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Consensus-based Formation Control of Multiple
Nonholonomic Vehicles under Input Constraints

Emmanuel Nuño Antonio Lorı́a Angel I. Paredes Tonatiuh Hernández

Abstract— We address the open problem of consensus-
based formation control of nonholonomic multiagent vehi-
cles with pre-imposed input constraints. That is the prob-
lem of stabilizing a group of second-order differential-drive
nonholonomic robots, making them acquire a determined
formation pattern around a non pre-specified point on the
plane and a common non pre-specified orientation. This
problem is also known as leaderless full consensus. Our
controller is smooth and time-varying, and fully distributed.
Its design is a natural modification of another controller
proposed earlier, which relies on proportional feedback,
damping injection, and a smooth time-varying term that
injects persistency of excitation in the system to overcome
the effects of nonholonomicity. It is assumed that the
robots communicate over a network with an undirected-
graph topology.

Index Terms— Formation control, persistency of excita-
tion, nonholonomic systems, autonomous vehicles.

I. INTRODUCTION

THE consensus problem for multiagent systems, which in
its simplest form consists in making the states of multiple

dynamical systems converge to a common equilibrium point,
is completely solved for linear autonomous systems under dif-
ferent assumptions regarding the network’s topology [1], [2].
Some works focus on consensus under time-varying (switch-
ing) topology [3] or dynamic interconnections [4]. Now, while
graph connectivity is known to be a necessary condition for
consensus and some works focus on guaranteeing it [5], [6],
it is certainly not sufficient in general. Indeed, consensus and
synchronization strongly depend on the systems’ dynamics and
the above-mentioned works apply only to simple integrators
or, more generally, to linear systems. Yet, in the case that the
systems are nonlinear, many different behaviors may appear
under the effect of interconnection, even for networks with
static topologies [7].

Consensus-based formation control of nonholonomic vehi-
cles [8] is particularly challenging even under the assumptions
that they are interconnected over an undirected-static-graph
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topology because consensus is inherently a set-point stabi-
lization problem, so it greatly differs from formation-tracking
control [9], [10], which is otherwise a well-studied problem
too. However, in general, formation tracking and other leader-
follower control schemes do not apply to consensus-based
formation control since nonholonomic systems are not sta-
bilizable via smooth time-invariant feedback [11]. If time-
invariant, controllers are necessarily non-smooth [12] and if
time-varying—cf. [13], they may be smooth and typically rely
on persistency of excitation [14], [15].

The consensus-based formation control goal may be partial
or full. In the first case, only consensus in the Cartesian
coordinates is of interest while controlling the orientation may
be neglected [1, Ch. 11], [11]. In the second case, the objective
is for all the vehicles to acquire common, non pre-specified,
position and orientation [12], [13], [15]. One more important
distinction to be made is between works that apply to velocity-
controlled (first-order) models [12] and those that apply to
more realistic force-controlled (second-order) models [16].

Now, as it is always the case with physical systems, in force-
controlled vehicles the actuators are prone to saturation, which
may seriously downgrade the overall performance and put the
actuators at risk of thermal and mechanical failure saturation
of the actuators must be avoided. An efficient recourse is
to use saturated controllers to ensure that the inputs satisfy
pre-imposed bounds [17]. Similar techniques have been also
used for multiagent systems [18], [19], but more scarcely for
networked nonholonomic vehicles. This is done, e.g., in [1],
but only partial consensus is addressed.

In this letter, we address the full consensus-formation con-
trol problem for second-order differential-drive vehicles, under
input constraints. Our controller is smooth and time-varying.
It is constituted of Proportional-plus-damping (P+d) control
laws for the linear and angular-motion dynamics separately.
In addition, the angular-motion controller is endowed with
an independent persistently-exciting term that ensures global
convergence to the consensus manifold. The control design
follows the lines of our previous works [15], [20], [21],
but differs from the latter in that here we assume velocity
measurements to be available and the network to be delay-
free. On the other hand, we design the controller to satisfy
pre-imposed bounds.

In the next section we recall the multiagent unicycle’s model
and we formulate the control problem addressed here. In
Section III we present our main result, which is illustrated
via numerical simulations in Section V. Concluding remarks
are provided in Section VI.



II. MODEL AND PROBLEM FORMULATION

Consider N nonholonomic systems with kinematics

żi = ϕ (θi) vi, ϕ(θi) := [cos(θi) sin(θi)]
> (1a)

θ̇i = ωi, (1b)

where, for any i ∈ N̄ := {1, 2, ..., N}, zi = [xi yi]
> ∈ R2

denotes the Cartesian coordinates of the ith vehicle on the
plane and θi ∈ R denotes its orientation. In addition, let the
vehicles’ velocity dynamics be defined by[

mi 0
0 Ii

] [
v̇i
ω̇i

]
=

1

ri

[
1 1

2Ri −2Ri

] [
τli
τri

]
, (2)

where τli and τri are the left and right wheel torques,
respectively, Ii is the robot inertia, mi is the mass, ri is
the wheel radius, and Ri is the wheel axle length. This
model corresponds to that of differential-drive robots under
a condition of non-slippage [22].

It is required that the vehicles meet in formation around a
non-predefined rendezvous point on the plane, denoted zc :=
[xc yc]

>, and acquire a non-predefined common orientation,
denoted θc, modulo a given offset δi = [δxi δyi]

>, with i ∈ N̄ ,
which determines the position of the ith vehicle relative to the
unknown center of the formation. In other words, defining,
z̄i := zi−δi (correspondingly, x̄i := xi−δxi and ȳi := yi−δyi)
the control goal is to make

lim
t→∞

vi(t) = 0, lim
t→∞

z̄i(t) = zc, (3)

lim
t→∞

ωi(t) = 0, lim
t→∞

θi(t) = θc ∀ i ∈ N̄ , (4)

for all initial conditions.
This is a leaderless consensus control problem, in which

neither the coordinates (xc, yc) nor the angle θc are imposed a
priori, but they depend on the initial postures, on the systems’
nonlinear dynamics, and on network features. This problem
has been successfully solved under different conditions; the
originality of this letter resides in considering the following.

Constraint 1: Given τ̄li > 0 and τ̄li > 0, the left and right
control input torques must satisfy |τli| ≤ τ̄li and |τri| ≤ τ̄ri. /

In order to solve the aforementioned problem, it is also
assumed that each vehicle exchanges its relative position and
its orientation with a set of neighbors, which we denote by
Ni. It is naturally assumed that once a communication is set
between two vehicles i and j ∈ Ni, the flow of information
is bidirectional and is never lost. Whence the following.

Assumption 1: The network interconnection is static and it
is modeled as an undirected and connected graph. /

Remark 1: That the graph is undirected and static may
appear conservative if taken out of context. Even though there
are many works in which Assumption 1 is relaxed, most often
such results concern linear autonomous systems, some times
nonlinear, but rarely nonholonomic. Tools of analysis, such as
linear algebra, do not apply in the context of multiagent non-
holonomic systems, specifically, controlled via time-varying
feedback and Lyapunov functions for multiagent systems, even
linear, under directed graphs is still under development. To the
best of our knowledge, consensus control of nonholonomic
systems under input constraints, even under Assumption 1
remains an open problem. /

To establish the proof of our result, it is convenient to define
the Laplacian matrix L := [`ij ] ∈ RN×N , where

`ij =

{ ∑
k∈Ni

aik i = j

−aij i 6= j,
(5)

additionally aij > 0 if j ∈ Ni and aij = 0 otherwise. Defining
1N := [1, · · · , 1]>, then by construction, L1N = 0 and, after
Assumption 1, L is symmetric, it has a unique zero-eigenvalue,
and all of its other eigenvalues are strictly positive. Thus,
rank(L) = N − 1.

III. PROPOSED BOUNDED CONTROLLER

The proposed scheme contains an inner control-loop that is
designed as [

τri
τli

]
=
ri
2

[
1 1

2Ri

1 − 1
2Ri

] [
uvi
uωi

]
. (6)

After replacing (6) in (2), it yields

v̇i =
1

mi
uvi, (7a)

ω̇i =
1

Ii
uωi. (7b)

The control design exploits the fact that the model of the
nonholonomic system consists in two interconnected second-
order systems given by Eqs. (1a)-(7a) and (1b)-(7b). The
former set of equations corresponds to the linear-motion
dynamics while the latter corresponds to the angular-motion
dynamics. Hence, we design a controller of each part of the
plant separately.

The proposed scheme is composed of a bounded propor-
tional to the error term plus a bounded damping injection
part. The building block of this scheme is reported in [18]
for Lagrangian systems that do not exhibit nonholonomic
restrictions. The linear part of the controller is given by

uvi = −dvi tanh(vi)− pviϕ(θi)
>ezi, (8)

where pvi > 0 and dvi > 0 are the proportional and the
damping injection gains and the error ezi is defined as

ezi :=
∑
j∈Ni

aij tanh(z̄i − z̄j), (9)

where tanh(z̄i − z̄j) := [tanh(x̄i − x̄j) tanh(ȳi − ȳj)]>.
The linear closed-loop equations are then given by

Σvi :

 ˙̄zi = ϕi(θi)vi (10a)

v̇i = − 1

mi

[
dvi tanh(vi) + pviϕ(θi)

>ezi
]
. (10b)

For the linear-motion dynamics, consider the following candi-
date Lyapunov function

V =
1

2

N∑
i=1

 1

pvimi
v2i +

∑
j∈Ni

aij ln
(

cosh(x̄i − x̄j)
)

+
1

2

N∑
i=1

∑
j∈Ni

aij ln
(

cosh(ȳi − ȳj)
)
,



which is positive definite and radially unbounded with respect
to vi and z̄i − z̄j . Its derivative yields

V̇ =

N∑
i=1

 1

pvimi
viv̇i +

1

2

∑
j∈Ni

aij( ˙̄zi − ˙̄zj)
> tanh(z̄i − z̄j)

 .
Then, after Lemma 2.4 in [18] we have

1

2

N∑
i=1

∑
j∈Ni

aij( ˙̄zi − ˙̄zj)
> tanh(z̄i − z̄j) =

N∑
i=1

˙̄z>i ezi,

so, using (10), we obtain

V̇ = −
N∑
i=1

dvi
pvi

vi tanh(vi) ≤ 0. (11)

Evaluating the latter along the trajectories and integrating on
both sides of V̇ (v(t), z̄(t)) ≤ 0 we conclude that |vi(t)| and
|z̄i(t) − z̄j(t)| are uniformly bounded. Using the fact that V̈
is also uniformly bounded, by Barbalǎt’s Lemma, we have
lim
t→∞

V̇ (t) = 0 and, in turn, lim
t→∞

vi(t) = 0. Furthermore, in
Section IV it is shown that, also, lim

t→∞
v̇i(t) = 0, so from Σvi,

lim
t→∞

ϕ(θi(t))
>ezi(t) = 0.

Notice, however, that this does not imply that ezi converges
to zero. In fact, the angular controller must be designed to
excite all the modes in Σvi, via the term ϕ(θi(t)). Therefore
we design the controller for the angular-motion dynamics as

uωi =− dωi tanh(ωi)− pωieθi + αi(t, θi, ezi), (12)

where pωi > 0, dωi > 0,

eθi :=
∑
j∈Ni

aij tanh(θi − θj). (13)

and αi is the function

αi(t, θi, ezi) := kαiψi(t)ϕ(θi)
⊥>ezi, (14)

where kαi > 0, ϕ(θi)
⊥ := [− sin(θi) cos(θi)]

> is the
annihilator of ϕ(θi) hence, ϕ(θi)

⊥>ϕ(θi) = ϕ(θi)
>ϕ(θi)

⊥ =
0. The function ψi is twice differentiable, bounded, with
bounded derivatives. Therefore, it holds that |ψi(t)| ≤ ψ̄i, for
ψ̄i > 0. Moreover, ψ̇i is persistently exciting, that is, there
exist T and µ > 0 such that∫ t+T

t

ψ̇i(s)
2ds ≥ µ, ∀ t ≥ 0. (15)

The function αi plays a fundamental role in the stabilization
task. It prevents θi from stationing at a constant value θc as
long as the consensus errors ezi persist away from zero. Dur-
ing the transient, αi acts as a uniformly bounded perturbation
on the closed-loop angular-motion dynamics,

Σωi

 θ̇i =ωi,

ω̇i =− 1

Ii
[dωi tanh(ωi) + pωieθi − αi(t, θi, ezi)] .

(16)
In the next section we show that in view of (15), αi 6→ 0
unless ezi → 0.

Roughly speaking, αi acts as perturbation that is δ-
persistently exciting with respect to ezi (namely, persistently
exciting for any δ > 0 and any |ezi| ≥ δ—see [23]). Such
excitation, when injected into the stable system Σωi, entails
a similar behavior for θi(t) and, therefore, for ϕ(θi(t)). The
latter acts as the “external” time-varying signal needed in (10)
to overcome the nonholonomicity and make ezi → 0. We do
not prove formally that αi is δ-persistently exciting, but these
arguments serve as a rationale behind our main result.

Proposition 1 (Main Result): Consider the system modeled
by (1) and (2) under Assumption 1 and Constraint 1 in closed
loop with the controller defined by (6), (8), (12) and (14).
Let the control gains pvi, pωi, kαi, dvi, and dωi be positive
constants such that, defining ūvi := dvi+

√
2pvi`ii and ūωi :=

dωi +
(
pωi +

√
2kαiψ̄i

)
`ii, satisfy

dωi ≥
√

2kαiψ̄i`ii
tanh(1)

, (17)

2Riūvi + ūωi <
4Ri
ri

min{ τ̄ri, τ̄li }. (18)

Then, (3) and (4) hold, that is, the consensus-formation
objective is reached. �

IV. PROOF OF PROPOSITION 1
We start by showing that the actuators do not saturate if

(18) holds. Hence, the Constraint 1 is met. To that end, note
that, from (8) and | tanh( · )| < 1, we have

|uvi| ≤ dvi +
√

2pvi`ii =: ūvi,

and
|uωi| ≤ dωi +

(
pωi +

√
2kαiψ̄i

)
`ii =: ūωi.

Therefore, from (6) we have

max{ |τri|, |τri| } ≤
ri
2

[
ūvi +

1

2Ri
ūωi

]
and, in view of (18), it follows that |τri| < τ̄ri and |τli| < τ̄li.

The rest of the proof is divided in two parts, boundedness of
the state trajectories and convergence of the synchronization
errors.
Boundedness: we already established that vi and |z̄i − z̄j |
and v̇i ∈ L∞. For the orientations and the angular velocity,
consider the Lyapunov function candidate,

W :=
1

2

N∑
i=1

 1

pωiIi
ω2
i +

∑
j∈Ni

aij ln
(

cosh (θi − θj)
) ,

which is positive definite and radially unbounded with respect
to ωi and (θi − θj), for all j ∈ Ni and all i ∈ N̄ . The time-
derivative of W along the trajectories of Σωi in (16) satisfies

Ẇ = −
N∑
i=1

1

pωi
[dωiωi tanh(ωi)− ωiαi] . (19)

This is obtained using [18, Lemma 2.4] to show that

1

2

N∑
i=1

∑
j∈Ni

aij(θ̇i − θ̇j) tanh (θi − θj) =

N∑
i=1

θ̇ieθi.



Now, by definition, αi is uniformly bounded—see Eqs. (14)
and (9) and recall that |ψi(t)| ≤ ψ̄i. More precisely, |αi| ≤√

2kαiψ̄i`ii, so

Ẇ ≤ −
N∑
i=1

1

pωi

[
dωiωi tanh(ωi)−

√
2kαiψ̄i`ii|ωi|

]
.

Furthermore, since tanh(·) is strictly increasing, for all |ωi| ≥
1, we have

Ẇ ≤ −
N∑
i=1

1

pωi

[
dωi tanh(1)−

√
2kαiψ̄i`ii

]
|ωi|,

which, in view of (17) implies that Ẇ ≤ 0. Hence, for all
t ≥ 0 such that |ωi(t)| ≥ 1 we have Ẇ (ω(t), θ(t)) ≤ 0 so
|ωi(t)| is bounded. For any other t, |ωi(t)| ≤ 1. This implies
that ωi ∈ L∞. Also note that all terms on the right-hand side
of (16) are uniformly bounded, so ω̇i ∈ L∞.
Convergence: Assume, for the time being, that αi ≡ 0 for
all i ∈ N̄ . Then, a simple inspection of (19) shows that
Ẅ ∈ L∞ and, invoking Barbalǎt’s Lemma, we conclude that
Ẇ → 0, which implies in turn that lim

t→∞
ωi(t) = 0. The same

conclusion is drawn for ω̇i, after differentiating on both sides
of (16) and observing that ω̈i is uniformly bounded. Hence,
under the condition that αi ≡ 0, we see from (16) that ω̇i → 0
and ωi → 0 imply that lim

t→∞
eθi(t) = 0. Now, eθi = 0 and the

statement in [18, Lemma 2.4] imply that

N∑
i=1

θieθi =
1

2

N∑
i=1

∑
j∈Ni

aij(θi − θj) tanh (θi − θj) = 0,

so, since θi − θj has the same sign as tanh (θi − θj), then
eθi = 0 implies that θi − θj = 0, for all j ∈ Ni and
i ∈ N̄ . Using the Laplacian matrix we obtain Lθ = 0, where
θ = col(θi). Under Assumption 1, there exists θc ∈ R such
that θ = 1Nθc. The limits in (4) follow. Furthermore, because
the closed-loop solutions are uniformly globally bounded
under any bounded αi 6≡ 0, the same conclusion follows
using a cascades argument [24], provided that αi → 0. The
convergence of αi is established next, using the persistency-
of-excitation assumption on ψ̇i,

We already established that lim
t→∞

vi(t) = 0—see below Ineq.
(11). This, in turn, implies that

lim
t→∞

∫ t

0

v̇i(t) = −vi(0).

Hence, to prove that lim
t→∞

v̇i(t) = 0 by Barbălat’s Lemma, we
show that v̇i is uniformly continuous. The latter follows from
the fact that v̈i ∈ L∞. To better see this, using (10b), we write

v̈i =− 1

mi

[
dviv̇isech2(vi) + pviωiϕ(θi)

>⊥ezi
]

+
1

mi
pviϕ(θi)

>ėzi

(20)

and we observe that all the terms on the right-hand-side are
bounded. Thus, vi → 0 and v̇i → 0, so from (10b) we have

lim
t→∞

ϕ(θi(t))
>ezi(t) = 0. (21)

Invoking Barbalǎt’s Lemma, it also follows that lim
t→∞

v̈i(t) =

0. From v̇i → 0, (9), and (10a), we have ėzi → 0. Thus, the
first and last terms on the right-hand side of (20), as well as
v̈i, vanish individually. Consequently,

lim
t→∞

ωi(t)ϕ(θi(t))
>⊥ezi(t) = 0. (22)

Now, because ϕ and ϕ⊥ take values in orthogonal spaces,
if (21) and (22) hold simultaneously whereas ωi 6→ 0,
then lim

t→∞
ezi(t) = 0. If, alternatively, (21) and (22) hold

simultaneously because lim
t→∞

ωi(t) = 0, then

lim
t→∞

∫ t

0

ω̇i(σ)dσ = −ωi(0).

Moreover,

ω̈i = − 1

Ii

[
dωiω̇isech2(ωi) + pωiėθi − α̇i

]
, (23)

where

α̇i = kαiψ̇i(t)ϕ(θi)
⊥>ezi − kαiωiψi(t)ϕ(θi)

>ezi

+ kαiψi(t)ϕ(θi)
⊥>ėzi

(24)

is bounded because so are all the terms on the respective
right-hand sides of (24) and (23). Hence lim

t→∞
ω̇i(t) = 0

and lim
t→∞

∫ t
0
ω̈i(σ)dσ = −ω̇i(0). A direct similar compu-

tation shows that, also, ω
(3)
i ∈ L∞, so, by Barbalǎt’s

Lemma, it follows that lim
t→∞

ω̈i(t) = 0. From this and
(23) it follows that α̇i → 0, so from (24) we conclude
that lim

t→∞
ψ̇i(t)ϕ(θi(t))

⊥>ezi(t) = 0. However, since ψ̇i(t)

satisfies (15), ψ̇i(t) 6→ 0, so the last limit holds only if
lim
t→∞

ϕ(θi(t))
⊥>ezi(t) = 0, which together with (21), implies

that lim
t→∞

ezi(t) = 0.
Finally, invoking Lemma 2.4 in [18], note that if ezi = 0

N∑
i=1

z̄>i ezi =
1

2

N∑
i=1

∑
j∈Ni

aij(z̄i − z̄j)> tanh (z̄i − z̄j) = 0,

so it follows that z̄i − z̄j = 0, for all j ∈ Ni and i ∈ N̄ .
Using the Laplacian matrix we obtain (L ⊗ I2)z̄ = 0, where
z̄ = col(z̄i). Under Assumption 1 there exists z̄c ∈ R such
that z̄ = 1N ⊗ z̄c. We conclude that lim

t→∞
ezi(t) = 0 implies

the second limit in (3).

V. SIMULATION RESULTS

To illustrate the performance of the controller proposed
above, in this section we present some comparative numerical
simulations using a network of six differential drive mobile
robots. In addition, to illustrate the controller’s robustness, we
use a robot model with a center of mass located off the axis
connecting the two wheels. Such misplacement entails Coriolis
terms of second order in the velocities on the right-hand side
of Equations (7)—cf. [22], which are neglected in the design
of the controller in Proposition 1.

We compare the controller of Proposition 1 with one in
which tanh(s) is replaced by s everywhere. If delays are
neglected, this is the controller proposed in [15]. We used



TABLE I
PHYSICAL PARAMETERS AND ACTUATORS BOUNDS

index mi [Kg] Ii [Kg m2] Ri [m] ri [m] τ̄i [N]
1, 2 10 3 0.3 0.05 105
3, 4 36 15.625 0.15 0.15 480
5, 6 23 9.3125 0.225 0.1 230

three pairs of robots with different physical parameters for
each pair and actuator capacity—see Table I.

The initial conditions for each robot, as well as the offsets
that define a triangular formation, are given in Table II below.

TABLE II
INITIAL CONDITIONS

index xi(0) yi(0) θi(0) δxi δyi
1 −7.5 0 π 5 5
2 −7.5 5 π/2 7.5 10
3 7.5 5 π/2 10 15
4 7.5 0 0 12.5 10
5 2.5 0 −π/4 15 5
6 −2.5 10 −3π/4 10 5

The control gains for each robot are set to satisfy the
conditions (17) and (18), as follows: pv = [600 1000
600 600 600 600]>, dv = [200 100 200 300 300 300]>,
dω = [400 400 600 600 400 400]>, kαi = [20 20
30 30 20 20]>, and pωi = 50, and we use the multi-periodic
function

ψi(t) := 1.25 +
∑

k∈{1,3,5,7,9}

4

kπ
sin
(kt

2

)
,

but periodicity is not necessary for persistency of excitation.
For a fair comparison we used identical initial conditions,

gains and persistence of excitation functions for both control
algorithms. Finally, the network interconnection topology is
illustrated in Fig. 1 below.

1 2 3 4 5 6

Fig. 1. Undirected-graph topology used in the numerical simulations

The simulation results are illustrated in Figures 2–6. As
it is appreciated from Figures 2 and 3 full consensus, i.e.,
in position and orientation, is achieved under either control
scheme and with a fairly similar transient performance—see
also Figures 4 and 5. Figure 6 contains a matrix of plots
corresponding to the input torques. Each row corresponds to
each subset of robots according to their physical parameters,
while the input torques for each controller, using saturation and
not, are depicted side to side in two columns. The plots on
the right correspond to the presaturated input torques, which
remain well within the respective limits for each pair of robots:
supt≥0 |τi| ∈ {100.2 99.8 471.4 478.9 170.8 226.5}
for {i} = {1, 2, . . .}—cf. Table I.
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Fig. 2. Paths followed by the agents under the unbounded scheme
(orientation of each agent is represented by an arrow.
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Fig. 3. Paths followed by the agents under the bounded scheme
(orientation of each agent is represented by an arrow.
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Fig. 4. Pose consensus for the unbounded scheme.



Fig. 5. Pose consensus for the bounded scheme.
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Fig. 6. Torque results for the unbounded scheme.

VI. CONCLUSIONS

The results presented in this letter extend previous works on
consensus-formation control of nonholonomic systems, to the
important and unaddressed case in which the control inputs
are guaranteed to respect bounds imposed a priori. The anal-
ysis of the closed-loop system guarantees that the consensus
errors converge to zero asymptotically. Constructing a strict
Lyapunov function to guarantee uniform global asymptotic
stability of the consensus manifold is still a significant open
problem, whose solution may form a solid basis to relax the
assumption that the graph is static and bidirectional.
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