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Abstract—Just Noticeable Difference (JND) model developed
based on Human Vision System (HVS) through subjective studies
is valuable for many multimedia use cases. In the streaming
industries, it is commonly applied to reach a good balance
between compression efficiency and perceptual quality when
selecting video encoding recipes. Nevertheless, recent state-of-the-
art deep learning based JND prediction model relies on large-
scale JND ground truth that is expensive and time consuming to
collect. Most of the existing JND datasets contain limited number
of contents and are limited to a certain codec (e.g., H264). As a
result, JND prediction models that were trained on such datasets
are normally not agnostic to the codecs. To this end, in order
to decouple encoding recipes and JND estimation, we propose a
novel framework to map the difference of objective Video Quality
Assessment (VQA) scores, i.e., VMAF, between two given videos
encoded with different encoding recipes from the same content
to the probability of having just noticeable difference between
them. The proposed probability mapping model learns from DCR
test data, which is significantly cheaper compared to standard
JND subjective test. As we utilize objective VQA metric (e.g.,
VMAF that trained with contents encoded with different codecs)
as proxy to estimate JND, our model is agnostic to codecs and
computationally efficient. Throughout extensive experiments, it is
demonstrated that the proposed model is able to estimate JND
values efficiently.

I. INTRODUCTION

It is well studied in the cognitive community through
psychophysical experiments that our Human Visual System has
a limited resolution. Just Noticeable Difference, defined as the
minimum amount by which stimulus intensity must be adjusted
in order to produce a noticeable difference, is commonly
applied to represent this limitation. JND model developed
based on HVS study has became the model of choice in many
multimedia applications, especially for streaming industries, as
it servers as a threshold for video compression platform. With
the JND threshold, one can achieve high coding efficiency
by eliminating perceptual redundancy without sacrificing the
perceived quality to ensure best user experience.

Subjective study: To develop robust JND model, subjec-
tive studies need to be conducted to collect reliable JND data
for the target usecase. Recently, several subjective studies have
been conducted. Some JND datasets [1]–[4] were released
publicly for Picture Wise JND (PW-JND), and a few for
Video Wise JND (VW-JND) [5], [6]. However, most of the
existing subjective JND studies applied the ‘one-direction’
JND search protocol, i.e., by only decreasing/increasing the
perceived quality of the compressed stimuli.

§Equal contribution

Objective JND models: Since it is time consuming and
costly to conduct subjective tests, especially for video contents,
objective JND models that predict the JND values automati-
cally are more desirable. One of the most common ways to
predict JND is to first predict the Satisfied User Ratio (SUR)
[7]–[10]. For a given image/video content, the individual JND
of different subjects are different. SUR is the Complementary
Cumulative Distribution Function (CCDF) of the group-based
JND annotations collected from subjective test [6]. In the
literature, the proxy of JND is usually the encoding parameters
(e.g., QF, QP or the CRF values that decide the encoding
setting). Explicitly, given a certain encoding parameter P , SUR
is defined as the percentage of subjects who are satisfied with
the the compressed content. In another word, SUR is the ratio
of subjects that cannot perceive any difference between the
reference/anchor and the content encoded with P . JND can be
derived from the SUR curve giving a certain threshold, and the
most commonly used JND threshold is 75%. Earlier, image
JND/SUR models were developed for streaming contents.
Liu et al. [11] has proposed a deep learning based PW-JND
model by formulating the task as a multi-category classification
problem; Later, using also CNN, another PW-JND algorithm
was presented in [12]; To overcome the challenge of training
a deep PW-JND model with limited data, an effective JND
model was proposed by Shen [4] using patch-level structural
visibility learning; In [10], a Siamese network was utilized to
predict the SUR curve, which was later improved in [9]. Apart
from the JND models dedicated for images, there are also
some models were developed for videos. Zhang et al. modeled
the SUR curve via Gaussian Processes Regression [7], [13];
A new discrete cosine transform-based energy-reduced JND
was demonstrated in [14]. Similar to image SUR model, a
video SUR model was proposed by Zhang et al. in [15]; Using
deep learning, Zhang et al. developed the Video Wise Spatial
SUR method (VW-SSUR) for predicting the SUR value for
compressed video along with the Video Wise Spatial-Temporal
SUR (VW-STSUR) to boost the prediction accuracy. Neverthe-
less, most of the aforementioned SUR prediction methods (or
JND approaches based on SUR estimation) suffer from 2
drawbacks: (1) the subjective JND datasets is indispensable.
Specifically, large-scale JND datasets are necessary for deep
learning-based method for SUR prediction [8]–[10]. (2) these
SUR/JND models are not codec agnostic. For instance, the
SUR prediction model proposed by Wang et al. [7] that predicts
the QP value based on H.264 encoding datasets [6] cannot be
directly applied for other codec.

To address these issues in existing works, rather than
using encoding parameter as the JND proxy, which leads to



codec dependence, we propose to exploit objective quality
metric, (e.g., VMAF [16]) to estimate the JND. Intuitively, if an
objective quality metric correlates well with human’s opinions
and is able to distinguish non-ambiguous pair confidently, it
could be utilized to tell to which point the difference of a
pair of stimuli becomes noticeable. Therefore, given a content
as anchor with a certain perceived quality, the goal is to
estimate the JND by calculating the difference of the objective
quality scores between the anchor and another candidate with
worse/better quality. With ground truth JND data, we can
learn to which extend by increasing/decreasing the objective
quality scores, we will notice the difference. Then, we can
use this learned objective scores’ difference (e.g., difference in
VMAF) as the new proxy for predicting the JND. The anchor
is not limited to the Source sequence (SRC), it can also be
a Processed Video Sequence (PVS) obtained with different
encoding recipes. By increasing the quality of the anchor
to a certain point (i.e., the 1st JND obtained via increasing
the perceived quality), observer may be able to notice the
quality got improved. Vice versus, we can also get the JND
through by decreasing the quality. In piratical application,
given the anchor, the proposed model output the difference
of objective quality score ∆obj indicating to which point the
change of quality become noticeable. One can then estimate
objective quality score of the increased/decreased JND point
objinc−JND or objdec−JND, by simply adding/subtracting the
∆obj to/from the objective quality of the anchor objanchor.
With the predicted objinc−JND or objdec−JND, one can
then map/interpolate the optimized codec configuration that
generate the PVS with an objective quality score that equals
(or close) to objinc−JND or objdec−JND.

The contribution of this study is two-fold: (1) we collected
a JND dataset with a novel two-direction (with both increased
and decreased quality) JND search subjective protocol, where
each stimulus is also annotated with subjective DCR rating;
(2) we presented a framework to map the difference/residual
of an objective quality metric (e.g., VMAF) between the
anchor and a PVS with another encoding recipes by estimating
the probability of the PVS being considered with noticeable
quality difference compared to the anchor with a mapping
function. It has to be highlighted that the proposed framework
takes subjective DCR test annotations as input but not the
subjective JND data, as JND subjective test is more resources
and time consuming. Interestingly, it is showcased that the
calculated difference of objective scores for JND estimation
depends on the quality range, where the objective score of the
anchor content objanchor falls in.

II. METHODOLOGIES

A. Subjective studies
1) Two-directions JND search: The objective of the two-

direction (2-d) JND search is to provide the JND ground truth
for validating the proposed JND mapping function. As shown
in Fig.1, the proposed 2-d JND search not only the JND with
worse quality (dec-JND ) compared to the anchor (JND-dec-
anchor) via decreasing the perceived quality, but also the JND
with better quality (inc-JND ) compared to an anchor (JND-
inc-anchor) by increasing the perceived quality. In our study,
given an content, JND-dec-anchor is defined as the PVS/SRC
with best quality, and JND-inc-anchor is the PVS that with the
worse perceived quality (points from the same Rate-Quality

Fig. 1: Illustration of the proposed 2-D JND search

(R-Q) curve). For each direction JND search, the bisection
search process was applied, readers could refer to [6] for more
details. By considering both direction, we can cover more
streaming usecases, where JND-dec-anchor and/or JND-inc-
anchor are/is required.

20 HD SRCs and 10 UHD SRCs were selected from 229
pristine videos from Amazon Prime Video streaming platform
based on the content selection strategy proposed in [17] such
that the selected contents are with wide-range of different
characteristics and ambiguities in terms of quality. Each SRC
was encoded with 39 (3× 13) recipes (3 encoding resolution
and each resolution with 13 levels of distortion) using high
efficiency video coding (HEVC). The subjective test of 2-d
JND search was conducted in a controlled lab environment. A
55-inch calibrated ‘UHD Grundig Finearts 55 FLX 9492 SL’
was employed as the display screen. The viewing distance was
set as 1.5H for UHD and 3H for HD contents as recommended
in ITU-R BT.2022 [18], where H is the height of the screened
video. Five experts, namely the ‘golden eyes’, participated in
the 2-d JND search. They are familiar with encoding artifacts
and thus the collected JND data is more accurate. Furthermore,
less resources (time and observers) were required.The 2-d
JND searches were conducted for each resolution respectively,
(including 1080p, 720p and 540p for HD). It is worth noting
that only the JND-dec-anchors for 1080p of HD contents
is the SRC, and the JND-dec-anchors for 720p and 540p
of HD contents are the PVS with best perceived quality.
Similar setting was also applied for the UHD set. For each
resolution, the two anchors (i.e., both the anchor for increased
and decreased quality) and their corresponding JNDs were
selected, which ended up to total 12 (4 × 3) videos that are
with significantly different qualities for each content (11 PVS
+ 1 SRC).

2) DCR based on 2-d JND search: The proposed JND
mapping model is based on estimating the probability that one
stimulus is significant different/similar to another stimulus or
not. Thus, subjective quality experiments are also required.
To this end, we conducted a subjective quality study utilizing
DCR protocol according to ITU-T P.913 [19] with the same
contents selected in the 2-d JND searching test. During the
test, for each observer, the SRC of each content was compared
to 11 corresponding PVSs encoded with different encodoing
recepies. In total 24 observers participated in the test, and all
of them passed the pre-experiment vision check [19] to ensure
that they have the correct visual acuity.



Fig. 2: Diagram of the proposed framework of the JND mapping function using DCR datasets
B. JND mapping framework

The JND prediction model is depicted in Fig.2 (5 steps):
Step 1 - Significant classification: For a given content Ck, N
JNDs (videos encoded from Ck with different encoding recipes
Rx) were selected via the proposed 2-D JND search. From the
N selected videos (i.e., increased/decreased JNDs), we formed
pairs that took any two videos among the N videos. At the end,
there were in total N : N !

d!(N−d)! pairs, where d = 2, N = 12.
For each content, all the formed pair were classfier into two
classes: (1) significantly different pairs; (2) similar pairs. This
classification was proceeded through a significant test, e.g., t-
test, by using the individual subjective scores (opinion scores
from all the observers obs1, ..., obsn) from the DCR subjective
test described in Section II-A2. Pairs with significant difference
were labeled with sig = 1, otherwise sig = 0.

Step 2 - Objective quality assessment: The quality of
each video was evaluated by an certain objective quality assess-
ment model obj(·) (e.g., obj = VMAF [16]). Afterwards, the
residuals/differences of objective quality scores for each pair
were calculated: ∆obj(k, x, y) = |obj(CkRx)− obj(CkRy)|.

Step 3 - Sub-quality range decomposition Before con-
structing the mapping function, video pairs Ck {Rx, Ry} were
grouped based on which sub-quality range the objective quality
score of the anchor falls in. This grouping procedure that
divides the entire quality range into a set of continuous sub-
ranges is named as sub-quality range decomposition. The
motivation behind is that the perceptual distances between
anchors and JND points differ along the quality range. There
are many possible ways to split the entire quality range. One
of the most straightforward ways is to divide the whole quality
range into equal units, where the size of each bin is 5 in terms
of VMAF score. Nevertheless, in this pilot test, such bins
division strategy may end out into disconnected distribution
(where some bins are empty) or distribution that contains only
significantly different/similar pairs due to the limited numbers
of tested videos. Therefore, in this study, the sub-ranges were
split to have same amount of videos (balanced bins).

Step 4 - Mapping function design: For each sub-quality
range, the significantly different pairs that belong to this sub-
range, were further represented by a histogram based on
the ∆obj of the pair, i.e., the objective score differences of
the pairs: hdif (∆obj) = {fdif

1 , · · · , fdif
b , · · · , fdif

B } , where

(a) Co-distribution (b) Original points of MF (c) Fitted MF

Fig. 3: How to obtain the mapping function (MF)

fdif
b is one bin that accumulates the frequency of pairs with

objective quality residual equal to b, i.e., ∆obj(k, x, y) = b:

fdif
b =

∑
k

∑
{x,y}

1(∆obj(k, x, y) = b & sig(k, x, y) = 1),

(1)
where 1(c) is an indicator function that equals to 1 if the
specified binary clause is true; and video pairs {x, y} belong
to the current objective quality range. Similarly, the distribution
of similar pairs hsim(∆obj) could be obtained with:

fsim
b =

∑
k

∑
{x,y}

1(∆obj(k, x, y) = b & sig(k, x, y) = 0).

(2)
Afterwards, for each sub-quality range, we can get the
two histograms, i.e., hdif (∆obj) and hsim(∆obj), with the
same number and interval of bins of ∆obj, namely, the co-
distribution. In this study, we utilized VMAF, i.e., obj =
VMAF. As depicted in Fig.2, the orange bar is the hsim(∆obj)
and blue bar is the hdif (∆obj). It can be observed that
similar pairs are distributed in regions where the ∆VMAF
is relatively small, and significantly different pairs are dis-
tributed in regions with larger ∆VMAF. For two different
encoding recipes Rx and Ry of the content Ck, supposing that
∆VMAF(k, x, y) = b, the probability that these two videos are
Significantly Different (SD) is calculated as:

PSD(b) =
fdif
b

fdif
b + fsim

b

, (3)

where fdif
b and fsim

b were obtained from the co-distribution.
Fig.3 illustrates how to obtain the mapping function from the
co-distribution: for each bin in the co-distribution (Fig.3a), the
value of PSD was obtained through Eq.(3). These PSD along



with its corresponding ∆VMAF are the original points of the
Mapping Function (Fig.3b). The final Mapping Function was
then obtained by fitting these original points (Fig.3c).

Step 5 - From mapping function to JND estimation:
After getting the mapping functions for different quality
ranges, we can predict the JND of a given anchor with the
corresponding estimated ∆obj ( obj = VMAF) by fixing a
threshold. As illustrated in Fig.3c, if the blue curve is the
mapping function of an anchor video Va, and the threshold
is set to thr = 75%, the corresponding value of ∆VMAF d
is then considered JND of Va. In other words, for a PVS Vt,
which was encoded from the same SRC as Va, but encoded
with a different recipe, if |VMAF(Va)− VMAF(Vt)| > b, we
assumed that observers can perceive difference between them.

III. EXPERIMENT AND RESULTS

The proposed JND estimation model was tested on both
the JND datasets collected in Section II-A1 and the publicly
available JND VideoSet [6]. According to our best knowledge,
we are the first to proposed such codec-independent JND
estimation model using subjective quality data and objective
quality metrics. Thus, as a preliminary study, we did not
compared our model with any existing JND models. Before
using the collected DCR annotations for the significant clas-
sification, three methods including (1) VQEG HDTV Annex I
[20], (2) ITU-R BT.1788 [21] and (3) ITU-R BT.500-12 [22]
were used to identify and remove outliers(5 for HD and 3 for
UHD). With significant t-test, we obtained 1075 significantly
different pairs for HD and 563 significantly different paris for
UHD set. We processed the collected HD and UHD datasets
separately, due to page limitation, in this study, we only present
the results of HD for demonstration. After unequal quality
range decomposition (to ensure same number of pairs within
each bin), the decomposed sub-quality ranges for HD include
(30, 79], (79, 86], (86, 90], (90, 95] and (95, 100]. For video
pair {x, y}, it was classified to the sub-quality range A, if
VMAF(x) ∈ A ∨ VMAF(y) ∈ A.

In our experiments, four fitting functions were considered,
with the constraint that the function is monotonic on the full
interval: (1) The 5-parameter logistic curve (5-para) [23]; (2)
The 4-parameter cubic polynomial (4-para) [23]; (3) The 2-
parameter logistic curve (2-para) [23]; (4) The Generalized
Linear Model fitting (GLM) (commonly used in psycho-
physical studies [24], [25]). To evaluate the performance of
JND prediction, two commonly used regression error metrics,
Mean Average Error (MAE) and Root Mean Square Error
(RMSE) between the ground truth y and the predicted label ŷ,
were calculated.

The results on our JND dataset (Section II-A1) are summa-
rized in Table I for increasing JND and Table II for decreasing
JND. It can be observed that by applying the GLM fitting
function and a threshold equals to 0.95, our model achieves
best performance in predicting both dec-JND and inc-JND. To
validate the generality of the proposed JND estimation model,
the performance of JND prediction was also evaluated on the
large-scale JND VideoSet [6]. It contains 220 5-second SRCs
in 4 resolutions. Each SRC was encoded with H.264 codec
with QP valus from 1 to 51. The dataset was labeled with the
1st, 2nd and 3rd JND. The results are summarized in Table
III. It can be observed that the best performances are obtained

TABLE I: Performance of JND prediction (∆VMAF) for in-
creasing JND for HD contents considering different thresholds
thr. and fitting functions fit(·)

thr.
fit(·) 5-para 4-para 2-para GLM

Mean Absolute Error (MAE)[1, 100]
0.75 5.1519 4.1997 5.1281 4.8915
0.8 4.1956 3.9765 4.7420 4.4463

0.85 3.6163 3.8181 4.3771 3.9757
0.9 4.2271 3.7447 4.0420 3.6114

0.95 6.7110 3.8777 3.9551 3.4963
Root Mean Square Error (RMSE) [1, 100]

0.75 7.2220 5.9346 7.0309 6.7227
0.8 5.9573 5.7270 6.6600 6.2290

0.85 5.1240 5.5412 6.2459 5.7050
0.9 5.3592 5.3984 5.8011 5.1732

0.95 7.4985 5.4512 5.4493 4.8471

TABLE II: Performance of JND prediction (∆VMAF) for de-
creasing JND for HD contents considering different thresholds
thr. and fitting functions fit(·)

thr
fit(·) 5-para 4-para 2-para GLM

Mean Absolute Error (MAE)[1, 100]
0.75 4.2586 3.4865 4.1996 4.0253
0.8 3.6958 3.3277 3.8736 3.6564

0.85 3.8694 3.2493 3.6509 3.3475
0.9 5.1067 3.3602 3.6679 3.2665

0.95 7.6473 3.6988 4.2052 3.6863
Root Mean Square Error (RMSE) [1, 100]

0.75 7.5868 6.2914 7.2717 7.0435
0.8 6.6783 6.1947 7.0217 6.6774

0.85 6.2428 6.1316 6.7698 6.3115
0.9 6.1184 6.1184 6.5555 5.9811

0.95 6.2585 6.2585 6.5525 5.8850

TABLE III: Performance of JND prediction for the first, sec-
ond, and third JND in VideoSet (1080p) considering different
thresholds thr. with GLM fitting functions.

N th 1st JND 2nd JND 3rd JND
thr. MAE RMSE MAE RMSE MAE RMSE
0.75 3.5026 4.6771 3.5192 4.5879 2.7160 3.6242
0.8 3.1819 4.3186 3.3584 4.3428 2.5840 3.4218
0.85 3.0491 4.1053 3.3242 4.1961 2.5691 3.3247
0.9 3.2415 4.2470 3.5338 4.2794 2.7681 3.4638
0.95 3.8400 4.7528 3.5192 4.5879 3.6060 4.5246

when the threshold is 0.85 for all the three JNDs. Furthermore,
the prediction errors using the proposed model on the VideoSet
are slightly smaller than ones on our 2-d JND dataset, which
further verifies the fact that the proposed framework is generic
and codec agnostic.

IV. CONCLUSION

In this work, a framework that maps the ∆VMAF values to
the probability of the JND between videos encoded with dif-
ferent encoding recipes is proposed. Given an anchor video as
input, the proposed model take into account which sub-quality-
range the anchor video falls in, and out put the estimated
JND in terms of ∆VMAF. With the ∆VMAF, one can then
select the right encoding recipes. The current JND prediction
model could be improved by taking the content characteristics
into consideration, e.g., using different mapping functions for
different types of contents instead of based on quality range.
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