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We address the open problem of consensusbased formation control of nonholonomic multiagent vehicles with pre-imposed input constraints. That is the problem of stabilizing a group of second-order differential-drive nonholonomic robots, making them acquire a determined formation pattern around a non pre-specified point on the plane and a common non pre-specified orientation. This problem is also known as leaderless full consensus. Our controller is smooth and time-varying, and fully distributed. Its design is a natural modification of another controller proposed earlier, which relies on proportional feedback, damping injection, and a smooth time-varying term that injects persistency of excitation in the system to overcome the effects of nonholonomicity. It is assumed that the robots communicate over a network with an undirectedgraph topology.

I. INTRODUCTION

T HE consensus problem for multiagent systems, which in its simplest form consists in making the states of multiple dynamical systems converge to a common equilibrium point, is completely solved for linear autonomous systems under different assumptions regarding the network's topology [START_REF] Ren | Distributed consensus in multi-vehicle cooperative control[END_REF], [START_REF] Cao | Distributed Coordination of Multi-agent Networks: Emergent Problems, Models, and Issues[END_REF]. Some works focus on consensus under time-varying (switching) topology [START_REF] Olfati-Saber | Consensus problems in networks of agents with switching topology and time-delays[END_REF] or dynamic interconnections [START_REF] Jadbabaie | Coordination of groups of mobile autonomous agents using nearest neighbor rules[END_REF]. Now, while graph connectivity is known to be a necessary condition for consensus and some works focus on guaranteeing it [START_REF] Ji | Distributed coordination control of multiagent systems while preserving connectedness[END_REF], [START_REF] Restrepo | Coordination control of autonomous robotic multi-agent systems under constraints[END_REF], it is certainly not sufficient in general. Indeed, consensus and synchronization strongly depend on the systems' dynamics and the above-mentioned works apply only to simple integrators or, more generally, to linear systems. Yet, in the case that the systems are nonlinear, many different behaviors may appear under the effect of interconnection, even for networks with static topologies [START_REF] Panteley | A stability-theory perspective to synchronisation of heterogeneous networks[END_REF].

Consensus-based formation control of nonholonomic vehicles [START_REF] Kranakis | Mobile agent rendezvous: A survey[END_REF] is particularly challenging even under the assumptions that they are interconnected over an undirected-static-graph topology because consensus is inherently a set-point stabilization problem, so it greatly differs from formation-tracking control [START_REF] Peng | Distributed consensusbased formation control for multiple nonholonomic mobile robots with a specified reference trajectory[END_REF], [START_REF] Wang | Formation regulation and tracking control for nonholonomic mobile robot networks using polar coordinates[END_REF], which is otherwise a well-studied problem too. However, in general, formation tracking and other leaderfollower control schemes do not apply to consensus-based formation control since nonholonomic systems are not stabilizable via smooth time-invariant feedback [START_REF] Lin | Necessary and sufficient graphical conditions for formation control of unicycles[END_REF]. If timeinvariant, controllers are necessarily non-smooth [START_REF] Dimarogonas | On the rendezvous problem for multiple nonholonomic agents[END_REF] and if time-varying-cf. [START_REF] Yang | Smooth time-varying formation control of multiple nonholonomic agents[END_REF], they may be smooth and typically rely on persistency of excitation [START_REF] Lizárraga | Obstructions to the existence of universal stabilizers for smooth control systems[END_REF], [START_REF] Nuño | Distributed consensus-formation of force-controlled nonholonomic robots with time-varying delays[END_REF].

The consensus-based formation control goal may be partial or full. In the first case, only consensus in the Cartesian coordinates is of interest while controlling the orientation may be neglected [START_REF] Ren | Distributed consensus in multi-vehicle cooperative control[END_REF]Ch. 11], [START_REF] Lin | Necessary and sufficient graphical conditions for formation control of unicycles[END_REF]. In the second case, the objective is for all the vehicles to acquire common, non pre-specified, position and orientation [START_REF] Dimarogonas | On the rendezvous problem for multiple nonholonomic agents[END_REF], [START_REF] Yang | Smooth time-varying formation control of multiple nonholonomic agents[END_REF], [START_REF] Nuño | Distributed consensus-formation of force-controlled nonholonomic robots with time-varying delays[END_REF]. One more important distinction to be made is between works that apply to velocitycontrolled (first-order) models [START_REF] Dimarogonas | On the rendezvous problem for multiple nonholonomic agents[END_REF] and those that apply to more realistic force-controlled (second-order) models [START_REF] Cheng | Robust finite-time consensus formation control for multiple nonholonomic wheeled mobile robots via output feedback[END_REF]. Now, as it is always the case with physical systems, in forcecontrolled vehicles the actuators are prone to saturation, which may seriously downgrade the overall performance and put the actuators at risk of thermal and mechanical failure saturation of the actuators must be avoided. An efficient recourse is to use saturated controllers to ensure that the inputs satisfy pre-imposed bounds [START_REF] Zavala-Río | Global trajectory tracking through output feedback for robot manipulators with bounded inputs[END_REF]. Similar techniques have been also used for multiagent systems [START_REF] Ren | Distributed leaderless consensus algorithms for networked Euler-Lagrange systems[END_REF], [START_REF] Cruz-Zavala | Finite-time consensus of Euler-Lagrange agents without velocity measurements via energy shaping[END_REF], but more scarcely for networked nonholonomic vehicles. This is done, e.g., in [START_REF] Ren | Distributed consensus in multi-vehicle cooperative control[END_REF], but only partial consensus is addressed.

In this letter, we address the full consensus-formation control problem for second-order differential-drive vehicles, under input constraints. Our controller is smooth and time-varying. It is constituted of Proportional-plus-damping (P+d) control laws for the linear and angular-motion dynamics separately. In addition, the angular-motion controller is endowed with an independent persistently-exciting term that ensures global convergence to the consensus manifold. The control design follows the lines of our previous works [START_REF] Nuño | Distributed consensus-formation of force-controlled nonholonomic robots with time-varying delays[END_REF], [START_REF] Loría | Observerless output-feedback consensus-based formation control of 2nd-order nonholonomic systems[END_REF], [START_REF] Nuño | Leaderless consensus formation control of cooperative multi-agent vehicles without velocity measurements[END_REF], but differs from the latter in that here we assume velocity measurements to be available and the network to be delayfree. On the other hand, we design the controller to satisfy pre-imposed bounds.

In the next section we recall the multiagent unicycle's model and we formulate the control problem addressed here. In Section III we present our main result, which is illustrated via numerical simulations in Section V. Concluding remarks are provided in Section VI.

II. MODEL AND PROBLEM FORMULATION

Consider N nonholonomic systems with kinematics

żi = ϕ (θ i ) v i , ϕ(θ i ) := [cos(θ i ) sin(θ i )] (1a) θi = ω i , (1b) 
where, for any i ∈ N := {1, 2, ..., N },

z i = [x i y i ] ∈ R 2
denotes the Cartesian coordinates of the ith vehicle on the plane and θ i ∈ R denotes its orientation. In addition, let the vehicles' velocity dynamics be defined by

m i 0 0 I i vi ωi = 1 r i 1 1 2R i -2R i τ li τ ri , (2) 
where τ li and τ ri are the left and right wheel torques, respectively, I i is the robot inertia, m i is the mass, r i is the wheel radius, and R i is the wheel axle length. This model corresponds to that of differential-drive robots under a condition of non-slippage [START_REF] Tzafestas | Introduction to mobile robot control[END_REF].

It is required that the vehicles meet in formation around a non-predefined rendezvous point on the plane, denoted z c := [x c y c ] , and acquire a non-predefined common orientation, denoted θ c , modulo a given offset δ i = [δ xi δ yi ] , with i ∈ N , which determines the position of the ith vehicle relative to the unknown center of the formation. In other words, defining, zi := z i -δ i (correspondingly, xi := x i -δ xi and ȳi := y i -δ yi ) the control goal is to make

lim t→∞ v i (t) = 0, lim t→∞ zi (t) = z c , (3) 
lim t→∞ ω i (t) = 0, lim t→∞ θ i (t) = θ c ∀ i ∈ N , (4) 
for all initial conditions. This is a leaderless consensus control problem, in which neither the coordinates (x c , y c ) nor the angle θ c are imposed a priori, but they depend on the initial postures, on the systems' nonlinear dynamics, and on network features. This problem has been successfully solved under different conditions; the originality of this letter resides in considering the following.

Constraint 1: Given τli > 0 and τli > 0, the left and right control input torques must satisfy |τ li | ≤ τli and |τ ri | ≤ τri .

In order to solve the aforementioned problem, it is also assumed that each vehicle exchanges its relative position and its orientation with a set of neighbors, which we denote by N i . It is naturally assumed that once a communication is set between two vehicles i and j ∈ N i , the flow of information is bidirectional and is never lost. Whence the following.

Assumption 1: The network interconnection is static and it is modeled as an undirected and connected graph.

Remark 1: That the graph is undirected and static may appear conservative if taken out of context. Even though there are many works in which Assumption 1 is relaxed, most often such results concern linear autonomous systems, some times nonlinear, but rarely nonholonomic. Tools of analysis, such as linear algebra, do not apply in the context of multiagent nonholonomic systems, specifically, controlled via time-varying feedback and Lyapunov functions for multiagent systems, even linear, under directed graphs is still under development. To the best of our knowledge, consensus control of nonholonomic systems under input constraints, even under Assumption 1 remains an open problem.

To establish the proof of our result, it is convenient to define the Laplacian matrix

L := [ ij ] ∈ R N ×N , where ij = k∈Ni a ik i = j -a ij i = j, (5) 
additionally a ij > 0 if j ∈ N i and a ij = 0 otherwise. Defining

1 N := [1, • • • , 1]
, then by construction, L1 N = 0 and, after Assumption 1, L is symmetric, it has a unique zero-eigenvalue, and all of its other eigenvalues are strictly positive. Thus, rank(L) = N -1.

III. PROPOSED BOUNDED CONTROLLER

The proposed scheme contains an inner control-loop that is designed as

τ ri τ li = r i 2 1 1 2Ri 1 -1 2Ri u vi u ωi . (6) 
After replacing ( 6) in ( 2), it yields

vi = 1 m i u vi , (7a) ωi 
= 1 I i u ωi . (7b) 
The control design exploits the fact that the model of the nonholonomic system consists in two interconnected secondorder systems given by Eqs. (1a)-(7a) and (1b)-(7b). The former set of equations corresponds to the linear-motion dynamics while the latter corresponds to the angular-motion dynamics. Hence, we design a controller of each part of the plant separately.

The proposed scheme is composed of a bounded proportional to the error term plus a bounded damping injection part. The building block of this scheme is reported in [START_REF] Ren | Distributed leaderless consensus algorithms for networked Euler-Lagrange systems[END_REF] for Lagrangian systems that do not exhibit nonholonomic restrictions. The linear part of the controller is given by

u vi = -d vi tanh(v i ) -p vi ϕ(θ i ) e zi , (8) 
where p vi > 0 and d vi > 0 are the proportional and the damping injection gains and the error e zi is defined as

e zi := j∈Ni a ij tanh(z i -zj ), (9) 
where tanh(z i -zj

) := [tanh(x i -xj ) tanh(ȳ i -ȳj )] .
The linear closed-loop equations are then given by

Σ vi :    żi = ϕ i (θ i )v i (10a) vi = - 1 m i d vi tanh(v i ) + p vi ϕ(θ i ) e zi . ( 10b 
)
For the linear-motion dynamics, consider the following candidate Lyapunov function

V = 1 2 N i=1   1 p vi m i v 2 i + j∈Ni a ij ln cosh(x i -xj )   + 1 2 N i=1 j∈Ni a ij ln cosh(ȳ i -ȳj ) ,
which is positive definite and radially unbounded with respect to v i and zi -zj . Its derivative yields

V = N i=1   1 p vi m i v i vi + 1 2 j∈Ni a ij ( żi -żj ) tanh(z i -zj )   .
Then, after Lemma 2.4 in [START_REF] Ren | Distributed leaderless consensus algorithms for networked Euler-Lagrange systems[END_REF] we have

1 2 N i=1 j∈Ni a ij ( żi -żj ) tanh(z i -zj ) = N i=1
ż i e zi , so, using [START_REF] Wang | Formation regulation and tracking control for nonholonomic mobile robot networks using polar coordinates[END_REF], we obtain

V = - N i=1 d vi p vi v i tanh(v i ) ≤ 0. ( 11 
)
Evaluating the latter along the trajectories and integrating on both sides of V (v(t), z(t)) ≤ 0 we conclude that |v i (t)| and |z i (t) -zj (t)| are uniformly bounded. Using the fact that V is also uniformly bounded, by Barbalǎt's Lemma, we have lim t→∞ V (t) = 0 and, in turn, lim t→∞ v i (t) = 0. Furthermore, in Section IV it is shown that, also, lim t→∞ vi (t) = 0, so from Σ vi , lim t→∞ ϕ(θ i (t)) e zi (t) = 0.

Notice, however, that this does not imply that e zi converges to zero. In fact, the angular controller must be designed to excite all the modes in Σ vi , via the term ϕ(θ i (t)). Therefore we design the controller for the angular-motion dynamics as

u ωi = -d ωi tanh(ω i ) -p ωi e θi + α i (t, θ i , e zi ), (12) 
where p ωi > 0, d ωi > 0,

e θi := j∈Ni a ij tanh(θ i -θ j ). ( 13 
)
and α i is the function

α i (t, θ i , e zi ) := k αi ψ i (t)ϕ(θ i ) ⊥ e zi , (14) 
where

k αi > 0, ϕ(θ i ) ⊥ := [-sin(θ i ) cos(θ i )] is the annihilator of ϕ(θ i ) hence, ϕ(θ i ) ⊥ ϕ(θ i ) = ϕ(θ i ) ϕ(θ i ) ⊥ = 0.
The function ψ i is twice differentiable, bounded, with bounded derivatives. Therefore, it holds that |ψ i (t)| ≤ ψi , for ψi > 0. Moreover, ψi is persistently exciting, that is, there exist T and µ > 0 such that

t+T t ψi (s) 2 ds ≥ µ, ∀ t ≥ 0. ( 15 
)
The function α i plays a fundamental role in the stabilization task. It prevents θ i from stationing at a constant value θ c as long as the consensus errors e zi persist away from zero. During the transient, α i acts as a uniformly bounded perturbation on the closed-loop angular-motion dynamics,

Σ ωi    θi = ω i , ωi = - 1 I i [d ωi tanh(ω i ) + p ωi e θi -α i (t, θ i , e zi )] . (16) 
In the next section we show that in view of ( 15), α i → 0 unless e zi → 0.

Roughly speaking, α i acts as perturbation that is δpersistently exciting with respect to e zi (namely, persistently exciting for any δ > 0 and any |e zi | ≥ δ-see [START_REF] Loría | UGAS of skew-symmetric timevarying systems: application to stabilization of chained form systems[END_REF]). Such excitation, when injected into the stable system Σ ωi , entails a similar behavior for θ i (t) and, therefore, for ϕ(θ i (t)). The latter acts as the "external" time-varying signal needed in [START_REF] Wang | Formation regulation and tracking control for nonholonomic mobile robot networks using polar coordinates[END_REF] to overcome the nonholonomicity and make e zi → 0. We do not prove formally that α i is δ-persistently exciting, but these arguments serve as a rationale behind our main result.

Proposition 1 (Main Result): Consider the system modeled by ( 1) and ( 2) under Assumption 1 and Constraint 1 in closed loop with the controller defined by ( 6), ( 8), ( 12) and ( 14). Let the control gains p vi , p ωi , k αi , d vi , and d ωi be positive constants such that, defining ūvi := d vi + √ 2p vi ii and ūωi :=

d ωi + p ωi + √ 2k αi ψi ii , satisfy d ωi ≥ √ 2k αi ψi ii tanh(1) , ( 17 
)
2R i ūvi + ūωi < 4R i r i min{ τri , τli }. (18) 
Then, ( 3) and ( 4) hold, that is, the consensus-formation objective is reached.

IV. PROOF OF PROPOSITION 1

We start by showing that the actuators do not saturate if (18) holds. Hence, the Constraint 1 is met. To that end, note that, from [START_REF] Kranakis | Mobile agent rendezvous: A survey[END_REF] 

W := 1 2 N i=1   1 p ωi I i ω 2 i + j∈Ni a ij ln cosh (θ i -θ j )   ,
which is positive definite and radially unbounded with respect to ω i and (θ i -θ j ), for all j ∈ N i and all i ∈ N . The timederivative of W along the trajectories of Σ ωi in ( 16) satisfies

Ẇ = - N i=1 1 p ωi [d ωi ω i tanh(ω i ) -ω i α i ] . (19) 
This is obtained using [START_REF] Ren | Distributed leaderless consensus algorithms for networked Euler-Lagrange systems[END_REF]Lemma 2.4] to show that

1 2 N i=1 j∈Ni a ij ( θi -θj ) tanh (θ i -θ j ) = N i=1 θi e θi .
Now, by definition, α i is uniformly bounded-see Eqs. ( 14) and ( 9) and recall that |ψ i (t)| ≤ ψi . More precisely,

|α i | ≤ √ 2k αi ψi ii , so Ẇ ≤ - N i=1 1 p ωi d ωi ω i tanh(ω i ) - √ 2k αi ψi ii |ω i | .
Furthermore, since tanh(•) is strictly increasing, for all |ω i | ≥ 1, we have

Ẇ ≤ - N i=1 1 p ωi d ωi tanh(1) - √ 2k αi ψi ii |ω i |,
which, in view of [START_REF] Zavala-Río | Global trajectory tracking through output feedback for robot manipulators with bounded inputs[END_REF] implies that Ẇ ≤ 0. Hence, for all

t ≥ 0 such that |ω i (t)| ≥ 1 we have Ẇ (ω(t), θ(t)) ≤ 0 so |ω i (t)| is bounded. For any other t, |ω i (t)| ≤ 1. This implies that ω i ∈ L ∞ .
Also note that all terms on the right-hand side of ( 16) are uniformly bounded, so ωi ∈ L ∞ .

Convergence: Assume, for the time being, that α i ≡ 0 for all i ∈ N . Then, a simple inspection of [START_REF] Cruz-Zavala | Finite-time consensus of Euler-Lagrange agents without velocity measurements via energy shaping[END_REF] shows that Ẅ ∈ L ∞ and, invoking Barbalǎt's Lemma, we conclude that Ẇ → 0, which implies in turn that lim t→∞ ω i (t) = 0. The same conclusion is drawn for ωi , after differentiating on both sides of ( 16) and observing that ωi is uniformly bounded. Hence, under the condition that α i ≡ 0, we see from ( 16) that ωi → 0 and ω i → 0 imply that lim t→∞ e θi (t) = 0. Now, e θi = 0 and the statement in [START_REF] Ren | Distributed leaderless consensus algorithms for networked Euler-Lagrange systems[END_REF]Lemma 2.4] imply that

N i=1 θ i e θi = 1 2 N i=1 j∈Ni a ij (θ i -θ j ) tanh (θ i -θ j ) = 0,
so, since θ i -θ j has the same sign as tanh (θ i -θ j ), then e θi = 0 implies that θ i -θ j = 0, for all j ∈ N i and i ∈ N . Using the Laplacian matrix we obtain Lθ = 0, where θ = col(θ i ). Under Assumption 1, there exists θ c ∈ R such that θ = 1 N θ c . The limits in (4) follow. Furthermore, because the closed-loop solutions are uniformly globally bounded under any bounded α i ≡ 0, the same conclusion follows using a cascades argument [START_REF] Loría | From feedback to cascade-interconnected systems: Breaking the loop[END_REF], provided that α i → 0. The convergence of α i is established next, using the persistencyof-excitation assumption on ψi , We already established that lim t→∞ v i (t) = 0-see below Ineq. [START_REF] Lin | Necessary and sufficient graphical conditions for formation control of unicycles[END_REF]. This, in turn, implies that

lim t→∞ t 0 vi (t) = -v i (0).
Hence, to prove that lim t→∞ vi (t) = 0 by Barbȃlat's Lemma, we show that vi is uniformly continuous. The latter follows from the fact that vi ∈ L ∞ . To better see this, using (10b), we write

vi = - 1 m i d vi vi sech 2 (v i ) + p vi ω i ϕ(θ i ) ⊥ e zi + 1 m i p vi ϕ(θ i ) ėzi (20) 
and we observe that all the terms on the right-hand-side are bounded. Thus, v i → 0 and vi → 0, so from (10b) we have

lim t→∞ ϕ(θ i (t)) e zi (t) = 0. (21) 
Invoking Barbalǎt's Lemma, it also follows that lim t→∞ vi (t) = 0. From vi → 0, (9), and (10a), we have ėzi → 0. Thus, the first and last terms on the right-hand side of (20), as well as vi , vanish individually. Consequently,

lim t→∞ ω i (t)ϕ(θ i (t)) ⊥ e zi (t) = 0. (22) 
Now, because ϕ and ϕ ⊥ take values in orthogonal spaces, if [START_REF] Nuño | Leaderless consensus formation control of cooperative multi-agent vehicles without velocity measurements[END_REF] and [START_REF] Tzafestas | Introduction to mobile robot control[END_REF] hold simultaneously whereas ω i → 0, then lim t→∞ e zi (t) = 0. If, alternatively, ( 21) and ( 22) hold simultaneously because lim t→∞ ω i (t) = 0, then

lim t→∞ t 0 ωi (σ)dσ = -ω i (0). Moreover, ωi = - 1 I i d ωi ωi sech 2 (ω i ) + p ωi ėθi -αi , (23) 
where

αi = k αi ψi (t)ϕ(θ i ) ⊥ e zi -k αi ω i ψ i (t)ϕ(θ i ) e zi + k αi ψ i (t)ϕ(θ i ) ⊥ ėzi (24) 
is bounded because so are all the terms on the respective right-hand sides of ( 24) and [START_REF] Loría | UGAS of skew-symmetric timevarying systems: application to stabilization of chained form systems[END_REF]. Hence lim t→∞ ωi (t) = 0 and lim t→∞ t 0 ωi (σ)dσ = -ωi (0). A direct similar computation shows that, also, ω

∈ L ∞ , so, by Barbalǎt's Lemma, it follows that lim t→∞ ωi (t) = 0. From this and (23) it follows that αi → 0, so from [START_REF] Loría | From feedback to cascade-interconnected systems: Breaking the loop[END_REF] we conclude that lim t→∞ ψi (t)ϕ(θ i (t)) ⊥ e zi (t) = 0. However, since ψi (t) satisfies [START_REF] Nuño | Distributed consensus-formation of force-controlled nonholonomic robots with time-varying delays[END_REF], ψi (t) → 0, so the last limit holds only if lim t→∞ ϕ(θ i (t)) ⊥ e zi (t) = 0, which together with [START_REF] Nuño | Leaderless consensus formation control of cooperative multi-agent vehicles without velocity measurements[END_REF], implies that lim t→∞ e zi (t) = 0. Finally, invoking Lemma 2.4 in [START_REF] Ren | Distributed leaderless consensus algorithms for networked Euler-Lagrange systems[END_REF], note that if e zi = 0

N i=1 z i e zi = 1 2 N i=1 j∈Ni a ij (z i -zj ) tanh (z i -zj ) = 0,
so it follows that zi -zj = 0, for all j ∈ N i and i ∈ N .

Using the Laplacian matrix we obtain (L ⊗ I 2 )z = 0, where z = col(z i ). Under Assumption 1 there exists zc ∈ R such that z = 1 N ⊗ zc . We conclude that lim t→∞ e zi (t) = 0 implies the second limit in (3).

V. SIMULATION RESULTS

To illustrate the performance of the controller proposed above, in this section we present some comparative numerical simulations using a network of six differential drive mobile robots. In addition, to illustrate the controller's robustness, we use a robot model with a center of mass located off the axis connecting the two wheels. Such misplacement entails Coriolis terms of second order in the velocities on the right-hand side of Equations ( 7)-cf. [START_REF] Tzafestas | Introduction to mobile robot control[END_REF], which are neglected in the design of the controller in Proposition 1.

We compare the controller of Proposition 1 with one in which tanh(s) is replaced by s everywhere. If delays are neglected, this is the controller proposed in [START_REF] Nuño | Distributed consensus-formation of force-controlled nonholonomic robots with time-varying delays[END_REF]. We used The control gains for each robot are set to satisfy the conditions ( 17) and ( 18 For a fair comparison we used identical initial conditions, gains and persistence of excitation functions for both control algorithms. Finally, the network interconnection topology is illustrated in Fig. 1 The simulation results are illustrated in Figures 23456. As it is appreciated from Figures 2 and3 full consensus, i.e., in position and orientation, is achieved under either control scheme and with a fairly similar transient performance-see also Figures 4 and5. Figure 6 contains a matrix of plots corresponding to the input torques. Each row corresponds to each subset of robots according to their physical parameters, while the input torques for each controller, using saturation and not, are depicted side to side in two columns. The plots on the right correspond to the presaturated input torques, which remain well within the respective limits for each pair of robots: sup t≥0 |τ i | ∈ {100.2 99.8 471.4 478.9 170.8 226.5} for {i} = {1, 2, . . .}-cf. Table I. 

VI. CONCLUSIONS

The results presented in this letter extend previous works on consensus-formation control of nonholonomic systems, to the important and unaddressed case in the control inputs are guaranteed to respect bounds imposed a priori. The analysis of the closed-loop system guarantees that the consensus errors converge to zero asymptotically. Constructing a strict Lyapunov function to guarantee uniform global asymptotic stability of the consensus manifold is still a significant open problem, whose solution may form a solid basis to relax the assumption that the graph is static and bidirectional.

kπ sin kt 2 ,

 2 ), as follows: p v = [600 1000 600 600 600 600] , d v = [200 100 200 300 300 300] , d ω = [400 400 600 600 400 400] , k αi = [20 20 30 30 20 20] , and p ωi = 50, and we use the multi-periodic function ψ i (t) := 1.25 + k∈{1,3,5,7,9} 4 but periodicity is not necessary for persistency of excitation.
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 1 Fig. 1. Undirected-graph topology used in the numerical simulations

Fig. 2 .Fig. 3 .Fig. 4 .

 234 Fig.2. Paths followed by the agents under the unbounded scheme (orientation of each agent is represented by an arrow.

Fig. 5 .Fig. 6 .

 56 Fig. 5. Pose consensus for the bounded scheme.

  The rest of the proof is divided in two parts, boundedness of the state trajectories and convergence of the synchronization errors. Boundedness: we already established that v i and |z i -zj | and vi ∈ L ∞ . For the orientations and the angular velocity, consider the Lyapunov function candidate,

	Therefore, from (6) we have				
	max{ |τ ri |, |τ ri | } ≤	r i 2	ūvi +	1 2R i	ūωi

and | tanh( • )| < 1, we have |u vi | ≤ d vi + √ 2p vi ii =: ūvi , and |u ωi | ≤ d ωi + p ωi + √ 2k αi ψi ii =: ūωi . and, in view of (18), it follows that |τ ri | < τri and |τ li | < τli .
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