:
1) Sufficient part : Let us assume F (z) = Gkb (z)L(z)
with L ∈ H2−. For any integer k ∈ [1,∞[, one can

write 〈Vk, F 〉 = 〈VkG−kb , L〉 = 〈V1G
−1
b , L〉.But according

to Corollary 3.6 of (1), V1(z)G−1
b (z) belongs to H⊥2− the

orthogonal complement of H2−. Therefore 〈V1G
−1
b , L〉 =

〈Vk, F 〉 = 0.
2) Necessary part: Let us assume that 〈Vk, F 〉 =

〈V1G
k−1
b , F 〉 = 0. Let l be an integer such that l ∈ [k +

1,∞[, one can write 〈V1G
k−1
b G−l+1

b , G−l+1
b F 〉 = 0, and

let us define r = k − l. One has r ∈] − ∞,−1], and

〈V1G
r
b , G

−l+1
b F 〉 = 0. But according to the corollary 3.6

of (1), {V1(z)Grb(z)} is a basis for H⊥2−. Therefore a nec-
essary condition so that this last equality holds is that
G−l+1F ∈ H2− for l = k + 1 (since l ∈ [k + 1,∞[) ,

or equivalently G−kb F ∈ H2− which means that G−kb F

must be stable and which implies that F = GkbL where
L ∈ H2−. This ends the proof. 2

For sake of homogeneity with a majority of papers pub-
lished in the identification field, some notation differ from
the notation employed in (6) as in (4) : θ0 is the true
parameter vector of size nf (previously denoted as θ in
(6)), θ is the parameter vector of the model of size n ≤ nf
(denoted as θ̂ in (6)). The estimated parameter vector at

time t is denoted θ̂(t), and θ∗ = limt→+∞θ̂(t).

The transfer function operators G0(q) = B0(q)
A0(q) and

W0(q) = C0(q)
A0(q) are respectively the deterministic and

stochastic parts of the true system, and G(q) = B(q)
A(q)

and W (q) = C(q)
A(q) the deterministic and stochastic parts

of the identified model. The excitation signal sequence
is {u(t)} in open-loop and {ru(t)} in closed-loop with

u(t) = −K(q)y(t) + ru(t), and where K(q) = R(q)
S(q) is the

R-S controller. Three classes of models are addressed in
(6) and the present document.

• The open-loop output error model where y(t) =
G0(q)u(t) + v(t), the sequence{v(t)} being a centred,

gaussian (non necessarily white) stochastic distur-
bance, independent of {u(t)}, the input sequence of
the model.

• The closed-loop output error model where y(t) =
Syv0(q)ru(t) + Syp0(q)v(t), Syp0(q) being the closed-
loop sensitivity function

Syp0(q) = 1
1+G0(q)K(q) , and Syv0(q) = G0(q)

1+G0(q)K(q)

• The ARMAX model where y(t) = G0(q)u(t) +
W0(q)e(t), where {e(t)} is centred, gaussian white
sequence.

For PLR algorithms, according to (6) the predicted output
ŷ(t+ 1, θ) is given by ŷ(t+ 1, θ) = θTφ(t, θ), where φ(t, θ),
is the regressor of the predictor, and ε(t + 1, θ) = y(t +
1)− ŷ(t+ 1, θ) is the prediction error, where y(t+ 1) is the
true system output at time t+ 1.
In Theorem 1 of (6) the transfer function operator Q has
been introduced. This transfer function is by definition the
one that satisfies the relation

φ(t, θ) = −Q∗(q−1, θ)
∂ε(t+ 1, θ)

∂θ
(1)

and it has been shown that it satisfies 1

Q∗(q−1, θ) = 1 + θT
∂φ

∂qε
(2)

Note that in any case Q∗(q−1) is causal and is the ratio of
two monic polynomials in q−1. The expressions of Q∗(q−1)
(for classical PLR algorithms) are given in Table 2 of (6)
(denoted Q(q−1) in this last reference).

The equivalent prediction error εE was defined in (6)

εE(t+1, θ) = Q∗(q−1, θ)ε(t+1, θ)+(1−Q∗(q−1, θ))w(t+1)
(3)

where w(t + 1) = v(t + 1) for the open-loop output error
model, w(t + 1) = e(t + 1) for the open and closed-loop
ARMAX model, and w(t + 1) = Syp(q)v(t + 1) for the
closed-loop output error model. From the first part of
Lemma 2 in(6) one has

εE(t+ 1, θ) = (θ0 − θ)T φE(t) + w(t+ 1) (4)

where φE is by definition the equivalent regressor and is
independent of θ, and one has

φE(t) = −∂εE(t+ 1, θ)

∂θ
(5)

If the true system is in the model set, and if θ = θ0, one
verifies that

ε(t+ 1, θ0) = εE(t+ 1, θ0) = w(t+ 1) (6a)

φ(t, θ0) = φE(t) (6b)

Therefore the stationarity condition

Ē [ε(t+ 1, θ0)φ(t, θ0)] = 0 (7)

entails the orthogonality between the equivalent prediction
error and the equivalent regressor

Ē [εE(t+ 1, θ0)φE(t)] = 0 (8)

and expressions in the frequency domain can be given
like in Table 3 of (6). However in this last reference it

1 The use of partial derivative relative to signals is justified in the
appendix of (6).



is not proven that these expressions remain exact if the
true system is no longer in the model set, which occurs
necessarily in the case of bias. The following result can
now be presented

Theorem 2. Under the assumptions H1,H2 and H3, for the
four PLR algorithms, namely

a) Output error in open-loop
b) Output error in closed-loop
c) Extended least squares in open-loop
d) Extended closed-loop output error

the stationnarity condition

Ē [ε(t+ 1, θ)φ(t, θ)] = 0

entails
Ē [εE(t+ 1, θ)φ(t, θ)] = 0

even if the true system is not in the model set.

Proof:
a) Output error in open-loop. For this algorithm, w(t +

1) = v(t + 1) and from (7), and (2), Q∗(q−1) = A∗(q−1)
A∗p(q−1) ,

where Ap(q) =
∏np−1
j=0 (q−pj)n (pj being the basis poles of

the predictor -which are null for the classical output error
scheme of PLR and n = na

np
), the stationarity condition

entails for 1 ≤ k ≤ n
Ē [{Vk(q)ŷ(t+ 1, θ)}(ε(t+ 1, θ)− w(t+ 1))] = 0 (9a)

Ē [{Vk(q)u(t+ 1, θ)}(ε(t+ 1, θ)− w(t+ 1))] = 0 (9b)

since

Ē [w(t+ 1)ŷ(t+ 1− l, θ)] = 0 (10a)

Ē [w(t+ 1)u(t+ 1− l, θ)] = 0 (10b)

for any l > 0.
But one has ε(t, θ) = (G0(q)−G(q))u(t) + v(t) and
ŷ(t, θ) = G(q)u(t). Therefore from equations (9) one can
write,

〈Vk, Ǧ(G0 −G)Φu〉 = 0 (11a)

〈Vk, (G0 −G)Φu〉 = 0 (11b)

And Theorem 1 leads to

Ǧ(G0 −G)Φu = GkbLŷ (12a)

(G0 −G)Φu = GkbLu (12b)

where Lŷ and Lu belong to H2−.
Note that conditions (12) entails that the set of zeros of
(G0 − G)Φu include the zeros of Gnb (the inverse of the
basis poles with a multiplicity n) and the inverse of the
poles of G (so that Ǧ(G0 − G)Φu belongs to H2−), and
this is nothing but the result of Theorem 2 in (5).
Now, since Q∗ is a ratio of two monic polynomials and is
stable by construction, one has

ǦQ∗(G0 −G)Φu = GkbQ
∗Lŷ = GkbL

′

ŷ (13a)

Q∗(G0 −G)Φu = GkbQ
∗Lu = GkbL

′

u (13b)

where L
′

ŷ and L
′

u also belong to H2−.
By applying again Theorem 1, one gets

〈Vk, ǦQ∗(G0 −G)Φu〉 = 0 (14a)

〈Vk, Q∗(G0 −G)Φu〉 = 0 (14b)

Now from the definition of the equivalent prediction error
(3), one has

Q∗(q−1, θ) (ε(t+ 1, θ)− w(t+ 1)) = εE(t+ 1, θ)−w(t+ 1)
(15)

By combining (14) and (15) and shifting in the time
domain one has

Ē [{Vk(q)ŷ(t+ 1, θ)}(εE(t+ 1, θ)− w(t+ 1))] = 0 (16a)

Ē [{Vk(q)u(t+ 1, θ)}(εE(t+ 1, θ)− w(t+ 1))] = 0 (16b)

but owing to (10), one finally obtains

Ē [{Vk(q)ŷ(t+ 1, θ)}εE(t+ 1, θ)] = 0 (17a)

Ē [{Vk(q)u(t+ 1, θ)}εE(t+ 1, θ)] = 0 (17b)

b) Output error in closed-loop. For this algorithm, w(t +
1) = Syp0v(t + 1), and û(t) = Syp(q)ru(t), moreover

ŷ(t) = B(q)
A(q)Syp(q)ru(t). As in (7) one defines ûf (t) =

S(q)
S̄(q)

û(t) and ŷf (t) = S(q)
S̄(q)

ŷ(t), where S̄(q) is a stability

polynomial defined from S(q) whose roots outside the
unit circle are projected inside and become the roots
of S̄(q) (enabling the use of an unstable corrector in
this algorithm -see (7)). Under assumption H3, one has
S̄(q) = S(q). The prediction error is given by ε(t + 1) =
Syp(q) (G0(q)−G(q))Syp0(q)ru(t) +w(t+ 1), and accord-

ing to (7) Q∗(q−1) = A∗(q−1)S∗(q−1)+q−1B∗(q−1)R∗(q−1)
A∗p(q−1)S̄∗(q−1)

.

The proof is similar to the open-loop case where (9) is
replaced by

Ē [(ε(t+ 1, θ)− w(t+ 1)){Vk(q)ŷf (t+ 1, θ)}] = 0 (18a)

Ē [(ε(t+ 1, θ)− w(t+ 1)){Vk(q)ûf (t+ 1, θ)}] = 0 (18b)

Equation (10) is replaced by

Ē [w(t+ 1)ŷf (t+ 1− l, θ)] = 0 (19a)

Ē [w(t+ 1)ûf (t+ 1− l, θ)] = 0 (19b)

Equation (11) is replaced by

〈Vn, Ǧ |Syp|2 (G0 −G)Syp0Φru〉 = 0 (20a)

〈Vn, |Syp|2 (G0 −G)Syp0Φru〉 = 0 (20b)

The application of Theorem 1, similarly to (14) entails

〈Vn, ǦQ∗ |Syp|2 (G0 −G)Syp0Φru〉 = 0 (21a)

〈Vn, Q∗ |Syp|2 (G0 −G)Syp0Φru〉 = 0 (21b)

leading like in (17) to

Ē [εE(t+ 1, θ){Vk(q)ŷf (t+ 1, θ)}] = 0 (22a)

Ē [εE(t+ 1, θ){Vk(q)ûf (t+ 1, θ)}] = 0 (22b)

c) Extended least squares in open-loop. For this algorithm,
which corresponds to the extended least-squares, where
the predictor developed on GBOF (this is a simplification
to the open-loop case of H-XCLOE in (7)), one has



w(t + 1) = e(t + 1). The prediction error is given by
ε(t) = A

C

[
(G0 −G)u(t) + (W0 − C

A )e(t)
]
, and Q∗(q−1) =

C∗(q−1)
A∗p(q−1) . The proof is again similar to the detailed one for

the output error in open-loop. Equation (9) is replaced by

Ē [(ε(t+ 1, θ)− w(t+ 1)){Vk(q)y(t+ 1, θ)}] = 0 (23a)

Ē [(ε(t+ 1, θ)− w(t+ 1)){Vk(q)u(t+ 1, θ)}] = 0 (23b)

Ē [(ε(t+ 1, θ)− w(t+ 1)){Vk(q)ε(t+ 1, θ)}] = 0 (23c)

Since ε(t) = y(t)− ŷ(t), the first and third condition lead
to

Ē [(ε(t+ 1, θ)− w(t+ 1)){Vk(q)ŷ(t+ 1, θ)}] = 0

On the other hand, from (3), the predicted output of this
algorithm can be written

ŷ(t) = G(q)u(t) +
C(q)−A(q)

A(q)
ε(t)

Therefore like in (11) one can write

〈Vn, Ǧ[G0 −G]Φu〉+ 〈Vn,
Č − Ǎ
Ǎ

[G0 −G]Φεu〉 = 0

(24a)

〈Vn, [G0 −G]Φu〉 = 0
(24b)

〈Vn,
∣∣∣∣AC
∣∣∣∣2([G0 −G]Φu + [W0 −

C

A
]Φe

)
〉 = 0

(24c)

and the application of Theorem 1, similarly to (14), leads
to

〈Vn, ǦQ∗[G0 −G]Φu〉+ 〈Vn,
Č − Ǎ
Ǎ

Q∗[G0 −G]Φεu〉 = 0

(25a)

〈Vn, Q∗[G0 −G]Φu〉 = 0
(25b)

〈Vn, Q∗
∣∣∣∣AC
∣∣∣∣2(|G0 −G|2Φu + |W0 −

C

A
|2Φe

)
〉 = 0

(25c)

and by shifting in the time domain, like in (17) one obtains
finally

Ē [εE(t+ 1, θ){Vk(q)y(t+ 1, θ)}] = 0 (26a)

Ē [εE(t+ 1, θ){Vk(q)u(t+ 1, θ)}] = 0 (26b)

Ē [εE(t+ 1, θ){Vk(q)ε(t+ 1, θ)}] = 0 (26c)

d) Extended closed-loop output error. For this algorithm
w(t+ 1) = e(t+ 1). The prediction error is given by

ε(t) = A(q)
C(q) [(G0(q)−G(q))Syp0(q)ru(t)+ · · ·

· · ·+
(
W (q)

Syp0(q)
Syp(q) −

C(q)
A(q)

)
e(t)

]
and one has

Q∗(q−1) = C∗(q−1)
A∗p(q−1) . According to assumptions H1 to H3,

and owing to relation (9.32) of (3),the predicted output is
given by

ŷ(t) = G(q)û(t) +
C(q)S(q)− P (q)

A(q)S(q)
ε(t)

Moreover, since û(t) = −R(q)
S(q) ŷ(t) + ru(t) one gets

ŷ(t) =
BS

P
ru(t) +

(
CS

P
− 1

)
ε(t)

û(t) =
AS

P
ru(t)−

(
CS

P
− 1

)
ε(t)

where P (q) = A(q)S(q) + B(q)R(q). Set εf (t) =
1

S∗(q−1)ε(t). The proof follows the same procedure as for

the other algorithms, and equations (9) is replaced by

Ē [(ε(t+ 1, θ)− w(t+ 1)){Vk(q)ŷ(t+ 1, θ)}] = 0 (27a)

Ē [(ε(t+ 1, θ)− w(t+ 1)){Vk(q)û(t+ 1, θ)}] = 0 (27b)

Ē [(ε(t+ 1, θ)− w(t+ 1)){Vk(q)εf (t+ 1, θ)}] = 0 (27c)

where 1 ≤ k ≤ n = na

np
for the two first equations and

1 ≤ k ≤ n = 2na

np
for the third one. Equations (11) are

replaced by

〈Vk,
B̌Š

P̌

A

C
(G0 −G)Syp0Φru〉+ 〈Vk,

(
ČŠ

P̌
− 1

)
· · ·

· · ·
∣∣∣∣AC
∣∣∣∣2
[
|G0 −G|2 |Syp0|2 Φru +

∣∣∣∣WSyp0
Syp

− C

A

∣∣∣∣2 Φe

]
〉 = 0

(28)

〈Vk,
ǍŠ

P̌

A

C
(G0 −G)Syp0Φru〉 − 〈Vk,

(
ČŠ

P̌
− 1

)
· · ·

· · ·
∣∣∣∣AC
∣∣∣∣2
[
|G0 −G|2 |Syp0|2 Φru +

∣∣∣∣WSyp0
Syp

− C

A

∣∣∣∣2 Φe

]
〉 = 0

(29)

〈Vk,
1

Š

∣∣∣∣AC
∣∣∣∣2
(
|G0 −G|2 Φu +

∣∣∣∣W Syp0
Syp

− C

A

∣∣∣∣2 Φe

)
〉 = 0

(30)

and by the same machinery, Theorem 1 leads to

Ē [(εE(t+ 1, θ)){Vk(q)ŷ(t+ 1, θ)}] = 0

Ē [(εE(t+ 1, θ)){Vk(q)û(t+ 1, θ)}] = 0

Ē [(εE(t+ 1, θ)){Vk(q)εf (t+ 1, θ)}] = 0

This ends the proof. 2

4. SIMULATION EXAMPLE

In this example, the true system is

G0(q) = q−2+0.5q−3

(1−1.5q−1+0.7q−2)(1−0.5q−1) and we consider a

deterministic context. This system is excited with a white
noise sequence. Three algorithms are compared

• The output error scheme of PEM where

θ∗ = argmin

∫ π

−π

∣∣G0(eiω)−G(eiω)
∣∣2 Ψu(ω)dω

(Ψu(ω) being the Power spectrum density (PSD) of
the input)



Fig. 1. Comparison of the limit models

• The classical output error scheme of PLR (the basis
poles of Vk are all null) where according (6) and the
present developments

θ∗ ≈ argmin
∫ π

−π

∣∣A(eiω)
∣∣2 ∣∣G0(eiω)−G(eiω)

∣∣2 Ψu(ω)dω

• The recursive least squares algorithm (RLS) where

θ∗ = argmin

∫ π

−π

∣∣A(eiω)
∣∣2 ∣∣G0(eiω)−G(eiω)

∣∣2 Ψu(ω)dω

The simulation results are displayed in Fig. 1: they confirm
the bias analysis proposed here: The limit models of RLS
and output error of PLR are very close (only a small
discrepancy appears around 0.06rad/s between them). By
comparison, in accordance with the limit models expres-
sions in the frequency domain displayed above, the fit of
the output error scheme of PEM is better in low frequency
and worse in high frequency.
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