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ABSTRACT
Auditory reverse correlation (revcorr) is an experimental paradigm that allows researchers to reveal the acoustic
features that are used as cues by listeners in an auditory task. The paradigm relies on a stimulus-response model,
fitted using a penalised logistic regression, to produce a time-frequency matrix of decision weights called au-
ditory classification image (ACI). An ACI provides thus a map of the participant’s listening strategy in a given
task. In this study, we will present results obtained by two participants in a series of auditory revcorr experi-
ments. In all experiments participants had to indicate which of two possible target sounds were presented. The
two target sounds were: (1) modulated and non-modulated tones, or (2) /aba/ and /ada/ speech samples uttered
by different speakers. A key ingredient in the revcorr method is the presentation of target sounds embedded in
an additive background noise at a signal-to-noise ratio such that the additive noise can affect the participants’
performance. All experiments are implemented in our in-house fastACI toolbox, which offers a ready-to-use
solution for setting up, running, and analysing an auditory revcorr experiment.

Keywords: Reverse correlation, auditory classification images, amplitude modulation, speech perception,
acoustic cues

1 INTRODUCTION
Auditory reverse correlation (revcorr) is an experimental paradigm that allows researchers to reveal the acoustic
features used as cues by listeners in an auditory task. Originally proposed by Ahumada and Lovell [1], the
method has become very popular in the psychoacoustic community during the last decade, with applications to
loudness perception, tone-in-noise detection, modulation perception, timbre judgement, phoneme-in-noise percep-
tion, sentence recognition, and prosody perception (see http://dbao.leo-varnet.fr/2020/12/03/a-visual-compendium-
of-auditory-revcorr-studies/ for a non-exhaustive review). In the present study, we will focus on a specific ver-
sion of the auditory revcorr paradigm particularly suited for exploring simple auditory categorisation tasks and
called auditory classification image (ACI).

In a typical ACI experiment, participants are asked to discriminate two sounds that are repetitively presented
in a background noise. This paradigm, which corresponds to a very simple form of sound categorisation, is
illustrated in Figure 1 for a phoneme-in-noise task with two words of the structure vowel-consonant-vowel, or
logatomes, that differ in only one single phonetic feature [2]. In some trials, the random distribution of noise
will mask crucial acoustic characteristics of the target, resulting in an incorrect response of the participant. A
statistical estimation of the stimulus-percept relationship allows to reveal the time-frequency (T-F) regions where
the presence of noise affects the participant’s decision in a systematic way, i.e., the regions corresponding to the
acoustic cues on which they relied to successfully discriminate the stimuli. The ACI method can therefore be
described as a perceptual imaging technique as it provides a direct visualisation of the listening strategy used
by a participant during the task. This novel methodology is based on purely behavioural data (no neuroimaging
data) and offers an unprecedented insight into the mechanisms at play at the acoustic-phonetic interface.
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Figure 1. Schematic diagram of a typical ACI experiment (grey) and ACI estimation (blue), as evaluated by Varnet et al. [2]. In
each trial, one speech target (here, /aba/ or /ada/) is chosen at random and embedded in an additive white noise. After each stimulus
presentation, the participants are asked to indicate which target they heard. The rationale behind an ACI experiment is to find the
systematic relationship between the T-F noise representation and the corresponding response of the listener, on a trial-by-trial
basis. To do so, a prediction of the binary decision (the choice of /aba/ or /ada/) is obtained from a statistical (GLM) estimation
fitted using a penalised logistic regression (see Section 3.4.2 for details). The resulting matrix of weights, the ACI, reveals the
T-F regions where the presence of noise misled the participant in a systematic way, indicating the location of the acoustic cues on
which the participant relied during the experiment.

The fastACI toolbox developed in our group and freely available at https://github.com/aosses-tue/fastACI,
offers a ready-to-use solution for setting up, running, and analysing an ACI experiment [3]. In particular,
it allows to reproduce all our previous auditory revcorr studies on modulation perception [4] and phoneme
perception [2], [5], [6]. In the present study, we re-analyse the data for a selection of previous experiments
using a single analysis pipeline to obtain a longitudinal view of the listening strategy of two participants in a
series of four auditory experiments. Our goal is not so much to replicate or extend previous revcorr studies
but to rather explain and illustrate the revcorr paradigm on auditory and phonetic tasks. Therefore, our study is
primarily didactic in nature. As part of our dissemination strategy, we recently presented portions of this study
in oral form at a local symposium [7].

2 METHODS
This study aggregates data from several experiments performed by the same two participants, labelled as SA
and SB. All experiments were based on single-interval trials containing one of the two target sounds presented
in noise using either a white-noise or a speech-shaped-noise (SSN) masker: (1) ABDA13 replication of the
/aba/-/ada/ discrimination in white noise from Varnet et al. [2] for which we adopted their same female speech
productions and noise waveforms but employed an updated experimental protocol, (2) ABDA21 /aba/-/ada/ dis-
crimination in SSN [5] using the female speech productions from [2], (3) ABDA22 /aba/-/ada/ discrimination in
white noise, similar to ABDA13 but using two male speech productions [8], [9], and (4) MOD22 amplitude-
modulation (AM) detection in white noise [4]. The specific parameters used in each experiment are listed in
Table 1 and the auditory targets are shown in Figure 2. All experiments can be reproduced within the fastACI
toolbox (see Appendix A.1 for further details).

2.1 Experimental protocol
The trial structure of a typical ACI (revcorr) experiment, exemplified for ABDA13, is shown in Figure 1. The
same protocol was followed in ABDA21, ABDA22, and MOD22, but using different targets and maskers, as
indicated in Table 1. All four experiments were based on a discrimination task in noise with two equally-
likely targets presented through headphones. These simple “categorisations” consisted of N trials, with each
trial having one target-in-noise interval to which the participant had to indicate one of the two possible answers.

https://github.com/aosses-tue/fastACI


Table 1. List of parameters used in each experiment. The adaptive procedures used in different experiments targeted the same
overall performance score of 70.7%. Further details are given in the body text. Abbreviations: WN = white noise; SSN = speech-
shaped noise; N = total number of collected trials.

Step size (dB)

Exp. name Masker Targets (gender speaker) N Staircase rule up down Roving Ref.

ABDA13 WN /aba/ or /ada/ (female) 5000 transformed 1-up 2-down 1 1 no [2]

ABDA21 SSN /aba/ or /ada/ (female) 5000 weighted 1-up 1-down 1 0.41 no [2], [5]

ABDA22 WN /aba/ or /ada/ (male) 4000 weighted 1-up 1-down 1 0.41 ± 2.5 dB [8]

MOD22 WN modulated or unmod. tone 3000 transformed 1-up 2-down 1 1 no [4]

Participants were not allowed to repeat trials, but we provided feedback about the correctness of their responses.
The level of the noise was fixed to 65 dB SPL (64 dB SPL in MOD22) while the level of the target (or the
modulation depth in MOD22) started at SNRinit=0 dB (or mdepth,init=−1 dB) and was adapted during the entire
experiment using a staircase procedure to yield a 70.7% correct performance threshold with either a transformed
[10] or a weighted up-down rule [11]. In ABDA22, a small roving was applied to the presentation level of the
trial to discourage the use of loudness cues (see Table 1). Due to the large number of required trials, the
experiments were organised in short blocks of less than 20 minutes (containing 400 or 500 trials) across several
days. Each experimental session lasted typically two hours and contained between 4 and 6 blocks. All the
noises were stored in the test computer together with the corresponding participants’ responses.

3 Target stimuli
In this section we present a description of the target sounds used in the experiments. These targets were
always presented together with a background noise, or masker, that was expected to detriment the properties of
the target stimuli (summarised in Table 2, see below). Our description does not focus on explaining how the
acoustic properties of the noises interact with those of the targets—the interested reader is referred to [4], [8],
[9], although the perceptual effects of that interaction is what is estimated with the revcorr method.

3.1 ABDA13 and ABDA21
The /aba/ and /ada/ sounds were productions from a female speaker, recorded for the original study by Varnet
et al. [2]. The /aba/ and /ada/ recordings had an average fundamental frequency f0 = 222.2 Hz (std= 32 Hz)
and f0 = 197.6 Hz (std= 28.6 Hz), respectively. For the replication of ABDA13 and for ABDA21, the speech
sounds had a duration of 0.84 s, that is, 0.69 s of the original recordings, zero padded at the beginning and at
the end by 0.075 s to match the total duration of the noises (that had 0.075-s up/down ramps). The level of the
zero-padded sounds was 65 dB SPL. See Table 2 for further details and Figure 2 for a graphical representation
of the two speech samples.

3.2 ABDA22
The /aba/ and /ada/ sounds were natural male productions (native French speaker S43M) taken from the OLLO
database [12]. The sounds were pre-processed to have equal duration and similar acoustic energy in the first
and second syllables [8]. The /aba/ and /ada/ recordings had an average fundamental frequency f0 = 110.5 Hz
(std= 4.6 Hz) and f0 = 110 Hz (std= 4.7 Hz), respectively. The resulting sounds had a duration of 0.85 s, after
zero padding for the same purposes as indicated for ABDA13. The total level of the sounds was 65 dB SPL.
See Table 2 for further details and Figure 2 for a graphical representation of the two speech samples.

3.3 MOD22
The reference sound was a pure tone of frequency f = 1000 Hz with a duration of 0.75 s, including cosine
ramps of 0.075 s at the beginning and end of the stimulus. The target sound was a sinusoidally amplitude-
modulated version of the reference with a rate f mod = 4 Hz and initial phase of 3π/2, i.e., starting at a modu-



Table 2. Characterisation of the target stimuli, the vowel-consonant-vowel (VCV) words used in the ABDA experiments. The
stimuli are available on the fastACI toolbox repository [3], under the folder Stimuli. The fundamental frequency ( f0) and
formants (F1 to F4) were extracted using the Praat software. The signal levels were obtained as root-mean-square values over
segments excluding silent fragments of the waveforms. The level of the waveforms (with no silence exclusion) over the total
length of the waveforms equals 65 dB SPL. The values in parentheses represent the standard deviation of the corresponding
frequency ( f0 or F1–F4) in Hz.

Speech sound /aba/ Speech sound /ada/

First syllable Second syllable VCV word First syllable Second syllable VCV word

ABDA13 & ABDA21 ../Stimuli/varnet2013/Aba.wav ../Stimuli/varnet2013/Ada.wav

f0 (Hz) 252.5 (7.9) 191.9 (4.3) 222.2 (32.0) 252.5 (7.9) 197.6 (5.7) 232.6 (28.6)

F1 (Hz) 897.4 (84.6) 796.2 (64.9) 846.8 (89.4) 897.4 (84.6) 682.8 (82.1) 819.3 (134.3)

F2 (Hz) 1784.8 (35.5) 1605.4 (29.5) 1695.1 (98.2) 1784.9 (35.5) 1849.1 (33.8) 1808.2 (46.4)

F3 (Hz) 2775.6 (33.9) 3035.7 (144.2) 2905.7 (168.3) 2775.6 (33.9) 2900.0 (32.9) 2820.9 (70.4)

F4 (Hz) 4311.4 (141.5) 3674.1 (103.9) 3992.8 (351.5) 4311.4 (141.4) 4074.0 (50.7) 4225.1 (164.7)

Level (dB SPL) 70.9 65.4 67.7 71.7 64.0 67.7

Start-end time (ms) 50–150 280–420 50–420 50–150 280–420 50–420

ABDA22 ../Stimuli/Logatome/S43M_ab_ba.wav ../Stimuli/Logatome/S43M_ad_da.wav

f0 (Hz) 112.8 (1.3) 102.6 (1.1) 110.5 (4.6) 112.1 (2.6) 102.8 (0.6) 110.0 (4.7)

F1 (Hz) 732.9 (120.4) 751.5 (47.8) 744.0 (82.2) 679.3 (123.8) 715.0 (82.7) 702.0 (98.2)

F2 (Hz) 1361.8 (54.7) 1314.4 (18.6) 1333.4 (43.2) 1461.9 (22.6) 1466.9 (149.5) 1465.1 (118.4)

F3 (Hz) 2431.6 (36.9) 2507.4 (19.7) 2477.0 (46.7) 2389.0 (41.3) 2443.1 (56.6) 2423.4 (57.1)

F4 (Hz) 3523.8 (109.8) 3687.4 (89.2) 3622.0 (125.7) 3597.8 (127.5) 3638.0 (43.8) 3623.4 (83.7)

Level (dB SPL) 68.7 65.6 66.5 68.5 65.8 66.5

Start-end time (ms) 50–150 280–550 50–550 50–150 280–550 50–550

lation dip. The modulated tone had an adaptive modulation depth mdepth. The reference and target sounds were
adjusted to have a level of 54 dB SPL such that the noisy trials were at a fixed SNR of −10 dB (i.e., with a
noise level of 64 dB SPL) resulting in a presentation level of 65 dB SPL.

3.4 Analysis
3.4.1 Time-frequency noise representations
ABDA experiments
Following the same rationale as in previous studies [5], each noise waveform was converted into a T-F represen-
tation. A Gammatone-based filter bank was used with 64 bands equally spaced in the ERB scale [13] between
40 and 8000 Hz (toolbox option TF_type=‘gammatone’, see Listing 2 in Appendix A.2). The 64 band-passed
signal was then used as input to a simplified model of inner-hair-cell envelope processing [14, their Sec. II.3],
[15, their Sec. 2.4]. The obtained T-F matrix was down-sampled to a temporal resolution of 0.01 s obtaining
matrices Ni (named Data_matrix within fastACI) that have 84-by-64 (ABDA13 and ABDA21) or 86-by-64 el-
ements (ABDA22). Ni was subsequently reshaped into a vector Ni with 5376-by-1 and 5504-by-1 elements,
respectively.

MOD22 experiment
The same processing was applied to obtain T-F representations in MOD22 with the only exception that instead
of using the noise waveforms alone, the non-modulated tone used in the experiment was added to each noise.
Varnet and Lorenzi argued that this processing is needed to discard the task-relevant information in the stimuli
[see 4, their Sec. IID]. We decided to keep the nomenclature Ni for the T-F “tone-plus-noise” vector of this
experiment to be able to adopt the same matrix notation across experiments for the ACI estimation presented



in the next section. In the fastACI toolbox, tone-plus-noise representations (instead of the default noise-alone
representations) are automatically adopted when the experiment is ‘modulationACI’, loading the tone-plus-noise
vector Ni (here with dimensions 4800-by-1) from the variable Data_matrix (Ni, here with 75-by-64 elements).

3.4.2 Statistical estimation
The core principle of the revcorr approach is to assess how the random fluctuations in the stimuli affect the
behavioural responses of the participant on a trial-by-trial basis [16]. For this purpose, the revcorr approach
relies on a stimulus-response transformation based on a generalised linear model (GLM) to reveal the statistical
relationship between the stimuli and the corresponding participant’s responses. This transformation results in a
T-F matrix of decision weights, the ACI, such that:

Pi = Φ(Ni
T ·ACI+b) (1)

where the predicted value Pi for trial i is a continuous value between 0 and 1 that depends on the noisy
vector Ni and on the GLM parameters, i.e., the vectorised matrix ACI and the scalar intercept b. The GLM
parameters need to be fitted individually based on each participant’s data, such that the link function Φ—a
logistic function—returns a Pi value close to 1 or 0 when the participant responded ri = /aba/ (or modulated
tone) or ri = /ada/ (or unmodulated tone), respectively. Each ACI element is interpreted as a perceptual weight
of the corresponding T-F point. For this reason, ACI has as many elements as the T-F representations of the
targets and its visualisation in matrix form ACI can be interpreted in a very straightforward way, with strong
positive (excitatory) or negative (inhibitory) perceptual weights being indicated by coloured regions (here red
and blue, respectively, see Figures 1 and 2).

Because of the high data dimensionality (up to n = 5504 T-F bins for ABDA22) and the presence of internal
noise in the listener’s decision, classic maximum-likelihood estimates of the GLM parameters are typically very
noisy. It is therefore recommended to use some form of maximum-a-posteriori estimation to constrain the range
of GLM solutions by penalising implausible parameter values [17], [18]. Similar to previous studies [5], [18],
we adopted an L1-regularisation (also called lasso) using a Gaussian pyramid basis. The Gaussian pyramid is
a particular type of basis expansion that expresses the T-F information in a different (multi-scale) system of
coordinates. More specifically, we used a 5-level pyramid decomposition applied to each T-F representation,
where the T-F matrix was downscaled by a factor of 2 in four successive iterations. For this processing we
used the MATLAB function imresize but adopting a Gaussian kernel (toolbox parameter pyramid_script set
to ‘imresize’, see Listing 2). The original T-F representation (“level 0”) was discarded from the pyramid (the
toolbox parameter pyramid_shape was set to 0).

If we define B as the change-of-basis matrix from the original T-F representation to the Gaussian pyramid
space, and w as the ACI coordinates in the new space, then Equation 1 can be rewritten as:

Pi = Φ(Ni
T ·B ·w+b) (2)

The objective of this change of basis is to formulate the problem in a space where the solutions can be ex-
pressed with a limited number of coefficients, meeting the “sparseness” prior imposed by the L1-regularisation.
Here, the ACI is described as a linear combination w of a limited number of Gaussian-shaped elements of dif-
ferent width (the basis vectors from B). The w coordinates were fitted using an L1-penalised logistic regression
(default for the toolbox option glmfct=‘l1glm’). The optimal degree of sparsity was chosen to minimise the
10-fold cross-validation deviance of the GLM fitting. Essentially, this method suppresses those weights that do
not considerably improve the GLM predictions, while keeping the weights identified as critical for explaining
the data. Finally, the vector of weights w is displayed in the T-F domain as an ACI, by transforming it back to
the original T-F pixel basis:

ACI = B ·w (3)

4 RESULTS
We derived the ACIs for participants SA and SB in all four experiments. The obtained ACIs are shown in
the third and fourth columns of Figure 2. To facilitate the later interpretation of results, the spectrograms
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Figure 2. The target sounds and individual ACIs of each experiment are depicted in each of the four rows of panels. The spectro-
grams of the target sounds (Target 1 and Target 2) are shown in the first two columns, with lighter regions indicating higher signal
amplitudes. The last two columns show the corresponding ACIs obtained for participants SA and SB, where positive (red) and
negative (blue) weights correspond to T-F regions that biased the participants’ responses towards Target 1 or Target 2, respectively.
The median thresholds (mdepth or SNR) across all N trials for each participant are indicated as insets in the ACI panels.

of the target and reference sounds are shown in the first two panel columns of Figure 2, where darker and
lighter regions represent T-F bins with lower and higher amplitudes, respectively. We also superimposed the
fundamental frequency ( f0) and the first four formants (F1–F4) on the spectrograms of the ABDA experiments.
For ease of visualisation we only added the corresponding ( f0 and F1–F4) labels in the bottom-most /ada/
spectrogram.

The ACIs show distinct excitatory and inhibitory regions in the T-F space, being this the reason why they
are sometimes described as “psychophysical spectro-temporal receptive fields” [19]. In the context of the present
experiments, excitatory regions (red positive weights) correspond to T-F configurations of noise energy that re-
sult in an increase of the probability that the listener gave the response “/aba/” or “modulated tone”. Conversely,
inhibitory regions (blue negative weights) correspond to T-F configurations of noise energy resulting in “/ada/”
or “unmodulated tone” responses.



4.1 MOD22 experiment
The ACIs for MOD22 are shown in the first row of panels in Figure 2. The excitatory (red) and inhibitory
(blue) cues indicate the regions that led participants to answer “modulated tone” and “unmodulated tone,” re-
spectively. The ACIs show that noise fluctuations at a frequency around 1000 Hz had a significant contribution
in the decision. For both participants, the most dominant cue was located at t = 0.25 s and it was of an in-
hibitory type (blue regions) meaning that the participants answered “unmodulated tone” if they did not hear the
first dip in the sinusoidally AM envelope. Other significant but relatively weaker excitatory cues (red regions)
were observed at the same frequency (≈ 1000 Hz) but centred at time t = 0.13 s and at t = 0.38 s (SA) or
t = 0.35 s (SB), i.e., at the location of the second and third local maxima of the AM envelope which, when
perceived, led the participants to answer “modulated tone.” All the identified cues are, therefore, oriented hori-
zontally, i.e., along the time dimension. In the discussion section we will focus on the analysis of these cues,
and we disregard a number of other less significant cues that were observed primarily for participant SA as,
e.g., the (blueish) cue localised at time t = 0.31 ms and frequency 300 Hz.

4.2 ABDA experiments
The ACIs for ABDA13, ABDA21, and ABDA22 are shown in the second, third, and fourth row of panels in
Figure 2, respectively. The excitatory (red) and inhibitory (blue) cues indicate the regions that led the par-
ticipants to answer /aba/ and /ada/, respectively. In all panels for both participants there are excitatory and
inhibitory cues that are vertically oriented, i.e., along the frequency axis, at time t=0.29 s at around 1500 and
1900 Hz, respectively. At these T-F points is where the consonant-vowel transition is located, including the F2
formant onset of the /a/ vowel (compare the location of these ACI cues with that of the F2 traces in the two
left-most panels). For participant SB in ABDA13 and ABDA21 (Figure 2, second and third panels), there was
an additional inhibitory (blue) cue at f = 500 Hz around the F1 region that was relevant for him to respond
/ada/. For these same two experiments, participant SA relied on two vertically oriented cues in the F2 region
of the vowel-consonant transition, at t = 0.19 s. In experiment ABDA22, the vertically-oriented cues were only
observed at time t=0.29 s, again in the F2 region. Since the words in this experiment were taken from a male
voice, f0 and the formant frequencies are in a somewhat lower frequency range, with respect to the female
voice used in ABDA13 and ABDA21, compare the corresponding spectrograms in Figure 2 (see also Table 2).

5 DISCUSSION
The results from experiments ABDA21, ADBA13 and MOD22 were discussed in detail in our previous studies
[2], [4], [5]. In those studies, however, slightly different analyses were performed, all based on experimental
ACIs (all experiments) or using simulations (ABDA21, MOD22), with ACIs being estimated using different
types of T-F representations and a different GLM algorithm. For comparability purposes, the experimental ACIs
presented here were recomputed using the same processing scheme (see Section 3.4). Despite these differ-
ences, our findings here are consistent with those of our previous studies, highlighting that the ACIs are only
superficially affected by the choice of a particular analysis scheme.

5.1 Acoustic cues
5.1.1 MOD22 experiment
The ACIs for MOD22 from Figure 2 are comparable to the single-band ACIs that Varnet and Lorenzi [4]
presented in their Fig. 3A. Varnet and Lorenzi calculated the on-frequency ( f = 1000 Hz) ACI assuming that
audio-frequency components far from the tone frequency have a negligible contribution to their modulation-
detection task due to the noise masker, i.e., they disregarded the possibility of off-frequency listening. Our 64-
band ACI supports that assumption, given that the significant cues are organised horizontally along the carrier
frequency of 1000 Hz. Also in line with Varnet and Lorenzi, the dominant cue was found at the location of the
first modulation dip at t = 0.25 s followed by relatively weaker cues related to the local maxima of the target
signal envelope (at t = 0.13 s and then between t = 0.35 and 0.38 s). Thus, equally-informative acoustic cues in
the target modulation (here, the first and second modulation dips) are not weighted equally by the listeners. At
the same time, the ACIs reveal an increased perceptual weighting of the first 400 ms—roughly the first half of



the stimulus duration—compared to the later temporal segments. Similar “primacy effects” have been previously
reported for other auditory percepts [e.g., 20]. Although the underlying mechanism is still unclear, Varnet and
Lorenzi [4] showed, by means of auditory modelling, that such suboptimal weighting could result from transient
response characteristics related to auditory modulation processing.

5.1.2 ABDA experiments
The ACIs for experiments ADBA13, ABDA21, and ABDA22 revealed the presence of an acoustic cue in the
T-F regions corresponding to the second formant (F2) transition (between 1500 and 1900 Hz), at the onset of
the second syllable (i.e., at 0.29 s for the speech targets used in this experiment). More precisely, all ACIs
showed a similar pattern of weights in this region, with a positive cluster below a negative cluster. The weights
associated to this cue were very strong except for SA in ABDA21.

This pattern of weights is consistent with the results obtained in previous ACI experiments [2], [6] and
confirms the critical role of the F2 onset as a cue for /b/-/d/ categorisations, as demonstrated using other meth-
ods [21]. More specifically, the target sound is more likely to be perceived as /aba/ or /ada/ if the background
noise is able to shift the perception of the F2 formant to a lower frequency (e.g., in the region of the positive
weights) or a higher frequency (e.g., in the region of the negative weights), respectively.

A similar configuration of positive and negative weights can be observed in ABDA13 and ABDA21 for
participant SA in the F2 transition at the offset of the first syllable (t = 0.16 s, between f = 1600 and 1900 Hz).
This can be interpreted as evidence for the presence of an anticipatory cue [2]. Because of the overlapping of
motor commands during speech production (coarticulation), the identity of the consonant in a VCV word can
be inferred from the information in the preceding vowel [22]. Here, SA is relying mainly on this anticipatory
cue for solving the task.

The ACIs obtained from the three ABDA experiments suggest that listeners can rely on other speech cues to
distinguish between targets, including the F1 transition near the onset of the second syllable (t = 0.25 s, between
f = 400 and 1000 Hz for participant SB in ABDA13 and ABDA21) and the presence of high frequency energy
within the intervocalic interval (t = 0.21 s, f = 6000 Hz for both participants in ABDA21), matching the T-F
position of a potential consonant release burst. The perceptual weights associated to these cues, when present,
are weaker and therefore they appear as a secondary source of information for solving the tasks.

5.2 Spectro-temporal cues: Comparison between experiments
Although the ACIs for all experiments revealed a clear pattern of primary acoustic cues, demonstrating that
participants are actively extracting information from the noisy stimuli to perform the task. These cues cor-
respond to different characteristics of the targets. In MOD22, positive and negative weights were organised
horizontally, and correspond therefore to the detection of a temporal event as a consequence of the (by design)
fixed frequency of the tone carrier. On the contrary, in the ABDA experiments, due to the primary role of F2,
the successful completion of the task relied on a fine frequency discrimination (F2 onset: 1605 Hz for /aba/,
1849 Hz for /ada/ in ABDA13 and ABDA21; 1314 Hz for /aba/, 1467 Hz for /ada/ in ABDA22, see Table 2).
This is why the obtained clusters of weights around F2 are arranged vertically in Figure 2.

For ABDA experiments, where several conditions were evaluated, there are a number of interesting obser-
vations that can be extracted from the comparison of ACIs for different background noises as used in ABDA13
(white noise) and ABDA21 (SSN), both using the same speech sounds from a female speaker, or from the
comparison between ACIs using sounds recorded from a female or male speaker, as in ABDA13 and ABDA22,
respectively. We present these observations next.

5.3 ABDA13 and ABDA21: Comparison between white-noise and SSN backgrounds
When comparing the ACIs from the second (ABDA13) and third panel (ABDA21) of Figure 2, we can observe
that the relevant T-F cues were overall located in similar time and frequency regions in both conditions. In other
words, the participants did not seem to modify considerably their listening strategy across noise conditions.
Instead, only the relative importance of the different cues was changed. For instance, while participant SA
used F2 cues in both syllables in the white-noise condition (second panel), he provided a stronger weight to
the first syllable and only a weak weight to the second one in the SSN condition (third panel). Participant SB



used primarily the information in the second syllable, more specifically, around the F2 region to choose /aba/ or
/ada/, and around F1 to choose /ada/ (blue region). For this participant, the cues in the first syllable were weak
in the white-noise condition but even weaker in the SSN condition.

It is well known that not all acoustic cues are equally robust to a given type of background noise [23]–[25].
For instance, the high-frequency burst cue in a /t/ consonant is more easily perceived in a SSN than in a white-
noise condition, because white-noise maskers have more energy in high-frequencies [24]. These differences
across background conditions raise the question of how the extraction of one cue or another depends on the
listening situation. Very little is known about this phenomenon, as it is very difficult to study experimentally.

In another example, Serniclaes and Arrouas [26] used artificially-edited stimuli to show that listeners weight
acoustic cues differently when phonemes are perceived in a silent or in a noisy condition, with low-frequency
cues being very vulnerable to noise. The authors interpreted this result as a shift in the listening strategy towards
the most reliable cues as the noise increased. More recently, in a study using natural speech stimuli (/aba/–/ada/
or /alda/–/alga/–/arda/–/arga/ words) for which ACIs were obtained for original and degraded versions of the
stimuli, Varnet et al. [27] suggested that the weighting of cues was not only determined by their robustness to
noise but was also likely to be related to how subjectively relevant the cues were for the specific participant.
Such top-down effect was supported by the observation of anticipatory cues and low-frequency F1 cues, which
were observed even when they were not really present in the acoustic properties of their stimuli.

The present study supports this hypothesis, as we also observed a similar anticipatory effect (participant
SA in ABDA13 and ABDA21) and a low-frequency F1 cue (participant SB in ABDA13 and ABDA21), while
the spectral distribution of SSN and white-noise maskers did not seem to affect considerably the primary (and
“robust”) F2 cues.

5.4 ABDA13 and ABDA22: Comparison between speech utterances
When comparing the ACIs from the second (ABDA13) and fourth panel (ABDA22) of Figure 2, we can observe
that the ACIs for ABDA22, where sounds from the male speaker were used, do not show a salient cue in the
first syllable when compared to the results obtained using the female speaker sounds. So, SA and SB did not
benefit of any anticipatory cue when the male speech sounds were used. To explain this difference in the T-F
cues, we found that the /aba/ and /ada/ sounds from the female speaker of ABDA13 had a very intense first
syllable compared to the second syllable (∆L = 5.5 and 7.7 dB for /aba/ and /ada/ respectively, see Table 2)
whereas in the male speaker sounds of ABDA22, the intensity of the syllables was more balanced with a level
difference ∆L of 3.1 dB or slightly less. Hence, when the SNR adaptively reaches the point where the primary
cue for the task (F2 onset, second syllable) is just audible, the secondary cue (F2 offset, first syllable) is much
more likely to be audible—2.4 or 4.6 dB more intense in /aba/ or /ada/—in ABDA13 than in ABDA22. This is
consistent with previous studies of phoneme-in-noise perception, that demonstrate that some utterances are more
robust to noise than others, depending on the intensity of the primary cue and the presence of conflicting cues
[23], [28].

5.5 Discussion summary
In this section we discussed observations that we could draw from the obtained ACIs and we contextualised
them with respect to the existing literature. We illustrated the power of the ACI method for (1) the precise
characterisation of individual T-F cues for a modulation-detection task and for a set of three /aba/-/ada/ ex-
periments (Section 5.1), (2) identifying the nature of the relevant perceptual cues either temporal or spectral
(Section 5.2), (3) identifying subtle changes in the listening strategy such as those by different types of noise
maskers (Section 5.3) by adopting different speech targets (Section 5.4).

6 CONCLUSIONS
In this illustrative contribution of the revcorr method, we showed the results of two participants in four listening
experiments (ABDA13, ABDA21, ABDA22, and MOD22), that were summarised in Table 1 and schematised
in Figure 1. The experiments used different types of noisy listening conditions (white noise or speech-shaped
noise), combined with an /aba/-/ada/ categorisation task or a modulation-detection task. A total of four audi-



tory classification images (ACIs) for each participant were obtained, revealing the specific set of time-frequency
(T-F) cues on which the participants relied—their listening strategy—during the course of the corresponding
experiment. The obtained ACIs were similar to those obtained previously [2], [5], [8], demonstrating the relia-
bility of this novel psychophysical paradigm. Although our discussion was purely based on the information that
could extract from the ACIs presented in Figure 2, a much more elaborate characterisation of the assessed lis-
tening strategies can be performed, including estimates of prediction power of the ACIs and how is this actually
affected by the specific acoustic properties of the noises [8], [9]. As one of the disadvantages of the revcorr
method is the large number of trials that need to be collected to assess reliable ACIs (N between 3000 and
5000 trials in the evaluated experiments), our current efforts are posed into the optimisation, on the one hand of
the revcorr implementation, and on the other of the ACI estimation. To allow a transparent and straightforward
optimisation of these two aspects of the method, we implemented the whole framework in an in-house MAT-
LAB toolbox that we named fastACI. The fastACI toolbox does not only contain all our working framework
but it was also implemented modularly to allow future stage-by-stage extensions.
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A APPENDIX: Study replication using the fastACI toolbox
The four experiments presented in the current study can be replicated using our in-house fastACI toolbox for
MATLAB [3]. We start this appendix by indicating how to replicate the experiments (Section A.1) and how
to reproduce or replicate the ACI estimation (Section A.2). We finish this appendix by briefly commenting on
the installation and current development status of the fastACI toolbox (Section A.3). First-time toolbox users
should start in Section A.3.

A.1 Replication of the experiments
Assuming that you have a computer equipped with MATLAB and you have downloaded and initialised the
toolbox (see Section A.3), a fastACI experiment can be run using the commands in Listing 1, preceded by one
of the following input options:

1 %% ABDA13 experiment :
2 experiment = 'speechACI_varnet2013 ';
3 Condition = 'white '; % default condition

1 %%% ABDA21 experiment :
2 experiment = 'speechACI_varnet2013 ';
3 Condition = 'SSN '; % non -default , needs to be specified

1 %% ABDA22 experiment :
2 experiment = 'speechACI_Logatome -abda -S43M ';
3 Condition = 'white '; % default condition

1 %% MOD22 experiment
2 experiment = 'modulationACI ';
3 Condition = 'white '; % default condition

Listing 1: Reproducing a fastACI experiment, for an arbitrary participant ‘S01’.

3 Subject_ID = 'S01 ';
4 fastACI_experiment ( experiment , Subject_ID , Condition );

After the completion of all N trials, the toolbox will have generated a time-stamped *.mat or “saveg-
ame” file. For instance, for participant “S01” in ABDA22, the savegame file will have a name of the type:
savegame_2022_03_23_13_30_S01_speechACI_Logatome-abda-S43M_white.mat.



A.2 Reproduction or replication of the ACI estimation

Listing 2: MATLAB code required to generate the ACI for a result file named
“savegame_2022_03_23_13_30_S01_speechACI_Logatome-abda-S43M_white.mat.”

1 glmfct = 'l1glm '; % L1 ( lasso ) GLM function
2 TF_type = 'gammatone '; % Type of T-F conversion
3 flags_in = { 'trialtype_analysis ','total ', ...
4 'N_folds ', 10, ...
5 'no_permutation ', ...
6 'no_bias ', ...
7 'plot ', ... % or set to 'no_plot '
8 'pyramid_script ','imresize ', ...
9 'pyramid_shape ' ,0 };

10 fname_results ='savegame_2022_03_23_13_30_S01_speechACI_Logatome -abda - S43M_white .mat ';
11 [ACI ,cfg_ACI ,results , Data_matrix ]= fastACI_getACI ( fname_results ,TF_type ,glmfct , flags_in {:});

A.3 Installation and development status of the fastACI toolbox
To install the fastACI toolbox, after its download from https://github.com/aosses-tue/fastACI [3], you need to
initialise the toolbox by running the script startup_fastACI. At least one third-party package is needed, the
AMT toolbox (https://amtoolbox.org/ in its version 1.0 or more recent). After initialisation you should be able
to run all the codes shown in this appendix.

The fastACI toolbox has been inspired by features from two toolboxes: AMT [29] and AFC [30]. AFC tool-
box users will notice the similarity of our toolbox for the implementation of experiments: All experiments con-
sist of a set of scripts. The three main types are: *_set.m containing fixed experimental parameters, *_cfg.m
containing general configuration settings, *_user.m containing the trial definition.

From the AMT toolbox, we adopted a similar way to reproduce figures from the literature. The reproduction
of figures from our previous studies are contained in publ_*.m files (located in the toolbox folder ../Publica-
tions/), which are similar to the exp_*.m scripts in AMT. For instance, to reproduce Figs. 1A from [5] (ACI
for participant SA in ABDA21, similar to the ACI in Figure 2, but using “old ACI settings”) can be obtained
by typing publ_osses2021c_DAGA_figs(‘fig1a’). In fastACI, however, this and other scripts may require the
manual download of data or the preparation of data before being able to use the publ_*_figs.m file.

A.4 Citing the fastACI toolbox
The fastACI toolbox can be cited as a “project” (all versions) or pointing to a specific version of the toolbox.
To cite all versions (it points to the latest release) use:

Osses & Varnet (2022). fastACI toolbox: the MATLAB toolbox for investigating auditory perception using re-
verse correlation. doi:10.5281/zenodo.5500138. GitHub: github.com/aosses-tue/fastACI
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