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LEAST SQUARES SPHERICAL HARMONICS APPROXIMATION ON THE
CUBED SPHERE

JEAN-BAPTISTE BELLET AND JEAN-PIERRE CROISILLE

Abstract. The Cubed Sphere grid is an important tool to approximate functions or data on
the sphere. We introduce an approximation framework on this grid based on least squares
and on a suitably chosen subspace of spherical harmonics. The main claim is that for the
equiangular Cubed Sphere with step size π/(2N), a relevant spherical harmonics subspace is
the one of all SH of degree less that 2N . This choice, which matches the Nyquist’s cutoff
frequency along the equatorial great circle, provides an approximation problem both well-posed
and well-conditioned. A series of theoretical and numerical results supporting this fact are
presented.

1. Introduction

We consider the approximation of functions defined on the Cubed Sphere grid by mean of
Spherical Harmonics. Suppose that x ∈ CSN → y(x ) is a gridfunction (a set of data) defined
at the nodes x of the Cubed Sphere CSN . We approximate these data by a Spherical Harmonic
(SH) f ∈ YD where YD = Y0 ⊕ · · · ⊕YD is the space of all spherical harmonics with degree less
or equal than D. The standard least squares approximation problem is

inf
f∈YD

∑
x∈CSN

|f(x )− y(x )|2. (LS)

Our main observation is that the choice D = 2N−1 leads to a well posed and well conditioned
problem. In addition, the resulting SH approximant possesses interesting accuracy properties
in the maximum norm of a function known at the nodes of CSN only. These facts are assessed
theoretically and numerically hereafter.

In [4], we have introduced a particular SH subspace with good interpolating properties on the
Cubed Sphere (Lagrange interpolation). This space consists of the direct sum Y2N−1 ⊕Y ′. The
second subspace Y ′ complements Y2N−1. It is such that Y ′ ( Y2N⊕· · ·⊕Y3N . This interpolation
framework has been in particular used in [5] to define new spherical quadrature rules of accuracy
comparable to optimal ones (Lebedev rules). Here, we show that the first subspace Y2N−1 is a
suitable choice if one wants a least squares approximant instead of an interpolant.

Approximating and interpolating data on the sphere by spherical harmonics is an old and
important topic. It is still widely used nowadays in many areas in physics such as numerical
climatology, cosmology, gravitation, neutronic, etc. It is a central point in quantum chemistry.
It is also the core point in harmonic analysis on spheres and balls since it is the three dimensional
counterpart of trigonometric approximation. For fundamental and applied aspects of spherical
harmonics analysis, refer to the two recent monographs [2, 6] (theory and applications). Con-
cerning applications in geomathematics, many chapters in the reference [7] are concerned with
spherical harmonics. Regarding specifically least squares, recent works include [1, 8].

The outline is as follows. In Section 2 the setup of the problem is given. A general positive
weight function is included to define the least squares functional. Theoretical results are given in
Section 3. These results in particular concern estimates of the condition number of the collocation
matrix. Section 4 describes the attractive block structure of the collocation matrix in the case
of an invariant weight. Finally, various numerical results are reported in Section 5.
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2. Setup of the Least Squares problem

Our notation is as follows. For any N ≥ 1, the equiangular Cubed Sphere CSN is the set of
N̄ = 6N2 + 2 nodes xj ∈ S2, j = 1, . . . , N̄ , defined by

CSN :=
{

1
r (±1, u, v), 1

r (u,±1, v), 1
r (u, v,±1);

r = (1 + u2 + v2)1/2, u = tan iπ
2N , v = tan jπ

2N , −
N
2 ≤ i, j ≤

N
2

}
.

Refer to [10]. For any function g : x ∈ S2 7→ u(x) ∈ R, we call g∗ : x ∈ CSN 7→ g∗(x ) the
restriction of g to CSN ,

g∗(x ) = g(x ), x ∈ CSN .

We denote Y m
n the Spherical Harmonic with index (n,m) in real form,

Y m
n (x(θ, φ)) = qmn (sin θ) · (cos θ)|m| ·

{
sinmφ, m < 0,

cosmφ, m ≥ 0.
(1)

In (1), qmn is the polynomial of degree n− |m|, with the parity of n+ |m|, defined by

qmn (t) =
√

(n+1/2)(n−|m|)!
π(n+|m|)! ·

(
d|m|+n

dt|m|+n
1

2nn!(t
2 − 1)n

)
·


−1, m < 0,

1√
2
, m = 0,

1, m > 0.

(2)

We note
〈u, v〉L2(S2) =

∫
S2
u(x)v(x)dσ, ‖u‖L2(S2) = 〈u, u〉1/2

L2(S2)
.

Any f ∈ L2(S2) is expressed in the Hilbert basis (Y m
n )|m|≤n, n∈N as the Fourier like decomposition

f =
∑
|m|≤n

f̂mn Y
m
n , with f̂mn = 〈f, Y m

n 〉L2(S2) . (3)

For any D ≥ 0, the space YD = Span(Y m
n )0≤|m|≤n≤D = ⊕Dn=0Yn is such that dimYD = (D+1)2.

Let ωN (x ) > 0, x ∈ CSN be a given positive weight function. Let y(x ) be a set of data given at
the nodes of the CSN . The functional L is defined as

f 7→ L(f) =
∑

x∈CSN

ω(x )|f(x )− y(x )|2. (4)

We consider the least squares problem: find f ∈ YD solution of

inf
f∈YD

L(f). (WLS)

We also use the quadrature rule Q associated to ω. For f : S2 → R, we have by

Q(f) =
∑

x∈CSN

ω(x )f(x )

=

∫
S2
f(x)dσ − eN (f),

(5)

where eN denotes the quadrature error. In the particular case where the data y are such that
y = g∗ for a given function g, we have

L(f) = ‖f − g‖2L2(S2) − eN (|f − g|2). (6)

For fixed values of N and D, we call the Vandermonde matrix of the problem the rectangular
matrix ADN defined by

ADN =
[
Y m
n (x )

]
x∈CSN
|m|≤n≤D

∈ RN̄×(D+1)2 . (7)

We define the diagonal matrix ΩN ∈ RN̄×N̄ by

ΩN = diag(ωN (x ))x∈CSN
∈ RN̄×N̄ . (8)
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In vector form, the problem (WLS) is expressed as

inf
f̂∈R(D+1)2

‖Ω1/2
N

(
ADN f̂ − y

)
‖2, (9)

where y = [y(x1), . . . , y(xN̄ )]ᵀ ∈ RN̄ . Uniqueness for (9), or equivalently for (LS) or (WLS), is
equivalent to the injectivity of ADN . In this case, (9) is equivalent to the linear system

ADN
ᵀ
ΩNA

D
N f̂ = ADN

ᵀ
ΩN y. (10)

A natural interpretation of (10) is as follows. Consider the following analog of the Discrete
Fourier Transform (DFT) of the data y = g∗. Here the data are defined at the nodes of CSN
instead of at the θj = 2jπ/N ∈ [0, 2π), j = 0, . . . , N , in the standard DFT. The Fourier-like
coefficients are the components of the vector

DFT(y) =
[ ∑

x∈CSN

ω(x )Y m
n (x )y(x )

]
(n,m)

= ADN
ᵀ
ΩN y.

(11)

On the other hand, the analog of the Inverse Discrete Fourier Transform (IDFT) of a set of data
f̂ = [f̂mn ]0≤|m|≤n≤D is the gridfunction

IDFT[f̂ ](x ) =
∑

0≤|m|≤n≤D

f̂mn Y
m
n (x ), x ∈ CSN ,

=
[
(ADN )f̂

]
(x ).

(12)

This means that in matrix form, ADN coincides with the IDFT operator. Therefore in terms of
DFT/IDFT, the solution f ∈ YD of (10) has coefficients f̂ = [f̂mn ] solution of

DFT
(

IDFT[f̂ ]− y
)

= 0 (13)

For any N , there is a maximal degree D such that the matrix ADN is injective (full column rank),
thus guarantying that (WLS) has a unique solution. The proof consists in observing that such
degrees D form a nonempty set of integers. Using that rank(ADN ) ≤ N̄ , we deduce that such D’s
are bounded above by N̄1/2 − 1 ≈ 2.45N − 1.

Definition 1. We call DN the maximal degree of Spherical Harmonics such that ADN is injective.

It obviously satisfies DN ≤ N̄1/2 − 1. This integer is the threshold degree such that the two
following assertions hold:
(i) For every degree D ≤ DN , the Vandermonde matrix ADN is injective. In this case (LS) has

a unique solution.
(ii) For every degree D > DN , the Vandermonde matrix ADN is not injective. In this case (LS)

has several solutions.
The rest of the paper is devoted to assess the following claim.

Claim 2. Consider the equiangular Cubed Sphere CSN with angular stepsize π/(2N). The maxi-
mal degree D satisfying existence/uniqueness of (WLS) and cond(ADN ) uniformly bounded above
with respect to N is

D = 2N − 1. (14)
Note that the cutoff degree 2N corresponds to the Nyquist angular frequency of a signal sampled
with stepsize π/(2N).

In other words, the matrix ADN is required to satisfy both injectivity and numerically suitable
condition number. In Section 3, several theoretical results support Claim 2. However a fully
theoretical proof is missing for the moment. Section 5 reports numerical results supporting
Claim 2.
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3. Theoretical results

In Section 3.1, we establish bounds for the smallest singular value as well as for the condition
number of the matrix A2N

2N . These bounds show that for D ≥ 2N , the least squares problem is
ill-posed in the case of a constant weight function (problem (LS)). This shows that, for reasons
of stability of the numerical procedure, the degree D must be selected such as D ≤ 2N − 1.
Section 3.2 relates the problem (WLS) to the accuracy of the rule Q in (5).

3.1. The Y −2N
2N spherical harmonic. Consider the spherical harmonic Y −2N

2N ∈ Y2N , given by,
see (1)

Y −2N
2N (x(θ, φ)) = q−2N

2N (sin θ) · cos2N θ · sin(2Nφ). (15)
By shifting the angle φ by π/4 we obtain fN ∈ Y2N defined by

fN (x(θ, φ)) = Y −2N
2N (x(θ, φ− π

4 )). (16)

The key is to establish that f∗N "almost vanishes" at all the Cubed Sphere nodes x ∈ CSN . This
will prove that when taking D = 2N , the Vandermonde matrix A2N

N cannot be full column rank
(injective) while keeping a bounded condition number. We begin with the particular case of a
small Cubed Sphere with 1 ≤ N ≤ 4.

Theorem 3. For 1 ≤ N ≤ 4, the function fN ∈ Y2N vanishes at all nodes of CSN (f∗ ≡ 0).
This implies that the threshold degree DN in Definition 1 satisfies DN ≤ 2N − 1.

Proof. The spherical harmonic fN is deduced from Y −2N
2N by a rotation of π/4 around the pole

axis. By invariance of Y2N by rotation, we have fN ∈ Y2N . In addition, for any N ≥ 4, it turns
out that CSN is contained in the set MN of meridians defined by

MN =
{
x(θ, φ) : θ ∈ [−π

2 ,
π
2 ], φ ≡ π

4 ( π
2N )
}
. (17)

Along these meridians, the longitude angle φ is such that 2N(φ− π
4 ) ≡ 0 (π), hence

fN (x(θ, φ)) = q−2N
2N (sin θ) · cos2N θ · sin

(
2N(φ− π

4 )
)

= 0. (18)

This implies that f(x ) = 0 for all x ∈ CSN . In particular, the linear map f ∈ Y2N 7→ f∗

is not injective. Therefore, the matrix A2N
N of this map is not injective. This implies in turn

DN < 2N . �

Consider now the general case N > 4. The proof of Theorem 3 shows that the function fN
vanishes on MN . This implies that fN vanishes at all nodes of the four equatorial panels (I),
(II),( III), (IV) of CSN . Furthermore, fN satisfies the estimate

|fN (x(θ, φ))| ≤ γN · cos2N θ, θ ∈ [−π
2 ,

π
2 ], φ ∈ R. (19)

The constant γN is

γN =
√

4N+1
2π ·

√
(4N)!

22N (2N)!
∼ 1

π1/2

(
2N
π

)1/4
(≈ 0.504N1/4). (20)

(The Stirling formula has been used). Now, the behaviour of fN on the north panel (V) and
south panel (VI) is obtained by examining the nodes located outside of MN , where the estimate
(19) can be applied. Let HN ⊂ CSN be the set of nodes defined by

HN ,
{

1
r (u, v,±1) : r = (1 + u2 + v2)1/2, u = tan iπ

2N , v = tan jπ
2N ,

− N
2 < i, j < N

2 , |i| 6= |j| and i 6= 0 and j 6= 0
}

; (21)

As observed in Fig. 1, we have that

CSN \MN ⊂ HN . (22)

The number of nodes in HN is given by

|HN | =

{
2(N − 1)(N − 3), if N is odd,
2(N − 2)(N − 4), if N is even.

(23)

These observations permit to prove the following theorem
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Figure 1. Equiangular Cubed Sphere and equiangular meridians. The Cubed
Sphere CSN (black dots) meshes S2 with equiangular arcs of great circles (dotted
lines), including the radial projection of the edges of [−1, 1]3 (bold gray lines).
The set MN of equiangular meridians with longitude φ ≡ π

4 ( π
2N ) (gray lines)

contains “many” points of CSN ; the remaining points of CSN belong to the set
HN (indicated with star symbols) defined in (21). The size of HN is given in (23),
and is estimated by |HN | ∼ 1

3N̄ . Left panel: N is odd (N = 5), right panel: N
is even (N = 6).

Theorem 4. Fix N ≥ 1 and D ≥ 2N .
(i) The smallest singular value of the matrix ADN , denoted by σmin(ADN ), satisfies

σmin(ADN )2 ≤ γ2
N · |HN | ·

(
2

3

)2N

∼
N→+∞

N

(
2N

π

)3/2(2

3

)2N

→
N→+∞

0,

where γN is given by (20), and |HN | is the estimation (23) of the size of CSN \MN . In
particular

lim
N→+∞

σmin

(
(A2N

N )ᵀA2N
N

)
= 0. (24)

(ii) In the case where ADN is injective, then the condition number of ADN , denoted by cond(ADN ),
satisfies

cond(ADN )2 ≥ N̄

|HN |
· 1

4πγ2
N

·
(

3

2

)2N

∼
N→+∞

1

4

( π

2N

)1/2(3

2

)2N+1
→

N→+∞
+∞,

where N̄ = 6N2 + 2. In particular,

lim
N→+∞

cond
(

(A2N
N )ᵀA2N

N

)
= +∞. (25)

Proof. (i) If N̄ < (D + 1)2, then ADN cannot have full column rank and the result is obvious:
σmin(ADN ) = 0. Otherwise, σmin(ADN )2 is the smallest eigenvalue of the symmetric matrix ADN

ᵀ
ADN

and it is the minimum Rayleigh quotient:

σmin(ADN )2 = inf
f̂∈R(D+1)2

‖f̂‖=1

(
f̂ᵀADN

ᵀ
ADN f̂

)
.
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With the Fourier-like expansion (12), we obtain f̂ᵀADN
ᵀ
ADN f̂ = ‖ADN f̂‖2 =

∑
x∈CSN

f(x )2, so that

σmin(ADN )2 = inf
f∈YD

‖f‖fL2(S2)=1

 ∑
x∈CSN

f(x)2

 .

Let fN be the function defined in (16); then fN is a rotation of the unitary function Y −2N
2N ∈

YD, so fN ∈ YD with 〈f, f〉 = 1, which proves that

σmin(ADN )2 ≤
∑

x∈CSN

f(x )2.

On the right hand-side, many terms in the sum vanish. As observed in (22), CSN \HN ⊂ MN ,
where MN and HN are defined in (17) and (21). Thus using (18), f(x ) = 0 if x ∈ CSN \HN .
Therefore,

σmin(ADN )2 ≤
∑

x∈CSN

f(x )2 =
∑

x∈HN

f(x )2.

If HN is empty, we obtain σmin(ADN )2 = 0 and (i) is proved. Otherwise,

σmin(ADN )2 ≤ |HN | max
x∈HN

f(x )2,

where |HN | is the cardinal number given by (23); we estimate maxx∈HN
f(x )2 using (19),

max
x∈HN

f(x )2 ≤ γ2
Nc

2N , with c = max
x∈HN

cos2 θ(x ).

For any x = 1
(1+u2+v2)1/2

(u, v,±1) ∈ HN , with |u|, |v| < 1, the latitude angle θ(x ) is such that
cos2 θ(x) = 1− sin2 θ(x ) = 1− 1

1+u2+v2
< 2

3 , which proves that c < 2
3 .

(ii) If ADN is injective, the condition number is the ratio

cond(ADN ) =
σmax(ADN )

σmin(ADN )
,

where σmin(ADN ) has been bounded in (i), and σmax(ADN ) denotes the largest singular value of
ADN . The square σmax(ADN )2 is the largest eigenvalue of ADN

ᵀ
ADN and it is the maximum Rayleigh

ratio
σmax(ADN )2 = sup

f̂∈R(D+1)2

‖f̂‖=1

(
f̂ᵀADN

ᵀ
ADN f̂

)
= sup

f∈YD
‖f‖fL2(S2)=1

∑
x∈CSN

f(x )2.

With f(x) = Y 0
0 (x) = 1√

4π
we obtain the lower bound σmax(ADN )2 ≥ N̄

4π . �

3.2. Least squares and quadrature rule accuracy. Proving the well posedness of (WLS)
amounts to establish bounds for the condition number of the matrix ADN

ᵀ
ΩNA

D
N . We have

ADN
ᵀ
ΩNA

D
N =

 ∑
x∈CSN

ωN (x )Y m
n (x )Y m′

n′ (x )


|m|≤n≤D
|m′|≤n′≤D

∈ R(D+1)2×(D+1)2 . (26)

This matrix contains inner products involving the grid functions (Y m
n )∗, for the discrete weighted

inner product defined by

(y1, y2)ωN ,
∑

x∈CSN

ωN (x )y1(x )y2(x ), y1, y2 : CSN → R. (27)

The functions Y m
n are orthonormal for the inner product 〈·, ·〉L2(S2). However, for the discrete

product (., .)ωN , we only have (Y m
n , Y m′

n′ )ωN ≈ 0.
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Theorem 5. Fix N ≥ 1 and D ≥ 0. Let ADN be the Vandermonde matrix with degree D on CSN ,
defined in (7). Let ωN : CSN → (0,∞) be the weight of a spherical quadrature rule on CSN , with
error eN ; let ΩN be the associated diagonal matrix, defined in (8). Then

ADN
ᵀ
ΩNA

D
N = I(D+1)2 − EDN , (28)

where EDN is a symmetric matrix containing the quadrature errors:

EDN =
[
eN (Y m

n Y m′
n′ )

]
|m|≤n≤D
|m′|≤n′≤D

∈ R(D+1)2×(D+1)2 . (29)

In particular, assume that (ωN )N≥1 defines a convergent spherical quadrature rule on Y2D, i.e.
∀f ∈ Y2D, eN (f) −−−−→

N→∞
0, then

ADN
ᵀ
ΩNA

D
N −−−−→

N→∞
I(D+1)2 ;

moreover, if the rule converges with order p > 0, i.e. ∀f ∈ Y2D, ∃Cf ≥ 0, ∀N ≥ 1, |eN (f)| ≤
CfN

−p, then

ADN
ᵀ
ΩNA

D
N = I(D+1)2 +O

(
1

Np

)
.

The relation (28) expresses the fact that the matrix ADN
ᵀ
ΩNA

D
N is close to the identity, as-

suming that the error matrix entries are small. This is the case when ωN defines an accurate
quadrature rule on the space Y2D. This will require that D is not too large compared to N . On
the contrary, for large values of D, the entries in EDN are not a priori small.

Proof. In the matrix ADN
ᵀ
ΩNA

D
N , the entry with row index (n,m) and column index (n′,m′)

contains the discrete inner product
(
(Y m
n )∗, (Y m′

n′ )∗
)
ωN

, as described in (26) and (27). Using the
quadrature rule (5) with g = Y m

n Y m′
n′ shows that this element is expressed as(

(Y m
n )∗, (Y m′

n′ )∗
)
ωN

=

∫
S2
Y m
n (x)Y m′

n′ (x) dσ − eN (Y m
n Y m′

n′ ).

Since the functions Y m
n are orthonormal in L2(S2), we have∫

S2
Y m
n (x)Y m′

n′ (x) dσ =
〈
Y m
n , Y m′

n′

〉
L2(S2)

=

{
1, if (n,m) = (n′,m′),

0, otherwise.

This proves (28). The symmetry of EDN is obvious.
Finally for a convergent rule, for all |m| ≤ n ≤ D and |m′| ≤ n′ ≤ D, the entry of

EDN with indices (n,m) and (n′,m′) is related to f = Y m
n Y m′

n′ ∈ Y2D, so that by hypothesis
eN (Y m

n Y m′
n′ )→ 0. For a convergence of order p > 0, there is furthermore a constant Cn

′,m′
n,m such

that |eN (Y m
n Y m′

n′ )| ≤ Cn
′,m′

n,m N−p. �

4. Block structure of (ADN )ᵀΩNA
D
N for a symmetric weight function

The weight function x ∈ CSN 7→ w(x ) plays the role of a parameter in the problem (WLS).
Here we consider the important case of a weight w(x ) with cubic symmetry. This property has
been considered in [5, 9].

Theorem 6. Assume that ωN : CSN → (0,∞) is invariant under the symmetry group G of
the cube {−1, 1}3. Consider a nonzero entry eN (Y m

n Y m′
n′ ) of the symmetric matrix EDN defined

in (29), with row index (n,m), and column index (n′,m′). Then the four following conditions
hold
(i) n ≡ n′ (2) (same parity for the degrees);
(ii) m,m′ ≥ 0, or m,m′ < 0 (same sign for the orders);
(iii) m ≡ m′ (2) (same parity for the orders);
(iv) if m,m′ ≡ 0 (2), then m ≡ m′ (4).
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Proof. The proof principle is close to the one of [5, Corollary 10]. To begin with, [3] proves that
the group G of the cube, described by

G =
{ [
ε1eσ1 ε2eσ2 ε3eσ3

]
, σ ∈ S3, ε ∈ {−1, 1}3

}
, e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1),

(30)
is also the symmetry group of CSN . Therefore, the quadrature error defines a linear form

eN : Y2D → R, eN (g) =

∫
S2
g(x) dσ −

∑
x∈CSN

ωN (x )g(x ),

which is invariant under G, i.e. ∀Q ∈ G, eN (g(Qᵀ·)) = eN (g).
In the sequel, for all (n,m) and (n′,m′) violating at least one of the conditions (i)-(iv), we

consider g = Y m
n Y m′

n′ ∈ Y2D, and we exhibit a matrix Q ∈ G such that g(Qᵀx) = −g(x). This is
a sufficient condition to ensure that eN (g) = 0, due to eN (g) = eN (g(Qᵀ·)) = eN (−g) = −eN (g).
The proof is a calculation in spherical coordinates, based on the expression

g(x(θ, φ)) = (qmn q
m′
n′ )(sin θ) · cos|m| θ cos|m

′| θ

· (sin(mφ)1m<0 + cos(mφ)1m≥0)(sin(m′φ)1m′<0 + cos(m′φ)1m′≥0).

Case 1: (ii) is violated. Assume m < 0 and m′ ≥ 0 (without loss of generality), then

g(Qᵀx(θ, φ)) = g(x(θ,−φ)) = −g(x(θ, φ)), for Q :=

1 0 0
0 −1 0
0 0 1

 .
Case 2: (iii) is violated. Assume that m ≡ 1 (2) and m′ ≡ 0 (2) (without loss of generality).

Then m(φ+ π) ≡ mφ+ π (2π), m′(φ+ π) ≡ m′φ (2π), and

g(Qᵀx(θ, φ)) = g(x(θ, φ+ π)) = −g(x(θ, φ)), for Q :=

−1 0 0
0 −1 0
0 0 1

 .
Case 3: (iii) is satisfied but (i) is violated. Assume that n+ |m| ≡ 1 (2) and n′ + |m′| ≡ 0 (2)

(without loss of generality). Then θ 7→ (qmn q
m′
n′ )(sin θ) is odd, hence

g(Qᵀx(θ, φ)) = g(x(−θ, φ)) = −g(x(θ, φ)), for Q :=

1 0 0
0 1 0
0 0 −1

 .
Case 4: (iv) is violated. Assume that m ≡ 2 (4) and m′ ≡ 0 (4) (without loss of generality).

Then m(φ+ π
2 ) ≡ mφ+ π (2π), m′(φ+ π

2 ) ≡ m′φ (2π), and

g(Qᵀx(θ, φ)) = g(x(θ, φ+ π
2 )) = −g(x(θ, φ)), for Q :=

 0 1 0
−1 0 0
0 0 1

 . �

Roughly speaking, if the weight ωN is symmetric, then a minimal ratio of

3

32
= 9.375% (31)

of all the entries in EDN are nonzero. Indeed, Case (i) divides by 2 the number of possible nonzero
entries. Then Case (ii) further divides by 2 this number. And finally Cases (iii-iv) multiply this
number by 3

8 . Then, two facts suggest the approximation

ADN
ᵀ
ΩNA

D
N ≈ I(D+1)2 :

• as much as ≈ 29
32 of all entries are identical if ωN is assumed symmetric (Theorem 6);

• the remaining entries (≈ 3
32) are small assuming that ωN defines an accurate spherical

quadrature rule in Y2D, (see Theorem 5).
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Figure 2. Classification tree for partioning the set of indices {(n,m) : |m| ≤
n ≤ D} as a disjoint union J1 t . . . t J12; for instance, J4 = {|m| ≤ n ≤ D, n ≡
0 (2), m ≥ 0, m ≡ 0 (4)}.

In particular, the condition number of the matrix ADN
ᵀ
ΩNA

D
N is expected to be close to 1, so

that (WLS) is expected to be well-posed. This point is further investigated numerically in Section
5.3.

Next, we go one step further in the analysis taking benefit from the orthogonality relations in
Theorem 6. Indeed, Theorem 6 suggests to sort the indices (n,m) using the following criteria,
ordered by decreasing priority:

• case n ≡ 0 (2) and case n ≡ 1 (2);
• case m < 0 and case m ≥ 0;
• case m ≡ 0 (4), then case m ≡ 2 (4), and finally case m ≡ 1 (2).

This particular ordering partitions the set of indices as a disjoint union of the twelve sets Jk, 1 ≤
k ≤ 12. They are displayed in the classification tree of Figure 2; it permits to express the
orthogonality relations in Theorem 6 as follows.

Corollary 7. Fix N ≥ 1, D ≥ 0, and ωN : CSN → (0,∞) invariant under the group G of
{−1, 1}3. Let Jk, 1 ≤ k ≤ 12, denotes a partioning of the set of indices |m| ≤ n ≤ D, as in
Figure 2.

(i) Assume that the indices (n,m) ∈ Jk, 1 ≤ k ≤ 12 in the Vandermonde matrix ADN are sorted
along increasing k (for the rows and for the columns). Then ADN

ᵀ
ΩNA

D
N is block diagonal,

as shown in Figure 3.
(ii) The following orthogonal decomposition holds for the discrete inner product (27),

{
f∗, f ∈ YD

}
=

12⊕
k=1

Span{(Y m
n )∗, (n,m) ∈ Jk}.

Assuming a symmetrical weight, Corollary 7 reveals that the matrix ADN
ᵀ
ΩNA

D
N , associated

to (WLS), is block diagonal, for a particular ordering of the indices. This has the following
consequence to solve the system (10). Instead of solving a linear system with (D+1)2 unknowns,
the system is solved by blocks. It consists in solving eight square linear systems with ≈ 1

16(D+1)2

unknowns, and four square linear systems with ≈ 1
8(D + 1)2 unknowns. These resolutions can

be obviously performed in parallel.

Remark 8. In [3, Corollary 10], the “15/16” property is coined as meaning exactness of a symmet-
ric quadrature rule for a certain proportion of 15/16 of all spherical harmonics. This property can
be deduced from Corollary 7. Indeed, consider a symmetric weight ωN , a row index (n,m) /∈ J4,
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Figure 3. Block diagonal structure of the matrix ADN
ᵀ
ΩNA

D
N , assuming that ωN

is invariant under G; the sets of indices Jk are defined in Figure 2. The white
cells contains only null coefficients; they represent about 29

32 of the entries.

and the column index (n′,m′) = (0, 0) ∈ J4; then Y m′
n′ ≡ (4π)−1/2, and we deduce from Corol-

lary 7.(i) that

Q(Y m
n ) =

∑
x∈CSN

ωN (x )Y m
n (x) = 0 =

∫
S2
Y m
n (x) dσ.

Since J4 contains about 1/16 of the indices, we see that the quadrature rule Q associated to ωN
integrates exactly about 15/16 of the Y m

n .

5. Numerical results

5.1. Condition number of the Vandermonde matrix. We assess numerically that (LS) is
well-posed for the degree D = 2N − 1, but not for D = 2N .

For that purpose, for every 1 ≤ N ≤ 32, for D = 2N − 1, 2N , we first compute a singular
value decomposition of the Vandermonde matrix ADN . Second, we extract the minimal singular
value σmin(ADN ) and the maximal one σmax(ADN ). Finally, we deduce the condition number
cond(ADN ) = σmax(ADN )/σmin(ADN ). The computation have been performed in double precision
in Matlab, using the svd function. The results shown in Figure 4 are as follows.

(1) ForD = 2N−1 (left panel in Figure 4), we observe that the minimal singular value is “far”
from 0, and that the condition number is close to 1; more precisely, the numerical values
indicate that cond(A2N−1

N ) ≈ 1.19. As a consequence, A2N−1
N is injective. This means

that the critical degree DN insuring injectivity satisfies DN ≥ 2N − 1. Furthermore,
cond(ADN

ᵀ
ADN ) = cond(ADN )2 ≈ 1.41, which implies that (LS) is well-posed for D =

2N − 1.
(2) For D = 2N (right panel in Figure 4), we observe that the minimal singular value is very

close to 0 for N ∈ {1, 2, 3, 4, 5, 7, 9} (the machine epsilon is about 2.2 · 10−16); otherwise,
it is positive and decays to 0 when N increases. Hence, for N ∈ {1, 2, 3, 4, 5, 7, 9}, A2N

N
is not injective, i.e. DN ≤ 2N − 1. This is consistent with Theorem 3 which proves this
result for N ≤ 4. This observation, combined with the discussion above, supports the
fact that

DN = 2N − 1, N ∈ {1, 2, 3, 4, 5, 7, 9}.
For the other values of N , it appears that A2N

N is injective, so that DN ≥ 2N . Nev-
ertheless, for these values of N , cond(A2N−1

N ) > 104, and blows-up when N increases.
Consequently cond(A2N

N
ᵀ
A2N
N ) > 108 and blows-up when N increases. Therefore, for
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Figure 4. Smallest singular value (σmin) and condition number (cond) of Van-
dermonde matrices ADN , 1 ≤ N ≤ 32, with D = 2N−1 (left), and D = 2N (right,
in log-scale). Left panel: A2N−1

N is injective (σmin >> 0) and very well-conditioned
(cond ≈ 1.19). Right panel: A2N

N is not injective if N is small (σmin ≈ 0), and is
ill-conditioned otherwise (cond > 104).

i fi(x, y, z) Comment

1 exp(x) Very smooth
2 3

4 exp[− (9x−2)2
4 − (9y−2)2

4 − (9z−2)2
4 ] Smooth

+ 3
4 exp[− (9x+1)2

49 − 9y+1
10 −

9z+1
10 ]

+ 1
2 exp[− (9x−7)2

4 − (9y−3)2
4 − (9z−5)2

4 ]
− 1

5 exp[−(9x− 4)2 − (9y − 7)2 − (9z − 5)2]

3 1
10

exp(x+2y+3z)
(x2+y2+(z+1)2)1/2

1(z > −1) Infinite spike at the south pole (z = −1)

4 cos(3 arccos z)1(3 arccos z ≤ π
2 ) Continuous, not differentiable (z =

√
3
2 )

5 1(z ≥ 1
2 ) Discontinuous spherical cap (z = 1

2 )

Table 1. A series of test functions representative of various regularity properties.

D = 2N , (LS) is ill-posed even if A2N
N is injective, and the ill-posedness level increases

with N .

The numerical study presented here suggests that for any N ≥ 1, the maximal degree guaran-
tying well posedness and well conditioning is D = 2N − 1. This implies that any f ∈ Y2N−1 is
correctly sampled on the Cubed Sphere CSN with angular step π

2N , since (LS) can reconstruct
f from f∗ in a stable way. If f ∈ YD with D ≥ 2N , this property is not guaranteed.

5.2. Accuracy of the least squares approximation. We compute least-squares approxima-
tions of test functions, without and with noise. We follow the recommendation of Subsection 5.1:
for the grid CSN , we work in the approximation space Y2N−1, since it is the largest approximation
space YD ensuring well-posedness for (LS).

First, we report in Table 1 five test functions in [3] (and the references therein); this series of
functions is representative of various regularity properties. For each 1 ≤ N ≤ 32 and for each
test function fi, 1 ≤ i ≤ 5, we compute the least-squares approximation f̃i ∈ Y2N−1 of fi from
the grid function (fi)

∗: f̃i is evaluated as the unique solution to (LS), for D = 2N − 1 and
y = (fi)

∗. The accuracy is measured by the relative discrete error, on a reference fine grid CSM



12 JEAN-BAPTISTE BELLET AND JEAN-PIERRE CROISILLE

Figure 5. Least-squares approximation (LS) of the test functions fi from Ta-
ble 1. Left panel: for any 1 ≤ N ≤ 32, the approximation f̃i ∈ Y2N−1 is computed
from (fi)

∗, and the relative `2-error ε(fi) defined in (32) is plotted. Right panel:
for any level of noise σ = 2j ,−31 ≤ j ≤ 2, the approximation f̃i ∈ Y63 is com-
puted from a noisy dataset (fi)

∗ + σN (0, 1) with N = 32, and ε(fi) is plotted.

defined by

ε(fi) :=

(∑
x∈CSM

|fi(x )− f̃i(x )|2∑
x∈CSM

|fi(x )|2

)1/2

, M = 65. (32)

The errors are displayed in Fig. 5 (left panel). For the smooth functions f1 and f2, the error
rapidly converges to 0 when N increases; this is especially true for f1. For the continuous
but not differentiable function f4, the convergence is slow. For the spike function f3 and the
discontinuous function f5, the convergence cannot be claimed from the plot. These observations
are not surprising: it is expected that the convergence rate depends on the decay of the Fourier
coefficients, which is related to the smoothness.

Second, fix the grid resolution to N = 32. For each test function fi, 1 ≤ i ≤ 5, for any
σ = 2j , −31 ≤ j ≤ 2, we corrupt the grid function (fi)

∗ with a gaussian noise with zero
mean, and standard deviation σ. We compute an approximation f̃i ∈ Y63 of fi as the unique
solution to (LS), for D = 2N − 1 and y(x ) = fi(x ) + σu(x ), x ∈ CS32, where [u(x )] contains
independent realizations of the normal law N (0, 1). Here again, we evaluate the accuracy of this
approximation by the relative error (32); this error depends on σ (and on the experiment), and
we denote it by ε(fi)(σ). These errors are displayed in Figure 5 (right panel). One observes that

ε(fi)(σ) ≈ ε(fi)(0) + σ,

where ε(fi)(0) is the error without noise for N = 32 (displayed on the left panel). In other
words, a level of noise σ in the dataset increases the error by σ. This reveals that approximating
a function by least-squares on CSN in the space Y2N−1 is very stable.

Third, we show numerically that differentiating the least-squares approximation (LS) in Y2N−1

(D = 2N − 1) permits to approximate derivatives. Assume that f is a differentiable function on
S2, known by the grid function f∗. The least squares approximation (LS) of f is

f̃ =
∑

|m|≤n≤2N−1

f̃mn Y
m
n ∈ Y2N−1, (33)
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Figure 6. Spectral differentiation on CSN with respect to the longitude φ. For
f = f1, f2 from Table 1, for any 1 ≤ N ≤ 32, the approximate derivative ∂φf̃
is computed from the least-squares approximation f̃ ∈ Y2N−1. Relative `2-errors
defined in (35) are plotted.

with D = 2N − 1 and y = f∗. Consider for instance the derivative with respect to the longitude
φ,

∂φf̃(x(θ, φ)) =
∑

|m|≤n≤2N−1

m · f̃−mn Y m
n (x(θ, φ)) ∈ Y2N−1. (34)

We test this principle on the smooth functions defined in Table 1: f = f1, f2. For each value of
1 ≤ N ≤ 32, we approximate ∂φf by ∂φf̃ satisfying (34), and we calculate the relative `2-errors
on the grid CSN :

ηN (f, f̃) =

(∑
x∈CSN

|f(x )− f̃(x )|2∑
x∈CSN

|f(x )|2

)1/2

, ηN (∂φf, ∂φf̃) =

(∑
x∈CSN

|∂φf(x )− ∂φf̃(x )|2∑
x∈CSN

|∂φf(x )|2

)1/2

;

(35)
here, the exact derivative is given by

∂φf(x(θ, φ)) = −x2(θ, φ)∂x1f(x(θ, φ)) + x1(θ, φ)∂x2f(x(θ, φ),

where x1(θ, φ) and x2(θ, φ) denote the horizontal coordinates of x(θ, φ). As can be observed in
Figure 6, the error for the derivative and the error for the function itself have a similar behavior
in term of N . The least squares approximation converges to the exact function and the spectral
derivative converges to the exact derivative; the observed convergence rates are similar.

5.3. Pseudo-orthogonality for the discrete inner product. We evaluate numerically the
relation (28); it represents some “pseudo-orthogonality” of the Legendre basis, for the discrete
inner product (27).

First, we consider the uniform quadrature rule on CSN , defined by ωN (x) = 4π/N̄ . In this
case, the matrix ADN

ᵀ
ΩNA

D
N in (10) is expressed as

ADN
ᵀ
ΩNA

D
N =

4π

N̄
ADN

ᵀ
ADN .
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Figure 7. Matrix EDN = [eN (Y m
n Y m′

n′ )] from (28)-(29), with the uniform weight
ωN = 4π/N̄ , D = 2N − 1, N = 4 (left panel) and N = 32 (right panel). The
indices are arranged by the classification tree of Figure 2. The displayed value is
10−15 + |eN (Y m

n Y m′
n′ )|, in logarithmic scale. The observed structure is the block

diagonal structure predicted by Figure 3 (Corollary 7). The sparsity score is
9.961% (left panel), resp. 9.387% (right panel), which is close to 3/32.

Figure 8. Maximal entry max |eN (Y m
n Y m′

n′ )| of the matrix E2N−1
N , 2 ≤ N ≤ 32.

The result depends on the accuracy of the quadrature rule ωN , so it is smaller for
the trapezoidal weight than for the uniform weight.

The uniform weight is invariant under G. Thus Theorem 6 predicting a sparse structure of
EDN = I(D+1)2 − ADN

ᵀ
ΩNA

D
N can be applied. More precisely, Corollary 7 predicts that EDN has

the block diagonal structure in Figure 3, for a suitable ordering of the indices. Figure 7 reports
this structure, where EDN is displayed with D = 2N − 1, for N = 4 and N = 32. In these
matrices, the percentage of coefficients above 10−14 is respectively 9.961% and 9.387%, which is
close to the ratio (31). Furthermore, we compute the largest entry of E2N−1

N for 1 ≤ N ≤ 32. As
displayed in Figure 8, this value is about 0.1 (except for N = 1, for which the observed value is
the machine epsilon). Therefore, the matrix corresponding to (LS) (without weight) is close to
be proportional to the identity matrix.

A2N−1
N

ᵀ
A2N−1
N ≈ N̄

4π
(I4N2 ± 0.1).

Second, we consider the weight of the trapezoidal rule in the Definition 3.1 in [9]. It is invariant
under G, so EDN has a sparse structure as before. This rule is second order accurate; so it is more
accurate than the uniform one, and the entries of EDN are expected to be smaller, due to Theorem
5. This is confirmed in Figure 8; the maximal entry of E2N−1

N is below 0.1, and it decays to zero
when N increases.
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6. Conclusion

This paper considers (weighted) least-squares approximation by spherical harmonics on the
equiangular Cubed Sphere CSN . From a theoretical point of view, the symmetric positive semi-
definite matrix of the normal equations is expected to be a pertubation of the identity matrix;
the magnitude of the pertubation depends on the accuracy of the quadrature rule associated to
the weight. This indicates that the Legendre spherical harmonics should be almost orthogonal
for some discrete inner product on CSN . In the case of a symmetrical weight, the matrix is block
diagonal; this structure directly provides subspaces of spherical harmonics which are exactly
orthogonal for the discrete inner product, disregarding the magnitude of the pertubation.

From a numerical point of view, the matrix has a condition number close to 1 if the cutoff
(angular) frequency is fixed to 2N−1, whereas it is not anymore the case if higher frequencies are
considered. Numerical results indicate that Y2N−1 is a suitable approximation space for fitting
or differentiating a smooth function from values on CSN .

Future work includes further mathematical analysis on the one hand. On the other hand, the
block structure and the well conditioning of the matrix shown in Section 4 opens the way to a
parallel Conjugate Gradient solver. This is a preliminary step before to investigate a genuine
fast solver.
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