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Quasi-two-dimensional objects appear to be promising for the development of new optical devices since their
electronic properties are expected to be governed by their size. The understanding of these properties can be
achieved by means of theoretical spectroscopy based on the state-of-the-art ab initio formalisms. Time-dependent
density functional theory is well suited since it accounts for the local field effects, which are expected to be large
at the interfaces with vacuum. This framework allows the calculation of the response function to the external
potential. For bulk materials, this quantity is related to the macroscopic dielectric function following the Adler
and Wiser formula. This expression contains dimensionless quantities, while for the two-dimensional object, the
physical observables should be proportional to the thickness. In this paper, we propose a mixed-space approach
which allows us to calculate in a direct way the out-of-plane component and to evidence how the ambiguity
on the thickness of the slab affects the calculation of the macroscopic dielectric function. The classical Lorentz
model adapted to a thin slab reveals how the huge change of the induced electric field, and the arising of a
transverse polarization, lead to modify the expression of the macroscopic dielectric function to get the absorption
spectrum. Despite the influence of the thickness of the slab on the macroscopic dielectric function, the optical
response resulting from the classical electromagnetism can be unambiguously calculated from the mixed-space
simulations.

DOI: 10.1103/PhysRevB.106.035431

I. INTRODUCTION

Objects of reduced dimensionality are promising building
blocks for new technological devices [1,2]. At the nanometric
scale, the electronic properties, and thus the response to an
excitation, are expected to exhibit different features from the
bulk counterpart due to the electronic confinement: screening
effects should be reduced and the band gap should be mod-
ified [3–6]. Development of these new devices relies on the
understanding of their electronic properties. Theoretical spec-
troscopy based on ab initio formalism is state of the art [7].
Time-dependent density functional theory (TD-DFT) [8–11]
is a tool of choice which allows one in principle to account
for the many-body effects [12], by solving the so-called Dyson
equation. Very efficient numerical codes have been developed
in the reciprocal space to take benefit from the periodicity of
infinite crystals. The quantity resulting from the Dyson equa-
tion is the microscopic density response function χGG′ (q; ω),
expressed as a matrix on the basis of the reciprocal space
vectors G. It allows to calculate the inverse dielectric matrix

ε−1
GG′ = δGG′ + vG(q) χGG′ (q; ω), (1)

where vG(q) = 4π/|G + q|2 is the Coulomb potential. The
absorption spectrum is the imaginary part of the macroscopic
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dielectric function εM (q → 0; ω) given by the Adler and
Wiser formula [13–15]

εLL
M (q → 0; ω) = 1

ε−1
00 (q → 0; ω)

. (2)

When one considers isolated nano-objects, which are finite
in one or several directions, one uses the supercell approach,
where the object is embedded in vacuum. Many difficulties
arise. The bare Coulomb interaction cannot be used anymore
since it would reproduce the unphysical interaction between
replicas, and it must be replaced with a truncated interaction
[16,17]. One must also be careful to avoid spurious effects
coming from the presence of vacuum in the supercell
[18]. Since the discovery of graphene [19], the case of
two-dimensional (2D) and quasi-2D crystal attracted a huge
interest. Using a truncated Coulombian interaction [16,17],
Hüser and coworkers [20] calculated the potential induced by
an isolated MoS2 monolayer, and obtained the static dielectric
function of the 2D system as

ε2D
M (q) = 〈V ext(q)〉d

〈V tot(q)〉d
(3)

(where 〈·〉d stands for the average over a region of thickness
d). They reported that, in the long-wavelength limit,
ε2D

M (q → 0) ≈ 1, which reflects the reduction of the screening
occurring in a very thin film. For this reason, such an approach
has been successfully applied to model the screening in GW
calculations on 2D materials [21,22]. To make things even
more puzzling, there is quite a wide agreement in literature
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that the quantity defined by Eq. (3) should not be used to
describe optical properties. The dielectric function extracted
from ellipsometric measurements [23,24] does not exhibit the
behavior of the one calculated from Eq. (3), and as pointed
out by several authors [25,26], the quantity which should be
linked to the absorption is not the 2D dielectric function but
the 2D polarizability α2D (see, e.g., Ref. [26]):

εeff = 1 + 4π

d
α2D (4)

with d the thickness of the slab, and where

α2D ∝ − LSC

|q|2 χ00(q). (5)

LSC is the size of the supercell, q an in-plane vanishing
reciprocal space vector, and χ00 has been calculated with the
truncated Coulomb potential [16,17]. The dielectric function
defined in Eq. (4) is proportional to the macroscopic average
of the χ response function, which is different from Eqs. (1)
and (2). Moreover, when dealing with 2D objects, the notion
of macroscopic average is not well defined. For strictly 2D
objects, Cudazzo et al. [27] proposed to calculate

ε = 1 + 2π |q|α2D,

where q is an in-plane reciprocal space vector, and α2D can
be calculated from a three-dimensional (3D) (i.e., without
truncated Coulomb interaction) TD-DFT calculation in a
supercell according to

α2D = LSC
ε3D

M − 1

4π
= LSC

4π

[
1

1 + limq→0
4π
|q|2 χ00(q)

− 1

]
.

(6)
For a quasi-2D object, the physical quantities are expected to
be proportional to the thickness of the object. The dimension
of a length is recovered due to LSC in the expression of α2D

[Eq. (5) or (6)]. But, this factor is not the thickness of the
object, which also reveals it delicate to define. It is usually
taken as a ratio of the bulk unit cell. Nevertheless, it should
act as a scaling factor, with the spectral shape given by χ00
for [Eq. (5)] or ε3D

M [for Eq. (6)]. But, due to the supercell
formalism, the question of the normalization of χ arises,
in particular when it enters in Eqs. (2) or (6). Finally, these
formalisms concern the in-plane excitation. To calculate the
out-of-plane component, the expression

ε2D,⊥ =
[

1 + LSC

d

(
1

εSC,⊥
− 1

)]−1

(7)

has been proposed [28], which results from the fact that the
quantity calculated within the supercell SC framework is an
effective medium theory (EMT) [29] between the 2D object
and the vacuum [18], and where the value of d has a strong
influence. As we can see from these different approaches, the
question of the definition of the dielectric function of the 2D
object, its relation with the screening, and the subtle point
of the normalization procedure, requires further clarification.
We highlight that the problem is not related to the distinction
between the 2D dielectric function or the 2D polarizability
[26,27,30,31]. Indeed, the 2D polarizability is independent of

the size of the supercell due to a renormalization with this fac-
tor. In the case of the in-plane component, α

‖
2D ∝ LSC(ε‖

SC −
1), so α

‖
2D and ε

‖
SC exhibit the same spectral features. For the

out-of-plane component, α⊥
2D ∝ LSC(1 − 1/ε⊥

SC), where 1/ε⊥
SC

corresponds to the definition of the plasmon, and cannot
account for the absorption process of a photon. For these
reasons, and to allow the comparison with the bulk counter-
part, we will still focus on the calculation of the dielectric
function.

In this paper, using the Lorentz model, we evidenced
the electronic properties of 2D objects, which allows the
demonstration of the expression of the macroscopic dielectric
function, in order to calculate the absorption spectrum. For the
in-plane component, we show that it cannot be calculated from
the ratio of the macroscopic average of the external and total
electric potentials, like for 3D systems. For the out-of-plane
component, the use of the Adler and Wiser formula should in
principle be valid to calculate the absorption spectrum from
the ab initio TD-DFT framework. Nevertheless, we also show,
by the mean of a mixed-space approach, that the dependence
of the spectrum extracted from this formula with the nor-
malization procedure, goes much beyond the problem of the
vacuum introduced in the supercell but leads to the question
of the thickness of the matter of the 2D object, which reveals
it ambiguously defined. We finally show that this ambiguity
has no consequence on the measured optical quantities like
absorbance or transmittance.

As a prototypical system, we use a slab of silicon cut
in the (001) direction, with a surface reconstruction (2 × 1)
[32], composed of four conventional cubic cells leading to an
atomic thickness of 4 × 10.263 = 41.052 bohrs before relax-
ation and ∼40 bohrs after. The y direction is perpendicular
to the dimers and z is orthogonal to the surface. This system
is not, stricto sensu, a 2D material since the binding in the
z direction is as large as in plane. However, in a technical
perspective, the treatment is equivalent. Moreover, it presents
the advantage to have the absorption and plasmon resonances
very far in energy.

The paper is organized as following: In Sec. II, alterna-
tively to the usual procedure, we proposed a mixed-space
approach to calculate directly the out-of-plane component
within TD-DFT. It shows how the Adler and Wiser formula
suffers from the definition of the thickness of the slab. To
understand the feature of these ab initio results, we adapted in
Sec. III the classical Lorentz model to the case of a finite slab,
which explains how the huge change of the induced electric
field modifies the calculation of the macroscopic dielectric
function giving the absorption spectrum for the in-plane com-
ponent. Despite the influence of the definition of the thickness
of the slab on the optical response, we show in Sec. IV that
the reflectance and transmittance of a thin slab resulting from
classical electromagnetism can be unambiguously calculated
from the mixed-space simulations.

II. TD-DFT: MIXED-SPACE APPROACH

A. Dyson equation

In this approach, the in-plane directions, where the system
is infinite and periodic, are treated in the reciprocal space,
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while the out-of-plane direction (taken along z), where the
system is finite and the periodicity broken, is treated in the real
space. The starting point of our calculation is the Kohn-Sham
structure evaluated within DFT-LDA [33,34] using ABINIT

[35], followed by the independent particle response function,
obtained in reciprocal space via DP-CODE [36]. Its mixed-
space representation is obtained as

χ0
GG′ (q, ω) −→ χ0

G||G|| ′ (q||, z, z′, ω)

= 1

Lz

∑
Gz,G′

z

e−i(Gz+qz )zχ0
GG′ (q, ω)ei(qz+G′

z )z′
.

Since we are interested in the definition of interfaces, char-
acterized by a huge change of the electronic density, we will
work in the random phase approximation (RPA), which ne-
glects the exchange and correlation effects, but accounts for
the response of the matter at the atomic scale, the so-called
local field effects (LFE), through the Hartree potential vCoul.
The Dyson equation in the mixed space reads as

χG||G′
|| (q||, z, z′, ω)

= χ0
G||G′

||
(q||, z, z′, ω)

+
∑

G1||G2||

∫ ∞

−∞
dz1

∫ ∞

−∞
dz2 χ0

G||G1|| (q||, z, z1, ω)

×vcoul
G1||G2|| (q||, z1, z2)χG2||G′

|| (q||, z2, z′, ω). (8)

We stress out that Eq. (8) is equivalent to its reciprocal space
representation and depicts a system infinite and periodic in all
directions. Indeed, the integration in z1 and z2 is performed
from −∞ to +∞, meaning that the Hartree potential felt by
the electrons will be the potential induced by all the replicas.
To get the response of the isolated slab, we have to eliminate
the potential induced by the replicas. This can be achieved
applying a cutoff in the z direction to the Coulomb potential
operator[16]:

vcoul(q||, z, z′) −→
ṽcoul(q||, z, z′) = vcoul(q||, z, z′)

×�

(
z + L

2

)
�

(
− z + L

2

)
�

(
z′ + L

2

)
�

(
− z′ + L

2

)
.

(9)

Substituting (9) in Eq. (8), we obtain the Dyson equation for
an isolated slab:

χG||G′
|| (q||, z, z′, ω) = χ0

G||G′
||
(q||, z, z′, ω)

+
∑

G1||G2||

∫ L/2

−L/2
dz1

∫ L/2

−L/2
dz2 χ0

G||G1|| (q||, z, z1, ω)

×vcoul
G1||G2|| (q||, z1, z2)χG2||G′

|| (q||, z2, z′, ω). (10)

B. Mixed-space representation of the Coulomb
potential operator

In the mixed-space representation, the Coulomb potential
operator is

vCoul
G‖G′

‖
(q‖, z, z′) = δG‖G′

‖
2π

|q‖ + G‖|e−|q‖+G‖|·|z−z′ |. (11)

It is the electrostatic potential induced by a planar charge
distribution modulated in the in-plane direction by an oscilla-
tion of wave vector q‖ + G‖. This expression is divergent for
q‖ + G‖ = 0. In Ref. [18], we solved the Dyson equation with
this diverging potential, which requires to calculate εM for
(q‖), (q‖ + qz ), and (q‖ − qz ) and to extract the qz component
from a linear combination. Moreover, the purpose of this
previous work was to mimic a surface, namely, a very thick
slab, so the value of |q| was set to ∼1 [37], in order to fulfill
the condition |q‖|L/2 � 1.1 In this work, we focus on the
ultrathin object in the optical limit, so we keep a vanishing
q vector. Moreover, we want to describe the response of the
system to an external perturbation directed out of plane (i.e.,
having q‖ ≡ 0). vCoul for q‖ + G‖ = 0 corresponds to the
potential created by a planar and homogeneous distribution
of charge. An infinite positively (negatively) homogeneously
charged plane induces an electric field constant and uniform
diverging from (converging to) the plane. The Coulomb poten-
tial operator in the mixed-space representation is thus given,
for q‖ ≡ 0, by

vCoul
G‖G′

‖
(q‖ = 0, z, z′)

= δG‖G′
‖ ×

⎧⎨
⎩

−2π |z − z′| for G‖ = 0,

2π
|G‖|e

−|G‖|·|z−z′ | for G‖ �= 0.

C. Out-of-plane response and the Lmat problem

The independent particle response function has been cal-
culated in the optical limit (q = 10−5 bohrs−1, with q = qẑ).
Since we expect the local fields to be weak in the in-plane
direction [38], we evaluated the χ0

GG′ on a set of G vectors
of the form (0, 0, Gz ). The interacting response function has
been calculated solving the discretized Dyson equation [18]
using the potential vCoul(z, z′) = −2π |z − z′|. In Fig. 1 we re-
port the macroscopic average of the density response function,
calculated within the mixed-space approach for the silicon
slab (orange line):

〈χ〉 = 1

Lsupercell

∫
dz dz′e−iqzzχ (z, z′)eiqzz′

.

The peak of the density response function is located at
∼17 eV, like for the bulk silicon (blue dashed). This leads us

1In this condition, Eq. (9) of Ref. [18] allows us to recover the
absorption spectrum for the in-plane and out-of-plane directions
(Fig. 3). The Adler and Wiser formula is valid provided the thickness
of the slab is defined to the atomic positions, which corresponds to
the value used in [18]. In this former work, this was achieved by
normalizing χ 0 by the factor Lmat/Lsupercell

z , where Lmat was defined
with the atomic positions (∼40 bohrs).
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0 5 10 15 20
Energy (eV)

0

−1

−2

−3

Im
〈χ

〉
×10−11

bulk

slab (out-of-plane)

FIG. 1. Macroscopic average of the density response function of
silicon (out-of-plane perturbation) for a slab (orange) and the bulk
(dashed blue).

to calculate the dielectric function using a similar procedure
as for the bulk:

εM,⊥ = 〈E ext
⊥ 〉

〈E ext
⊥ 〉 + 〈E ind

⊥ 〉 = 1

1 + 〈E ind
⊥ 〉

〈E ext
⊥ 〉

, (12)

where 〈E ext
⊥ 〉 and 〈E ind

⊥ 〉 are, respectively, the macroscopic
averages of the external and the induced electric fields. The
induced field can be derived from the interacting response
function. Let us suppose that the slab is perturbed by an
external field directed orthogonally to the surface, of infinite
wavelength, oscillating in time at frequency ω:

vext(z, t ) = vext(z, ω)eiωt = zeiωt .

It results that

E ext
⊥ (z, ω) = − ∂

∂z
vext(z, ω) = −1.

The density variation and induced electric field are obtained
according to

δρ(z, ω) =
∫

dz′χ (z, z′, ω)vext(z′, ω)

and

E ind
⊥ (z, ω) = − ∂

∂z

∫
dz′vCoul(z, z′)δρ(z′, ω).

These two quantities are plotted in Fig. 2. The induced density
(red solid line) exhibits a charge accumulation of opposite
sign on the surfaces, while the induced electric field (blue
dashed line) is roughly uniform and constant inside the slab,
while it is zero outside, as expected for a slab perturbed
perpendicularly to the surface.

To evaluate expression (12), one needs to perform the
macroscopic average of fields, namely, integrate them on a
given space region and divide by the size of the integration
range. It is trivial for the external macroscopic field (〈E ext

⊥ 〉 =
−1). Since E ind

⊥ is not uniform in space, to accomplish the
average operation, the interval where the integration is per-
formed has to be established:

〈E ind
⊥ 〉 = 1

Lmat

∫ Lmat/2

−Lmat/2
dz′E ind

⊥ (z′, ω). (13)

−40 −20 0 20 40
z (Bohr)

−0.02

−0.01

0.00

0.01

0.02

R
e[
δρ

in
d
]

Re[δρind]

Re[Eind]
-1.0

-0.5

0.0

0.5

1.0

R
e[
E

in
d
]

ω = 5 eV

FIG. 2. Profile (real part) of the induced density (red) and electric
field (dashed blue) for a silicon slab (out-of-plane perturbation of
infinite wavelength and frequency: ω = 5 eV).

In Fig. 3, we report several calculations of the dielectric func-
tions [Eq. (12)], for different choices of the interval Lmat used
to average the induced field. When we consider the whole
supercell (Lmat = 104 bohrs, Fig. 3 (orange crosses), we ob-
tain the same result as the standard supercell approach (i.e.,
in reciprocal space using the 3D Coulomb potential,) which
corresponds to an effective medium theory with vacuum [18].

Reducing the interval (Fig. 3), the absorption peak shifts
toward lower energies and its amplitude increases as for EMT.
The reduction of 〈E ind

⊥ 〉 does not compensate the reduction of
the length of integration Lmat. When we take Lmat = 40 bohrs
(gray region of Fig. 2), corresponding to the atomic positions
of the topmost and bottommost layers (Fig. 3, black circles)
the absorption peak is situated at 4 eV like in the bulk silicon
spectrum (Fig. 3, red dashed dotted). One notes that we also
recover the spectrum of the right panel of Fig. 4 of Ref. [18],
where the value of Lmat was also 40 bohrs. Even if it is
meaningless to integrate up to 104 bohrs, since we obviously
include vacuum, the problem appears critical in the region
between 52 and 40 bohrs (Figs. 3 and 2). The question which
arises naturally is how to define the thickness of the matter
since the region where δρ(z, ω) �= 0 (and the induced field
as well) is quite larger than the region defined by surface

0 5 10 15 20
Energy (eV)

0

10

20

30

40

Im
[ε

(q
ẑ ,

ω
)]

Bulk
Lmat = 104 Bohr

Lmat = 52 Bohr

Lmat = 46 Bohr

Lmat = 40 Bohr

FIG. 3. Imaginary part of the out-of-plane component of the di-
electric function for several integration domains for E ind

⊥ [Eq. (13)].
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atomic layers (Fig. 2). A similar finding has been reported
for surfaces [39,40] and 2D objects [41,42]. Equation (7)
would also give similar results. For Lmat ∼ 52 bohrs, where
the induced density and electric field reach zero, the peak is
located at ∼8 eV (Fig. 3, blue diamonds). This is what we
call “the Lmat problem”: there is not a clear way to define the
slab thickness, and this uncertainty affects in a dramatic way
the calculation of the dielectric function, making in practice
ambiguous the calculation of the absorption spectrum with the
Adler and Wiser formula.

D. In-plane response

We computed the independent particle response function
in the reciprocal space for q = qx̂ (in-plane direction), in the
optical limit (|q| = 10−5 bohrs−1). We solved the discretized
Dyson equation [18] with the potential defined in Eq. (11) to
find the interacting response function of the isolated slab. We
want to use this quantity to obtain the macroscopic dielectric
function. In the case of a infinite and periodic material, the
standard procedure is to calculate the inverse dielectric func-
tion [Eq. (1)] and obtain the macroscopic dielectric function
according to Eq. (2), which can be rewritten as

εM = 1

ε−1
00

= vext
0

vtot
0

. (14)

In analogy with Eqs. (1) and (14), we evaluated the micro-
scopic inverse dielectric function

ε−1(q‖, zi, z j ; ω) = δi j

�z
+

∑
l

vCoul(zi, zl )χ (q‖, zl , z j ; ω)�z

and we extracted its macroscopic average

〈ε−1〉(q, ω) = 1

LSC

∑
i j

e−iqzziε−1(q‖, zi, z j ; ω)eiqzz j �2
z . (15)

Finally, we calculated

1

〈ε−1〉 (q, ω). (16)

FIG. 4. In-plane dielectric function of the silicon slab calculated
according Eqs. (15) and (16) (solid black) or Eqs. (38) and (39)
(dashed blue).

0 5 10 15 20
Energy (eV)

0

10

20

30

40

Im
ε M

(x̂
,ω

)

Bulk
Lmat=104 Bohr

Lmat = 52 Bohr

Lmat = 46 Bohr

Lmat = 40 Bohr

FIG. 5. Imaginary part of the in-plane components of the dielec-
tric function for several integration domains for 〈χ〉 [Eqs. (17) and
(18)].

The result of this calculation is shown in Fig. 4: it has a peak at
4 eV (like bulk silicon), but, compared to the dielectric func-
tion of bulk silicon (Fig. 3, red dashed dotted), it is suppressed
of about four orders of magnitude. The real part is ≈1, while
the imaginary part is almost zero. The quantity calculated
according to Eq. (16) (Fig. 4) actually corresponds to the
result of Eq. (3) [20]. Moreover, the result is proportional to
|q|. In Sec. III C, we will explain the physical meaning of this
behavior, and demonstrate that the in-plane dielectric function
is [Eq. (45)]

εM,‖ = 1 − 4π

|q|2 〈χ〉, (17)

where

〈χ〉 = 1

Lmat

∫
dz

∫
dz′ χ (q‖, z, z′). (18)

This procedure is similar to Eq. (4), and it would give the
same spectra, provided Lmat and d are equal. The spectrum
calculated with Eqs. (17) and (18) is reported in Fig. 5 for
different values of Lmat: the correct order of magnitude for the
amplitude is recovered, contrarily to Fig. 4. Choosing Lmat =
40 bohrs (distance between the interfacial atomic planes of the
slab), we recover the amplitude of the bulk silicon (Fig. 5, red
dashed dotted). Due to the fact that the χ (z, z′) goes rapidly
to zero out of the region occupied by atoms, the integration
is independent on the choice of Lmat, so the definition of the
thickness of the matter just acts as a scaling factor, contrarily
to out-of-plane component (Fig. 3). Nevertheless, even in the
case of in-plane perturbation, the uncertainty on the thickness
Lmat affects the definition of the dielectric function.

III. LORENTZ MODEL

We have established that the response function of an iso-
lated thin slab exhibits two peaks: the first one appears for
an in-plane excitation and is located at the resonance of ab-
sorption of the bulk material, and the second one, resulting
from an out-of-plane perturbation is located at the plasmon
frequency of the bulk material. The relation between the den-
sity response function and the optical response of a thin slab
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appears completely different from the one of the infinite 3D
crystal. To clarify this puzzling result, we propose to approach
the problem within a simple Lorentz oscillators model, where
electrons are depicted as ne classical oscillators per unit of
volume having charge e and mass me, bound to the nuclei
by an elastic force of frequency ω0. We consider an external
longitudinal perturbation of the form

Eext(r, t ) = Eext
0 eiq·r−iωt .

The displacement of the oscillator in r at time t is given
by the vector field �(r, t ). Each oscillator feels an harmonic
force −meω

2
0�, a dampening force −(me/τ )�̇, and the elec-

trostatic forces given by the external and induced electric
fields. The equation of motion reads as

me�̈(r, t )

= −meω
2
0�(r, t ) − me

τ
�̇(r, t ) + eEext(r, t ) + eEind(r, t ).

(19)

The polarization density is expressed as

P(r, t ) = nee�(r, t )

and the induced charge density

ρ ind(r, t ) = −∇ · P(r, t ).

In Appendix A, we summarized the results for the infinite
material to allow the comparison with the slab.

A. In-plane perturbation

We consider an external longitudinal perturbation having
the field parallel to the surface:

Eext = E0eiq|| ·r−iωt

with q‖ and E0 are chosen along x̂ (Fig. 6).
We search for a solution of the form

�(r, t ) = �

(
z + L

2

)
�

(
− z + L

2

)
�0eiq‖·r−iωt with �0 ‖ x̂

which implied a polarization density

P(r, t ) = ene�

(
z + L

2

)
�

(
− z + L

2

)
�0eiq‖·r−iωt . (20)

Such a charge distribution induces an electrostatic potential
(see Appendix B):

φind(r, t ) = − 4π

|q‖|2 ieneq||F (z)�0eiq||x−iωt ,

where F (z) is

F (z) =

⎧⎪⎪⎨
⎪⎪⎩

e−|q‖|z sinh(|q‖|L/2) for z > L/2,[
1 − e−|q‖| L

2 cosh(|q‖|z)
]

for z ∈ [ − L
2 , L

2

]
,

e|q‖|z sinh(|q‖|L/2) for z < −L/2.

The in-plane component of the induced electric field is given
by

E ind
x (r, t ) = − ∂

∂x φ
ind(r, t ) = −4πeneF (z)�0eiq‖x−iωt (21)

FIG. 6. Slab undergoing an external longitudinal perturbation of
wave vector q and frequency ω, with the electric field parallel to the
surface.

and the component of the induced electric field orthogonal to
the surface by

E ind
z (r, t ) = − ∂

∂z
φind(r, t )

= 1
|q‖|4π inee

(
∂

∂z
F (z)

)
�0eiq‖x−iωt . (22)

Let us consider the expression of the induced electric field
[Eqs. (21) and (22)] in two limits:

(1) |q‖| L
2 � 1 (thickness much greater than the perturba-

tion wavelength). The induced field inside the slab, far from
the surfaces (|z| � L) is

E ind
x (r, t )

|q‖| L
2 �1−−−−→ −4πnee�0eiq‖x−iωt , (23)

E ind
z (r, t )

|q‖| L
2 �1−−−−→ 0. (24)

We recover the electric field induced in a bulk [Eq. (A2)].
(2) |q‖| L

2 � 1 (limit of thickness much smaller than the
perturbation wavelength).2 The induced electric field inside
the slab is

E ind
x (r, t )

|q‖| L
2 �1−−−−→ −4πneeq‖

L

2
�0eiq‖x−iωt , (25)

E ind
z (r, t )

|q‖| L
2 �1−−−−→ −i4πnee|q‖|z�0eiq‖x−iωt . (26)

We evidence that the electric field induced inside a thin
slab is, with respect to the case of the bulk, smaller of a factor
(|q‖|L/2). This implies that

E ind
z , E ind

x ∼ |q‖|L/2 � |Eext| (27)

and justifies the guess �(r, t ) ‖ q.
The induced field is strongly depressed compared to the

bulk case due to the long-range and nonlocal nature of the
Coulomb interaction. Most of charges contributing to the po-
tential inside the slab are suppressed when the two parallel
half-spaces are cut away to define the slab.

2Corresponding to our ab initio calculation.
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FIG. 7. Density response function of the slab within the Lorentz
model (for an in-plane perturbation of long wavelength).

In the following, we will focus on the limit |q‖| L
2 � 1.

Using Eq. (25), we can solve the equation of motion and
express the displacement of oscillators as a function of the
external field:

�0 = e

me

1

−ω2 + ω2
0 − i ω

τ
+ ω2

pl |q‖| L
2

Eext
0 (28)

leading to the response function of density (Fig. 7)

χ = |q‖|2
4π

ω2
pl

ω2 − ω2
0 + i ω

τ
− |q‖|L

2 ω2
pl

. (29)

It presents a significant difference as compared to its bulk
counterpart [Eq. (A4)]. Contrarily to the case of the bulk, the
maximum of this quantity is located at√

ω2
0 + |q‖|L

2
ω2

pl ≈ ω0.

The electrons behave as independent particles. The displace-
ment of oscillators can be recasted as a function of the total
field:

�(r, t ) = e

me
�

(
z + L

2

)
�

(
− z + L

2

)

× 1

−ω2 + ω2
0 − i ω

τ

Etot(r, t ) (30)

to get the conductivity and the dielectric function (see
Sec. III C).

B. Out-of-plane perturbation

Let us consider a slab undergoing an external perturbation
of infinite wavelength orthogonal to the surface [Fig. 8(a)]:

Eext(r, t ) = Eext
0 e−iωt with Eext

0 ‖ ẑ.

We make a guess on the functional form of �(r, t ):

�(r, t ) = �

(
z + L

2

)
�

(
− z + L

2

)
�0e−iωt with �0 ‖ ẑ,

where � is the Heaviside function, which means that the
displacement of oscillators is uniform on the slab, and zero

FIG. 8. (a) Slab undergoing an external electric perturbation of
infinite wavelength orthogonal to the surface. (b) Accumulation of
charges of opposite sign, resulting in an induced electric field uni-
form and constant inside the slab, and zero outside.

outside. The polarization density is

P(r, t ) = nee�

(
z + L

2

)
�

(
− z + L

2

)
�0e−iωt .

The induced density is

ρ ind(r, t ) = −nee�0e−iωt

[
δ

(
z + L

2

)
− δ

(
− z + L

2

)]
.

As expected, the induced density of charge of a slab in an
external field of infinite wavelength orthogonal to the surface
is constituted by two planar distributions of opposite sign
located on the faces of the slab [Fig. 8(b)]. Such a charge
distribution induces the electrostatic potential

φind(z, t ) = −
∫

dz′2π |z − z′|ρ ind(z′, t )

= 2πnee�0e−iωt

(∣∣∣∣z + L

2

∣∣∣∣ −
∣∣∣∣z − L

2

∣∣∣∣
)

= 2πnee�0e−iωt

⎧⎨
⎩

L for z > L/2,

2z for − L/2 < z < L/2,

−L for z < −L/2,

leading to the induced electric field:

Eind(r, t ) = −4πnee�

(
z + L

2

)
�

(
− z + L

2

)
�0e−iωt .

(31)

Eind is parallel to �0 which justifies the guess �0 ‖ ẑ. It is
zero outside the slab, while inside, it is uniform and homoge-
neous. We recover the results obtained within the mixed-space
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approach for the out-of-plane perturbation (Fig. 2). This cor-
responds to the known case of a capacitor in an electric field
perpendicular to the slab. One notes that the value of the
induced field inside the slab is equal to the one of the bulk.
Surprisingly, it is in the direction where the matter has been
cut that we recover the bulk result. Using the relation between
the displacement and the induced electric field, we obtain the
relation between the displacement and the external electric
field

�0 = e

me

1

−ω2 + ω2
0 − i ω

τ
+ ω2

pl

Eext
0 , (32)

and the relation between the displacement and the total elec-
tric field

�(r, t ) = e

me
�

(
z + L

2

)
�

(
− z + L

2

)

× 1

−ω2 + ω2
0 − i ω

τ

Etot(r, t ) (33)

which will allow us to derive the dielectric function.

C. Dielectric function

From Eqs. (33) and (30) we can express the current density
J(r, t ) as a function of the total electric field to extract the
conductivity

σ (ω) = 1

4π

iωω2
pl

ω2 − ω2
0 + i ω

τ

(34)

and the dielectric function, via the expression (A6):

ε(ω) = 1 − ω2
pl

ω2 − ω2
0 + i ω

τ

. (35)

Surprisingly, despite the important differences in the response
of the slab according to the direction of the perturbation
[Eqs. (32) and (28)], the dielectric function is the same. The
relation between the dielectric function and the density re-
sponse function depends on the direction of the perturbation.
This relation is typically expressed by Eq. (14). This equa-
tion is written in reciprocal space, and refers to systems which
are periodic. This is not the case for the slab of oscillators
depicted in Figs. 8 and 6 which are finite and isolated in
the out-of-plane direction, making definition of cell-averaged
quantities meaningless. We propose to calculate the dielectric
function in analogy with Eq. (14), replacing the cell-averaged
quantities with the fields averaged over the slab:3

εM = 〈E ext〉slab

〈E ext〉slab + 〈E ind〉slab.
(36)

Replacing in Eq. (36) the induced field reported in Eq. (31),
one obtains

εM = 〈E ext
⊥ 〉slab

〈E ext
⊥ 〉slab + 〈E ind

⊥ 〉slab
= 1 − ω2

pl

ω2 − ω2
0 + i ω

τ

(37)

3Here 〈·〉slab stand for

〈 f (z)〉slab = 1

L

∫ L/2

L/2
f (z)dz.

and the result reported in Eq. (35) is recovered. The case of
the in-plane component is more puzzling. Replacing Eq. (21)
in (36), one obtains

εM = 〈E ext
‖ 〉slab

〈E ext
‖ 〉slab + 〈E ind

‖ 〉slab
(38)

which in the limit q||L/2 � 1 reduces to

〈E ext
‖ 〉slab

〈E ext
‖ 〉slab + 〈E ind

‖ 〉slab
≈ 1 − |q‖|L

2

ω2
pl

ω2 − ω2
0 + i ω

τ

. (39)

We reported this result in Fig. 4 (dashed blue). The dielectric
function calculated according formula (38) has real part ≈1
and imaginary part ≈0. This feature is similar to the one
calculated within the mixed-space framework with Eq. (15)
(Fig. 4, black line). Equation (39) allows us to interpret this
result: it is a consequence of the strong reduction of the
induced field occurring in the limit of thin slab. We stress
out that, since the induced field has been averaged over the
slab, this result cannot come from an effective medium theory
with vacuum, but it is a real physical effect due to the reduced
size of the slab. The situation is quite confusing: the dielectric
function calculated through the conductivity [Eq. (35)] and
the one calculated by mean of formula (38) depict totally
different physics due to the |q‖|L/2 prefactor. The last part
of the present section will be devoted to elucidate this point.

The macroscopic dielectric function is defined as the quan-
tity which relates the electric displacement D with the electric
field E:

D =↔
ε M E, (40)

where the electric displacement D is defined by the constitu-
tive relation

D = E + 4πP. (41)

When an infinite material undergoes a longitudinal external
perturbation, the induced electric field and the polarization of
the system are linked by the following relation [27]:

Eind = −4πP. (42)

From the latter equation and the constitutive relationship (41),
it follows that

D = Eext. (43)

Putting Eq. (43) in (40), we immediately obtain

εM = E ext

E ext + E ind
.

However, the comparison of Eqs. (21) and (20) shows that for
an in-plane perturbation in a thin slab,

−4πP �= Eind ⇒ D �= Eext

and, therefore, Eqs. (42) and (43) are no more valid in the
case of a 2D system. Moreover, one can show that P is no
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more purely longitudinal, contrarily to the induced field Eind

(see Appendix C). So, we have

DL + DT = Eext
L + Eind

L + 4πPL + 4πPT .

The fact that a purely longitudinal perturbation induces also a
transverse polarization may be source of perplexity. However,
it has been already reported by Del Sole and Fiorino [43]
that for infinite materials of cubic symmetry, a longitudinal
perturbation always produces a purely longitudinal response,
but this is no more valid when noncubic symmetry is consid-
ered, or when interfaces are taken into account. We show it
explicitly in Eq. (C1) for the latter case.

However, the constitutive equation (41) is still valid, and
(assuming the diagonality of the tensor) the in-plane compo-
nent may be obtained as

εM,‖ = 〈E ext
‖ 〉slab + 〈E ind

‖ 〉slab + 4π〈P‖〉slab

〈E ext
‖ 〉slab + 〈E ind

‖ 〉slab
. (44)

In the limit of thick slab [Eq. (23)], the induced field ap-
proaches the bulk result, the condition (42) is recovered, and
equation (44) becomes

εM,‖
|q‖| L

2 �1−−−−→ 〈E ext
‖ 〉slab +��������〈E ind

|| 〉slab +����������4π〈P||〉slab

〈E ext
‖ 〉slab + 〈E ind

‖ 〉slab

= 〈E ext
‖ 〉slab

〈E ext
‖ 〉slab + 〈E ind

‖ 〉slab
.

We reobtain the expression valid for the infinite material. In
the limit of thin slab, the induced field becomes negligible as
compared to the external one, and we have

εM,‖
|q‖|| L

2 �1−−−−→ 〈E ext
‖ 〉slab +��������〈E ind

|| 〉slab + 4π〈P‖〉slab

〈E ext
‖ 〉slab + ��������〈E ind

|| 〉slab

= 1 + 4π
〈P‖〉slab

〈E ext
‖ 〉slab

.

Exploiting the relation between polarization and induced
charge density we can express P‖ as

iq‖P‖ = 1

iq‖
χE ext

so that we obtain

εM,‖
|q||| L

2 �1−−−−→ 1 − 4π

q2
‖

〈χ〉. (45)

This proves that Eq. (45) should be used to calculate in-plane
optical properties of thin films and 2D systems. The spectra
calculated with Eq. (45), where 〈χ〉 has been obtained within
mixed-space approach (see Sec. II D), have been presented in
Fig. 5. We have evidenced that the expected amplitude was
recovered.

In conclusion, we elucidated the differences between the
response of the slab and a bulk system to an external longitu-
dinal perturbation, for both in- and out-of-plane perturbations.
The most puzzling result concerns the in-plane case. The cor-
rect relationship to calculate the dielectric function is Eq. (44).
In the case of a bulk, it is equivalent to Eq. (38), and one
recovers the well-known result that for bulk cubic materials, in
the optical limit, the longitudinal-longitudinal component of
the dielectric function can be used to calculate the transverse-
transverse one, leading to absorption [13–15]. For the slab, the
presence of a transverse polarization implies that one should
apply Eq. (44). Even if it is not trivial to identify the compo-
nents of the dielectric tensor, in the limit of thin slab, Eq. (44)
reproduces the expression commonly admitted to describe
absorption of 2D systems, and that we have demonstrated
in Eq. (45). We believe that a key role in reproducing such
result is played by the inclusion of the transverse part of the
polarization.

IV. LINK WITH THE EXPERIMENT: REFLECTANCE
AND TRANSMITTANCE

As we have seen in the previous sections, the spectral
weight of the εM , and especially for the out-of-plane compo-
nent, is strongly affected by the definition of the thickness of
the matter. In order to understand which physics could be con-
tained in these quantities, we propose to study numerically the
reflectance and transmittance as optical observables. Using a
transfer matrix formalism for a slab of biaxial material in vac-
uum [44],4 we express the reflection and transmission coeffi-
cients. For p polarization (which allows the presence of a com-
ponent of the electric field perpendicular to the surface), we
get

rpp = i sin(κp)[1 − 1/ε⊥ sin2(θ ) − ε‖ cos2(θ )]

2
√

ε‖
√

1 − [1/ε⊥ sin2(θ )] cos(κp) cos(θ ) − i sin(κp)[1 − 1/ε⊥ sin2(θ ) + ε‖ cos2(θ )]
, (46)

tpp = 2
√

ε‖
√

1 − [1/ε⊥ sin2(θ )] cos(θ )

2
√

ε‖
√

1 − [1/ε⊥ sin2(θ )] cos(κp) cos(θ ) − i sin(κp)[[1 − 1/ε⊥ sin2(θ )] + ε‖ cos2(θ )]
, (47)

with κp = ω

c
Lmat

√
ε‖

√
1 − [1/ε⊥ sin2(θ )].

4For one isotropic film, the matrix transfer formalism reproduces
the well-known Airy’s formulas [45–48].

As ε‖ and ε⊥ in Eqs. (46) and (47) we use the spectra
presented in Figs. 5 and 3 associated to the same Lmat. The
reflectance |rpp|2 and transmittance |tpp|2 spectra are shown in
Fig. 9 for an incident angle of θ = 45◦. All the spectra calcu-
lated using the different εM,‖ and εM,⊥ each associated with the
corresponding Lmat, are similar. This interesting and somehow
comforting result shows that the ambiguity on the definition of
the thickness of matter has no consequence on the observables
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FIG. 9. (a) Reflectance |rpp|2 [Eq. (46)] and (b) transmittance
|tpp|2 [Eq. (47)] for anisotropic dielectric functions of Figs. 5 and
3.

which should be measured in an optical experiment. This
observation leads to the important conclusion that any value
of Lmat can be used when the calculation of these quantities
is under concern. Moreover, it confirms that the quantities
calculated within the longitudinal formalism of TD-DFT
can still be used to extract the optical response for a thin
slab.

V. CONCLUSION

In this paper, we showed that the Adler and Wiser for-
mula which, in 3D systems, allows the calculation of the
absorption spectrum, cannot be used for a very thin object.
For a longitudinal perturbation parallel to the plane, the in-
tegration of ε−1(z, z′) on a range corresponding to the limit
where the induced density reaches zero gives a nonlocal
quantity, almost equal to 1, depicting the screening. In this
case, the Adler and Wiser formula gives an absorption spec-
trum underevaluated of several orders of magnitude, and |q|
dependent (Fig. 4). Thanks to the Lorentz model, we evi-
denced that the induced electric field is strongly reduced, and
the polarization contains a transverse part. This allows us to
demonstrate that the macroscopic dielectric tensor, leading to
the absorption spectrum, is proportional to the macroscopic

response function 〈χ (q||)〉 of the isolated slab [Eq. (45)].
It presents a resonance at the absorption frequency of the
bulk counterpart (Fig. 5). For an out-of-plane perturbation,
we showed that, due to charge accumulation on interfaces
(Fig. 2), the induced electric field and polarization are sim-
ilar to the bulk ones, leading to the bulk definition of the
macroscopic dielectric function. The Adler and Wiser formula
seems to be valid, and one would expect a resonance at the
absorption frequency of the bulk counterpart [Eq. (37)]. But
the result is strongly affected by the ambiguity of the defi-
nition the thickness of the matter. Nevertheless, we showed
that this so-called Lmat problem has no consequence on the
measured optical quantities like reflectance and transmittance,
in agreement with the fact that for a quasi-2D object, the
physical quantities should be defined proportionally to the
thickness.
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APPENDIX A: LORENTZ MODEL: INFINITE SYSTEM

Solution of Eq. (19) is well known for the case of an infinite
system:

�(r, t ) = �0eiq·r−iωt . (A1)

This displacement of electrons produces an induced field of
the form

Eind = −4πnee�(r, t ) (A2)

resulting in the following relationship between the displace-
ment of electrons and the external field:

�0 = e

me

1

−ω2 + ω2
0 − i ω

τ
+ ω2

pl

Eext
0 . (A3)

From this relation, we can extract the response function of
density, which links the induced density with the external
potential:

χρρ = |q|2
4π

ω2
pl

ω2 − ω2
0 + i ω

τ
− ω2

pl

. (A4)

We recover the well-known result that in a bulk material,
the density response function exhibits a resonance associated

with the plasmon frequency:
√

ω2
0 + ω2

pl . We can rewrite the

displacement of electrons as a function of the total field:

�(r, t ) = e

me

1

−ω2 + ω2
0 − i ω

τ

Etot(r, t ). (A5)

From this relation, we can derive an expression of the induced
current as a function of the electric field:

Jind(r, t ) = nee�̇(r, t ) = 1

4π

iωω2
pl

ω2 − ω2
0 + i ω

τ

Etot(r, t )

= σ (ω)Etot(r, t ),
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which defines the conductivity

σ (ω) = 1

4π

iωω2
pl

ω2 − ω2
0 + i ω

τ

.

The dielectric function is obtained via the relation [49]

ε(ω) = 1 + 4π iσ (ω)

ω
(A6)

giving

ε(ω) = 1 − ω2
pl

ω2 − ω2
0 + i ω

τ

.

APPENDIX B: POTENTIAL INDUCED IN A THIN SLAB BY
AN IN-PLANE PERTURBATION

Using the expression of polarization [Eq. (20)] the induced
density of charge can be expressed as

ρ ind(r, t ) = −∇ · P(r, t )

= −iq‖ene�

(
z + L

2

)
�

(
− z + L

2

)
�0eiq‖·r−iωt .

This density can be seen as a distribution of planes orthogonal
to the z axis, each of them containing a surface distribution of
charge oscillating in time and spatially modulated by a wave
vector q‖. It can be rewritten as

ρ ind(r, t ) = −ineeq‖�0

∫ L/2

−L/2
dz′δ(z − z′)eiq‖r‖−iωt . (B1)

The potential induced by a planar distribution of charge of the
form eiq‖r‖ located in z′ is given by

v(q‖, z, z′) = 2π

|q‖|e−|q‖||z−z′ |.

The potential induced by (B1) is

φind =
∫

dz′v(q‖, z, z′)ρ ind(r′, t )

= − 2π

|q‖| ieneq‖�0eiq‖r‖−iωt
∫ L/2

−L/2
dz′e−|q‖||z−z′|.

The integral must be evaluated for the three regions of the
space z < −L/2, −L/2 < z < L/2, and z > L/2. It comes

∫ L/2

−L/2
dz′e−|q‖||z−z′ | =

⎧⎪⎪⎨
⎪⎪⎩

2
|q‖|e

−|q‖|z sinh(|q‖|L/2) for z > L/2,

1
|q‖| [2 − 2e−|q‖| L

2 cosh(|q‖|z)] for − L/2 < z < L/2,

2
|q‖|e

|q‖|z sinh(|q‖|L/2) for z < −L/2.

The induced potential is then

φind = − 4π

|q‖| ieneq‖F (z)�0eiq‖r‖−iωt ,

where we have defined, for sake of clarity, the function F (z):

F (z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

e−|q‖|z sinh(|q‖|L/2) for z > L/2,[
1 − e−|q‖| L

2 cosh(|q‖|z)

]
for − L/2 < z < L/2,

e|q‖|z sinh(|q‖|L/2) for z < −L/2.

APPENDIX C: TRANSVERSE POLARIZATION FROM
LONGITUDINAL PERTURBATION

In a thin slab, a longitudinal perturbation parallel to the
surface can induce a polarization containing also a transverse
part. When a vector field V(r) = V0(r)eiq·r has a spatial de-
pendency which is not only contained in the plane-wave part
eiq·r, the transverse or longitudinal nature is not simply related
to the direction of the field compared to the wave vector q.
It must be seen for each Fourier component Ṽ(k), which is
achieved by the calculation of the divergence or the curl of the

field [50,51]:

For a purely transverse field:

∇ · V(r) ≡ 0 ⇐⇒ ik · Ṽ(k) ≡ 0 ∀ k,

For a purely longitudinal field:

∇ × V(r) ≡ 0 ⇐⇒ ik × Ṽ(k) ≡ 0 ∀ k.

For the induced field we have

∇ × Eind = ∇ × ∇φind ≡ 0.

For the polarization [Eq. (20)] we have

∇ × P =
⎛
⎝ 0

∂zPx

0

⎞
⎠

=
⎛
⎝ 0[

δ
(
z + L

2

) − δ
( − z + L

2

)]
eneeiq‖r‖−iωt

0

⎞
⎠ �= 0.

(C1)

This establishes that the induced polarization contains a
transverse part, while the induced electric field is purely lon-
gitudinal.
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[3] S. Öğüt, J. R. Chelikowsky, and S. G. Louie, Quantum Confine-
ment and Optical Gaps in Si Nanocrystals, Phys. Rev. Lett. 79,
1770 (1997).

[4] C. Delerue, G. Allan, and M. Lannoo, Dimensionality-
Dependent Self-Energy Corrections and Exchange-Correlation
Potential in Semiconductor Nanostructures, Phys. Rev. Lett. 90,
076803 (2003).

[5] L. Wirtz, A. Marini, and A. Rubio, Excitons in Boron Nitride
Nanotubes: Dimensionality Effects, Phys. Rev. Lett. 96, 126104
(2006).

[6] K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Atomically
Thin mos2: A New Direct-Gap Semiconductor, Phys. Rev. Lett.
105, 136805 (2010).

[7] G. Onida, L. Reining, and A. Rubio, Electronic excita-
tions: density-functional versus many-body green’s-function
approaches, Rev. Mod. Phys. 74, 601 (2002).

[8] E. Runge and E. K. U. Gross, Density-Functional Theory for
Time-Dependent Systems, Phys. Rev. Lett. 52, 997 (1984).

[9] E. K. U. Gross and W. Kohn, Local Density-Functional Theory
of Frequency-Dependent Linear Response, Phys. Rev. Lett. 55,
2850 (1985).

[10] R. van Leeuwen, Mapping from Densities to Potentials in
Time-Dependent Density-Functional Theory, Phys. Rev. Lett.
82, 3863 (1999).

[11] C. Ullrich, Time-Dependent Density-Functional Theory: Con-
cepts and Applications, Oxford Graduate Texts (Oxford Uni-
versity Press, Oxford, 2012).

[12] L. Reining, V. Olevano, A. Rubio, and G. Onida, Excitonic
Effects in Solids Described by Time-Dependent Density-
Functional Theory, Phys. Rev. Lett. 88, 066404 (2002).

[13] S. L. Adler, Quantum theory of the dielectric constant in real
solids, Phys. Rev. 126, 413 (1962).

[14] N. Wiser, Dielectric constant with local field effects included,
Phys. Rev. 129, 62 (1963).

[15] H. Ehrenreich, Electromagnetic transport in solids: optical
properties and plasma effects, in The Optical Properties of
Solids, edited by J. Tauc (Academic, New York, 1966), p. 106.

[16] C. A. Rozzi, D. Varsano, A. Marini, E. K. U. Gross, and A.
Rubio, Exact coulomb cutoff technique for supercell calcula-
tions, Phys. Rev. B 73, 205119 (2006).

[17] S. Ismail-Beigi, Truncation of periodic image interactions for
confined systems, Phys. Rev. B 73, 233103 (2006).

[18] N. Tancogne-Dejean, C. Giorgetti, and V. Véniard, Optical
properties of surfaces with supercell ab initio calculations:
Local-field effects, Phys. Rev. B 92, 245308 (2015).

[19] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y.
Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov,
Electric field effect in atomically thin carbon films, Science 306,
666 (2004).

[20] F. Hüser, T. Olsen, and K. S. Thygesen, How dielectric screen-
ing in two-dimensional crystals affects the convergence of
excited-state calculations: Monolayer mos2, Phys. Rev. B 88,
245309 (2013).

[21] F. A. Rasmussen, P. S. Schmidt, K. T. Winther, and
K. S. Thygesen, Efficient many-body calculations for two-

dimensional materials using exact limits for the screened
potential: Band gaps of mos2, h-bn, and phosphorene, Phys.
Rev. B 94, 155406 (2016).

[22] K. S. Thygesen, Calculating excitons, plasmons, and quasipar-
ticles in 2d materials and van der waals heterostructures, 2D
Mater. 4, 022004 (2017).

[23] Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M.
van der Zande, D. A. Chenet, E.-M. Shih, J. Hone, and T. F.
Heinz, Measurement of the optical dielectric function of mono-
layer transition-metal dichalcogenides: MoS2, MoSe2, WS2,
and WSe2, Phys. Rev. B 90, 205422 (2014).

[24] S. Funke, B. Miller, E. Parzinger, P. Thiesen, A. W. Holleitner,
and U. Wurstbauer, Imaging spectroscopic ellipsometry of
MoS2, J. Phys.: Condens. Matter 28, 385301 (2016).

[25] Yambo, Yambo forum, http://www.yambo-code.org/wiki/
index.php?title=How_to_treat_low_dimensional_systems.

[26] A. Molina-Sánchez, G. Catarina, D. Sangalli, and J. Fernández-
Rossier, Magneto-optical response of chromium trihalide
monolayers: Chemical trends, J. Mater. Chem. C 8, 8856
(2020).

[27] P. Cudazzo, I. V. Tokatly, and A. Rubio, Dielectric screening
in two-dimensional insulators: Implications for excitonic and
impurity states in graphane, Phys. Rev. B 84, 085406 (2011).

[28] A. Laturia, M. L. Van de Put, and W. G. Vandenberghe, Di-
electric properties of hexagonal boron nitride and transition
metal dichalcogenides: from monolayer to bulk, npj 2D Mater.
Applicat. 2, 6 (2018).

[29] D. E. Aspnes, Optical properties of thin films, Thin Solid Films
89, 249 (1982).

[30] T. Tian, D. Scullion, D. Hughes, L. H. Li, C.-J. Shih, J.
Coleman, M. Chhowalla, and E. J. G. Santos, Electronic
polarizability as the fundamental variable in the dielectric
properties of two-dimensional materials, Nano Lett. 20, 841
(2020).

[31] M. Royo and M. Stengel, Exact Long-Range Dielectric
Screening and Interatomic Force Constants in Quasi-Two-
Dimensional Crystals, Phys. Rev. X 11, 041027 (2021).

[32] M. Palummo, G. Onida, R. Del Sole, and B. S. Mendoza,
Ab initio optical properties of si(100), Phys. Rev. B 60, 2522
(1999).

[33] P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys.
Rev. 136, B864 (1964).

[34] W. Kohn and L. J. Sham, Self-consistent equations includ-
ing exchange and correlation effects, Phys. Rev. 140, A1133
(1965).

[35] X. Gonze, F. Jollet, F. A. Araujo, D. Adams, B. Amadon,
T. Applencourt, C. Audouze, J.-M. Beuken, J. Bieder, A.
Bokhanchuk, E. Bousquet, F. Bruneval, D. Caliste, M. Côté, F.
Dahm, F. D. Pieve, M. Delaveau, M. D. Gennaro, B. Dorado,
and C. Espejo, Recent developments in the ABINIT software
package, Comput. Phys. Commun. 205, 106 (2016).

[36] F. Sottile, L. Reining, and V. Olevano, https://etsf.
polytechnique.fr/software/Ab_Initio/.

[37] N. Tancogne-Dejean, Ab initio description of second-harmonic
generation from crystal surfaces, Ph.D. thesis, Ecole Polytech-
nique, 2015, https://pastel.archives-ouvertes.fr/tel-01235611 .

[38] V. M. Silkin, E. V. Chulkov, and P. M. Echenique, Band Struc-
ture versus Dynamical Exchange-Correlation Effects in Surface
Plasmon Energy and Damping: A First-Principles Calculation,
Phys. Rev. Lett. 93, 176801 (2004).

035431-12

https://doi.org/10.1038/natrevmats.2016.52
https://doi.org/10.1038/s41565-018-0082-6
https://doi.org/10.1103/PhysRevLett.79.1770
https://doi.org/10.1103/PhysRevLett.90.076803
https://doi.org/10.1103/PhysRevLett.96.126104
https://doi.org/10.1103/PhysRevLett.105.136805
https://doi.org/10.1103/RevModPhys.74.601
https://doi.org/10.1103/PhysRevLett.52.997
https://doi.org/10.1103/PhysRevLett.55.2850
https://doi.org/10.1103/PhysRevLett.82.3863
https://doi.org/10.1103/PhysRevLett.88.066404
https://doi.org/10.1103/PhysRev.126.413
https://doi.org/10.1103/PhysRev.129.62
https://doi.org/10.1103/PhysRevB.73.205119
https://doi.org/10.1103/PhysRevB.73.233103
https://doi.org/10.1103/PhysRevB.92.245308
https://doi.org/10.1126/science.1102896
https://doi.org/10.1103/PhysRevB.88.245309
https://doi.org/10.1103/PhysRevB.94.155406
https://doi.org/10.1088/2053-1583/aa6432
https://doi.org/10.1103/PhysRevB.90.205422
https://doi.org/10.1088/0953-8984/28/38/385301
http://www.yambo-code.org/wiki/index.php?title=How_to_treat_low_dimensional_systems
https://doi.org/10.1039/D0TC01322F
https://doi.org/10.1103/PhysRevB.84.085406
https://doi.org/10.1038/s41699-018-0050-x
https://doi.org/10.1016/0040-6090(82)90590-9
https://doi.org/10.1021/acs.nanolett.9b02982
https://doi.org/10.1103/PhysRevX.11.041027
https://doi.org/10.1103/PhysRevB.60.2522
https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1016/j.cpc.2016.04.003
https://etsf.polytechnique.fr/software/Ab_Initio/
https://pastel.archives-ouvertes.fr/tel-01235611 
https://doi.org/10.1103/PhysRevLett.93.176801


OPTICAL RESPONSE OF TWO-DIMENSIONAL … PHYSICAL REVIEW B 106, 035431 (2022)

[39] V. Kenner, R. Allen, and W. Saslow, Screening of external fields
and distribution of excess charge near a metal surface, Phys.
Lett. A 38, 255 (1972).

[40] N. D. Lang and W. Kohn, Theory of metal surfaces: Charge
density and surface energy, Phys. Rev. B 1, 4555 (1970).

[41] E. K. Yu, D. A. Stewart, and S. Tiwari, Ab initio study of po-
larizability and induced charge densities in multilayer graphene
films, Phys. Rev. B 77, 195406 (2008).

[42] Y. Yang, K. Zhong, G. Xu, J.-M. Zhang, and Z. Huang, Elec-
tronic structure and its external electric field modulation of
pbpdo2 ultrathin slabs with (002) and (211) preferred orienta-
tions, Sci. Rep. 7, 6898 (2017).

[43] R. Del Sole and E. Fiorino, Macroscopic dielectric tensor at
crystal surfaces, Phys. Rev. B 29, 4631 (1984).

[44] M. Schubert, Polarization-dependent optical parameters of ar-
bitrarily anisotropic homogeneous layered systems, Phys. Rev.
B 53, 4265 (1996).

[45] G. Airy, Vi. On the phænomena of newton’s rings when formed
between two transparent substances of different refractive pow-

ers, London, Edinburgh, Dublin Philos. Mag., J. Sci. 2, 20
(1833).

[46] Abelès, Florin, Recherches sur la propagation des on-
des électromagnétiques sinusoïdales dans les milieux strati-
fiés - application aux couches minces, Ann. Phys. 12, 596
(1950).

[47] M. Born and E. Wolf, Principles of Optics (Cambridge Univer-
sity Press, Cambridge, 2019).

[48] P. Yeh, Optical Waves in Layered Media, Wiley Series in Pure
and Applied Optics (Wiley, Hoboken, NJ, 2005).

[49] G. Grosso and G. Parravicini, Solid State Physics (Elsevier,
Amsterdam, 2000).

[50] C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Photons
et atomes. Introduction à l’électrodynamique quantique: Intro-
duction à l’électrodynamique quantique, SAVOIRS ACTUELS
(EDP Sciences, Les Ulis, France, 2012).

[51] H. Helmholtz, Lxiii. On integrals of the hydrodynamical equa-
tions, which express vortex-motion, London, Edinburgh, Dublin
Philos. Mag., J. Sci. 33, 485 (1867).

035431-13

https://doi.org/10.1016/0375-9601(72)90068-0
https://doi.org/10.1103/PhysRevB.1.4555
https://doi.org/10.1103/PhysRevB.77.195406
https://doi.org/10.1038/s41598-017-07212-w
https://doi.org/10.1103/PhysRevB.29.4631
https://doi.org/10.1103/PhysRevB.53.4265
https://doi.org/10.1080/14786443308647959
https://doi.org/10.1051/anphys/195012050596
https://doi.org/10.1080/14786446708639824

