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Abstract—Traveled distance estimation is a common problem for
robotic applications taking place in unknown environments where GPS
is not available. In drones, the presence of weight and computational
power constraints leads to the importance of developing odometry
strategies based on minimilastic equipment. In this study, we imposed
upon a hexarotor to perform up-and-down oscillatory motions while
flying forward to test a self-scaled scheme of a visual odometer for
the first time. For the odometry, the downward translational optic
flow was scaled by the current visually estimated flight height and
then mathematically integrated to evaluate the total distance traveled.
The self-oscillatory trajectory generated successions of contraction and
expansion in the optic flow vector field, which allowed to estimate the
flight height of the hexarotor by means of an Extended Kalman Filter.
We present three strategies based on sensor fusion that rely on no,
precise or rough prior knowledge of the optic flow variations imposed
by the sinusoidal trajectory. The rough prior knowledge strategy uses
solely the timing of the variations of the optic flow. Tests were performed
in a flying arena, where the hexarotor followed a circular trajectory
while oscillating up-and-down over about 50m under illuminances of
117lux and 1518luz.

I. INTRODUCTION

Traveled distance estimation of an aerial robot in an unknown
environment is a common problem for all types of applications
when GPS is not available. In drones, the need to reduce the Size,
Weight and Power (SWaP) of the perception equipment is often of
great importance to ensure the success of the task.

Several visual odometric approaches involving the use of either optic
flow [24, 18], events, images & IMU combination [26] or the sparse-
snapshot method [5] have been successfully tested on flying robots.
All these approaches require ground height information providing
the factor scaling the visual information. This scaling factor can
be determined separately using a static pressure sensor [12] or
stereovision [24, 5] or is integrated in the hybrid approach [26], for
example. One solution to estimate the 2D position of a drone in an
unknown environment is concurrent onboard odometry and visual
mapping, as well as onboard SLAM (Simultaneous Localisation and
Mapping) [7, 15, 17]. A minimalistic alternative is IMU (Inertial
Measurement Unit) based dead reckoning - i.e. inertial integration
[23]. The dead reckoning position signal could be used by a flying
robot to get close enough to detect a landmark before reaching it,
giving a new known starting point.

Most of these approaches require the use of computationally inten-
sive algorithms and a feedback from the environment (such as the
detection of a beacon or the feedback from a map). A minimalistic
alternative is the use of optic flow cues, such as translational optic
flow and optic flow divergence. Translational optic flow has been
used on flying robots to visually control landing [21], to follow
uneven terrain [6] and to attempt visual odometry and localisation
[11, 13] (see [22] for review).

Self-oscillations have been observed in honeybees flying forward in

both longitudinal and vertical tunnels ([14] and [20], respectively).
The self-oscillatory motion generates a series of expansions and
contractions in the optic flow vector field: the optic flow divergence
cue. Visually controlled landing was achieved by using optic flow
divergence [9, 25, 4, 10]. The instabilities due to the oscillatory
movement have been used to determine the flight height of a micro-
flyer by exploiting the linear relation between the oscillation and the
fixed control gain [4]. The instabilities due to depth variation have
been used to assess the optic flow scale factor of the observed scene
to perform visual odometry onboard an underwater vehicle [3]. In
[1], the local optic flow divergence was measured by means of two
optic flow magnitudes perceived by two optic flow sensors placed
on a chariot performing back-and-forth oscillatory movements in
front of a moving panorama. The local optic flow divergence was
then used to estimate the local distance between the chariot and the
moving panorama by means of an Extended Kalman Filter (EKF).
In this study, we investigate how to include some knowledge about
the trajectory oscillations in an odometry strategy based only on
optic flow cues. The optic flow based odometry scheme, called
SOFla (Self-scaled Optic Flow time-based Integration model), was
tested here for the first time on a hexarotor equipped with optic flow
sensors that oscillated up-and-down following a circular trajectory
of about 50m. The SOFIa model was previously assessed in bio-
plausible simulations to model the visual odometer of honeybees
[2]. The estimation of the distance traveled by means of the SOFIa
method is based on the integration of the local translational optic
flow scaled by the flight height of the drone, which is estimated
by means of an EKF taking the local optic flow divergence as
measurement. Such integration scheme can therefore be considered
as a minimalistic dead reckoning solution based on optic flow.
First, we applied the SOFIa method using only 2 optic flow
measurements perceived along the longitudinal axis of the drone,
with no prior knowledge of the optic flow variations. Then, to
increase the odometry accuracy, we tested a sensor fusion strategy
based on the parameters of the self-oscillation using 4 optic flow
sensors embedded on the hexarotor. The idea was to use some prior
knowledge of the oscillations imposed upon the drone to better
evaluate the optic flow divergence and the translational optic flow
cues. We tested two different sensor fusions based respectively on a
precise and on a rough prior knowledge of the optic flow variations.
The sensor fusion based on a rough prior knowledge uses solely the
timing of the variations of the optic flow. All three optic flow based
odometry processing were tested on bouncing circular trajectories
of about 50m under illuminances of 117/ux and 1518lux.

In section 2, we discuss the measurement of the local translational
and divergence optic flow cues. In section 3, we discuss the
minimalistic visual odometer method. In section 4, we describe



the hexarotor and the optic flow sensors used. In section 5, we
describe the odometry processing based on the raw measurements
of 2 optic flow sensors without any prior knowledge of the optic
flow variations. In section 6, we describe the sensor fusion odometry
processing based on 4 optic flow sensors, both with a precise and
with a rough prior knowledge of optic flow variations. In section 7,
we show experimentally that the sensor fusion strategies based on
the knowledge of optic flow variations increase the measurement
accuracy of the local optic flow cues by comparing the three
methods. Finally, we compare the performance of the minimalistic
in-flight optic flow based odometry of the three methods. In section
8, conclusions are drawn and future works are discussed.

II. MEASUREMENT OF THE LOCAL OPTIC FLOW CUES

The translational optic flow is the pattern generated on the optic
flow vector field by the translational motion of a drone flying above
the ground [8]. The theoretical local translational optic flow w4 can
be expressed as the ratio between the V,, component of the drone’s
velocity and its flight height h (see Figure 1):

%
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The local translational optic flow can be measured on a hexarotor as
the sum of two optic flow magnitudes w(¢) and w(—¢) perceived
by two optic flow sensors oriented at angles +¢ with respect to the
hexarotor’s vertical axis, divided by a known factor of 2 - cos(¢)?:
meas w + w(— Vz
s~ 9O 0(-0) _ Ve o
2 - cos(¢) h
In the case of a hexarotor equipped with four optic flow sensors as
illustrated in Figure 2.b, three translational optic flow cues can be

measured as:
« the sum of the two optic flow magnitudes perceived by the two
optic flow sensors set along the longitudinal axis x, namely
meas
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Fig. 1: Hexarotor oscillating up-and-down while flying forward over
the ground. a) The hexarotor’s velocity V' can be decomposed in
the components V,, and V. Along the hexarotor’s longitudinal axis
x, the optic flow sensors are set at angles +¢ with respect to the
hexarotor’s vertical axis and at a distance D with respect to the
ground. They perceive the optic flow magnitudes w(¢) and w(—¢),
respectively. This configuration is found along the hexarotor’s lateral
axis y as well. b) If V}, is positive, the optic flow divergence
component is a contraction (i); if it is negative, the optic flow
divergence component is an expansion (ii). The contraction or
expansion of the optic flow is superimposed in the ventral optic
flow vector field on the translational optic flow.

« the sum of the two optic flow magnitudes perceived on the =
axis by the two optic flow sensors set along the lateral axis v,
namely wp,°*%,

o the median of the four optic flow magnitudes considered,
projected on the hexarotor’s vertical axis by a 1/ cos(¢) factor,
namely wry %

The series of contractions and expansions generated in the optic flow
vector field by up-and-down oscillatory motions is known as optic
flow divergence. When a drone flies forward while oscillating up-
and-down above the ground, in the optic flow vector field the optic
flow divergence is superimposed on the translational optic flow.
Due to the oscillatory movement, the state vector X = [k, V;,]7 is
locally observable [10]. The theoretical local optic flow divergence
Wi can be expressed as the ratio between the V}, component of
the drone’s velocity and h (see Figure 1):

Wiy = T G
In [1], the authors have mathematically demonstrated that the local
optic flow divergence can be measured on a micro-flyer as the
subtraction between two optic flow magnitudes w(¢®) and w(—¢)
perceived by two optic flow sensors oriented at angles +¢ with
respect to the normal to a surface, divided by a known factor of

in(2¢):
Sln( ¢) meas __ w(¢) - w(i()b) _ E
v T sin(26)  h

In the case of a hexarotor equipped with four optic flow sensors,
two optic flow divergence cues can be measured as:

“

« the subtraction between the two optic flow magnitudes per-
ceived by the two optic flow sensors set along the longitudinal
axis x, namely w2,

« the subtraction between the two optic flow magnitudes per-
ceived by the two optic flow sensors set along the lateral axis

meas

y, namely wg;;=°.

III. THE SOFIA VISUAL ODOMETER METHOD

In [2], the authors have assessed in simulation a model of the
honeybee’s visual odometer called SOFIa (Self-scaled Optic Flow
time-based Integration model). The SOFIa model is based on the
integration of the local translational optic flow wr scaled by the
estimated distance with respect to the ground h:

Xsorra = JUJT hodt (&)

In [2], h was estimated by means of an EKF taking as input the
honeybee’s wing stroke amplitude and as measurement the local
optic flow divergence computed as the ratio between Vj, and h (as
in equation (3)). The local translational optic flow was computed
as the ratio between V, and h (as in equation (1)). The SOFIa
model was found to be about 10 times more accurate than the raw
mathematical integration of optic flow.

IV. MATERIALS AND METHODS

The hexarotor was developed together with Hexadrone™ and
equipped with four Pixart PAW3903 optic flow sensors (see Figure
2 and Table I). The Pixart PAW3903 optic flow sensors were
embedded on printed circuits to set them on the drone. The hexaro-
tor had as onboard low-level flight controller the PX4 autopilot
system [16] and used a trajectory tracking algorithm' to perform

Uhttps://github.com/gipsa-lab-uav/trajectory_control
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Fig. 2: a) Hexarotor equipped with 4 optic flow sensors oriented
towards the ground flying along a bouncing circular trajectory in
the Marseille’s flying arena. b) 2 optic flow sensors were set along
the longitudinal axis x at angles ¢ = +300 with respect to the
hexarotor’s vertical axis z, while the other 2 optic flow sensors were
set along the lateral axis y at angles ¢ = +300 with respect to the
hexarotor’s vertical axis z. c) Example of a test flight trajectory over
53m at an oscillation frequency of 0.28H z.

up-and-down oscillating circular trajectories. Based on the intrinsic
attitude stability of the hexarotor, we can consider that there
is no rotational component measured by the optic flow sensors.
Furthermore, we consider that pitch and roll are negligible despite
the circular bouncing trajectory. Thus, the downward translational
optic flow can be measured along the x component of the optic
flow sensors. Position and orientation used in the hexarotor’s control
were taken from the motion-capture (MoCap) system installed in the
Mediterranean Flying Arena. The flying arena was equipped with
17 motion-capture cameras covering a 6 X 8 X 6 m volume using a
VICON™ system. Datasets including the optic flow measurements
were recorded via the Robot Operating System (ROS) and processed
with the Matlab/Simulink 2022 software.

Specifics Optic flow sensors
Sensor chip Pixart PAW3903
Sensor PCB 4 x 2g
Hardware read-out of the 4 sensors Arduino Nano

TABLE I: Table of the specifics of the optic flow sensors equipped
on the hexarotor.

a) State space representation used for the EKF: To estimate
the hexarotor’s flight height h, we chose to model the hexarotor’s
system as a double integrator receiving as input the acceleration
a. on the vertical axis z given by the drone’s IMU. Thus, the
hexarotor’s state space representation can be expressed as:

X:f(X,az)=A~X+B-az=[8 (1] ]~X+[ (1) ]-az
(6)

Y =g(X) = [X(2)/X(V)] = Vi/h = wgjy

T .
where X = [h, Vh] is the hexarotor’s state vector.
The use of an EKF was necessary due to the non-linearity of the

local optic flow divergence, as the measurement depends on the
ratio of both states V}, and h (see equation (3)).

V. ODOMETRY METHOD WITH 2 OPTIC FLOW SENSORS WITH NO
PRIOR KNOWLEDGE (NPK)

The local optic flow divergence w3, was measured as the
subtraction between the two raw optic flow magnitudes perceived
by the two optic flow sensors set along the = axis, while the local
translational optic flow w2® was measured as their sum. To estimate
the flight height h, the EKF received as:

« input: the acceleration of the drone a.,
« measurement: the local optic flow divergence w25,

See Appendix B for the EKF calculations.

h was then used to scale the integration of the local translational
optic flow w?° to perform odometry. This odometry method based
on 2 raw optic flow measurements does not need prior knowledge
of any parameter to assess the distance traveled.

VI. FUSION STRATEGIES WITH 4 OPTIC FLOW SENSORS

A. Fusion strategy using a very Precise Prior Knowledge (PPK) of
the optic flow variations

Here, we investigated how to use prior knowledge of the self-
oscillation to further improve the accuracy of the distance traveled
estimates.

We expressed the optic flow divergence induced by the self-
oscillation to serve as input of a Kalman Filter (KF) as follows
(see Figure 4):

'ﬁ V() — Apse2T fose co8(27 fosckdt)
h div - ho + Aose sin(271'fosck6t)

with fosc oscillation frequency equal to 0.28 H z, A, oscillation
amplitude equal to 0.25m and ho average flight height equal to
0.55m. To fuse wgiy+® and wgi;"®, we used a KF (see Figure 3).
At each k' step, the KF received as input the current value of the
model in equation (7) and as measurements wg;,° and wg;y+*. See
Appendix A for the KF calculations.

We expressed the translational optic flow induced by the forward

motion to serve as input of a KF as follows:

Ve L Ur(r) = wr (k= 1) - h(k = 1)

h ho + Aosc sin(27 fosckdt)
Ve (0) ~ wBF(k = 0) - h(k = 0) was initialized at 0.45m/s.
To fuse the three translational optic flow cues wr;°**, w;"** and
wiry ®®, we used a KF (see Figure 3). At each k'™ step, the KF
received as input the current value of the model in equation (8) and
as measurements wy.“*®, wy*®® and wr,**°. See Appendix A for
the KF calculations.

@)

Wdiv =

®)

wrT =

B. Fusion strategy using a very Rough Prior Knowledge (RPK) of
the optic flow variations

Here, we investigated how to implement the sensor fusion strategy
with 4 optic flow sensors without the knowledge of the oscillation
amplitude A,s. and the average flight height ho just by using the
knowledge of the trajectory oscillation timing.

To do so, we approximated very roughly both the optic flow
divergence and the translational optic flow cues to a sinusoidal
signal to serve as input of both KFs as follows (see Figure 4):

Udio(k) = Uz (k) = sin(27 fosckdt) )
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Fig. 3: The sensor fusion based on 4 optic flow sensors rely on additional Kalman Filters (KF). The embedded computer handles the 4
optic flow sensors set on the hexarotor. wg;y>° and wgy,+* are taken as measurements by a KF (noted K Fy;.), that takes as input the
current value Uy, of the model of the optic flow divergence. The output of the KF is the local optic flow divergence wk’ . W, wp?
and w7, "*® are taken as measurements by a KF (noted K Fr), that takes as input the current value Uz of the model of the translational
optic flow. The output of the KF is the local translational optic flow wX . The EKF takes as input the hexarotor’s acceleration a. and as

measurement w’ X to estimate the current flight height h. The EKF output h scales Wi that is then integrated to perform odometry.
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Fig. 4: Inputs Ug;, of the Kalman Filters (KF) used to fuse optic
flow divergence cues with the Precise Prior Knowledge (PPK)
fusion strategy (in purple) and with the Rough Prior Knowledge
(RPK) fusion strategy (in green), respectively. In the RPK sensor
fusion strategy, only a sinus helps the KF to keep the oscillation
timing as the shape looks similar.

with fosc oscillation frequency equal to 0.28 H z. At each k'" step,
both KFs received as input the current value of the model in equation
(9) and as measurements the divergence optic flow measurements

gic2® and wg;c®®) and the translational optic flow measurements

(wdiv,; divy
7%, wry® and wy”*®), respectively. See Appendix A for the

("%, wry,
KF calculations.

C. Extended Kalman Filter within the fusion strategy with four optic
flow sensors

To estimate the drone’s flight height h, we used an EKF that
received as:

« input: the acceleration of the drone a.,
« measurement: the local optic flow divergence wX I filtered by
the KF based on the measurements of the optic flow sensors.

See Appendix B for the EKF calculations.
h was used to scale the local translational optic flow w ", that was
then integrated to perform odometry as follows:

Xsorra = fwif” b dt (10)

VII. RESULTS

We compared the sensor fusion strategies based on Precise Prior
Knowledge (PPK) and on Rough Prior Knowledge (RPK) of optic
flow variations (using here 4 optic flow sensors) to the method based
on No Prior Knowledge (NPK) of optic flow variations (using here
2 optic flow sensors). 7 bouncing circular test flights of about 50m
were performed with the hexarotor both under an illuminance of
117luzx (5.36 - 1076W/cm2) and under an illuminance of 1518lux

NPK method (2 OF sensors)
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Fig. 5: i) The local Optic Flow (OF) divergence w23 (in blue)
measured with the No Prior Knowledge (NPK) method had a
Signal-to-noise Ratio (SnR) of 5.62dB. The theoretical local optic
flow divergence was computed as the ratio between V3, and h (in
dashed line). ii) The local translational optic flow w%s (in red)
measured with the NPK method had a SnR of 19.12dB. The
theoretical local translational optic flow was computed as the ratio
between V, and h (in dashed line). iii) The estimates of the flight
height h converged quickly (within 4s) to the ground truth h. iv) The
average percentage error of h with respect to h after convergence
was —9.77% (with a range of [—61.5%,65.34%]). v) The final
percentage error in the estimates of the distance traveled XsoFia
with respect to the ground truth Xy was —8.57%.

(2.71 - 10_4W/cm2), for a total of 14 test flights. First, the 14
datasets were processed with the NPK method (see Section (V)).
Then, the 14 datasets were processed using the PPK strategy (see
Section (VI-A)) and the RPK strategy (see Section (VI-B)). The KF
parameters defined in Appendix A were chosen as ® = 10, I' = 10
and Hj = 10. The KF parameters were experimentally chosen
with the first dataset taken under an illuminance of 1518/uxz and
were used to process all 14 datasets for both PPK and RPK fusion
strategies.

In Figures 5 and 6, the optic flow measurements were processed
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Fig. 6: The local Optic Flow (OF) divergence wX? (in blue) measured with the Precise Prior Knowledge (PPK) strategy had a Signal-
to-noise Ratio (SnR) of 6.72dB (a.i) and with the Rough Prior Knowledge (RPK) strategy of 6.73dB (b.i). The theoretical local optic
flow divergence was computed as the ratio between V4, and h (in dashed line). The local translational optic flow w " (in red) measured
with the PPK strategy had a SnR of 25.74dB (a.ii) and with the RPK strategy of 25.91dB (b.ii). The theoretical local translational optic
flow was computed as the ratio between V,, and h (in dashed line). The estimates of the flight height h converged quickly (within 4s)
to the ground truth h in both cases (a and b.iii). The average percentage error of h with respect to h after convergence was —2.16% for
the PPK strategy (with a range of [—36.89%, 34.13%]) (a.iv) and —2.58% for the RPK strategy (with a range of [—36.89%, 34.23%])
(b.iv). The final percentage error in the estimates of the distance traveled Xsorra with respect to the ground truth X4+ was —1.22% for
the PPK strategy (a.v) and —2.84% for the RPK strategy (b.v).
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Fig. 7: a) Comparison of the position of the hexarotor in the vertical plane (z,z) estimated with the Rough Prior Knowledge (RPK)
fusion strategy (dashed line) to the ground truth given by the MoCap system (continuous line). The estimates of the flight height h were
plotted on the estimates of the traveled distance Xsoria, while the ground truth h was plotted on Xg¢. This test flight was performed
at 1518lux. b) The final percentage error in the estimates of the traveled distance Xsoria with respect to the ground truth X,; was
—2.62%.

30 40

with the three strategies (NPK, RPK and PPK) for the same dataset
taken under an illuminance of 1518/ux. The increase in the Signal-
to-noise Ratio (SnR, computed as the squared ratio of the root
mean square of the signal and the root mean square of its noise)
observed in Figure 6 for the local optic flow divergence and the
local translational optic flow between the NPK method and the PPK
and RPK strategies influenced the average percentage error of the
estimates of the flight height after convergence (considered at 4s).
The flight height error was —9.77% for the NPK method (see figure
5), while it was —2.16% for the PPK strategy and —2.84% for the
RPK strategy. Similar results were obtained for all 14 datasets. The

SnR of the local translational optic flow measured with the NPK
method ranged between 18.08d B and 24.79d B, while with the PPK
strategy it ranged between 24.84dB and 29.93d B and with the RPK
strategy it ranged between 24.84dB and 28.64dB. The SnR of the
local optic flow divergence measured with the NPK method ranged
between 5.41dB and 5.71dB, while with both the PPK and RPK
strategies it ranged between 6.47dB and 7.1dB.

The computation of the estimates of the flight height h and of
the estimates of the traveled distance X sorIa allow to assess the
position of the hexarotor in the vertical plane (z,z). An example
is shown in Figure 7, in which the estimates of the flight height
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Fig. 8: a) When considering all 14 datasets taken, the final per-
centage error ranged between —8.57% and 8.4% (with a median
of 0.47%) for the No Prior Knowledge (NPK) method (in black),
between —4.02% and 2.38% (with a median of —0.53%) for the
Precise Prior Knowledge (PPK) strategy (in purple) and between
—5.27% and 1.66% (with a median of —2.17%) for Rough Prior
Knowledge (RPK) (in green). b.i) At 1518/ux, the final percentage
error ranged between —8.57% and 5.52% (with a median of
—1.14%) for the NPK method, between —1.65% and 1.08% (with
a median of —0.8%) for the PPK strategy and between —3.21%
and 0.67% (with a median of —2.3%) for RPK strategy. b.ii) At
117lux, the final percentage error ranged between —0.72% and
8.4% (with a median of 4.73%) for the NPK method, between
—4.02% and 2.38% (with a median of —0.27%) for the PPK
strategy and between —5.27%% and 1.66% (with a median of
—2.09%) for the RPK strategy.

h were plotted on the estimates of the traveled distance X SOFIa
(which are given directly in meters) and compared to the ground
truth given by the MoCap system. Since it is based on the optic
flow based odometry, the 2D position estimation is subject to an
accumulation of error increasing with the distance covered.
Overall, the final percentage error in the estimates of the distance
traveled Xsorra with respect to the ground truth X, (traveled
along the z axis) ranged between —8.57% and 8.4% for the NPK
method, between —4.02% and 2.38% for the PPK strategy and
between —5.27% and 1.66% for the RPK strategy (see Figure 8.a).
Similar results were obtained when considering the two different
illuminances separately (see Figure 8.b).

VIII. CONCLUSION

In this study, we investigated how to use some knowledge of
the oscillating trajectory to improve a minimalistic odometry based
on optic flow cues. The experiments were performed onboard a
hexarotor following circular bouncing trajectories at a frequency
of 0.28Hz over distances of about 50m under illuminances of
117lux and 1518luz. Results were not influenced by illuminance
conditions.

Our findings show that the sensor fusion strategies based on the use
of 4 optic flow sensors allowed to measure the optic flow divergence
and the translational flow cues more reliably thanks to filtering made
by additional Kalman Filters. This was the case even when taking
into consideration only a rough prior knowledge of the optic flow
variations and more specifically only the oscillation timing of the
trajectory. This prior knowledge can be considered acceptable since

the oscillation timing is imposed by the drone itself on its own
forward trajectory. The sensor fusion strategies decreased the error
in the estimates of the flight height. Consequently, they decreased
the percentage error in the estimates of the distance traveled in every
case considered and thus improved odometry performance.

For all three methods, we acknowledge that the final traveled
distance estimates are subject to a small error as the odometry
strategy is a dead reckoning method without any feedback from
the environment. Such a minimalistic optic flow based odometry
strategy would allow a future drone to assess whether it is returning
near its base station without GPS. So far, our findings can be
considered as a first experimental proof-of-concept of the SOFIla
model [2] before implementing such optic flow based odometry
strategy on a nanodrone relying on low-computational power, as
considered in [19]. Furthermore, we need to validate the robustness
of these strategies in a range of forward speeds, in case of large
drone pitch, in the presence of reliefs and finally outdoors.

Future work will also include the implementation of an optic flow
regulator to keep the translational optic flow around a given setpoint.
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APPENDIX

For the PPK strategy, the optic flow divergence and translational
optic flow cues were expressed as in equations (7) and (8), re-
spectively. For the RPK strategy, the optic flow divergence and
translational optic flow cues were both expressed as in equation (9).
For each optic flow cue, at each k‘" step the current value of the
corresponding model was computed and given to the corresponding
KF as input (see Figure 3). In the following paragraph, the notation
A > 0 indicates a matrix strictly positive definite. The KF took the
following iterative steps for each k*" time:

Prediction step
(a) One-step ahead prediction

X1 =P X1+ - Up—1ypa (11)
with @ > 0,I" > 0.
(b) Covariance matrix of the state prediction error vector
Pyp1 =@ Peappr- @ +Q (12)
Correction step
(c) Measurement update
Xisw = Xpppo1 + Ki - (Vi — H - Xijp1) (13)

with Y,f current value of the *" measurement, Hy > 0 and K
Kalman gain defined as:

Ky = Py - Hi - [Hi- Py - Hi + Rl (1)

The measurement update step was repeated for each i*" measure-

ment (2 times for the optic flow divergence and 3 times for the
translational optic flow).
(d) Covariance matrix of state estimation error vector

Piji = Poji1 + Kk - [Hy - Pyje—1 - Hi + Ri] - Kf (15)

(e) Innovation

Yy = Yi — Hy - Xk (16)

The discretized model of the hexarotor (equation (6)) can be
expressed as

X[k+1] =@ - X[k]+T - U[k] an
Y[k] = Ck - X[k] + Dy, - U[K]
with

P = A (18)

dt
r= (j erdr)-B = (AT e —AT). B (19

0
_ _ | Xa[k]

Cr = h(X}) = [Xl[k]] (20)
Dy, =0 2n

where dt is the discretization time. To estimate the flight height h,
the EKF took the following iterative steps for each k' time:



Prediction step
(a) One-step ahead prediction

Xih—1 =P Xp_ap—1 + T - U161 (22)
(b) Covariance matrix of the state prediction error vector
Pp1 = Peajpr-® +Q (23)

Correction step
(c) Measurement update

Xk = Xpjp—1 + Ki - (Ve — Hy - Xgopo—1) (24)

with K} Kalman gain defined as:
Ky = Py - Hf - [Hi - Pojp—1 - Hi +Re]™" (25)
and Hj Jacobian matrix for the non linear function defined as

follows:
ollows oh

Hi= tlxexge, = | 5 4] (26)
(d) Covariance matrix of state estimation error vector
Pije = Pup—1 + Ki - [He - Popey - Hy + Ri] - K (27)

(e) Innovation ~
Ye =Yr — Hy - Xy (28)



