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Mathematical and numerical study of a kinetic model

describing the evolution of planetary rings

Frédérique Charles ∗ Annamaria Massimini † Francesco Salvarani ‡

September 22, 2022

Abstract

In this paper, we study a kinetic model describing the evolution of planetary dust
under the action of a planet and its satellites. In particular, we focus our attention
on the formation of planetary rings and the role of shepherd moons. The equation
describing the considered physical phenomenon is of Vlasov type, posed in an evo-
lutionary domain in time. We first study some theoretical properties of the model.
Then, we describe a numerical method, suitable for the study of kinetic equations
in evolutionary domains with possibly complicated geometries. Finally, we show and
comment some simulations. In particular, our numerical simulations show that shep-
herd moons play a key role in the formation and maintenance of divisions between
rings.

1 Introduction

A planetary ring is a complex system composed of dust and other small particles that orbit
a planet forming a flat disk. The first observed planetary rings were those of Saturn and
were recognized as rings by Christiaan Huygens in 1655 [13]. However, ring systems are
not a feature unique to Saturn. In fact, the other three giant planets of the Solar System
are also surrounded by a system of rings, and astrophysicists infer that many exoplanets
may also have ring systems [15].

In 1676, Giovanni Cassini discovered a gap between the rings of Saturn, now called the
Cassini Division [3]. Thanks to the Voyager probes, it was discovered that the structure of
the rings is very complex. Sometimes, within gaps in the rings are moons, called shepherd
moons. The gravity of the shepherd moons serves to maintain a well-defined edge of the
ring. Material approaching the orbit of the shepherd moon can be deflected back into the
ring body, ejected from the system, or fall onto the moon itself.

The formation of rings and gaps between rings has logically attracted the attention of
astronomers and astrophysicists (see, for example, [8] and the references therein).

As a natural consequence, this problem has also been studied by applied mathemati-
cians. In this context, multiple approaches have been proposed. The first one consisted in
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considering the problem from the microscopic point of view, by using the classical methods
of celestial mechanics (see, for example, [19, 2]). Always at microscopic level, the literature
has also been interested in the study of models in which the particles constituting the ring
suffered not only the effects of the gravitational field, but could also collide inelastically
[14].

The second viewpoint is the mesoscopic (or kinetic) approach. It consists in describing
the system through particle densities in the phase-space of the system. This approach
goes back to James Clerk Maxwell [10, 19], one of the founders of kinetic theory. A
recent application of this description to planetary rings can be found in [16], which studies
approximate explicit stationary solutions in the context of a non-collisional model of Vlasov
type.

The third strategy consists in treating planetary rings by using an hydrodynamic
description (see, for example, [21]).

We moreover mention the possibility of using stochastic tools, such as in the case of
the Burgers-Zeldovich model [18].

Independently on the scale used for describing the problem, many authors have focused
themselves on a particular phenomenon occurring inside planetary rings. For instance, the
literature reports studies on fragmentation and coagulation [9] or on the fractal structure
of rings [17].

In our paper, we focus on a particular phenomenon, namely the formation of a gap
between rings caused by the effect of a shepherd moon. We use the kinetic approach and,
working on a short time scale, describe the phenomenon with a non-collisional Vlasov
equation in a time-dependent domain. The precise assumptions that justify the mathe-
matical structure of the model are described in detail in the next section. At this point,
we recall that the mathematical study of kinetic equations in evolutionary domains is still
in its early stages (see, for example, the pioneering paper [1] and [5, 4, 7, 20]).

Planetary rings are essentially two-dimensional objects, because of the properties of
symmetry of the problem. In our article, we hence work in the phase-space R2 × R2 and
suppose that the spatial domain of the solution of the Vlasov equation is given by the
complement of the domain occupied by a planet and by its moons.

We first study and provide the theoretical framework of the problem. We then address
the problem of its numerical simulation. Although the simplifications with respect to the
full dynamics make the problem linear, the existence of a moving domain is a source of
difficulties that imposes a nontrivial study of the problem.

We have chosen to use a particle method for its numerical implementation. It is clear
that the study of kinetic equations in an evolutionary domain is not an easy task because
of the high dimensionality of the problem, whose effects need to be taken into account,
and to the difficult treatment of possibly complicated geometries. In our approach, we
discretize the unknowns by mean of a collection of weighted smooth shape functions,
which evolve in time by following the dynamics of the problem, and then we handle the
possible overlapping between ring particles and the moons (or the planet). This has as a
consequence the elimination of the ring particle from the domain. The numerical results
show the versatility of the numerical method. In particular, the effect of a shepherd moon
on ring gap formation is clearly identified.

The structure of the article is the following. We start by discussing in Section 2 the dif-
ferent physical phenomena taken into account or neglected, before introducing the model.
In Section 3, we prove an existence and uniqueness result for this model, by applying the
method of characteristics in a moving domain. Section 4 describes the numerical strategy
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and Section 5 presents the numerical results for three different meaningful scenarios.

2 The mathematical model

We consider a planet surrounded by a fixed number of moons and a dusty cloud. The goal
of our model is to describe the dynamics of ring formation. The physical processes involved
in the evolution of planetary rings are multiple, and taking into account all of them would
lead to considerable complications in our study. However, the effects of various physical
phenomena may be more or less important with respect to the considered spatial and
temporal scales. For our purposes, we hence study a simplified version of the problem,
which retains, however, the main physical effects governing the creation of ringlets (in
particular, the interaction between particles and shepherd satellites).

2.1 The main gravitational effects

The first step is the analysis of the orders of magnitude of the various gravitational forces
acting on the system. In order to be consistent with a realistic situation, we consider, for
all the four giant planets of the Solar system, the Sun-planet-moons-rings subsystem and
analyze the problem in detail at the quantitative level.

2.1.1 The negligible role of the Sun

We first observe that the main effect on the particles is the gravitational attraction of the
planet and that the gravitational attraction of the Sun can be neglected in first approxi-
mation. Let mP be the mass of the planet and M the mass of the Sun. The gravitational
forces due to the Sun and to the planet on the particle of mass m are respectively:

FS =
GmM

d2
S

, FP =
GmmP

d2
P

,

where G is the gravitational constant, dS is the average distance between the mass centre
of the Sun and the particle and dP is the average distance between the mass centre of the
planet and the particle.

Table 2.1.1 shows some data for the planetary rings of the solar system. Because of
the complex structure of the considered ring systems, we chose for dP either the radius of
one of the main rings, or an average radius.

Saturn Uranus Neptune Jupiter

mP 5.7× 1026 kg 8.7× 1025 kg 1.0× 1026 kg 1.9× 1027 kg

dP 1.2× 108 m 3.8× 107 m 6.3× 107 m 1.2× 108 m

dS 1.4× 1012 m 2.7× 1012 m 4.5× 1012 m 7.8× 1011 m

We can deduce from these data that the gravitational force exerted by the Sun on a ring
particle is negligible when compared to the gravitational force exerted by the planet on
the same ring particle. In fact, we can compute and compare the attractive forces FP (in
N) between a particle of mass m and a given planet:
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1. for a particle of mass m that orbits around Saturn

FP =
G m (5.7× 1026 kg)

(1.2× 108 m)2
≈ G m× (4.0× 1010kg ·m−2),

2. for a particle of mass m that orbits around Uranus

FP =
G m (8.7× 1025 kg)

(3.8× 107 m)2
≈ G m× (6.0× 1010 kg ·m−2),

3. for a particle of mass m that orbits around Neptune

FP =
G m (1.0× 1026) kg

(6.7× 107 m)2
≈ G m× (2.2× 1010 kg ·m−2),

4. for a particle of mass m that orbits around Jupiter

FP =
G m 1.9× 1027 kg

(1.2× 108 m)2
≈ G m× (1.3× 1011kg ·m−2).

On the other hand, knowing that the mass of the Sun is M = 2.0 × 1030 kg, the gravi-
tational force FS exerted by the Sun on a particle orbiting Jupiter (which is the closest
planet to the Sun having a ring system) is

FS =
G m (2.0× 1030 kg)

(7.8× 1011 m)2
≈ G m× (3.2× 106 kg ·m−2) .

In the case of the other planets considered, the gravitational force between a ring particle
and the Sun is even smaller.

Therefore, ring particles are mainly affected by gravitational attraction of the planet
and it is reasonable to neglect the effect of the Sun.

2.1.2 About the gravitational and contact interaction between particles

Secondly, we neglect the mutual attraction between ring particles and assume that col-
lisions between them are unfrequent: we hence consider only the interactions between
ring particles and planet and the interactions between ring particles and moons. This
assumption is more delicate. Indeed, it is clear that aggregation and fragmentation phe-
nomena play an important role in the ring dynamics [8]. However, the importance of this
phenomenon has to be appreciated with respect to the time scale of our analysis.

We consider here the situation when the collision frequency is smaller than the orbital
frequency. Hence, in the time horizon of our model, the system can be considered as
sufficiently rarefied to make such collisions unlikely [11].

2.1.3 About the mutual gravitational attraction of N$ moons

In our problem, we consider N$ moons and study their role during the formation of
planetary rings, in the short period of time following the breakup of a satellite. In this
time interval, the gravitational attraction between the moons can be neglected and we
can therefore assume that the lunar orbits are always distinct and never overlap. These
assumptions are justifiable because we work on small time scales, in which the main effect
is the gravitational attraction between the planet and its moons.
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2.2 Interactions between particles and the major bodies

The sizes of satellites and planets being much larger than the sizes of particles, the contact
interaction between the former and the dust is the predominant phenomenon in our prob-
lem. In particular, in our model we suppose that the high mass of satellites and planet
causes the total absorption of particles interacting with them.

Most of the intricate ring structures owe their existence to the gravitational effect of
moons, without which the rings would be flat and featureless; without moons there would
probably be no rings at all because thin disks of small particles gradually would spread
and disperse [8]. Resonance is a key effect in maintaining ring gaps [8]. However, during
the evolution of a cloud of debris for a short period of time, we only consider the collision
between satellites and particles, neglecting resonance.

The gravitational force exerted by the planet on its annular system erodes and sculpts
the rings, whose particles continually rain into the planet’s atmosphere. This flux of
annular grains disintegrate the grains themselves, reducing the lifetime of planetary rings
[6].

We hence assume in our model that the total mass of the dust cloud is much smaller
than the mass of the planet and of the mass of the satellites, and that the mass of the
satellites is much smaller than that of the planet. We will therefore suppose that the
dust cloud has, in the model, a negligible gravitational effect on the system and that it
is possible to neglect the mutual gravitational interactions between the satellites. Thus
all the resulting complexity of the n-body problem will not be addressed in our study.
Consequently, the gravitational interactions considered in this article are the action of the
planet on the dust cloud and on the satellites, as well as the gravitational attraction of
the satellites on the dust cloud.

2.3 Equations modelling the system planet-moons-rings

In order to write our model, we first introduce the distribution function

f : R+
∗ × R+ × Ωt × Rd → R+

which describes the mass density of the dust, where m ∈ R+
∗ is the mass variable, t ∈ R+

is the time variable, x ∈ Ωt ⊂ Rd is the spatial position and v ∈ Rd the velocity, where
d ∈ N∗. In practice, because of the symmetries of the problem, the most relevant case is
d = 2.

We suppose that the origin of the reference frame is the center of mass of the planet.
Let rP > 0 and ri > 0 the radii of the planet and of the i-th shepherd moon respectively
(i = 1, . . . N$), where N$ > 1 is the total number of shepherd moons. We introduce the
sets

Sti = {x ∈ Rd : |x− ξi(t)| 6 ri} and P t = {x ∈ Rd : |x| 6 rP },
where ξi(t) ∈ Rd is the position of the center of mass of the i-th shepherd moon. Owing
to the fact that we work in a short-time horizon, we moreover suppose that

Sti ∩ Stj = ∅ for all i, j = 1, . . . , N$ and Sti ∩ P t = ∅ for all i = 1, . . . , N$.

The spatial domain of definition of the problem is hence given by the following open region
of Rd:

Ωt = (P t)c \
N$⋃
i=1

Sti .
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The boundary of Ωt is hence

Γt := ∂Ωt = ∂P t ∪

N$⋃
i=1

∂Sti

 .

If M̄ ⊂ R+
∗ , X̄ ⊂ Ωt and V̄ ⊂ Rd, the integral

IM̄,X̄,V̄ (t) :=

∫
M̄×X̄×V̄

f(m, t, x, v) dmdxdv

represents the number of dust particles with mass m ∈ M̄ , position x ∈ X̄ and velocity
v ∈ V̄ at time t.

The evolution of the dust cloud is described by the gravitational Vlasov equation

∂f

∂t
+ v · ∇xf −

∇xΦ

m
· ∇vf = 0, (m, t, x, v) ∈ R+ × R+ × Ωt × Rd (1)

where

Φ(t, x) = Gm

(N$∑
i=1

mi

|x− ξi(t)|
+
mP

|x|

)
(2)

is the gravitational potential on a particle of mass m. It is due to the planet, which has
mass mP , and to the moons, with masses mi and position of their centers of mass ξi(t)
for all i = 1, . . . , N$.

The planet and the shepherd moons influence the motion of the particles through the
gravitational forces exerted on the dust cloud. In particular, when a dust particle collides
with the planet or a satellite, it is absorbed. This effect is mathematically described by
supposing that the planet and the moons are absorbing moving barriers.

Let nx be the outward normal originated in x ∈ Γt. Then, the boundary conditions
on f are the following:

f(m, t, x, v)|x∈∂St
i , (v−vi(x))·nx<0 = 0, i = 1, . . . , N$,

f(m, t, x, v)|x∈∂P t, (v−vP (x))·nx<0 = 0,

(3)

where vi(x) is the local velocity of the point x located at the surface of the i-th moon and
vP (x) is the local velocity of the point x located at the surface of the planet.

For simplicity, let us define the ingoing boundary at time t as the subset of Γt × Rd
such that

Σt
− :=

N$⋃
i=1

{
(x, v) ∈ ∂Sti × Rd : (v − vi(x)) · nx < 0

}
∪
{

(x, v) ∈ ∂P t × Rd : (v − vP (x)) · nx < 0
}
.

(4)

Thanks to this definition, the boundary conditions (3) can be rewritten as
∂f

∂t
+ v · ∇xf −

∇xΦ

m
· ∇vf = 0, (m, t, x, v) ∈ R+ × R+ × Ωt × Rd,

f(m, t, x, v)|(x,v) ∈ Σt
−

= 0.
(5)
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The problem is supplemented with a suitable initial condition. We assume that its support
is contained in Ω0:

f(m, 0, x, v) =

{
f in(m,x, v) if (m,x, v) ∈ R+ × Ω0 × Rd

0 otherwise,
(6)

where f in ∈ L1(R+ × Ω0 × Rd) ∩ L∞(R+ × Ω0 × Rd).

3 Some mathematical properties of the model

In this section, we prove an existence and uniqueness result for the gravitational Vlasov
equation for planetary rings (1)-(2) with boundary and initial conditions (5)-(6), exploiting
the method of characteristics. In our analysis, we need to pay attention to the evolution
of the spatial domain, whose changes over time are due to the motion of the planet and
the shepherd satellites.

3.1 The method of characteristics for the Vlasov equation

The gravitational Vlasov equation is a linear scalar first-order hyperbolic PDE, so, setting
z the solution f along the characteristic curves (M,T,X, V ), the characteristic system
takes the form 

ż(t) = 0,

Ṁ(t) = 0,

Ṫ (t) = 1,

Ẋ(t) = V (t),

V̇ (t) = −∇xΦ(T (t), X(t))

M(t)
,

(7)

for t ∈ R+.

Proposition 1. For all s ∈ R+ and for every (m,x, v) ∈ R+ × Ωt × Rd, there exists a
unique solution (M,T,X, V ) ∈ C∞ of the initial value problem (7) with initial conditions

M(s) = m,

T (s) = s,

X(s) = x,

V (s) = v.

(8)

Proof. The demonstration directly follows from the fact that the system (7) for (M,T,X, V )
satisfies the hypotheses of the Picard-Lindelöf Theorem and the sub-linear condition holds,
since the points of singularity of Φ are excluded from the spatial domain Ωt for every time
t ∈ R+.

3.2 Existence and uniqueness of the solution

We are now ready to employ what we have previously presented to obtain an existence
and uniqueness result for System (1)-(5)-(6).
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For the sake of simplicity, let us set z := (x, v), the initial data for the characteristic
curves (X,V ); and Z(t; s, z) := (X,V )(t; s, x, v) the characteristic (X,V ) which start from
(x, v) in the phase-space, i.e. it is equal to (x, v) when t = s, and which is parametrized
by t.

The main tool to deal with the mobile domain in studying Equation (1)-(2) is the
backward absorbing time:

Definition 1. The backward absorbing time τΩt(x, v) for a particle starting from x ∈ Ωt

in the direction v ∈ Rd, is defined as

τΩt(x, v) = inf{θ > 0 : X(θ; t, x, v) ∈ Γt−θ}.

If the set Θ := {θ > 0 : X(θ; t, x, v) ∈ Γt−θ} is empty, then τΩt(x, v) = +∞.

In other words, τΩt(x, v) corresponds to the time of arrival at the border when we follow
the characteristic X backwards from x ∈ Ωt with velocity v ∈ Rd. This consideration
follows from the two results summarized below:

Proposition 2. The characteristic Z := (X,V ), solving (7), satisfies:

1. ∀t1, t2, t3 ∈ R+ and ∀z ∈ Ωt × Rd, Z(t3; t2, Z(t2; t1, z)) = Z(t3; t1, z);

2. ∀t, s ∈ R+, the map z 7→ Z(t; s, z) is a C1-diffeomorphism and

y 7→ Z(s; t, y) (9)

is its inverse.

The proof of this result is classical and it will be omitted.

The infimum of θ > 0 such that X(θ; t, x, v) ∈ Γt−θ is the time whereby, starting from
it in y ∈ Ωθ, with velocity w ∈ Rd, we arrive at the time t in X(t; θ, y, w) = x with a
velocity v. So, if we are in x at the time t and we want to proceed backwards until we
arrive in y at the time θ, we have to use the inverse function defines in (9):

x = X(t; θ, y, w) 7→ X(θ; t, x, v),

and it is precisely for this reason that, in Definition 1, we check X(θ; t, x, v).

The spatial domain Ωt of the Vlasov equation (1)-(2) is not convex, for every t, so classical
solutions of the boundary value problem for the Vlasov equation may not exist. Indeed,
let us consider the characteristic part of the boundary, i.e.

Σt
0 :=

N$⋃
i=1

{
(x, v) ∈ ∂Sti × Rd : (v − vi(x)) · nx = 0

}⋃
{

(x, v) ∈ ∂P t × Rd : (v − vP ) · nx = 0
}
.

Since Ωt is not convex, some velocity trajectories v from Σt
0 can enter Ωt. It results that the

method of characteristics – and therefore the explicit formula given born in the theorem
above – does not define f on the points of Ωt interested by these trajectories.

However, Σt
0 satisfies the hypotheses of Proposition 2.3 in [1], and hence has zero

Lebesgue measure.
We can express the solution of the initial-boundary value problem (1)-(2)-(5)-(6) using

the characteristics and the backward absorbing time:
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Theorem 1. If f in ∈ L1(R+ ×Ω0 ×Rd) ∩ L∞(R+ ×Ω0 ×Rd), then there exists a unique
generalised solution f ∈ L1(R+×R+×Ωt×Rd)∩L∞(R+×R+×Ωt×Rd) of the boundary
problem (1)-(2)-(5)-(6) associated to the initial condition f(m, 0, z) = f in(m, z), where
z := (x, v). It is given by the same formula of the classical case, namely that, for a.e.
(m, t, z) ∈ R+ × R+ × Ωt × Rd, we have

f(m, t, z) = f in(m,Z(0; t, z))1{τΩt (z)>t}, (10)

where Z := (X,V ) represent the characteristic curve which solves (7).

Proof. The proof can be obtained by adapting, to external domains, the proof given by
Bardos in [1], which is based on semigroup theory.

However, we give here a more direct proof, which is closer to the numerical strategy
described in the next section, based on the study of the evolution of the unknown on the
characteristic curves of the system. Let N0 ⊂ R+ × Ω0 × Rd be the set of zero Lebesgue
measure in R+×Rd×Rd such that f in is defined and of class L1∩L∞ on (R+×Ω0×Rd)\N0,
and let Nb ⊂ R+×R+×Σt

− be the set of zero Lebesgue measure in R+×Rd×Rd such that
f is zero on (R+×R+×Σt

−)\Nb. Consequently, the set Nd := Nb∪N0 has zero Lebesgue
measure in R+×Rd×Rd. We easily see that f , given by (10), satisfies the Vlasov equation
almost everywhere. Indeed, Equation (10) defines a function on (R+×R+× Ω̄t×Rd) \Nd
such that

f(m, t+ s, Z(s; 0, z)) = f in(m,Z(0; t+ s, Z(s; 0, z)))1{τΩt+sZ(s;0,z)>t+s}

= f in(m,Z(0; t, z))1{τΩt (z)>t},

for all s ∈ R such that Z(s; 0, z) ∈ Ωt × Rd. In fact, thanks to Proposition 2,

f in(m,Z(0; t+ s, Z(s; 0, z))) = f in(m,Z(0; t, z))

because

Z(0; t+ s, Z(s; 0, z)) = Z(0; 2t, Z(2t; t+ s, Z(s; 0, z))︸ ︷︷ ︸
Z(t;0,z):=y

)

= Z(0; t, Z(t, 2t, y))

= Z(0; t, Z(t, 2t, Z(t; 0, z)))︸ ︷︷ ︸
z

.

Moreover,
1{τΩt+sZ(s;0,z)>t+s} = 1{τΩt (z)+s>t+s} = 1{τΩt (z)>t}.

So, the function s 7→ f(m, t + s, Z(s; 0, z)) is C1 in the variable s for all (t,m, z) ∈
(R+ × R+ × Ω̄t × Rd) \ Nd. Furthermore, we have that

df

ds
(m, t+ s, Z(s; 0, z)) = 0

for all (t,m, z) ∈ (R+ × R+ × Ω̄t × Rd) \ Nd and for all s such that (m, t+ s, Z(s; 0, z)) ∈
R+ × R+

∗ × Ωt × Rd. From Equation (10), we see moreover that

lim
t→0+

f(m, t, Z(t; 0, z)) = lim
t→0+

f in(m,Z(0; t, Z(t; 0, z)))

= f in(m, z)
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for all (m, z) ∈ (R+ × Ω0 × Rd) \ N0, whereas

lim
s→0+

f(m, t+ s, Z(s; 0, z)) = f(m, t, z) = 0

for all (m, t, z) ∈ (R+ × R+ × Σt
−) \ Nb. Therefore, f solves a.e. the Vlasov equation.

Uniqueness follows easily by noticing that if f is a generalised solution of Vlasov’s
equation, then the function

s 7→ f(m, t+ s, Z(s; 0, z)) is C1.

Moreover, there exists Nf ⊂ R+ × R+ × Ωt × Rd of zero Lebesgue measure such that

df

ds
(m, t+ s, Z(s; 0, z)) = 0

for all (m, t+ s, Z(s; 0, z)) ∈ (R+×R+×Ωt×Rd) \Nf and for all s ∈]−min (t, τΩt(z)), 0[,
and we have also

lim
t→0+

f(m, t, Z(t; 0, z)) = f in(m, z) (m, z) ∈ (R+ × Ω0 × Rd) \ N0,

and
lim
s→0+

f(m, t+ s, Z(s; 0, z)) = 0 (m, t, z) ∈ (R+ × R+ × Σt
−) \ Nb.

Then, for all (m, t, z) ∈ (R+ × R+ × Ωt × Rd) \ (Nf ∪Nd), we have

df

ds
(m, t+ s, Z(s; 0, z)) = 0,

for all s ∈]−min (t, τΩt(z)), 0[. Integrating this equation, on ]−min (t, τΩt(z)), 0[, we find,
for t < τΩt(z)

f(m, t, z) = lim
ε→0+

f(m, 0, Z(0; t− ε, z)) = f in(m,Z(0; t, z))

and for t > τΩt(z), f(m, t, z) = 0.

4 Description of the numerical strategy

In this section we describe the numerical method used for the simulation of equations
(1)-(5)-(6) in two dimensions in space and velocity. Our procedure, based on a particle
method and a splitting strategy, is an evolution of the approach introduced in [4]. The
substantial difference of our problem from the one studied in [4] is that the dust particles
in planetary rings, unlike gas molecules, being affected by the gravitational acceleration
due to the planet and moons, satisfy the Vlasov equation (1), which is more complicated
to deal with than the free transport equation. On the other hand, the boundary condition
are, in this problem, particularly easy to handle, because the surfaces of the satellites are
modelled with an absorbing boundary: the particles that collide with it disappear from
the problem’s domain. We place ourselves in the reference frame of the planet, which is
thus supposed at rest.
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The centres of mass of the moons evolve independently according to the following equations
in polar coordinates:

ξi(t) = ri(t)

(
cos θi(t)
sin θi(t)

)
with

{
ri(t) = r0

i

θi(t) = ωit
, for i = 1, . . . , N$. (11)

In (11), ωi is the constant angular velocity of the circular orbit of the i-th moon and r0
i

is its constant distance from the origin of the coordinate system. If the i-th moon has an
elliptical shape, then we have to consider also its rotation around its own centre of mass.
So, if δi describes the angle formed by the major axis of the i-th moon and the x-axis of
the coordinate system, and if σi represents the angular velocity of the i-th satellite around
its own centre, we have δi(t) = δi(0) + σit.

The initial density of the dust particles is discretized by means of a collection of
weighted smooth shape functions centred on the numerical particle positions and velocities
(x0
k, v

0
k)16k6N0 , that is

f in
N0,ε(x, v) =

N0∑
k=1

αk ϕε(x− x0
k)ϕε(v − v0

k), (12)

where N0 represents the initial number of numerical particles, αk is the weight of the
k-th numerical particle (which represents αk ”real” particles). In (12), the shape function
ϕε(x) = ϕ(ε−1x)/εd is a smooth function with compact support. The term ”numerical
particles” is here used for avoiding any confusion with the (real) number of dust parti-
cles. Once the number N0 of numerical particles has been chosen, the initial positions
(x0
k)16k6N0 and velocities (v0

k)16k6N0 are sampled according to the initial density f in

thanks to a Monte-Carlo procedure. Then, the positions and velocities of the numerical
particles evolve in time, according to the explicit Euler scheme xn+1

k = xnk + ∆tvnk

vn+1
k = vnk −∆t

∇xΦ(tn,xnk )
m

1 6 k 6 Nn, (13)

where Nn is the number of numerical particles at the time tn (which can differ from N0

because some particles can be absorbed by the planet or the moons between t0 and tn).
In order to simplify the interactions between the moons and the numerical particles, we
use a time-splitting between the transport (free flow of the particles in the absence of any
interaction, mathematically represented by the transport operator v ·∇) and the treatment
of the differents interactions (flow of the particles due to the planet-moons gravitational
field, and the absorbing boundary condition on Σt

−). In other words, in each time interval
[tn, tn+1[, we first move the moons and the planet independently of the motion of the
dust particles, then we freeze them and we transport the numerical particles and perform
the treatment of the boundary conditions. Thus, when we move the numerical particles,
the domain is fixed, allowing us to come back to deal with the boundary conditions of a
fixed domain instead of working in a mobile domain. Once determined the positions of
the largest bodies at the time tn+1, we move the Nn macro-particles, according to the
equations of motion (13), finding (xn+1

k , vn+1
k )16k6Nn . Then, we test on every numerical

particle k if xn+1
k ∈ Ωn+1 and otherwise we impose the boundary condition.

11



To do so, we only need a cartesian equation of the surface of the planet and of the
satellites, which for elliptical bodies with axis lengths a and b is{

(x, y) ∈ R2 |
(

(x− ri(t) cos(θi(t))

a

)2

+

(
(y − ri(t) sin(θi(t))

b

)2

6 1

}
.

Once written the coordinates of macro particles in the reference frame of the ellipse, we
control if they verify the cartesian equation or not. If yes, we apply the boundary condition,
namely we remove the k-th particle from the domain, then we renumber the remaining
numerical particles. The number of numerical particles at time tn+1 hence becomes then
Nn+1 6 Nn. We neglect the mass increase of the moon coming from the absorption of
particles.

The shortcoming of this strategy is that, when a particle collides with the i-th body,
it does not allow us to determine the position of the intersection between the particle’s
trajectory and the i-th moon. However, since we are dealing with absorption boundary
conditions, the value of this intersection becomes superfluous for our discussion. Although
this strategy is less precise than the one in which the intersection is calculated, the graph-
ical results of these two approaches are similar, with the advantage that the former allows
us to deal with bodies having complicated shapes and is less computationally expensive.

Another problem that could arise is shown in the Figure 1: during the time interval
[tn, tn+1[ a dust particle collides with a moon, but the method does not detect the collision
because the particle is outside the moon at time tn+1. However, this problem can be
controlled by reducing the time step ∆t.

Figure 1: A situation in which the k-th particle collides with the i-th moon, but the
numerical method does not notice the collision.

5 Numerical results

We now describe some simulations implemented for the planetary rings problem in two
spatial dimensions (i.e. four dimensions in phase-space). We run the simulations employ-
ing dummy data, based on data from Saturn and some of its satellites. Here we have
chosen moons of sufficiently high size and mass in order to have appreciable and visible
results.

12



5.1 Simulation 1

In this scenario, we simulate the orbit of an elliptical shepherd moon around a planet and
observe how the moon’s motion creates a separation in the dust cloud around the planet,
thus contributing to the formation of a ring system. We consider a circular planet, with
radius ρP and mass mP , and an elliptical shepherd moon, with axes a1 and b1 and mass

mS1 . We moreover assume that the moon, with center of mass ξ0 = r0
1

(
cos θ0

1

sin θ0
1

)
at the

time t = 0, orbits the planet with constant angular velocity ω1 and rotates around its own
centre of mass with constant angular velocity σ1. The quantity δ0

1 is the initial angle from
the semi-major axis of the i-moon and the x-axis of the coordinate system.

The spatial domain of the planetary ring problem is, for d = 2:

Ωt := R2 \
(
P t ∪ St1

)
, t > 0.

Our numerical spatial domain is a truncation of Ωt
1 for each time tn:

Ω̂n := D \
(
Pn ∪ Sn1

)
(14)

where D := [−1, 1]× [−1, 1] (scaled according to the length L0 = 2× 108 m) is the square
domain for the simulations.

The table shows the values of the data we have selected for these simulations.

Planet Moon

mP = 5.70× 1026 kg mS1 = 8× 1021 kg

ρP = 5.82× 107 m a1 = 1.6× 106 m

b1 = 1.6× 106 m

r0
1 = 1.2× 108 m

θ0
1 = 0.00 rad

ω1 = 1.33× 10−3 rad/s

δ0
1 = 1.05 rad

σ1 = 4× 10−10 rad/s

We have supposed that the initial distribution f in is factorized as the product of a
function depending on the space variable only and a function depending on a suitably
chosen velocity vorb = vorb(x). More precisely, let rmin = 6.7 × 107m, rmax = 1.8 × 108m
and define

R :=

{
(x1, x2) ∈ D, rmin 6

√
x2

1 + x2
2 6 rmax

}
and

S2
orb(x) :=

{
v ∈ R2, ‖v‖ = vorb(x)

}
.

The initial distribution is

f in(x, v) = 1R(x)1S2
orb(x)(v). (15)

We thus first consider the finite set (x0
k)16k≤N0 as a realisation of the density function

associated to 1R(x): we generate the positions (x0
k)16k6N0 as the realisations of a uniform

density on R, in a probabilistic way. The initial velocity v0
k of the k-th macro-particle is

13



then chosen as the orbital velocity of a point at x0
k (i.e. we suppose that the radial velocity

vr is zero). Thus, written its initial position x0
k = r0

k

(
cos Θ0

k

sin Θ0
k

)
in polar coordinates, its

orbital velocity is:

v0
k := vk,orb(− sin Θ0

k, cos Θ0
k), k = 1, . . . , N0, (16)

where

vk,orb =

√
GmP

r0
k

(17)

is the approximation of the modulus of orbital velocity for dust particles. The particle
weights are identical, i.e. we suppose that

αk :=
||f in||L1(Ω0×R2)

N0
=
n0|R|
N0

, 1 6 k 6 N0, (18)

where n0 :=
||f in||L1(Ω0×R2)

|R| . This quantity has been normalized to 1 in the simulations.

Then, for every n, we move the corresponding numerical particle in the time interval
[tn, tn+1] using an explicit Euler method and we check if the numerical particle falls into
the planet or the moons. If so, it is eliminated.

The next step consists in the reconstruction of the density fn+1
N0,ε

. As in [4], we use B-

splines of 3-order in two space dimensions as shape functions φε, with shape sizes ε1 = h
1/2
1

and ε2 = h
1/2
2 , where h1 and h2 are the initial distances between two numerical particles

in the first and second direction, respectively.
In order to visualize the space-time evolution of the dusty particles, we reconstruct the

spatial density

ρ(t, x) :=

∫
R2

f(t, x, v)dv

from the positions and the velocities of the numerical particles and we plot the numerical
macroscopic density

ρnN0,ε(x) :=

∫
R2

fnN0,ε(x, v)dv =

Nn∑
k=1

αkφε(x− xnk).

In Figure 2 we show the results of the simulation. We have used 587 116 numerical
particles. The planet and the moons are coloured in red to facilitate their visualization.
It is possible to notice that the moons sweep away the dust in front of them as they orbit
the planet, creating a path where the density ρnN0,ε of the rings is very low. This result
is consistent with astronomers’ assumptions about the creation of ringlets based on data
collected by the Cassini spacecraft [12].

5.2 Simulation 2

In this section we describe the results of the simulation of a close-up view of the moon in a
previously open gap, neglecting the planet’s gravitational role on the moon and ring dust.
Let us then consider the square D and take as domain, at each discrete time tn, the set:
Ω̂n := D \ Sn. The space in which the dust particles are initially located is the following:

R := {(x1, x2) ∈ D | rmin 6 x2 6 rmax}. (19)
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Figure 2: Time history of the spatial numerical density ρnN0,ε at instants t = 0, t =

6.0 × 105 s, t = 1.2 × 106 s, t = 1.8 × 106 s, starting from the image at the top left,
proceeding from left to right and from top to bottom. The axis are scaled according to
the length L0 = 2× 108 m.

where rmin = −5× 107m and rmax = 5× 107m. As initial distribution, we consider

f in(x, v) = 1{x∈R}δ0(v), (20)

which is uniform in space and non-zero only if the velocity is zero in each component. So,
(x0
k)16N0 are selected as realisation of a uniform density, while (v0

k)16N0 are set to zero.
The weights (αk)16k6N0 are chosen as in (18), with R defined in (19).

The physical data for the moon are the following:

Moon

mS = 6.0× 1018 kg

a = 1.50× 106 m

b = 1.00× 106 m

δ0 = 3.14/3 rad

The moon is supposed to be immobile, in order to study only the influence of its grav-
itational force on the ring of particles. At each time step, we move the particles, following
the numerical solution of the equation of motion (13) in the time interval [tn, tn+1]. Par-
ticles which fall into the moon are eliminated. Then, we reconstruct the density fn+1

N0,ε
as

described in Section 5.1 and we employ it to define the spatial numerical density

ρn+1
N0,ε

(x) =

Nn+1∑
k=1

αkφε(x− xn+1
k ).
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Figure 3 shows the time evolution of the numerical density ρnN0,ε on D. In this simu-
lation, we have employed 485 825 numerical particles.

In the pictures, we observe the effect of the gravitational attraction by the moon on
the dust particles and, moreover, the emergence of wavy, jagged edges, consistent with
what has been observed in Saturn’s rings [8].

Figure 3: Time history of the spatial numerical density ρnNn,ε at instants t = 0 (left) and

t = 4.96× 104 s (right). The axis are scaled according to the length L0 = 2× 108 m.
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Madhusudhanan, Joshua E. Colwell, and Richard G. Jerousek. A predator-prey model
for moon-triggered clumping in Saturn’s rings. Icarus, 217(1):103–114, 2012.

[10] Elizabeth Garber. Subjects great and small: Maxwell on Saturn’s rings and kinetic
theory. Philosophical transactions. Series A, Mathematical, physical, and engineering
sciences, 366:1697–705, 06 2008.

[11] Evgeny Griv, Michael Gedalin, and Chi Yuan. On the stability of Saturn’s rings: a
quasi-linear kinetic theory. Mont. Not. R. Astron. Soc., 342(4):1102–1116, 07 2003.
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