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Mathematical and numerical study of a kinetic model

describing the evolution of planetary rings

Frédérique Charles ∗ Annamaria Massimini † Francesco Salvarani ‡

April 28, 2023

Abstract

In this paper, we study a kinetic model describing the evolution of planetary dust
under the action of a planet and its satellites. In particular, we focus our attention
on the formation of planetary rings and the role of shepherd moons. The equation
describing the considered physical phenomenon is of Vlasov type, posed in an evo-
lutionary domain in time. We first study some theoretical properties of the model.
Then, we describe a numerical method, suitable for the study of kinetic equations
in evolutionary domains with possibly complicated geometries. Finally, we show and
comment some simulations. In particular, our numerical simulations show that shep-
herd moons play a key role in the formation and maintenance of divisions between
rings.

1 Introduction

A planetary ring is a complex system composed of dust and other small particles that orbit
a planet forming a flat disk. The first observed planetary rings were those of Saturn and
were recognized as rings by Christiaan Huygens in 1655 [17]. However, ring systems are
not a feature unique to Saturn. In fact, the other three giant planets of the Solar System
are also surrounded by a system of rings, and astrophysicists infer that many exoplanets
may also have ring systems [20].

In 1676, Giovanni Cassini discovered a gap between the rings of Saturn, now called the
Cassini Division [5]. Thanks to the Voyager probes, it was discovered that the structure of
the rings is very complex. Sometimes, within gaps in the rings are moons, called shepherd
moons. The gravity of the shepherd moons serves to maintain a well-defined edge of the
ring. Material approaching the orbit of the shepherd moon can be deflected back into the
ring body, ejected from the system, or fall onto the moon itself.

The formation of rings and gaps between rings has logically attracted the attention of
astronomers and astrophysicists (see, for example, [10] and the references therein).

As a natural consequence, this problem has also been studied by applied mathemati-
cians. In this context, multiple approaches have been proposed. The first one consisted in
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considering the problem from the microscopic point of view, by using the classical methods
of celestial mechanics (see, for example, [24, 2]). Always at microscopic level, the literature
has also been interested in the study of models in which the particles constituting the ring
suffered not only the effects of the gravitational field, but could also collide inelastically
[19].

The second viewpoint is the mesoscopic (or kinetic) approach. It consists in describing
the system through particle densities in the phase-space of the system. This approach
goes back to James Clerk Maxwell [13, 24], one of the founders of kinetic theory. A
recent application of this description to planetary rings can be found in [21], which studies
approximate explicit stationary solutions in the context of a non-collisional model of Vlasov
type.

The third strategy consists in treating planetary rings by using an hydrodynamic
description (see, for example, [26]).

We moreover mention the possibility of using stochastic tools, such as in the case of
the Burgers-Zeldovich model [23].

Independently on the scale used for describing the problem, many authors have focused
themselves on a particular phenomenon occurring inside planetary rings. For instance, the
literature reports studies on fragmentation and coagulation [11] or on the fractal structure
of rings [22].

In our paper, we focus on a particular phenomenon, namely the formation of a gap
between rings caused by the effect of a shepherd moon. We use the kinetic approach and,
working on a short time scale, describe the phenomenon with a non-collisional Vlasov
equation in a time-dependent domain. The precise assumptions that justify the mathe-
matical structure of the model are described in detail in the next section. At this point,
we recall that the mathematical study of kinetic equations in evolutionary domains is still
in its early stages (see, for example, the pioneering paper [1] and [7, 6, 9, 25]).

Planetary rings are essentially two-dimensional objects, because of the properties of
symmetry of the problem. In our article, we hence work in the phase-space R2 × R2 and
suppose that the spatial domain of the solution of the Vlasov equation is given by the
complement of the domain occupied by a planet and by its moons.

We first study and provide the theoretical framework of the problem. We then address
the problem of its numerical simulation. Although the simplifications with respect to the
full dynamics make the problem linear, the existence of a moving domain is a source of
difficulties that imposes a nontrivial study of the problem.

We have chosen to use a particle method for its numerical implementation. It is clear
that the study of kinetic equations in an evolutionary domain is not an easy task because
of the high dimensionality of the problem, whose effects need to be taken into account,
and to the difficult treatment of possibly complicated geometries. In our approach, we
discretize the unknowns by mean of a collection of weighted smooth shape functions,
which evolve in time by following the dynamics of the problem, and then we handle the
possible overlapping between ring particles and the moons (or the planet). This has as a
consequence the elimination of the ring particle from the domain. The numerical results
show the versatility of the numerical method. In particular, the effect of a shepherd moon
on ring gap formation is clearly identified.

The structure of the article is the following. We start by discussing in Section 2 the dif-
ferent physical phenomena taken into account or neglected, before introducing the model.
In Section 3, we prove an existence and uniqueness result for this model, by applying the
method of characteristics in a moving domain. Section 4 describes the numerical strategy
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and Section 5 presents the numerical results for two different meaningful scenarios.

2 The mathematical model

We consider a planet surrounded by a fixed number of moons and a dusty cloud. The goal
of our model is to describe the dynamics of ring formation. The physical processes involved
in the evolution of planetary rings are multiple, and taking into account all of them would
lead to considerable complications in our study. However, the effects of various physical
phenomena may be more or less important with respect to the considered spatial and
temporal scales. For our purposes, we hence study a simplified version of the problem,
which retains, however, the main physical effects governing the creation of ringlets (in
particular, the interaction between particles and shepherd satellites).

2.1 The main gravitational effects

The first step is the analysis of the orders of magnitude of the various gravitational forces
acting on the system. In order to be consistent with a realistic situation, we consider, for
all the four giant planets of the Solar system, the Sun-planet-moons-rings subsystem and
analyze the problem in detail at the quantitative level.

2.1.1 The negligible role of the Sun

We first observe that the main effect on the particles is the gravitational attraction of
the hosting planet and that the gravitational attraction of the Sun can be neglected in
first approximation. This emerges from comparing the gravitational forces exerted on the
annular particles by their host planet and the Sun. They can be directly computed from
the data available for the Solar system. See the details below.

Let us consider a giant planet having mass mP and a dust particle in its ring system,
with mass m. Let M be the mass of the Sun. We denote with FS and FP the gravitational
forces exerted respectively by the Sun and the planet on the ring particle. The general
formula for computing FP and FS on a ring particle with mass m are:

FS =
GmM

d2S
, FP =

GmmP

d2P
,

where G is the gravitational constant, dS is the average distance between the mass centre
of the Sun and the particle and dP is the average distance between the mass centre of the
planet and the particle.

Table 1 shows some data for the planetary rings of the Solar system. Because of the
complex structure of the considered ring systems, we chose for dP either the radius of one
of the main rings, or an average radius.

The value of the Sun’s mass is M = 2.0× 1030 kg. The mass m of a dust particle usually
ranges from 10−3 kg to 106 kg [4]. However, this value has no influence in the comparison
of the orders of magnitude developed in this Section.

We can deduce from these data that the gravitational force exerted by the Sun on a
ring particle is negligible when compared to the gravitational force exerted by the planet
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Table 1: Data of Solar system planets with planetary rings.

Saturn Uranus Neptune Jupiter

mP 5.7× 1026 kg 8.7× 1025 kg 1.0× 1026 kg 1.9× 1027 kg

dP 1.2× 108 m 3.8× 107 m 6.3× 107 m 1.2× 108 m

dS 1.4× 1012 m 2.7× 1012 m 4.5× 1012 m 7.8× 1011 m

on the same ring particle. Indeed, we can compute and compare the attractive forces FP

(in N) between a particle of mass m and a given planet:

1. for a particle of mass m that orbits around Saturn

FP =
G m (5.7× 1026 kg)

(1.2× 108 m)2
≈ G m× (4.0× 1010 kg ·m−2),

2. for a particle of mass m that orbits around Uranus

FP =
G m (8.7× 1025 kg)

(3.8× 107 m)2
≈ G m× (6.0× 1010 kg ·m−2),

3. for a particle of mass m that orbits around Neptune

FP =
G m (1.0× 1026 kg)

(6.7× 107 m)2
≈ G m× (2.2× 1010 kg ·m−2),

4. for a particle of mass m that orbits around Jupiter

FP =
G m (1.9× 1027 kg)

(1.2× 108 m)2
≈ G m× (1.3× 1011kg ·m−2).

On the other hand, the gravitational force FS exerted by the Sun on a particle orbiting
Jupiter (which is the closest planet to the Sun having a ring system) is

FS =
G m (2.0× 1030 kg)

(7.8× 1011 m)2
≈ G m× (3.2× 106 kg ·m−2) .

In the case of the other planets considered, the gravitational force between a ring particle
and the Sun is even smaller.

Therefore, ring particles are mainly affected by gravitational attraction of the planet
and it is reasonable to neglect the effect of the Sun.

2.1.2 About the gravitational and contact interaction between particles

Secondly, we neglect the mutual attraction between ring particles and assume that colli-
sions between them are unfrequent: we hence consider only the interactions between ring
particles and planet and the interactions between ring particles and moons. This assump-
tion is more delicate. Indeed, it is clear that aggregation and fragmentation phenomena
play an important role in the ring dynamics [10]. However, the importance of this phe-
nomenon has to be appreciated with respect to the time scale of our analysis and the ring
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density. We consider here the situation when the collision frequency is smaller than the
orbital frequency. The particle collision frequency ωc in a given ring can be computed as
the product of the optical depth τ , related to the density of the ring, and the angular speed
Ω of the latter, i.e. ωc = τΩ (as explained in [14] and [3]). The first consequence that
can clearly be deduced from this formula is that therefore not all rings behave in the same
way in terms of collisions. For optical depth around 10−7, as in the most tenuous Saturn’s
rings, ωc ≈ 10−11s−1, which means, almost 1 collision between dust particles per century.
Whereas for τ = 1, as in the dense A Ring, particles collide with a frequency of 10 per
day. Since the orbital period of the major Saturn’s moons is of the order of magnitude of
days, such as Mimas (23 hours), Thetys (45.6 hours), and the time horizon of our model is
of few satellite’s orbits, the system can be considered as sufficiently rarefied to make such
collisions unlikely [15].

2.1.3 About the mutual gravitational attraction of N$ moons

In our problem, we consider N$ moons and study their role during the formation of
planetary rings, in the short period of time following the breakup of a satellite. While, in
general, the problem is difficult to be solved (it is, in fact, the celebrated N -body problem
of classical mechanics), when one of the celestial body has a mass much greater than the
mass of the other bodies, it is clear that the reciprocal influence of the small-mass bodies
between themselves is important only in large time. When dealing with reasonably small
time intervals, the gravitational attraction between the moons can be neglected and we
can therefore assume that the lunar orbits are always distinct and never overlap. These
assumptions are justifiable because we work on small time scales, in which the main effect
is the gravitational attraction between the planet and its moons.

The idea is to compare the gravitational force exerted by the host planet on one of its
moons with that which all the remaining moons exert on the fixed moon. For simplicity,
we have chosen to show the calculations for Saturn, as its moons are the most massive
and numerous compared to the other ringed planets in the Solar System. The moon
we consider is one of the most massive, namely Thetys. First, we calculate the Saturn-
Thetys gravitational force FST and then FDT , the one between Thethys and Dione, another
massive moon of Saturn. Obviously, to be precise, we should compute the gravitational
force between Thetys and all the other moons of Saturn, but it is easy to see from the data
that the order of magnitude of the latter is the same as FDT . This is why we omit the
calculation. The reciprocal gravitational attraction force FST between Saturn and Tethys
is

FST = G
(5.7× 1026 kg)× (6.2× 1020 kg)

(2.9× 108 m)2
= 2.8× 1020 N,

whereas the reciprocal gravitational attraction FDT , at Dione-Thetys’ minimum distance,
is

FDT = G
(1.1× 1021 kg)× (6.2× 1020 kg)

(8.2× 107 m)2
= 6.7× 1015 N.

One can see that FST is 5 orders of magnitude greater than FDT (and therefore greater
than the force exerted by all the more massive moons on Thetys). Therefore, the mutual
gravitational attraction between Thetys and the other moons can be neglected, working
over short (astronomical) time periods. In particular, this procedure is generalisable by
taking any other moon in place of Thetys. And it is generalisable by choosing any other
ring system.
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2.2 Interactions between particles and the major bodies

The sizes of satellites and planets being much larger than the sizes of particles, the contact
interaction between the former and the dust is the predominant phenomenon in our prob-
lem. In particular, in our model we suppose that the high mass of satellites and planet
causes the total absorption of particles interacting with them.

Most of the intricate ring structures owe their existence to the gravitational effect of
moons, without which the rings would be flat and featureless; without moons there would
probably be no rings at all because thin disks of small particles gradually would spread
and disperse [10]. Resonance is a key effect in maintaining ring gaps [10]. However, during
the evolution of a cloud of debris for a short period of time, we only consider the collision
between satellites and particles, neglecting resonance.

The gravitational force exerted by the planet on its annular system erodes and sculpts
the rings, whose particles continually rain into the planet’s atmosphere. This flux of
annular grains disintegrate the grains themselves, reducing the lifetime of planetary rings
[8].

We hence assume in our model that the total mass of the dust cloud is much smaller
than the mass of the planet and of the mass of the satellites, and that the mass of the
satellites is much smaller than that of the planet.

This is the case for Saturn’s ring: the Cassini probe estimated that the total mass of
Saturn’s rings (contained mainly in rings A, B and C) is of 1.54 ± 0.49 × 1019 kg, which
represents a fraction of the mass of Mimas [18]. For the other annular systems of the Solar
System, whose rings are more rarefied, the argument is similar.

We will therefore suppose that the dust cloud has, in the model, a negligible gravita-
tional effect on the system and that it is possible to neglect the mutual gravitational inter-
actions between the satellites. Thus all the resulting complexity of the N -body problem
will not be addressed in our study. Consequently, the gravitational interactions considered
in this article are the action of the planet on the dust cloud and on the satellites, as well
as the gravitational attraction of the satellites on the dust cloud.

2.3 Equations modelling the system planet-moons-rings

In order to write our model, we first introduce the distribution function

f : R∗
+ × R+ × Ωt × Rd → R+

which describes the mass density of the dust, where m ∈ R∗
+ is the mass variable, t ∈ R+

is the time variable, x ∈ Ωt ⊂ Rd is the spatial position and v ∈ Rd the velocity, where
d ∈ N∗. In practice, because of the symmetries of the problem, the most relevant case is
d = 2.

We suppose that the origin of the reference frame is the center of mass of the planet.
Let rP > 0 and ri > 0 the radii of the planet and of the i-th shepherd moon respectively
(i = 1, . . . , N$), where N$ ⩾ 1 is the total number of shepherd moons. We introduce the
sets

St
i = {x ∈ Rd : |x− ξi(t)| ⩽ ri} and P t = {x ∈ Rd : |x| ⩽ rP },

where ξi(t) ∈ Rd is the position of the center of mass of the i-th shepherd moon with
respect to the origin of the reference system, i.e. the center of mass of the planet. The
orbits of the satellites are assumed to be known, so ξi(t) is a datum of the problem. Owing
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to the fact that we work in a short-time horizon, we moreover suppose that

St
i ∩ St

j = ∅ for all i, j = 1, . . . , N$ and St
i ∩ P t = ∅ for all i = 1, . . . , N$.

The spatial domain of definition of the problem is hence given by the following open region
of Rd:

Ωt = (P t)c \
N$⋃
i=1

St
i .

The boundary of Ωt is hence

Γt := ∂Ωt = ∂P t ∪

N$⋃
i=1

∂St
i

 .

If M̄ ⊂ R∗
+, X̄ ⊂ Ωt and V̄ ⊂ Rd, the integral

IM̄,X̄,V̄ (t) :=

∫
M̄×X̄×V̄

f(m, t, x, v) dmdxdv

represents the number of dust particles with mass m ∈ M̄ , position x ∈ X̄ and velocity
v ∈ V̄ at time t.

The evolution of the dust cloud is described by the gravitational Vlasov equation

∂f

∂t
+ v · ∇xf − ∇xΦ

m
· ∇vf = 0, (m, t, x, v) ∈ R∗

+ × R+ × Ωt × Rd (1)

where

Φ(t, x) = Gm

(N$∑
i=1

mi

|x− ξi(t)|
+

mP

|x|

)
(2)

is the gravitational potential on a particle of mass m. It is due to the planet, which has
mass mP , and to the moons, with masses mi and position of their centers of mass ξi(t)
for all i = 1, . . . , N$.

The planet and the shepherd moons influence the motion of the particles through the
gravitational forces exerted on the dust cloud. In particular, when a dust particle collides
with the planet or a satellite, it is absorbed. This effect is mathematically described by
supposing that the planet and the moons are absorbing moving barriers.

Let nx be the outward normal originated in x ∈ Γt. Then, the boundary conditions
on f are the following:

f(m, t, x, v)|x∈∂St
i , (v−vi(x))·nx<0 = 0, i = 1, . . . , N$,

f(m, t, x, v)|x∈∂P t, (v−vP (x))·nx<0 = 0,

(3)

where vi(x) is the local velocity of the point x located at the surface of the i-th moon and
vP (x) is the local velocity of the point x located at the surface of the planet.

For simplicity, let us define the ingoing boundary at time t as the subset of Γt × Rd

such that

Σt
− :=

N$⋃
i=1

{
(x, v) ∈ ∂St

i × Rd : (v − vi(x)) · nx < 0
}

∪
{
(x, v) ∈ ∂P t × Rd : (v − vP (x)) · nx < 0

}
.

(4)
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Thanks to this definition, the boundary conditions (3) can be rewritten as
∂f

∂t
+ v · ∇xf − ∇xΦ

m
· ∇vf = 0, (m, t, x, v) ∈ R∗

+ × R+ × Ωt × Rd,

f(m, t, x, v)|(x,v) ∈ Σt
−
= 0.

(5)

The problem is supplemented with a suitable initial condition. We assume that its support
is contained in Ω0:

f(m, 0, x, v) =

{
f in(m,x, v) if (m,x, v) ∈ R∗

+ × Ω0 × Rd

0 otherwise,
(6)

where f in ∈ L1(R∗
+ × Ω0 × Rd) ∩ L∞(R∗

+ × Ω0 × Rd).

3 Some mathematical properties of the model

In this section, we prove an existence and uniqueness result for the gravitational Vlasov
equation for planetary rings (1)-(2) with boundary and initial conditions (5)-(6), exploit-
ing the method of characteristics. To recall, the method of characteristics consists of a
theoretical technique to shift the focus from the analysis of a PDE to the resolution of a
system of ODEs. The first step of the method is to choose certain curves (characteristic
curves) along which the starting PDE becomes a system of ODEs, via an appropriate
change of variable. Secondly, the classical existence and uniqueness theorems for ODEs
are invoked, with the aim of reconstructing the solution of the system along these curves.
One concludes by transforming it into the solution of the PDE, taking advantage of the
change of variable previously implemented (see [12] for more explanations). In our analy-
sis, we need to pay attention to the evolution of the spatial domain, whose changes over
time are due to the motion of the planet and the shepherd satellites.

3.1 The method of characteristics for the Vlasov equation

The gravitational Vlasov equation is a linear scalar first-order hyperbolic PDE. The recipe
for writing the characteristic system can be found on pages 97-100 of [12]. In particular,
the formula of interest to us is Formula (8) on page 98 of [12]. Specifically, since our
equation is linear, the characteristic system becomes simpler (see Formula (17) on p.100
of [12]).

For the Vlasov equation under study, the following definition holds.

Definition 1. The set of characteristic curves of the linear gravitational Vlasov equation
(1)-(2) is the general solution of the following system of ordinary differential equations:

Ṁ(t) = 0,

Ṫ (t) = 1,

Ẋ(t) = V (t),

V̇ (t) = −∇xΦ(T (t), X(t))

M(t)
.

(7)

8



We introduce now the function ζ : R+ → R, such that ζ(t) gives the solution f
along the characteristic curves (M,T,X, V ) (i.e. ζ(t) = f(M(t), T (t), X(t), V (t))). On
the characteristic curves, the Vlasov equation simply reduces to ζ̇(t) = 0.

The characteristic system takes hence the form

ζ̇(t) = 0,

Ṁ(t) = 0,

Ṫ (t) = 1,

Ẋ(t) = V (t),

V̇ (t) = −∇xΦ(T (t), X(t))

M(t)
,

(8)

for t ∈ R+.

Proposition 1. For all s ∈ R+ and for every (m,x, v) ∈ R∗
+ × Ωt × Rd, there exists a

unique solution (M,T,X, V ) ∈ C∞ of the initial value problem (7) with initial conditions
M(s) = m,

T (s) = s,

X(s) = x,

V (s) = v.

(9)

Proof. It follows directly from the fact that the system (7) for (M,T,X, V ) satisfies the
hypotheses of the Picard-Lindelöf Theorem and the sub-linear condition holds, since the
points of singularity of Φ are excluded from the spatial domain Ωt for every time t ∈
R+.

3.2 Existence and uniqueness of the solution

We are now ready to employ what we have previously presented to obtain an existence
and uniqueness result for System (1)-(5)-(6).

For the sake of simplicity, let us set z := (x, v), the initial data for the characteristic
curves (X,V ); and Z(t; s, z) := (X,V )(t; s, x, v) the characteristic (X,V ) which start from
(x, v) in the phase-space, i.e. it is equal to (x, v) when t = s, and which is parametrized
by t.

The main tool to deal with the mobile domain in studying Equation (1)-(2) is the
backward absorbing time:

Definition 2. The backward absorbing time τΩt(x, v) for a particle starting from x ∈ Ωt

in the direction v ∈ Rd, is defined as

τΩt(x, v) = inf{θ > 0 : X(θ; t, x, v) ∈ Γt−θ}.

If the set Θ := {θ > 0 : X(θ; t, x, v) ∈ Γt−θ} is empty, then τΩt(x, v) = +∞.

In other words, τΩt(x, v) corresponds to the time of arrival at the border when we follow
the characteristic X backwards from x ∈ Ωt with velocity v ∈ Rd. This consideration
follows from the two results summarized below:
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Proposition 2. The characteristic Z := (X,V ), solving (7), satisfies:

1. ∀t1, t2, t3 ∈ R+ and ∀z ∈ Ωt × Rd, Z(t3; t2, Z(t2; t1, z)) = Z(t3; t1, z);

2. ∀t, s ∈ R+, the map z 7→ Z(t; s, z) is a C1-diffeomorphism and

y 7→ Z(s; t, y) (10)

is its inverse.

The proof of this result is classical and it will be omitted.

The infimum of θ > 0 such that X(θ; t, x, v) ∈ Γt−θ is the time whereby, starting from
it in y ∈ Ωθ, with velocity w ∈ Rd, we arrive at the time t in X(t; θ, y, w) = x with a
velocity v. So, if we are in x at the time t and we want to proceed backwards until we
arrive in y at the time θ, we have to use the inverse function defines in (10):

x = X(t; θ, y, w) 7→ X(θ; t, x, v),

and it is precisely for this reason that, in Definition 2, we check X(θ; t, x, v).

The spatial domain Ωt of the Vlasov equation (1)-(2) is not convex, for every t, so classical
solutions of the boundary value problem for the Vlasov equation may not exist. Indeed,
let us consider the characteristic part of the boundary, i.e.

Σt
0 :=

N$⋃
i=1

{
(x, v) ∈ ∂St

i × Rd : (v − vi(x)) · nx = 0
}⋃

{
(x, v) ∈ ∂P t × Rd : (v − vP ) · nx = 0

}
.

Since Ωt is not convex, some velocity trajectories v from Σt
0 can enter Ωt. It results that the

method of characteristics – and therefore the explicit formula given born in the theorem
above – does not define f on the points of Ωt interested by these trajectories.

However, Σt
0 satisfies the hypotheses of Proposition 2.3 in [1], and hence has zero

Lebesgue measure.
We can express the solution of the initial-boundary value problem (1)-(2)-(5)-(6) using

the characteristics and the backward absorbing time:

Theorem 1. If f in ∈ L1(R∗
+ ×Ω0 ×Rd) ∩ L∞(R∗

+ ×Ω0 ×Rd), then there exists a unique
generalised solution f ∈ L1(R∗

+×R+×Ωt×Rd)∩L∞(R∗
+×R+×Ωt×Rd) of the boundary

problem (1)-(2)-(5)-(6) associated to the initial condition f(m, 0, z) = f in(m, z), where
z := (x, v). It is given by the same formula of the classical case, namely that, for a.e.
(m, t, z) ∈ R∗

+ × R+ × Ωt × Rd, we have

f(m, t, z) = f in(m,Z(0; t, z))1{τΩt (z)>t}, (11)

where Z := (X,V ) represent the characteristic curve which solves (7).

Proof. The proof can be obtained by adapting, to external domains, the proof given by
Bardos in [1], which is based on semigroup theory.

However, we give here a more direct proof, which is closer to the numerical strategy
described in the next section, based on the study of the evolution of the unknown on the
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characteristic curves of the system. Let N0 ⊂ R∗
+ × Ω0 × Rd be the set of zero Lebesgue

measure in R∗
+×Rd×Rd such that f in is defined and of class L1∩L∞ on (R∗

+×Ω0×Rd)\N0,
and let Nb ⊂ R∗

+×R+×Σt
− be the set of zero Lebesgue measure in R∗

+×Rd×Rd such that
f is zero on (R∗

+×R+×Σt
−)\Nb. Consequently, the set Nd := Nb∪N0 has zero Lebesgue

measure in R∗
+×Rd×Rd. We easily see that f , given by (11), satisfies the Vlasov equation

almost everywhere. Indeed, Equation (11) defines a function on (R∗
+×R+× Ω̄t×Rd) \Nd

such that

f(m, t+ s, Z(s; 0, z)) = f in(m,Z(0; t+ s, Z(s; 0, z)))1{τΩt+sZ(s;0,z)>t+s}

= f in(m,Z(0; t, z))1{τΩt (z)>t},

for all s ∈ R such that Z(s; 0, z) ∈ Ωt × Rd. In fact, thanks to Proposition 2,

f in(m,Z(0; t+ s, Z(s; 0, z))) = f in(m,Z(0; t, z))

because

Z(0; t+ s, Z(s; 0, z)) = Z(0; 2t, Z(2t; t+ s, Z(s; 0, z))︸ ︷︷ ︸
Z(t;0,z):=y

)

= Z(0; t, Z(t, 2t, y))

= Z(0; t, Z(t, 2t, Z(t; 0, z)))︸ ︷︷ ︸
z

.

Moreover,
1{τΩt+sZ(s;0,z)>t+s} = 1{τΩt (z)+s>t+s} = 1{τΩt (z)>t}.

So, the function s 7→ f(m, t + s, Z(s; 0, z)) is C1 in the variable s for all (m, t, z) ∈
(R∗

+ × R+ × Ω̄t × Rd) \ Nd. Furthermore, we have that

df

ds
(m, t+ s, Z(s; 0, z)) = 0

for all (m, t, z) ∈ (R∗
+ × R+ × Ω̄t × Rd) \ Nd and for all s such that (m, t+ s, Z(s; 0, z)) ∈

R∗
+ × R+ × Ωt × Rd. From Equation (11), we see moreover that

lim
t→0+

f(m, t, Z(t; 0, z)) = lim
t→0+

f in(m,Z(0; t, Z(t; 0, z)))

= f in(m, z)

for all (m, z) ∈ (R∗
+ × Ω0 × Rd) \ N0, whereas

lim
s→0+

f(m, t+ s, Z(s; 0, z)) = f(m, t, z) = 0

for all (m, t, z) ∈ (R∗
+ × R+ × Σt

−) \ Nb. Therefore, f solves a.e. the Vlasov equation.

Uniqueness follows easily by noticing that if f is a generalised solution of Vlasov’s
equation, then the function

s 7→ f(m, t+ s, Z(s; 0, z)) is C1.

11



Moreover, there exists Nf ⊂ R∗
+ × R+ × Ωt × Rd of zero Lebesgue measure such that

df

ds
(m, t+ s, Z(s; 0, z)) = 0

for all (m, t+ s, Z(s; 0, z)) ∈ (R∗
+×R+×Ωt×Rd) \Nf and for all s ∈]−min (t, τΩt(z)), 0[,

and we have also

lim
t→0+

f(m, t, Z(t; 0, z)) = f in(m, z) (m, z) ∈ (R∗
+ × Ω0 × Rd) \ N0,

and
lim
s→0+

f(m, t+ s, Z(s; 0, z)) = 0 (m, t, z) ∈ (R∗
+ × R+ × Σt

−) \ Nb.

Then, for all (m, t, z) ∈ (R∗
+ × R+ × Ωt × Rd) \ (Nf ∪Nd), we have

df

ds
(m, t+ s, Z(s; 0, z)) = 0,

for all s ∈]−min (t, τΩt(z)), 0[. Integrating this equation, on ]−min (t, τΩt(z)), 0[, we find,
for t < τΩt(z)

f(m, t, z) = lim
ϵ→0+

f(m, 0, Z(0; t− ϵ, z)) = f in(m,Z(0; t, z))

and for t > τΩt(z), f(m, t, z) = 0.

4 Description of the numerical strategy

In this section we describe the numerical method used for the simulation of equations
(1)-(5)-(6) in two dimensions in space and velocity. Our procedure, based on a particle
method and a splitting strategy, is an evolution of the approach introduced in [6]. The
substantial difference of our problem from the one studied in [6] is that the dust particles
in planetary rings, unlike gas molecules, being affected by the gravitational acceleration
due to the planet and moons, satisfy the Vlasov equation (1), which is more complicated
to deal with than the free transport equation. On the other hand, the boundary condition
are, in this problem, particularly easy to handle, because the surfaces of the satellites are
modelled with an absorbing boundary: the particles that collide with it disappear from
the problem’s domain. We place ourselves in the reference frame of the planet, which is
thus supposed at rest.
The centres of mass of the moons evolve independently according to the following equations
in polar coordinates:

ξi(t) = ri(t)

(
cos θi(t)
sin θi(t)

)
with

{
ri(t) = r0i

θi(t) = ωit
, for i = 1, . . . , N$. (12)

In (12), ωi is the constant angular velocity of the circular orbit of the i-th moon and r0i
is its constant distance from the origin of the coordinate system. If the i-th moon has an
elliptical shape, then we have to consider also its rotation around its own centre of mass.
So, if δi describes the angle formed by the major axis of the i-th moon and the x-axis of
the coordinate system, and if σi represents the angular velocity of the i-th satellite around
its own centre, we have δi(t) = δi(0) + σit.
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The initial density of the dust particles is discretized by means of a collection of
weighted smooth shape functions centred on the numerical particle positions and velocities
(x0k, v

0
k)1⩽k⩽N0 , that is

f in
N0,ε(x, v) =

N0∑
k=1

αk φε(x− x0k)φε(v − v0k), (13)

where N0 represents the initial number of numerical particles, αk is the weight of the
k-th numerical particle (which represents αk ”real” particles). In (13), the shape function
φε(x) = φ(ε−1x)/εd is a smooth function with compact support. The term ”numerical
particles” is here used for avoiding any confusion with the (real) number of dust parti-
cles. Once the number N0 of numerical particles has been chosen, the initial positions
(x0k)1⩽k⩽N0 and velocities (v0k)1⩽k⩽N0 are sampled according to the initial density f in

thanks to a Monte-Carlo procedure. Then, the positions and velocities of the numerical
particles evolve in time, according to the explicit Euler scheme, with time step ∆t xn+1

k = xnk +∆tvnk

vn+1
k = vnk −∆t

∇xΦ(tn,xn
k )

m

1 ⩽ k ⩽ Nn, (14)

where Nn is the number of numerical particles at the time tn (which can differ from N0

because some particles can be absorbed by the planet or the moons between t0 and tn).
In order to simplify the interactions between the moons and the numerical particles, we
use a time-splitting between the transport (free flow of the particles in the absence of any
interaction, mathematically represented by the transport operator v ·∇) and the treatment
of the differents interactions (flow of the particles due to the planet-moons gravitational
field, and the absorbing boundary condition on Σt

−). In other words, in each time interval
[tn, tn+1[, we first move the moons and the planet independently of the motion of the
dust particles, then we freeze them and we transport the numerical particles and perform
the treatment of the boundary conditions. Thus, when we move the numerical particles,
the domain is fixed, allowing us to come back to deal with the boundary conditions of a
fixed domain instead of working in a mobile domain. Once determined the positions of
the largest bodies at the time tn+1, we move the Nn macro-particles, according to the
equations of motion (14), finding (xn+1

k , vn+1
k )1⩽k⩽Nn . Then, we test on every numerical

particle k if xn+1
k ∈ Ωn+1 and otherwise we impose the boundary condition.

To do so, we only need a cartesian equation of the surface of the planet and of the
satellites, which for elliptical bodies with axis lengths a and b is{

(x, y) ∈ R2 |
(
(x− ri(t) cos(θi(t))

a

)2

+

(
(y − ri(t) sin(θi(t))

b

)2

⩽ 1

}
.

Once written the coordinates of macro particles in the reference frame of the ellipse, we
control if they verify the cartesian equation or not. If yes, we apply the boundary condition,
namely we remove the k-th particle from the domain, then we renumber the remaining
numerical particles. The number of numerical particles at time tn+1 hence becomes then
Nn+1 ⩽ Nn. We neglect the mass increase of the moon coming from the absorption of
particles.

The shortcoming of this strategy is that, when a particle collides with the i-th body,
it does not allow us to determine the position of the intersection between the particle’s
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trajectory and the i-th moon. However, since we are dealing with absorption boundary
conditions, the value of this intersection becomes superfluous for our discussion. Although
this strategy is less precise than the one in which the intersection is calculated, the graph-
ical results of these two approaches are similar, with the advantage that the former allows
us to deal with bodies having complicated shapes and is less computationally expensive.

Another problem that could arise is shown in the Figure 1: during the time interval
[tn, tn+1[ a dust particle collides with a moon, but the method does not detect the collision
because the particle is outside the moon at time tn+1. However, this problem can be
controlled by reducing the time step ∆t. The value of ∆t should be chosen globally for all
numerical particles in order to guarantee i) the partial superposition between the domain
representing the moon at time tn and at time tn+1 and ii) if R > 0 is the radius of the
smallest moon,

max
k=1,...,Nn

∥xn+1
k − xnk∥ < 2R.

If the previous constraint is not satisfied for some tn, the time step ∆t has to be reduced
(for all particles) in order to fullfill it.

The computational cost of our method is clearly proportional to N0/∆t, because there
are no interactions between the numerical particles.

Figure 1: A situation in which the k-th particle collides with the i-th moon, but the
numerical method does not notice the collision.

5 Numerical results

We now describe some simulations implemented for the planetary rings problem in two
spatial dimensions (i.e. four dimensions in phase-space). The data used in the numerical
simulations are scaled in order to be compatible with the data of the giant planets of the
Solar system. Here we have chosen moons of sufficiently high size and mass in order to
have appreciable and visible results.

5.1 Simulation 1

In this scenario, we simulate the orbit of an elliptical shepherd moon around a planet and
observe how the moon’s motion creates a separation in the dust cloud around the planet,
thus contributing to the formation of a ring system. We consider a circular planet, with
radius ρP and mass mP , and an elliptical shepherd moon, with axes a1 and b1 and mass
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mS1 . We moreover assume that the moon, with center of mass ξ0 = r01

(
cos θ01
sin θ01

)
at the

time t = 0, orbits the planet with constant angular velocity ω1 and rotates around its own
centre of mass with constant angular velocity σ1. The quantity δ01 is the initial angle from
the semi-major axis of the i-moon and the x-axis of the coordinate system.

The spatial domain of the planetary ring problem is, for d = 2:

Ωt := R2 \
(
P t ∪ St

1

)
, t ⩾ 0.

Our numerical spatial domain is a truncation of Ωt
1 for each time tn:

Ω̂n := D \
(
Pn ∪ Sn

1

)
(15)

where D := [−1, 1]× [−1, 1] (scaled according to the length L0 = 2× 108 m) is the square
domain for the simulations.

The table shows the values of the data we have selected for these simulations.

Planet Moon

mP = 5.70× 1026 kg mS1 = 8× 1021 kg

ρP = 5.82× 107 m a1 = 1.6× 106 m

b1 = 1.6× 106 m

r01 = 1.2× 108 m

θ01 = 0.00 rad

ω1 = 1.33× 10−3 rad/s

δ01 = 1.05 rad

σ1 = 4× 10−10 rad/s

We have supposed that the initial distribution f in is factorized as the product of a
function depending on the space variable only and a function depending on a suitably
chosen velocity vorb = vorb(x). More precisely, let rmin = 6.7 × 107m, rmax = 1.8 × 108m
and define

R :=

{
(x1, x2) ∈ D, rmin ⩽

√
x21 + x22 ⩽ rmax

}
and

S2orb(x) :=
{
v ∈ R2, ∥v∥ = vorb(x)

}
.

The initial distribution is

f in(x, v) = 1R(x)1S2orb(x)
(v). (16)

We thus first consider the finite set (x0k)1⩽k≤N0 as a realisation of the density function
associated to 1R(x): we generate the positions (x

0
k)1⩽k⩽N0 as the realisations of a uniform

density on R, in a probabilistic way. The initial velocity v0k of the k-th macro-particle is
then chosen as the orbital velocity of a point at x0k (i.e. we suppose that the radial velocity

vr is zero). Thus, written its initial position x0k = r0k

(
cos Θ0

k

sin Θ0
k

)
in polar coordinates, its

orbital velocity is:

v0k := vk,orb(− sinΘ0
k, cosΘ

0
k), k = 1, . . . , N0, (17)
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where

vk,orb =

√
GmP

r0k
(18)

is the approximation of the modulus of the orbital velocity for dust particles. The particle
weights are identical, i.e. we suppose that

αk :=
||f in||L1(Ω0×R2)

N0
=

n0|R|
N0

, 1 ⩽ k ⩽ N0, (19)

where n0 :=
||f in||L1(Ω0×R2)

|R| . This quantity has been normalized to 1 in the simulations.

Then, for every n, we move the corresponding numerical particle in the time interval
[tn, tn+1] using an explicit Euler method and we check if the numerical particle falls into
the planet or the moons. If so, it is eliminated.

The next step consists in the reconstruction of the density fn+1
N0,ε

. As in [6], we use B-

splines of 3-order in two space dimensions as shape functions ϕε, with shape sizes ε1 = h
1/2
1

and ε2 = h
1/2
2 , where h1 and h2 are the initial distances between two numerical particles

in the first and second direction, respectively.
In order to visualize the space-time evolution of the dusty particles, we reconstruct the

spatial density

ρ(t, x) :=

∫
R2

f(t, x, v)dv

from the positions and the velocities of the numerical particles and we plot the numerical
macroscopic density

ρnN0,ε(x) :=

∫
R2

fn
N0,ε(x, v)dv =

Nn∑
k=1

αkϕε(x− xnk).

In Figure 2 we show the results of the simulation. We have used N0 = 587 116 initial
numerical particles. In Saturn rings, some estimates suggest that the order of magnitude
of the number of dust particles is 3× 1016. According to (19), it means that a numerical
particle corresponds to 5× 1010 dust particles. The planet and the moons are coloured in
red to facilitate their visualization. One can notice that the moons sweep away the dust in
front of them as they orbit the planet, creating a path where the density ρnN0,ε of the rings
is very low. This result is consistent with astronomers’ assumptions about the creation of
ringlets based on data collected by the Cassini spacecraft [16].

5.2 Simulation 2

In this section we describe the results of the simulation of a close-up view of the moon in a
previously open gap, neglecting the planet’s gravitational role on the moon and ring dust.
Let us then consider the square D and take as domain, at each discrete time tn, the set:
Ω̂n := D \ Sn. The space in which the dust particles are initially located is the following:

R := {(x1, x2) ∈ D | rmin ⩽ x2 ⩽ rmax}. (20)

where rmin = −5× 107m and rmax = 5× 107m. As initial distribution, we consider

f in(x, v) = 1{x∈R}δ0(v), (21)
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Figure 2: Time history of the spatial numerical density ρnN0,ε at instants t = 0 s, t =

6.0 × 105 s, t = 1.2 × 106 s, t = 1.8 × 106 s, starting from the image at the top left,
proceeding from left to right and from top to bottom. The axis are scaled according to
the length L0 = 2× 108 m.

which is uniform in space and non-zero only if the velocity is zero in each component. So,
(x0k)1⩽N0 are selected as realisation of a uniform density, while (v0k)1⩽N0 are set to zero.
The weights (αk)1⩽k⩽N0 are chosen as in (19), with R defined in (20).

The physical data for the moon are the following:

Moon

mS = 6.0× 1018 kg

a = 1.50× 106 m

b = 1.00× 106 m

δ0 = 3.14/3 rad

The moon is supposed to be immobile, in order to study only the influence of its grav-
itational force on the particles’ ring. At each time step, we move the particles, following
the numerical solution of the equation of motion (14) in the time interval ]tn, tn+1]. Par-
ticles which fall into the moon are eliminated. Then, we reconstruct the density fn+1

N0,ε
as

described in Section 5.1 and we employ it to define the spatial numerical density

ρn+1
N0,ε

(x) =
Nn+1∑
k=1

αkϕε(x− xn+1
k ).

Figure 3 shows the time evolution of the numerical density ρnN0,ε on D. In this simu-
lation, we have employed 485 825 numerical particles.
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By comparing the two pictures, we observe the effect of the gravitational attraction
by the moon on the dust particles and, moreover, the emergence of wavy, jagged edges,
consistent with what has been observed in Saturn’s rings [10].

This effect is not due to the particle method, because the stochasticity appears only in
the discretization of the initial condition. The other steps of our strategy are deterministic
and therefore the oscillations are a consequence of the model itself.

Figure 3: Time history of the spatial numerical density ρnNn,ε at instants t = 0 s (left) and

t = 4.96× 104 s (right). The axis are scaled according to the length L0 = 2× 108 m.

6 Conclusion

With this paper, we aimed to provide a robust mathematical model capable of describing
the formation of gaps and patterns within planetary ring systems. Firstly, we focused
on a formal justification of the proposed Vlasov model (5)-(6). The physical processes
involved in a ring system are numerous, yet some can, at first glance, be neglected. A
careful selection of those relevant to the problem of our interest was therefore necessary.
Subsequently, we proved, via the method of characteristics on a time-dependent domain,
the well-posedness of the Vlasov equation (5)-(6). The proof of Theorem 1 via this method
offers a natural connection to the presented numerical strategy. Indeed, ultimately, the
purpose of the paper was to provide a numerical method to simulate the model. We
used the particle method coupled with a splitting technique, useful for capturing collisions
between dust particles with the planet or moons. The simulations that emerge (Figures 2
and 3) are coherent with the predicted theoretical results.

In future works, collisions between particles and certain source terms (such as the
presence of a moon, e.g. Titan, capable of supplying the rings with new particles) can be
included and thus more advanced models can be studied.
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framework of the Austrian-French projects, grants FR 01/2021 and MULT 11/2020. The
second author acknowledges partial support from the Austrian Science Fund (FWF),
grants P33010, W1245, and F65. Article written under the auspices of the Italian National
Institute of Higher Mathematics (INdAM), GNFM group.

Conflicts of Interest Statement: The authors confirm that there are no known conflicts
of interest associated with this publication and there has been no significant financial
support for this work that could have influenced its outcome.

18



References
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