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Twisted local wild mapping class groups:
configuration spaces, fission trees and complex braids

Philip Boalch, Jean Douçot and Gabriele Rembado∗

Abstract

Following the completion of the algebraic construction of the Poisson wild character varieties
(B.–Yamakawa 2015) one can consider their natural deformations, generalising both the mapping
class group actions on the usual (tame) character varieties, and the G-braid groups already known
to occur in the wild/irregular setting. Here we study these wild mapping class groups in the case
of arbitrary formal structure in type A. As we will recall, this story is most naturally phrased in
terms of admissible deformations of wild Riemann surfaces. The main results are: 1) the con-
struction of configuration spaces containing all possible local deformations, 2) the definition of a
combinatorial object, the “fission forest”, of any wild Riemann surface and a proof that it gives a
sharp parameterisation of all the admissible deformation classes. As an application of 1), by con-
sidering basic examples, we show that the braid groups of all the complex reflection groups known
as the generalised symmetric groups appear as wild mapping class groups. As an application of
2), we compute the dimensions of all the (global) moduli spaces of type A wild Riemann surfaces
(in fixed admissible deformation classes), a generalisation of the famous “Riemann’s count” of the
dimensions of the moduli spaces of compact Riemann surfaces.
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1 Introduction
The appearance of braid groups in 2d gauge theory is intimately related to the theory of isomonodromic
deformations of linear connections and in turn to the Riemann–Hilbert problem.

The simplest picture is to fix a Lie group G such as GLn(C) and a Riemann surface Σ and to
consider the arrow

Σ 7−→ MB := Hom(π1(Σ), G)/G

attaching the G-character variety (or Betti moduli space) MB to the surface. This works well in
families and one obtains lots of flat nonlinear connections in this way: If Σ → B is a family of smooth
Riemann surfaces over a base B then the character varieties of the fibres assemble into a fibre bundle

MB −→ B

over the same base B, and moreover this bundle comes equipped with a natural complete flat Ehres-
mann connection (or in other terms it is a “local system of varieties”). Integrating this nonlinear
connection around loops in B yields an action of the fundamental group of the base on any fibre
MB(b), i.e. for any basepoint b ∈ B there is a homomorphism

π1(B, b) −→ AutPoisson(MB(b)). (1.1)

For example taking B to be the configuration space of m-tuples of points of C leads to the usual
m-string braid group action on the genus zero tame character varieties (Hurwitz action), or taking B
to be the Riemann moduli space of curves yields the natural action of the mapping class group on the
character varieties of compact Riemann surfaces.

This story has a vast generalisation involving new braidings, obtained by considering the mon-
odromy data of irregular singular meromorphic connections, and their isomonodromic (monodromy
preserving) deformations. To see this generalisation, suppose Σ above is actually a smooth complex
algebraic curve. Then, under the Riemann–Hilbert correspondence, MB parameterises regular sin-
gular (or tame) algebraic connections on vector bundles on Σ. The simplest nontrivial example is to
take Σ to be a four-punctured sphere P1 \ {0, t, 1,∞},B = M0,4 ∼= C \ {0, 1} the moduli space of
ordered four-tuples of points, and G = SL2(C). Then the character varieties have complex dimension
6 and are foliated by symplectic leaves MB(C) ⊂ MB of complex dimension two (fixing the four local
monodromy conjugacy classes), all preserved by the nonlinear connection, so we can restrict atten-
tion to these subbundles. On the other side of the Riemann–Hilbert correspondence these nonlinear
connections can be written explicitly, whence they become the second order nonlinear differential
equations known as the Painlevé VI equations. They control the isomonodromic deformations of rank
two Fuchsian systems with four poles on P1. The Painlevé VI equations are the simplest examples of
nonlinear geometric differential equations (and this story is essentially the way they were originally
discovered by R. Fuchs, building on ideas of L. Fuchs and B. Riemann). The flatness of the bundle
MB → B gives the definition of “isomonodromic”, as the underlying punctured surface varies.

The generalisation comes about by considering irregular singular (or wild) algebraic linear connec-
tions on vector bundles on Σ, their topological description furnished by the irregular Riemann–Hilbert
correspondence (Riemann–Hilbert–Birkhoff), involving monodromy and Stokes data, and the resulting
generalisation of the Betti spaces MB, the wild character varieties. The initial motivation was simply
to obtain the first 5 Painlevé equations as integrability conditions for linear connections. This was
done by Garnier [36] (rewritten in a more convenient form by Jimbo–Miwa [39]), and then generalised
to generic irregular connections of arbitrary rank by Jimbo–Miwa–Ueno [40] (see their article, and
those of Garnier [36, 37], also for more detailed historical background). The paper [9] then rewrote
part of [40] in a more moduli theoretic language and proved all the Jimbo–Miwa–Ueno isomonodromy
equations were symplectic (this involved generalising the Narasimhan, Atiyah–Bott, Goldman sym-
plectic form to the irregular case), showing the generic wild character varieties formed a new class of
holomorphic symplectic manifolds.

The key feature in the irregular case is that there are new parameters in the connections whose
deformations behave exactly like the deformations of the underlying surface Σ. In brief (in the generic
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setting of [40]) one looks at connections locally isomorphic to connections of the form

∇ = d−A, A = dQ+ Λdz
z

+ (holomorphic)

where Λ is a constant matrix and Q (the irregular type) is a diagonal matrix of polynomials in 1/z
(where z is a local coordinate vanishing at the pole):

Q = diag(q1, . . . , qn), qi ∈ xC[x], x = 1/z.

The generic case of [40] is when all the differences qi − qj are polynomials of the same degree, and
then the corresponding Stokes data is quite simple, as explained in [5, 40]. In effect the story in [40]
then says that, in this setting, the base space B of the deformations should be enriched by adding
the irregular types at each pole. The genericity condition should be preserved, and so the leading
coefficient at each irregular pole should be diagonalisable with distinct eigenvalues. If the structure
group is G = GLn(C) then this adds a factor of

treg = {v ∈ Cn
∣∣ vi 6= vj if i 6= j}

to B for each irregular pole. This gives new braidings since the fundamental group of treg is the (pure)
n-string braid group.

The simplest global irregular example is to consider connections of the form

d−A, A =
(
A0
z2 + B

z

)
dz

where A0 is diagonal and B is arbitrary. Then the new deformation parameters are the eigenvalues of
A0, appearing in the irregular type Q = −A0/z at zero. This example is especially alluring since such
connections arise [6] by considering the Fourier–Laplace transform of Fuchsian systems

d

dz
− C, C =

m∑
1

Ai

z − ai

whence it becomes clear that the eigenvalues of A0 correspond exactly to the positions {ai} of the
poles of the Fuchsian system. This example makes it really clear that we should be thinking of the
irregular type on an equal footing to the pole positions. Of course, most irregular connections will not
be related to a regular singular connection by any such integral transform. (The exact statement of
[6] was clarified in [11] Appx. A, and there is an exposition of their result in [15].)

The two main directions of generalisation of this story were then: 1) to replace the structure group
G by an arbitrary complex reductive group G and thereby see that all the G-braid groups occur in
2d gauge theory ([18]), and 2) to consider all the non-generic connections and their isomonodromic
deformations (basic examples of this occur in the simply-laced story [17], motivated by the increase
in symmetry that occurs by allowing non-generic connections).

For example, in the sequence of works [12, 14, 18, 24] (in increasing generality), the wild character
variety MB of any algebraic connection on a principal G-bundle on Σ was constructed, as a (finite
dimensional) algebraic Poisson variety, for any complex reductive group G. The simpler GLn(C) case
most relevant here is reviewed in [22]. (This algebraic construction is complementary to the analytic
proof [8] that the symplectic leaves of these Poisson varieties are hyperkähler manifolds in type A,
upgrading the complex symplectic quotient in [9] to a hyperkähler quotient.)

As part of this story, the extra deformation parameters were isolated in a coordinate-free way,
leading to the general definition of wild Riemann surface [18, 19, 24]. The key point is that the
wild character varieties form a local system of Poisson varieties over any admissible deformation of a
wild Riemann surface (so we get lots of new nonlinear flat connections generalising MB → B above,
and encompassing all the Painlevé and Jimbo–Miwa–Ueno examples). The admissibility condition
generalises the notion of the connections remaining generic in the generic setting.

The aim of the present work is to study the admissible deformations of an arbitrary wild Riemann
surface in type A. In other words we fix the structure group to be G = GLn(C) or SLn(C) and allow
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arbitrary formal structure at each pole. In this setting a wild Riemann surface Σ is a triple (Σ,a,Θ)
where:

• Σ is a compact Riemann surface
• a ⊂ Σ is a finite subset
• Θ is the data of a rank n irregular class Θa at each point a ∈ a.

In turn an irregular class is defined as follows (cf. [24] Prop. 8). Each point a ∈ Σ canonically
determines the set Sa of Stokes circles at a, and an irregular class at a is a finite multiset of Stokes
circles, written symbolically as a finite sum:

Θa =
∑

niIi

where ni ≥ 1 are integer multiplicities and each Ii ∈ Sa is a Stokes circle at a. If we choose a local
coordinate z = 1/x vanishing at a, then each Stokes circle I ∈ Sa can be written as

I = 〈q〉, q =
∑

aix
ki (1.2)

where the sum is finite, ai ∈ C and each ki is a rational number > 0. In brief the Stokes circle 〈q〉
is the germ of the Riemann surface where the function q becomes single valued, equipped with the
germ of the function q (a coordinate free definition is in [24] Rmk. 3, generalising that in [18]). The
rank of Θa =

∑
niIi is

∑
ni Ram(Ii) where Ram(I) is the ramification number of the Stokes circle

I = 〈q〉 (the lowest common multiple of the denominators of the ki present in q). If Ram(I) > 1 for
any Stokes circle in the irregular class, we say that the irregular class is twisted (some authors also
use the term “ramified”), otherwise Θa is untwisted. For example if we look at p.116 of Stokes’ 1857
paper [53] on the Airy functions, we see he writes down a basis

u = Cx−1/4 exp
(
−2x3/2

)
F̂ (−x−3/2) + Dx−1/4 exp

(
2x3/2

)
F̂ (x−3/2)

of formal solutions to the Airy equation y′′ = 9xy at x = ∞, where F̂ is a formal power series. In this
case the Stokes circle is 〈2x3/2〉, which has rank 2 and ramification 2, so is twisted, and (still on p.116)
Stokes drew a projection of the Stokes circle to the x plane, to illustrate the change in dominance of
the two branches of the exponential factor exp

(
2x3/2

)
. This trefoil-like drawing was reproduced on

the title page of [24], and many more such pictures can easily be drawn [23]. In the generic setting
one just has Θ =

∑n
1 〈qi〉 if Q = diag(qi) as above. The original tame case arises by taking each Stokes

circle to be the tame circle 〈0〉 ∈ Sa, so the irregular class is simply n〈0〉. Thus the main difference
in the wild case is that we have the choice of an arbitrary finite multiset of Stokes circles at each
marked point (and these give the possible essentially singular behaviours exp(q) of the solutions of the
corresponding linear connections). The general form (1.2) of q is due to Fabry [34] p.85.

The main questions motivating this paper (and the corresponding results) are as follows:
Qn.1) Suppose we have two rank n wild Riemann surfaces Σ,Σ′. How do we decide if they are
admissible deformations of each other?

In the tame case the answer is well-known: it happens if and only if the genus g of Σ and the
number m = #a of marked points match up. In the wild case we will give a complete answer to
this question by defining an appropriate combinatorial object, the fission tree T (Θ) of any irregular
class Θ, so that a wild Riemann surface determines a fission forest F (i.e. a collection of isomorphism
classes of fission trees).

Theorem 1.1. Two irregular classes Θ,Θ′ at a point a ∈ Σ are admissible deformations of each
other if and only if their fission trees are isomorphic: T (Θ) ∼= T (Θ′). Consequently two rank n wild
Riemann surfaces Σ,Σ′ are admissible deformations of each other if and only if the corresponding
pairs (g,F) are equal, where F is the fission forest and g is the genus.
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Thus, in essence, in the wild case the number m of marked points gets upgraded to the fission
forest F (with m trees in it). This result will be deduced from a more precise statement about irregular
types (see Cor. 3.33). The pair (g,F) is called the topological skeleton of the wild Riemann surface
Σ. In particular this yields a simple criterion to see if two wild character varieties are isomorphic:

Corollary 1.2. Given two rank n wild Riemann surfaces Σ,Σ′, let MB(Σ),MB(Σ′) be the corre-
sponding Poisson wild character varieties (as in [24, 22]). If Σ,Σ′ have the same genus and fission
forests, then there is an algebraic Poisson isomorphism:

MB(Σ) ∼= MB(Σ′)

between the corresponding Poisson wild character varieties. In particular their hyperkähler symplectic
leaves are thus deformation equivalent.

Proof. Since Σ,Σ′ are admissible deformations of each other, there is a local system of Poisson varieties
over some base B having MB(Σ) and MB(Σ′) as two of its fibres. This statement is proved in [18]
Thm. 10.2 in the untwisted case (see also [9] Prop. 3.8, Cor. 3.9 in the generic setting) and that proof
works verbatim in the general setting of [24]. Thus any path γ in B between the corresponding two
points of B lifts to an algebraic Poisson isomorphism MB(Σ) ∼= MB(Σ′).

We will also give a sharp characterisation of the possible fission trees (Defn. 3.18, Cor. 3.28),
which thus implies a bound on the possible isomorphism classes of wild character varieties (§3.7).

Qn.2) What do the admissible deformations of an arbitrary irregular class look like? What types of
generalised braid groups appear in general? Are there explicit configuration spaces analogous to the
simple configuration spaces Cn \ (diagonals) that appear both in the tame case and in the generic
irregular case?

To answer these, we first define the notion of pointed irregular types (by adding some ordering
data to an irregular class, see Defn. 2.3) and then give an explicit construction of a configuration space
B(Q) of all admissible deformations of a pointed irregular type Q (with bounded slope, i.e. bounded
Poincaré–Katz rank, Katz(Q)).

The configuration space B(Q) is completely explicit and involves marking free coefficients on the
fission tree, subject to three types of conditions (see (3.18) and Thm. 3.27). This involves a truncation
T [ of the fission tree T just above the maximal slope (see §3.5). This helps understand the admissible
deformations since there are natural factorisations of the configuration spaces into simple pieces:

Theorem 1.3. The configuration space B(Q) of admissible deformations of any pointed irregular type
Q is homeomorphic to the following product over the vertices V[ of its truncated fission tree T [:

B(Q) ∼=
∏

v∈V[

Bv(T )

where Bv(T ) is a point if the vertex v has no non-empty children, and if v has n non-empty children,
then Bv(T ) is homeomorphic to one of the following spaces:

Xn := {a1, . . . , an ∈ C | ai 6= aj for i 6= j},
X∗

n,N := {a1, . . . , an ∈ C | ai 6= 0, ai 6= ζaj for i 6= j, ζN = 1}.

Compared to the untwisted case already studied in [32, 33], the second factors X∗
n,N are new: they

are hyperplane complements whose associated hyperplane arrangements are not the complexification
of some real hyperplane arrangement. Interestingly, the corresponding braid groups have been studied
in [27], and the corresponding Weyl groups are the generalised symmetric groups (see below and Rmk.
4.4).

See Example 3.25 p.23 for a somewhat involved example of how the configuration space may thus
be read off from the fission tree.

As a consequence, the pure local wild mapping class groups (i.e. the fundamental groups of these
configuration spaces) factorise as products of the pure braid groups associated to these hyperplane
arrangements:
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Corollary 1.4. Let Q be a pointed irregular type and let T [ be its truncated fission tree. We have

Γ(Q) ∼=
∏

v∈V[

Γv(T ),

with Γv(T ) := π1(Bv(T )) the pure braid group associated to the hyperplane complement Bv(T ).

In a similar way as in [33], passing from these pure local wild mapping class groups to the full local
wild mapping class groups (i.e. forgetting the order of the exponential factors) involves considering
the automorphisms of the fission tree, leading to a finite group, the Weyl group W (T ) of the tree, an
extension of Aut(T ).

Theorem 1.5. Let Θ = [Q] be an irregular class associated to the pointed irregular type Q with fission
tree T . Then the full local wild mapping class group sΓ(Θ) is an extension of the Weyl group W (T ) of
the fission tree by the pure wild mapping class group Γ(Θ), i.e. we have a short exact sequence

1 −→ Γ(Q) −→ sΓ(Θ) −→ W (T ) −→ 1.

In some simple examples related to the configuration spaces X∗
n,N (see Example 4.9) the Weyl

group W (T ) is isomorphic to the generalised symmetric group S(N,n), which in turn is isomorphic
to the complex reflection group G(N, 1, n) in the Shephard–Todd list [52]. Thus we have a modular
interpretation (in 2d gauge theory) of an infinite family of complex reflection groups and their braid
groups. (This is parallel to the appearance [10] of the G-braid groups in 2d gauge theory for any
complex reductive group G in the untwisted case.)

As an application of these local results we are able to make a global statement, and write down
the dimension of the (global) moduli spaces Mg,F of rank n, trace-free wild Riemann surfaces for
any n, a generalisation of Riemann’s count 3g − 3 of the number of moduli of a compact genus g
Riemann surface. Indeed in the trace-free case (G = SLn(C)) we expect Mg,F to be Deligne–Mumford
if 2g − 2 +

∑
ν(T ) > 0 where ν(T ) = 1 + Katz(T ) and we sum over all the trees T in the forest F,

and then its dimension is
dim(Mg,F) = 3g − 3 +

∑
µ(T ) (1.3)

where µ(T ) is the moduli number of the fission tree T , from Defn. 3.24 (equal to 1 plus the dimension
of the configuration space, where the 1 corresponds to the pole position). In the tame case with m
marked points, this specialises to the familiar formula:

dim(Mg,m) = 3g − 3 +m.

1.1 Layout of the paper

The next section will review the notion of Stokes circles and irregular classes in more detail, before
defining various convenient flavours of irregular types, adding certain ordering data to an irregular
class. Then the notion of admissible deformation will be reviewed leading to the initial definition of
the configuration spaces. Section 3 then gives the classification of admissible deformations, in terms of
level data and fission data leading up to the precise definition of fission trees. This then yields the most
convenient definition of the configuration spaces in terms of realizations of fission trees (Thms. 3.27,
3.30). Then we deduce the product decompositions (Cor. 3.31) and the classification of admissible
deformations in terms of fission trees (Cor. 3.33). Then §3.7 deduces the global result involving fission
forests/topological skeleta (g,F), and finally §4 deduces the results on the local wild mapping class
groups and establishes the link to the braid groups of the complex reflection groups G(N, 1, n). Some
of the possible future projects are discussed in the last section.
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2 General setting

2.1 Twisted irregular types

The exponential local system. The formal data of irregular connections in the twisted case can be
formulated geometrically in terms of the so-called exponential local system, which we now briefly recall
(see [22] for more details). In summary the idea is to see the exponents q of the exponential factors
exp(q) (occurring in formal solutions of connections, controlling their essentially singular behaviour) as
sections of an intrinsic covering space π : I → ∂ (i.e. a local system of sets) on the circle of directions
around the singularity. (We will often abuse language and refer to the exponents q themselves as the
exponential factors.) The connected components of I are the Stokes circles. The basic “extra modular
parameters”, the irregular class (that we eventually want to deform), is a finite multiset in the set
S = π0(I) of Stokes circles—this amounts to choosing a finite number of Galois orbits of exponents
q, each with a multiplicity ≥ 1. Note that we use the word “twisted” to refer to the case where
one of the Stokes circles is a nontrivial cover of the circle of directions ∂ as in [24] (similarly to the
theory of twisted loop groups), or equivalently that one of the exponents q involves a root of the local
coordinate (this is sometimes referred to as the case with “ramified formal normal form”, and should
not be confused with the term “ramified connection”, meaning any type of singular connection).

Let Σ be a Riemann surface and a ∈ Σ a point. Let φ : Σ̂ → Σ be the real oriented blow-up at
a of Σ. The preimage ∂ := φ−1(a) is a circle whose points correspond to real oriented directions in
Σ at a. An open interval U ⊂ ∂ determines a germ of sector SectU at a, and if d ∈ ∂ is a direction
then Sectd will denote the germ of an open sector spanning the direction d (where both the opening
and the radius may decrease). Strictly speaking Sectd is the tangential filter of open sets determined
by the direction d, as in [26] Ch.1 §6 (this type of tangential filter appears on p.85 of [29]). In turn,
functions on Sectd (i.e. germs in the direction d) are defined as usual for germs of mappings with
respect to a filter ([26] p.66).

Let z be a local coordinate vanishing at a and write x = z−1. The exponential local system I is a
local system of sets (that is, a covering space) on ∂ whose sections are germs of holomorphic functions
on sectors (“Fabry functions”) that are finite sums of the form:

q =
∑

i

aix
ki ,

where ki ∈ Q>0, and ai ∈ C. More precisely if we fix a direction d ∈ ∂ and choose a branch of log(z)
on Sectd then the fibre Id = π−1(d) of I over d is the set of all such functions on Sectd, so that

Id =
{
q =

∑
i

aix
ki

}
∼=

⋃
n∈N

x1/nC[x1/n] =
⋃

n∈N
C((z1/n))/C[[z1/n]] (2.1)

where xk := exp(−k log(z)) on the left, and x = 1/z is viewed as a symbol on the right. Thus they are
“principal parts of Puiseux series”, but viewed as actual functions on Sectd, via a choice of logarithm
(i.e. the isomorphism from Id to Puiseux principal parts depends on this choice). The intrinsic
(coordinate free) definition of I is in [24] Rmk. 3, whence a point α ∈ Id is an equivalence class of
certain holomorphic functions qα on Sectd.

The connected component of I of such a local section q is a finite order cover of the circle ∂; this
covering circle, “the Stokes circle 〈q〉 of q”, is essentially the (germ near ∂ of the) Riemann surface
where q becomes single valued.

More precisely, let r = Ram(q) be the smallest integer such that the expression q =
∑

i aix
ki is a

polynomial in x1/r, the ramification order of q. The corresponding holomorphic function is multival-
ued, and becomes single-valued when passing to a finite cover tr = z. Therefore, the corresponding
Stokes circle, which we denote by 〈q〉, is an r–sheeted cover of ∂. As a topological space, it is homeo-
morphic to a circle, and I is thus a disjoint union of (an infinite number of) these Stokes circles. Thus
π : I → ∂ is a covering space and if I = 〈q〉 ⊂ I is a connected component then π : I → ∂ is a degree
r = Ram(q) covering map between two circles.
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There are several polynomials in x1/r giving rise to the same connected component I = 〈q〉. They
correspond to the Galois orbit of q, under the Galois group of I → ∂ which is isomorphic to Z/rZ,
and are parameterised by the r points of the fibre Id = π−1(d) for any direction d.

Explicitly, if we write q =
∑s

j=1 ajx
j/r, r = Ram(q), with as 6= 0, then the polynomials qi such

that 〈qi〉 = 〈q〉 are the Galois conjugates

qi = σi(q) =
s∑

j=1
ajω

ijxj/r, i = 0, 1, . . . , r − 1,

where ω = exp
(
−2

√
−1π/r

)
. The fibre Id above d of the cover I → ∂ is equal to the set of germs of

functions q0, . . . , qr−1. The monodromy σ : Id → Id of the cover I → ∂ is given by σ(qi) = qi+1.
The degree s of q as a polynomial in x1/r is called the irregularity of q, which we denote by

Irr(q) ∈ N. The slope of q, slope(q) := s
r = Irr(q)/Ram(q), is the maximal exponent present in q. If

r = 1 we say that the circle 〈q〉 is untwisted/unramified. We will refer to 〈0〉 as the tame circle.
Here we view I as a disjoint union of circles, and the map π : I → ∂ as a covering space with

discrete fibres. Later, below, we will deform the functions q, thus “remembering” the complex vector
space structure of the fibres of π.

Irregular classes, finite subcovers and levels. In this language, following [24] Prop. 8, an
irregular class is a locally constant map Θ: I → N, assigning an integer to each component of I,
equal to zero for all but a finite number of circles. It is thus constant on each component circle, i.e.
corresponds to a map π0(I) → N. An irregular class can be written as a formal sum

Θ = n1〈q1〉 + · · · + nm〈qm〉,

where n1, . . . , nm > 0 are integers. Thus an irregular class Θ is just a finite multiset of Stokes circles,
or in concrete terms a finite multiset of Galois orbits of exponential factors. (A more general definition
of irregular classes, that works for other structure groups, is in [24] §3.5.) The rank of the irregular
class Θ is the integer Rank(Θ) :=

∑
i ni Ram(qi).

The (total) ramification Ram(Θ) of an irregular class Θ =
∑
niIi is the lowest common multiple

of the ramifications Ram(Ii) of the active circles Ii in Θ.
From the formal meromorphic classification of meromorphic connections (Fabry, Cope, Hukuhara,

Turrittin, Levelt, Jurkat [4, Thm. II], Deligne [46, Thm. IV.2.3]) any connection on a rank n vector
bundle on the formal punctured disk determines an irregular class of rank n, taking the Galois orbits
of the exponents of the exponential factors eq that occur, repeated according to their multiplicity. For
example a regular singular connection has class n〈0〉 just involving the tame circle.

A “finite subcover” is a subset I ⊂ I such that I → ∂ is a finite cover, i.e. it is finite set
of Stokes circles. An irregular class determines a finite subcover consisting of the active exponents
I = Θ−1(N>0). Explicitly, if Θ =

∑
i niIi, then I =

⊔
i Ii. Thus an irregular class corresponds to the

data of a finite subcover I ⊂ I, together with a positive integer ni for each connected component.
Any rank n irregular class Θ determines another irregular class End(Θ) of rank n2 (as in [22]

pp.71-72). The non-zero slopes of the circles in End(Θ) are the levels of Θ ([30] p.73, [44] p.858, [3]
(5.2), [47]). Thus

Levels(Θ) = {slope(qα − qβ)
∣∣ α, β ∈ Id} \ {0} ⊂ Q>0 (2.2)

where I ⊂ I is the finite subcover underlying Θ and Id is any fibre of I. Note that the existence of
irregular classes with multiple levels means there are connections whose formal fundamental solutions
are not k-summable for any k (and in particular not Borel summable), and this fact led to the theory
of multisummation (cf. [3] §5).

Irregular types. In the untwisted case, we have made a distinction between irregular types and
irregular classes, the difference being that for irregular classes the exponential factors are unordered,
whereas for irregular types the order of the exponential factors matters1. We will now do the same

1In the untwisted case an irregular class is the same thing as the “bare irregular type” determined by an irregular
type in the sense of [18] Rmk. 10.6, with “irregular type” as defined in [18] Defn. 7.1. (cf. also [9] Defn. 2.4 in the
generic case, which gave a coordinate free approach to [40]).
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for the twisted case. As a first step (as in [22] §5.3) we can just choose an ordering of the circles in
an irregular class:

Definition 2.1. An “irregular type” of rank n is an ordered list ([n1, I1], . . . , [nm, Im]) of distinct
Stokes circles Ii ⊂ I each with a multiplicity ni ≥ 1, such that

∑
ni Ram(Ii) = n.

However here it will be more convenient to work with ordered lists of exponential factors. Thus in
the rest of the article we fix once and for all a direction d ∈ ∂, local coordinate z = x−1 and a choice
of logarithm around d, so that a section of the exponential local system I around the direction d is
identified with a Puiseux principal part q ∈ x1/rC[x1/r] for some r, as in (2.1).

Definition 2.2. A “full irregular type” of rank n is a Galois closed ordered list Q = (q1, . . . , qn) of
not necessarily distinct polynomials qi ∈ x1/riC[x1/ri ] for some ri ∈ N>0.

Asking for the list (q1, . . . , qn) to be Galois closed is equivalent to ask for it to be closed under the
monodromy σ of the exponential local system I. Explicitly, the list Q = (q1, . . . , qn) is Galois closed
if there exists a permutation σ̂ ∈ Symn such that σ(qi) = qσ̂(i) for i = 1, . . . , n.

More intrinsically, given a rank n irregular class Θ and a direction d then Θ determines a length n
multiset in Id, and the full irregular types determining Θ correspond exactly to the n! possible orderings
of this multiset. If Q is a full irregular type, let I1, . . . , Im be the set of distinct Galois orbits of the
elements of the list (q1, . . . , qn) and ni, i = 1, . . . ,m the multiplicity of Ii, i.e. the number of times that
each element of (Ii)d appears in the list. Then the irregular class associated toQ is Θ = n1I1+. . . nmIm,
and we will write Θ = [Q] for the class of Q. In particular n = Rank(Θ) =

∑
ni Ram(Ii). In these

terms, for any irregular class Θ, the set of full irregular types determining Θ corresponds to all possible
orderings of the elements of the list (q1, . . . , qn) of one full irregular type determining Θ.

It will also be useful to introduce a variant of these definitions, and consider a specific subset of full
irregular types, to account for the fact that the Galois orbits are already naturally cyclically ordered.

Definition 2.3. A “pointed irregular type” is an ordered list

Q = [(n1, q1), . . . , (nm, qm)]

where ni ∈ N>0, and the qi are Puiseux principal parts lying in distinct Galois orbits.

We identify a rank n pointed irregular type Q as a full irregular type as follows:

Q = (q1, . . . , q1︸ ︷︷ ︸
n1 times

, σ(q1), . . . , σ(q1)︸ ︷︷ ︸
n1 times

, . . . , σr1−1(q1), . . . , σr1−1(q1)︸ ︷︷ ︸
n1 times

, . . . , . . . , σrm−1(qm), . . . , σrm−1(qm)︸ ︷︷ ︸
nm times

)

where ri = Ram(qi). Note that (more intrinsically) a rank n pointed irregular type is equivalent to
an ordered list

[(n1, p1, I1), . . . , (nm, pm, Im)]
where ni ∈ N>0, the Ii are distinct Stokes circles, pi ∈ (Ii)d is a point of Ii lying over d, and n =∑
ni Ram(Ii). The correspondence is given by taking qi to be the Puiseux principal part determined

by the point pi ∈ (Ii)d via the logarithm choice.
Finally observe that the notion of pointed irregular type introduces extra discrete invariants that

we do not care about (for example slope(q1 − q2) may vary if q1 is moved in its Galois orbit). To avoid
this we define a notion of “compatibility” between the chosen exponential factors in different Galois
orbits. For any k ∈ Q let

τk : Id → Id, q =
∑

aix
ki 7−→ τk(q) :=

∑
ki≥k

aix
ki (2.3)

be the truncation map, discarding all monomials of slope < k.

Definition 2.4. A pointed irregular type Q = [(n1, q1), . . . , (nm, qm)] is compatible if for each possible
exponent k ∈ Q>0, and any indices i, j,

〈τk(qi)〉 = 〈τk(qj)〉 =⇒ τk(qi) = τk(qj).

In other words: if the truncations are in the same Galois orbits, then the truncations are equal.
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It is straightforward to see that for any irregular class Θ, a compatible (pointed) irregular type Q
exists with class Θ = [Q]. Up to isomorphism the configuration space B(Q) will not depend on the
choice of irregular type with irregular class Θ, so we may assume without loss of generality that the
pointed irregular types we are considering are compatible.

Pullback to untwisted case. The notions of (twisted) irregular classes and irregular types can
easily be related to the corresponding untwisted notions, by passing to a finite cyclic cover. Explicitly,
let Q = (q1, . . . , qn) be any full irregular type. Let r be an integer multiple of Ram(Q) so that Ram(qi)
divides r for all i. Introduce the variable t such that tr = x (so t−1 is a coordinate on a cyclic r-
fold ramified cover). Let q̂i ∈ tC[t] be qi seen as a polynomial in t. Then Q̂ := diag(q̂1, . . . , q̂n) is
an untwisted irregular type associated to Θ. Its (untwisted) irregular class Θ̂ = [Q̂] only depends
on Θ and is simply the pullback. Notice that the irregular class Θ̂ is invariant under the action
of Z/rZ on the set of untwisted irregular classes obtained by replacing all polynomials q̂i(t) ∈ C[t]
by q̂i(e2

√
−1kπ/rt), for any integer k: we say that the untwisted irregular class Θ̂ is r-Galois closed.

Conversely, if Q̂ is an r–Galois closed untwisted irregular type, it defines a (twisted) irregular type Q
such that the ramification orders of all exponential factors divide r. The (twisted) irregular class of
Q only depends on the (untwisted) irregular class of Q̂.

2.2 Admissible deformations

The notion of admissible deformations was defined in [18] for arbitrary untwisted meromorphic con-
nections in the context of any reductive group G, extending the generic case in [40, 45] for GLn(C)
and in [10] for other G. It can be extended to the twisted setting simply by saying that a family of
irregular classes is an admissible deformation if and only if some (and hence any) cyclic pullback to
the untwisted case is an admissible deformation. In more detail this works out as follows.

Fix I as above and let B be a connected complex manifold. Choose a rank n irregular class Θb on
I for each b ∈ B, thus defining a (set theoretic) map

φ : B −→ ICn(I), b 7−→ Θb

to the set ICn(I) of rank n irregular classes, i.e. length n multisets in π0(I). We will define when this
collection of classes is a (holomorphic) admissible deformation.

Note that since the rank n is fixed the total ramification Ram(Θb) is uniformly bounded2 on B,
for example by n!. Thus we can choose an integer N and set x = tN so that (in terms of t) Θb is a
family of untwisted irregular classes, i.e. a multiset in tC[t] of length n, for each b ∈ B.

By definition (see [18] Rmk.10.6) this is an admissible deformation if it can locally be represented as
Θb = [Qb] in terms of an admissible family of untwisted irregular types Qb = (q1, . . . , qn) with qi ∈ tC[t]
dependent on b. Finally (by [18] Defn. 10.1) this is a (holomorphic) admissible deformation if each qi

varies holomorphically with b and the degree of the polynomial qi −qj ∈ tC[t] is constant (independent
of b) for each i 6= j (the degree is an integer ≥ 0). Similarly one can define smooth admissible
deformations etc by allowing the coefficients of the qi to vary smoothly rather than holomorphically
etc. This leads to the following more direct definition, by noting that the slope multiplied by N gives
the degree in t when pulled back, upstairs.

Definition 2.5. • A holomorphic family Qb = (q1, . . . , qn) of full irregular types (with qi ∈ Id) is an
admissible deformation if

slope(qi − qj) is independent of b for all i, j. (2.4)

• The family Θb of irregular classes is a holomorphic admissible deformation if it can locally be
represented as Θb = [Qb] for a holomorphic family of full irregular types Qb = (q1, . . . , qn) with
qi ∈ Id, varying admissibly, i.e. satisfying (2.4).

2In fact since n =
∑

ni Ram(Ii) it is bounded by the largest possible lowest common multiple of the elements
of any integer partition of n; this is known as Landau’s function g(n), whose first 10000 values are listed at https:
//oeis.org/A000793, for example g(5) = 6 = lcm(2, 3), g(7) = 12 = lcm(3, 4).
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If Θ and Θ′ are two rank n irregular classes, we say that Θ′ is an admissible deformation of Θ
if there exists an admissible deformation (Θb) indexed by some connected manifold B equipped with
two points b1, b2 ∈ B such that such that Θb1 = Θ and Θb2 = Θ′. Similarly, if Q and Q′ are two rank
n full irregular types, we will say that Q′ is an admissible deformation of Q, and we write Q ' Q′, if
they are two values of an admissible family of full irregular types.

A continuity argument shows the Galois orbits in a full irregular type do not change under a
holomorphic admissible deformation, i.e. the same permutation σ̂ works throughout the deformation
(in particular the ramification indices of the Stokes circles are constant).

Example 2.6. Let us consider the holomorphic family of exponential factors q(b) = x1/2+x1/3+bx1/6,
which has ramification 6 for any b ∈ C. The first few Galois conjugates of q are:

q = q0(b) = x3/6 + x2/6 + bx1/6

σ(q) = q1(b) = ε3x3/6 + ε2x2/6 + bεx1/6

σ2(q) = q2(b) = x3/6 + ε4x2/6 + bε2x1/6

where ε = exp(−πi/3). Considering slope(qi − qj) for i, j = 0, . . . , 5 shows that Θb = 〈q〉 is an
admissible deformation over B = C. Observe that for b = 0 we have Ram(q0 − q2) = 3, but it is 6 for
b 6= 0 so not everything behaves continuously.

Numerical equivalence of irregular types. We will try to guess a simple numerical criterion
for (pointed) irregular types to be admissible deformations of each other. To this end consider the
following relation.

Definition 2.7. LetQ = [(n1, q1), . . . , (nm, qm)] be a pointed irregular type. IfQ′ = [(n′
1, q

′
1), . . . , (n′

p, q
′
p)]

with each q′
i ∈ Id a Puiseux polar part, then we say that Q,Q′ are “numerically equivalent”, and write

Q′ ∼ Q, (2.5)

if p = m, n′
i = ni (i = 1, . . . ,m), and

slope(σk(q′
i) − σl(q′

j)) = slope(σk(qi) − σl(qj)), (2.6)

for all i, j, k, l with 1 ≤ i, j ≤ m, 0 ≤ k ≤ Ram(qi), 0 ≤ l ≤ Ram(qj), where σ is the Galois action.

Lemma 2.8. If Q′ ∼ Q as above, then Q′ is a pointed irregular type and moreover Ram(q′
i) = Ram(qi)

for all i.

Proof. Taking j = i, k = Ram(qi), l = 0 shows that Ram(q′
i) ≤ Ram(qi). Thus Ram(q′

i) = Ram(qi)
since if Ram(q′

i) < Ram(qi) then there would be some identification amongst the list σk(q′
i), k =

1, 2, . . . ,Ram(qi), but this is not possible as the differences of the slopes matches that of the list
σk(qi), k = 1, 2, . . .. Then the fact that Q′ is a pointed irregular type, i.e. its m Galois orbits are
distinct, follows from the fact that Q is a pointed irregular type, so none of the slopes between two
Galois orbits vanishes.

This implies ∼ is an equivalence relation when restricted to pairs of pointed irregular types. We
will eventually see (Cor. 3.32) that for compatible pointed irregular types it is the same as the relation
given by admissible deformation.

Thus it seems we should consider the simple numerical condition (2.6) applied blindly to lists of
Puiseux polar parts. This leads to the following configuration spaces.
Remark 2.9. Note that if we just impose that Q′ = [(n1, q

′
1), . . . , (nm, q

′
m)] is a rank n pointed irregular

type and the apparently weaker condition that (2.6) holds just for 1 ≤ i, j ≤ m, 0 ≤ k ≤ Ram(qi) − 1,
0 ≤ l ≤ Ram(qj) − 1, then it follows that Q′ ∼ Q (because this implies Ram(q′

i) ≥ Ram(qi) and then
the condition to have rank n implies Ram(q′

i) = Ram(qi) for all i).
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Configuration spaces. We will define a configuration space for each given (pointed) irregular type
Q = [(n1, q1), . . . , (nm, qm)], and later see it contains all the admissible deformations with bounded
slope. Let r = Ram(Q) = lcm{Ram(qi)} be the total ramification of Q and let

K = Katz(Q) := max(slope(q1), . . . , slope(qm))

be the largest slope, which is essentially the Poincaré–Katz rank of Q (cf. Poincaré [49] p.305, Katz
[42] 11.9.7). Thus all the qi can be expressed as polynomials in t := x1/r of degree at most s := rK.

Clearly any pointed irregular type with the same number m of terms, the same multiplicities and
ramifications, and that has Poincaré–Katz rank ≤ K, will be of the form:

Qa := [(n1,
s∑

j=1
a1,jt

j), . . . , (nm,
s∑

j=1
am,jt

j)], t = x1/r (2.7)

for some unique collection of coefficients a = (ai,j) ∈ Cms. This motivates the following definition.

Definition 2.10. SupposeQ = [(n1, q1), . . . , (nm, qm)] is a pointed irregular type and r = Ram(Q),K =
Katz(Q), s = rK. The configuration space of Q with bounded Poincaré–Katz rank is the topological
space B(Q) defined by

B(Q) :=
{
a = (ai,j) ∈ Cms

∣∣ Qa ∼ Q
}
, (2.8)

with its topology being the one induced from the usual topology of Cms, where ∼ is from (2.5).

We will show below (Cor. 3.34) that B(Q) is a fine moduli space of all admissible deformations
(with Poincaré–Katz rank ≤ Katz(Q)) of the pointed irregular type Q. In the remainder of the article,
our goal will then be to explicitly describe B(Q) and compute its fundamental group. The restriction
about having bounded slopes is for the sake of convenience, since it allows us to deal with a finite
number of coefficients. As was already the case [32, 33] for the untwisted situation, this entails no loss
of generality as far as the topology of B(Q) is concerned: up to homotopy equivalence B(Q) does not
change if we allow for coefficients associated to higher exponents.

Notice that if Q1 and Q2 are two pointed irregular types corresponding to the same irregular class
Θ, the spaces B(Q1) and B(Q2) are homeomorphic, an homeomorphism being given by permuting
the active circles and shifting cyclically the distinguished representative of each Galois orbit by the
appropriate amount. With a slight abuse of language, we may thus speak of the configuration space
B(Θ) that is well–defined up to homeomorphism.

Similarly we define a configuration space of trace-free pointed irregular types. First define the
trace of a full irregular type Q = (q1, . . . , qn) to be Tr(Q) =

∑n
1 qi ∈ Id.

Definition 2.11. SupposeQ = [(n1, q1), . . . , (nm, qm)] is a pointed irregular type and r = Ram(Q),K =
Katz(Q), s = rK. The traceless (or special) configuration space of Q is the topological space SB(Q)
defined by

SB(Q) :=
{
a = (ai,j) ∈ Cms

∣∣ Qa ∼ Q,Tr(Qa) = 0
}
, (2.9)

with its topology being the one induced from the usual topology of Cms, where ∼ is from (2.5).

If Q = [(n1, q)] just has one Galois orbit then Tr(Q) = n1
∑Ram(q)

i=1 σi(q). In turn, since roots of
unity sum to zero, this equals Tr(Q) = n1 Ram(q)πun(q) where πun : Id → xC[x] is the linear map
picking out the unramified monomials in q, so that πun(xk) = xk if k ∈ N and πun(xk) = 0 otherwise.
It follows that the trace of any irregular type lies in the unramified part xC[x] ⊂ Id. Further there is
a projection pr:

Q = (q1, . . . , qn) 7→ pr(Q) = Q− 1
n

Tr(Q) = (q1 − 1
n

Tr(Q), . . . , qn − 1
n

Tr(Q))

mapping any full irregular type to a trace-free irregular type. In particular it makes no difference if
we replace Q by its trace-free projection in the definition (2.9), and there are maps

B(Q) ↠ SB(Q) ↪→ B(Q) (2.10)
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where the first map is pr and the second is the natural inclusion. We will see below (Cor. 3.34) that
SB(Q) is a fine moduli space of all trace-free admissible deformations of the pointed irregular type
pr(Q). We will also show that SB(Q) and B(Q) are finite-dimensional complex algebraic manifolds
(Zariski open in a complex vector space). Admitting this temporarily, one can already observe that the
dimensions will differ by the integer part of the Poincaré–Katz rank and they are homotopy equivalent:

Lemma 2.12. For any pointed irregular type Q, the configuration spaces SB(Q),B(Q) are homotopy
equivalent, and

dim(SB(Q)) = dim(B(Q)) − bKatz(Q)c.

Proof. Two elements are in the fibre of the map pr: B(Q) ↠ SB(Q) if and only if they differ by the
operation (q1, . . . , qn) 7→ (q1 − q, . . . , qn − q) for some q ∈ xC[x] of slope ≤ K. The dimension of the
space of such polynomials q is bKatz(Q)c, and this gives a retraction onto SB(Q).

Remark 2.13. Isomonodromic deformations of a special class of twisted irregular connections were
considered in [7], under a genericity condition (so that the sizes of the Galois orbits are controlled by
the Jordan blocks of the leading coefficient). The relation between our general admissibility condition
and the Lidskii conditions in [7], specific to their setting, are not immediately clear to us.

3 Classification of admissible deformations
Since an essential difference in the twisted case compared to the untwisted one is that one has to
consider differences between different branches of the same exponential factor, it is worth investigating
first what the admissible deformations are in the case of an irregular type corresponding to an irregular
class with only one active circle.

3.1 A single Stokes circle

Suppose I = 〈q〉 ⊂ I is a single Stokes circle. Recall from (2.2) that the levels of I are the non-zero
slopes of End(I), so that, for any d ∈ ∂:

Levels(I) = {slope(qα − qβ)
∣∣ α, β ∈ Id} \ {0}

where qα : Sectd → C is the function determined by α ∈ Id ⊂ Id. The set Levels(I) is a finite, possibly
empty, subset of Q>0. Suppose there are m levels and write

Levels(I) = (k1 > k2 > · · · > km) ⊂ Q>0.

The key classification statement is as follows.

Proposition 3.1. a) Two Stokes circles I, J ⊂ I are admissible deformations of each other if and
only if Levels(I) = Levels(J) ⊂ Q.

b) A subset (k1 > k2 > · · · > km) ⊂ Q>0 is the set of levels of some circle I ⊂ I if and only if

k1, k2, . . . , km have strictly increasing common denominators > 1. (3.1)

In other words if di is the denominator of ki (in lowest terms) and

ri is the lowest common multiple of d1, d2, . . . , di (3.2)

for each i (so that ri

∣∣ ri+1), then 1 < r1 < r2 < · · · < rm.

Proof. Consider I = 〈q〉 and let r = Ram(q). Choose a local coordinate z vanishing at 0, set x = 1/z
and suppose x = tr. Then q =

∑n
i=1 αit

ni is a polynomial in t with each αi non-zero and n1 > n2 >
· · · > nn ⊂ N. Let r0 = 1 and let

r1 < r2 < · · · < rm = r

be the set of distinct leading common denominators > 1 that occur, i.e. the distinct numbers > 1 in the
set {Ram(α1t

n1 +· · ·αit
ni)

∣∣ i = 1, 2, . . . , n}. Recall that if bi is the denominator of ni/r = slope(αit
ni),
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then Ram(α1t
n1 + · · ·αit

ni) = lcm(b1, b2, . . . , bi). Finally, for i = 1, . . . ,m, let ki ∈ Q>0 be the largest
exponent such that the ramification is ri, i.e.

ki = max{nj/r
∣∣ Ram(α1t

n1 + · · · + αjt
nj ) = ri}.

Then we claim that the levels of I are these numbers k1 > k2 > · · · > km. This is an exercise, that
can be done visibly by drawing a picture, as follows3:

For any k ∈ R≥0 define qk =
∑
αit

ni , where the sum is over the indices i such that ni/r > k. Thus
qk is the leading piece of q whose monomials have slope > k. Now for each k consider the finite set

Nk := {qk(t), qk(ζt), . . . , qk(ζr−1t)} ⊂ tC[t] (3.3)

where ζ = exp(2πi/r). If k ∈ [ki+1, ki) then |Nk| = ri by definition (of the ri and ki). Thus as k varies
the sets Nk define a large disjoint union of copies of intervals (i.e. ri copies of [ki+1, ki) for each i).
Moreover if k < l then truncation gives a map Nk ↠ Nl, and this tells us how to glue the intervals into
a tree: there is one interval, the trunk, over [k1,∞). We glue this to the k1-ends of the r1 intervals
over [k2, k1). Then over k2 there are r1 nodes, and we glue each of them to (r2/r1) of the r2 intervals
over [k3, k2), etc, ending up with the r leaves of the tree N0 over 0. Thus the nodes where the tree
branches are exactly the points Nk1 t · · · tNkm , over k1 > · · · > km.

Now it is easy to see the ki are the levels: identify Id with the leaves N0; thus if i, j ∈ Id then
slope(qi −qj) is the supremum of the unique shortest path in the tree between the leaves i and j. Thus
the levels are exactly where the branching occurs.

In turn, by definition (see (2.4)) the admissible deformations are thus exactly those which preserve
the tree, as an abstract tree lying over R≥0 (we can choose an order of N0 to get an irregular type).
Consider the operation of adding to q a monomial of the form αxk where ki > k > ki+1 and rik ∈ N,
as α ∈ C varies. This operation clearly gives an admissible deformation of q since it does not change
any of the Galois orbits (3.3). Thus we can admissibly deform q to an element of the form

∑m
1 βix

ki

with each βi 6= 0. In turn we can admissibly deform this so that each βi = 1. This implies a), since
we have shown that any two Stokes circles with the same levels {ki} can be admissibly deformed into
〈
∑m

1 xki〉 and thus into each other (and the converse is clear). Statement b) is also now clear: the
common denominator needs to increase to get into a bigger Galois orbit.

Remark 3.2. Note that the statement a) includes the empty set: any two unramified circles I, J ⊂ I
are admissible deformations of each other. This remark underlies the theory of Baker functions (see
[16] §2.2 and the references there).
Remark 3.3. Note that the proof really shows that any two pointed irregular types [(n1, q1)], [(n2, q2)]
(each with just one Galois orbit) are admissible deformations of each other if and only if Levels(q1) =
Levels(q2), and n1 = n2.

For later use we will formalise the various sets of data in the proof as follows:

Definition 3.4. A “level datum” is a finite, possible empty, subset L ⊂ Q>0 satisfying the conditions
(3.1) (so the numbers it contains are the possible levels of a single Stokes circle).

Thus, as above, a level datum L = (k1 > · · · > km) determines ramification indices

RI(L) = (r1 < · · · < rm) ⊂ N>1

and in particular Ram(L) = rm. In turn, as in the proof, we can define the inconsequential exponents:

Inc(L) = N>0 ∪
(

(k2, k1) ∩ 1
r1
N

)
∪ · · · ∪

(
(km, km−1) ∩ 1

rm−1
N

)
∪

(
(0, km) ∩ 1

rm
N

)
⊂ Q>0, (3.4)

3Beware the “naive/full fission tree” defined here will be represented by a single full branch of the precise fission
trees to be defined carefully in §3.4 below. In brief, in the untwisted case fission trees were defined from meromorphic
connections in the quiver modularity conjecture in [13] Apx. C (i.e. Hiroe–Yamakawa’s theorem [38, 56]), and the
“naive/full fission tree” here is defined similarly to those fission trees, after pulling back to the untwisted case. In turn
the untwisted fission trees of [13] are essentially the same as the untwisted special case of the fission trees of §3.4.
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and the admissible exponents:
A(L) := L t Inc(L) ⊂ Q>0. (3.5)

If L is empty then Ram(L) = 1,RI(L) = {1} and A(L) = Inc(L) = N>0. Note that the admissible
exponents can thus also be expressed as:

A(L) =
(

(0, km] ∩ 1
rm

N
)

∪ · · · ∪
(

(0, k2] ∩ 1
r2
N

)
∪

(
(0, k1] ∩ 1

r1
N

)
∪ N>0 ⊂ Q>0. (3.6)

Thus any Stokes circle I ⊂ I determines subsets

L = L(I) ⊂ A = A(I) = A(L) ⊂ R>0, (3.7)

where L = Levels(I), and A is the set of admissible exponents. The ramification index Ram(v) ∈
{1, r1, . . . , rm} of any v ∈ R≥0 is defined to be the least common multiple of the denominators of the
levels ki ≥ v, so that

Ram(v) = ri if v ∈ (ki+1, ki]. (3.8)

Note that (3.4),(3.5) imply the number of non-integral admissible exponents is given by the formula:

|A(L) \ N| =
m∑
1
riki − bri−1kic (3.9)

where we set r0 = 1.

Example 3.5. Let us look at a few simple examples.

• Suppose q has Ram(q) = r > 1 and slope(q) = s/r with s and r coprime. Then q =
∑s

1 aix
i/r

with as 6= 0, the only level of q is its slope s
r , Levels(q) = (s/r) and A(L) = N>0 ∪ 1

r {1, . . . , s}.

• Consider q = x3 +x5/2 +x3/2 +x1/3. It has ramification order 6 = lcm(2, 3). The corresponding
list of ramification indices is RI(q) = (2 < 6), and Levels(q) = (5/2 > 1/3). In turn Inc(q) =
N>0 ∪ {3/2, 1/2, 1/6}, A(L) = N>0 ∪ {5/2, 3/2, 1/2, 1/3, 1/6}.

Remark 3.6. Note similar (elementary) methods appear in the theory of curve singularities [43]. The
reason for such a link to curves is the wild nonabelian Hodge correspondence, between meromorphic
connections and meromorphic Higgs bundles, followed by taking the spectral curve of the Higgs field.
Indeed the dictionary in [8] p.180 determines the irregular class from the spectral invariants at the
singularity of the Higgs field. Note that we only consider part of the data of the corresponding curve
singularity, and not all of it, i.e. the “principal part” of the singularity, determining the irregular class.
This reflects the fact that fission, breaking up the curve at the pole, is about the various growth rates
of the essentially singular functions exp(q) at a ∈ Σ, and this only involves the principal part of q.

Single circle configuration spaces. For any pair q1, q2 ∈ Id of exponential factors we can consider
the pointed irregular types Q1 = [(1, q1)], Q2 = [(1, q2)] and say that q1 ∼ q2 if Q1 ∼ Q2 in the sense
of (2.5), which amounts to the condition:

slope(q1 − σi(q1)) = slope(q2 − σi(q2))

for i = 0, 1, . . . ,Ram(q1).

Corollary 3.7. Let q1 and q2 be two exponential factors. Then q1 ∼ q2 in the sense of (2.5) if and
only if Levels(q1) = Levels(q2) (i.e. if and only if they are admissible deformations of each other).

Proof. Clearly if q1 ∼ q2 then Levels(q1) = Levels(q2). Conversely if they are admissible deformations
of each other then they both can be admissibly deformed to q0 :=

∑
xki (where the ki are the levels),

and so the three lists
slope(qj − σi(qj)), i = 1, 2, 3, 4, . . .

of rational numbers are equal, for j = 0, 1, 2 (since they remain equal under any small admissible
deformation, and under a new choice of initial q).
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This motivates the definition of the configuration space B(q) := B(Q) (from Defn. 2.10, using
∼ from (2.5)), for any exponential factor q, where Q = [(1, q)], since we now see B(q) is the set of
all exponential factors that are admissible deformations of q and have Poincaré–Katz rank (maximal
slope) at most K := Katz(q). Thus we deduce an explicit description of the configuration spaces in
the case of one circle:

Proposition 3.8. Let q ∈ Id be an exponential factor, and let L = Levels(q) be the levels of q. Then

B(q) ∼= (C∗)m × CN , SB(q) ∼= (C∗)m × CM

where m = |L| is the number of levels, N is the number
∣∣Inc[(L)

∣∣ of inconsequential exponents ≤ K,
and M = |Inc(L) \ N| is the number of non-integral inconsequential exponents. In particular dim B(q)
is the number

∣∣A[(L)
∣∣ of admissible exponents ≤ K and dim SB(q) = |A(L) \ N| is the number of

non-integral admissible exponents, as given by the formula (3.9).

Proof. Given I = 〈q〉 we consider L(I) ⊂ A(I) ⊂ R>0 as in (3.7), consisting of the admissible exponents
and the subset of levels. We can move the coefficients parameterised by A(I) arbitrarily provided those
from L remain non-zero. The descriptions of the configuration spaces then arise a) by not going past
K, and b) by only considering trace-free deformations.

Example 3.9. Let us come back to our previous examples:

• If q = asx
s/r + · · · + a1x

1/r, where s and r = Ram(q) > 1 are coprime, as 6= 0, then its (slope
bounded) admissible deformations are of the form

q′ =
s∑

k=1
bkx

k/r,

with bs ∈ C∗ non-zero, and b1, . . . , bs−1 ∈ C arbitrary. Removing the integral exponents leaves
s− bs/rc coefficients, agreeing with formula (3.9) for dim SB(q) in this case.

• For q = x3 + x5/2 + x3/2 + x1/3, the set of levels is L(q) = {5/2, 1/3}, the set of admissible
exponents ≤ 3 is {3, 5/2, 2, 3/2, 1, 1/2, 1/3, 1/6}, so the (slope bounded) admissible deformations
of q are of the form

q′ = αx3 + ax5/2 + bx2 + cx3/2 + dx+ ex1/2 + fx1/3 + gx1/6,

with α, a, b, c, d, e, f, g ∈ C, with a, f non-zero, and the other coefficients arbitrary. The trace-
free projection of q is pr(q) = q − x3 and the trace-free admissible deformations of this are as
above, but with α = b = d = 0. This deformation space has dimension 5, agreeing with (3.9).

Remark 3.10. Note that if we change coordinates the subsets L(I) ⊂ A(I) ⊂ R>0 attached to any
Stokes circle I (as in (3.7)) do not change. (Similarly for the fission trees to be defined below.)

3.2 The case of two Stokes circles

As a preparation to tackle the general case, we turn our attention to the case of two distinct active
circles. We consider a pointed irregular type of the form

Q = [(n, q), (n̂, q̂)],

where q and q̂ have ramification orders r and r̂. We denote by q0, . . . , qr−1 and q̂0, . . . , q̂r̂−1 the
elements of the Galois orbit of the corresponding exponential factors. A holomorphic family defined
by Qb = [(n, q(b)), (n̂, q̂(b))] is an admissible deformation if and only if q(b) and q̂(b) are admissible
deformations and if the rational numbers slope(qi − q̂j) are constant.

We thus have to determine what are the slopes of the differences qi − q̂j . This has been studied
in [31], the results of which we now briefly recall. If q and q̂ are two distinct exponential factors,
we can decompose them into a “common part” and a “different part” in the following way. Recall
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that τk : Id → Id denotes the the truncation map, discarding all monomials of slope < k, as in (2.3).
(Beware a different truncation was used in the proof of Prop. 3.1, discarding monomials of slope ≤ k.)
Let

E(q) ⊂ Q>0

be the finite set of exponents occurring in q, so q =
∑

k∈E(q) akx
k with each ak non-zero. Let k ∈ E(q)

be the smallest number such that
〈τk(q)〉 = 〈τk(q̂)〉

i.e. the Galois orbits of the truncations are equal, if such a number exists. If so then set

qc = τk(q), q̂c = τk(q̂).

If there is no such k then set qc = q̂c = 0. Then define qd = q − qc, q̂d = q̂ − q̂c, so that we get a
decomposition

q = qc + qd, q̂ = q̂c + q̂d,

of q and q̂ as the sum of a common part qc and a different part qd. If qc = q̂c we say that q and q̂ are
compatible, as in Defn. 2.4. Replacing q or q̂ by another element of their Galois orbit if necessary, we
may assume without loss of generality that this is the case. Note that if q and q̂ do not have the same
slope then they do not have the same leading term up to Galois conjugacy, so qc = q̂c = 0. If q and q̂
have a non-zero common part, in particular they have the same slope. We call the rational number

fq,q̂ := max
(
slope(qd), slope(q̂d)

)
∈ Q≥0 (3.10)

the fission exponent of q and q̂. It is zero if and only if 〈q〉 = 〈q̂〉. Since it only depends on the
circles/Galois orbits this defines the fission exponent f

I,Î
for any Stokes circles I = 〈q〉,Î = 〈q̂〉.

We are now in a position to describe the set of slopes we are interested in.

Lemma 3.11. Let q and q̂ be two exponential factors in distinct Galois orbits. The set of non-zero
slopes among the rational numbers slope(qi − q̂j), for i = 0, . . . , r − 1, j = 0, . . . , r̂ − 1 is equal to

Levels(qc) t {fq,q̂} ⊂ Q>0,

i.e it consists of the levels of the common part of q and q̂ together with their fission exponent. Fur-
thermore, if q and q̂ are compatible i.e if qc = q̂c the map (i, j) 7→ slope(qi − q̂j) is entirely determined
by the data of Levels(qc) and fq,q̂.

Proof. This follows directly from the proof of the Lemma 4.3 of [31]. The main idea is that the levels
of the common part are obtained from the differences between the different Galois conjugates of the
common part, while the fission exponent is the slope of all the other differences (for which the Galois
conjugates of the common part are the same).

As a consequence, the numerical equivalence relation on pointed irregular types can be clarified.

Proposition 3.12. Let Q = [(n, q), (n̂, q̂)] be a pointed irregular type with two active circles, such that
q and q̂ are compatible. Let k := fq,q̂ be the fission exponent of q and q̂. Then a pointed irregular type
Q′ satisfies Q′ ∼ Q if and only if it is of the form Q′ = [(n, q′), (n̂, q̂′)], with q′ and q̂′ compatible and
such that

1. q ∼ q′ and q̂ ∼ q̂′,

2. q′
c = q̂′

c satisfies q′
c ∼ qc,

3. fq′,q̂′ = k.

These three conditions hold if and only if: Levels(q) = Levels(q′), Levels(q̂) = Levels(q̂′), and fq′,q̂′ = k.
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Proof. Let us assume that Q′ ∼ Q. Then, considering the differences internal to the two Galois orbits
we have q ∼ q′ and q̂ ∼ q̂′. Considering now the set of slopes of the differences between the two distinct
Galois orbits for both Q and Q′, we have from Lemma 3.11 that L(qc) t {fq,q̂} = L(q′

c) t {fq′,q̂′} hence
fq′,q̂′ = fq,q̂ = k, and L(qc) = L(q′

c), so qc ∼ q′
c. Furthermore since q and q̂ are compatible, we have

slope(q0 − q̂0) = k = slope(q′
0 − q̂′

0) hence q′ and q̂′ are also compatible. For the converse, let us assume
that Q′ is of the claimed form. Then since q ∼ q′ and q̂ ∼ q̂′ the slopes of the internal differences are
the same for Q and Q′. We have L(qc) = L(q′

c) and fq,q̂ = fq′,q̂′ . Since q and q′ are compatible, as
well as q̂ and q̂′, the second part of Lemma 3.11 implies that the slopes of the differences between the
distinct Galois orbits are the same for Q and Q′.

From the case of a single circle, we know how to make the first two conditions explicit. Let us now
investigate the third condition in more detail. Choose k ∈ Q>0 and let qc be an exponential factor
whose exponents are all strictly greater than k. Write k = n/m with n,m coprime integers. Choose
a, â ∈ C and consider the exponential factors

q := qc + azk + b, q̂ := qc + âzk + b̂

where b, b̂ are exponential factors of slope < k. The conditions for the fission exponent fq,q̂ to equal k
are as follows.

Proposition 3.13. Let r = Ram(qc), k = n/m. Then fq,q̂ = k if and only if either 1) or 2) holds:

1. m divides r and a 6= â, or

2. m does not divide r and either:

(a) Exactly one of a, â is zero, or
(b) Both a 6= 0 and â 6= 0, and furthermore aN 6= âN , where N = lcm(r,m)/r = m/(r,m).

Remark 3.14. Notice that in case 1., one of a and â can be equal to zero. Also note that 2a,2b can
be combined into the single statement that aN 6= âN . The three cases are distinguished since in 1 the
number k is in neither of the sets Levels(q),Levels(q̂), for 2a it is in just one, and for 2b it is in both.
For later use (cf. Prop 3.26) we encode the three cases 1,2a,2b pictorially as follows:

Proof. Clearly we need a 6= â, and can set b = b̂ = 0 without loss of generality. We then need to see
when 〈q〉 6= 〈q̂〉.

1. Let us first assume that m divides r, so that k is not a level of 〈q〉 nor 〈q̂〉, and Ram(q) =
Ram(q̂) = Ram(qc). Thus the Galois orbits of q and q̂ are in bijection with that of qc (via
truncation). This implies that the Galois orbits of q and q̂ are distinct if and only if a 6= â.

2. 2a) is clear so we consider 2b). Let us set r′ = lcm(r,m) and N = r′/r. Ram(q) is equal to r′ if
a 6= 0, otherwise it is equal to r, and similarly for q̂. If a 6= 0, then in the Galois orbit of q there
are N elements giving rise, upon truncation, to any given element of the Galois orbit of qc, and
their coefficients of exponent k = n/m differ by an N -th root of unity. The conclusion follows.

This enables us to get an explicit description of B(Q), as we now do for a few examples. In terms
of lists of exponents attached to I = 〈q〉,Î = 〈q̂〉 we have the subsets

L(I) ⊂ A(I) ⊂ R>0, L(Î) ⊂ A(Î) ⊂ R>0

(as in (3.7)) which we should identify just above the fission exponent f
I,Î

, in order to get the set of
exponents whose coefficients we can vary. And these coefficients can be varied arbitrarily provided
those from L(I) or L(Î) remain non-zero and those at the fission exponent continue to satisfy the
same part of Prop. 3.13.
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Example 3.15. Let us look at a few examples illustrating the different cases:

• Consider Q = [(1, λxs/r), (1, µxs/r)] with r > 1 and s coprime and λ 6= µe2inπ/r for any integer
n (so that the Galois orbits are disjoint). The common part of the two exponential factors is
empty, and their fission exponent is the level s/r, so this fits into the case 2(b). The (slope
bounded) admissible deformations of Q are of the form Q′ = [(1, q′

1), (1, q′
2)] with

q′
1 =

s∑
k=1

akx
k/r, q′

2 =
s∑

k=1
bkx

k/r,

with a1, . . . , as, b1, . . . , bs ∈ C, as 6= 0, bs 6= 0 and as 6= bse
2inπ/r for any integer n, that is we

have
B(Q) ∼= {(a1, . . . , as, b1, . . . , bs) ∈ C2s | as 6= 0, bs 6= 0, ∀n ∈ N, as 6= bse

2inπ/r}.

• Let us consider Q = [(1, q1), (1, q2)] with q1 = x3/2 + x1/2, and q2 = x3/2 + 2x1/2. The common
part of q1 and q2 is x3/2, and they are compatible. This fits into the first case, indeed the fission
exponent 1/2 is not a level of q1 and q2. The (slope bounded) admissible deformations of Q are
of the form Q′ = [(1, q′

1), (1, q′
2)], with

q′
1 = ax3/2 + bx+ cx1/2, q′

1 = ax3/2 + bx+ dx1/2,

with a, b, c, d ∈ C, a 6= 0 and c 6= d, i.e. we have

B(Q) ∼= {(a, b, c, d) ∈ C4 | a 6= 0, c 6= d}.

• Let us consider Q = [(1, q1), (1, q2)] with q1 = x3/2 +x1/3, and q2 = x3/2. The ramification order
of 〈q1〉 is 6, the common part of q1 and q2 is x3/2, and they are compatible. This fits into case
2(a), indeed the fission exponent 1/3 is a level of q1, but does not appear in q2. The (slope
bounded) admissible deformations of Q are of the form Q′ = [(1, q′

1), (1, q′
2)], with

q′
1 = ax3/2 + bx+ cx1/2 + dx1/3 + ex1/6, q′

2 = ax3/2 + bx+ cx1/2,

with a, b, c, d, e ∈ C, with a 6= 0 and d 6= 0, i.e. we have

B(Q) ∼= {(a, b, c, d, e) ∈ C5 | a 6= 0, d 6= 0}.

3.3 Fission data

As a step towards the general case we will give a first attempt at packaging the relevant data. Recall
that a “level datum” is a finite, possible empty, subset L ⊂ Q>0 satisfying the conditions (3.1) (so the
numbers it contains are the possible levels of a single Stokes circle).

Definition 3.16. A “fission datum” is a pair F = (L, f) where L is a multiset4

L = L1 + · · · + Lm

of level data and f , the fission exponents, are the choice of a rational number fij = fji ∈ Q≥0, for all
i, j ∈ {1, . . . ,m}.

An irregular class determines a fission datum in the obvious way, as follows. If Θ =
∑m

1 Ii is a rank
n irregular class (where the Stokes circles Ii are not necessarily distinct) then define Li = L(Ii) to be
the level datum of Ii for each i, and define L(Θ) :=

∑m
1 Li to be the corresponding multiset of level

data. Then by taking fij = fIi,Ij to be corresponding fission exponents, this determines the fission
datum F(Θ) = (L(Θ), f) of the irregular class Θ. Note that the multiplicity of any given Stokes circle
Ij in the class Θ is determined by the fission data by the recipe:

Θ(Ij) =
∣∣{i = 1, 2, . . . ,m

∣∣ fij = 0}
∣∣.

4Recall that a multiset is a set with multiplicities. Here this means the Li are not necessarily distinct level data (but
the ordering of the level data, i.e. the labelling by indices 1, . . . , m, is not part of the data).
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In turn a labelled fission datum F̂ = (L̂, f) is a pair consisting of an ordered list

L̂ = [(n1, L1), . . . , (np, Lp)]

where the Li are not necessarily distinct level data, together with fission exponents fij = fji ∈ Q≥0
for i, j ∈ {1, . . . , p} such that fij = 0 if and only if i = j. Then a pointed irregular type determines
a labelled fission datum in the obvious way (and in turn a labelled fission datum determines a fission
datum by forgetting the labelling).

The study in the case of one and two circles then implies one of the main statements:

Theorem 3.17. Let Q = [(n1, q1), . . . , (np, qp)] be a pointed irregular type, which we assume to be
compatible, and F̂ its labelled fission datum. Then a pointed irregular type Q′ satisfies Q′ ∼ Q if and
only if it is compatible and its labelled fission datum equals F̂ .

Proof. This follows from our study of the case of one and two active circles. To see this, notice that
the fission data of Q is equivalent to the data of the levels of its active circles, together with the data
of the common part and the fission exponent of any pair of distinct active circles. The result now
follows from Corollary 3.7 and Proposition 3.12.

To go further we will now define fission trees (gluing just above the fission exponents, as above);
this will give a way to parameterise the set of coefficients we can vary, and thus to describe the
configuration spaces, leading to a proof that two irregular classes are admissible deformations of each
other if and only if their fission data are equal. It will also give a way to classify the possible topological
data, i.e. the set of possible admissible deformation classes (it seems difficult to write down axioms
for the fission data that actually arise from irregular classes, without discussing trees).

3.4 Fission trees in the twisted setting

First we will describe abstractly the exact types of trees we get, and then define how to obtain such
trees from irregular types/classes.

Fission trees. Consider a six-tuple (T ,V,A,L, h, n) where:
• T is a metrised tree5, with vertices V ⊂ T ,
• A ⊂ V is a subset (the admissible vertices),
• L ⊂ A is a finite, possibly empty, subset (the internal levels/mandatory vertices),
• h : T → R≥0 is a length preserving map, the height map, mapping each edge isomorphically onto

an interval, such that V0 := h−1(0) ⊂ T is a finite set and is the set of leaves of T ,
• n is a map V0 → N>0, giving a multiplicity to each leaf.

The edges E = E(T ) = π0(T \ V) of T are the components of the complement of the vertices.
Thus any vertex that is not a leaf is adjacent to ≥ 2 edges, one of which is the “parent” edge, and the
others are the descendant edges. The branch vertices Y ⊂ V are those with ≥ 2 descendants (where
the branching of the tree occurs). The trunk of the tree is the union of all the edges and vertices
above all the branch vertices. The vertices in L will be called “mandatory”, those in I := A \ L will
be called “inconsequential”, and the others (V \ A) will be called “empty”.

The “full branch” Bi of any leaf i ∈ V0 is the (minimal) subset of T all the way from i to the far
end of the trunk. Let Li = L∩ Bi denote the internal levels on the ith full branch, and let Ai = A∩ Bi

similarly (the admissible vertices on the ith full branch).

Definition 3.18. Such a tuple (T ,V,A,L, h, n) is a “fission tree” if:
1) V = h−1({0} ∪ h(A)); the vertices are exactly the leaves plus the points that map to h(A),
2) h maps each full branch isomorphically onto R≥0,
3) The internal levels of any full branch map to a set of levels, i.e. Li := h(Li) ⊂ Q>0 satisfies the

conditions (3.1), for any leaf i (so they are the possible levels of a single Stokes circle),
5See e.g. [2] for metrised graphs, but note that ours are not compact, and recall that a tree is a special type of graph.
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4) Ai := h(Ai) ⊂ Q>0 is the set A(Li) of admissible exponents of Li for each leaf i, as in (3.5),
5) The children Ch(v) ⊂ V of each branch vertex v ∈ Y satisfy one of the following three conditions:

1. All the vertices in Ch(v) are inconsequential,
2a. One vertex in Ch(v) is empty and the others are mandatory,
2b. All the vertices in Ch(v) are mandatory.

Note in particular that the leaves of a fission tree are empty. Two fission trees are isomorphic if
there is an isomorphism between the underlying trees relating all the data V,A,L, h, n.

A labelling of a fission tree with nodes V0 is a total ordering of the set of leaves, i.e. a bijec-
tion ψ : {1, . . . , |V0|} ∼= V0. Two labelled fission trees are isomorphic if there is a label-preserving
isomorphism (so there is at most one isomorphism between labelled fission trees).
Remark 3.19. Note that the definition (3.8) extends directly to define the ramification index Ram(v)
of any point v ∈ T of a fission tree, taking the lcm of the denominators of the heights of its mandatory
ancestors ≥ v (i.e. in L, of height ≥ h(v) and on the same full branch). If p ∈ V is the parent of
some vertex v ∈ V, by definition the “relative ramification” of p is Ram(v)/Ram(p). Observe that
the integer N = lcm(r,m)/r in part 2a of Prop. 3.13 is an example of relative ramification.
Remark 3.20. Axioms 3,4) of Defn. 3.18 imply that axiom 5) could be replaced by the simpler
statement “Ch(v) contains at most one empty vertex for any v ∈ Y”.

Fission data of a fission tree. Given a fission tree T = (T ,V,A,L, h, n) let A = h(A) ⊂ Q>0 be
the admissible exponents. Given two distinct leaves i, j ∈ V0, let vij ∈ Y be their nearest common
ancestor (i.e. the branchpoint where Bi,Bj meet). Thus T determines a number, the fission exponent

fij := prec(h(vij)) ∈ A

for each pair of leaves, where prec : A → A ∪ {0} takes a ∈ A to the preceding element of A, i.e. the
largest element < a (or to zero if a = min(A)). Axiom 5) implies fij 6= 0.

Thus a fission tree T determines a fission datum F(T ) = (L, f) where L =
∑
niLi is the set of

level data of each full branch (repeated according to their multiplicities) and f encodes the fission
exponents between the branches of the tree. The following statement is now an exercise:

Lemma 3.21. Two fission trees are isomorphic if and only if their fission data are equal:

T1 ∼= T2 ⇐⇒ F(T1) = F(T2).

Similarly two labelled fission trees are isomorphic if and only if their labelled fission data are equal.

Fission tree of an irregular class. We now describe how to define the fission tree of an irregular
class Θ =

∑
niIi: firstly there is a full branch Bi (of multiplicity ni) for each distinct circle Ii. Thus Bi

is a copy of R≥0 equipped with the subsets Li ⊂ Ai ⊂ Bi, and an isomorphism h : Bi → R≥0, defined
so that the subsets Li ⊂ Ai map onto the sets Li = L(Ii) ⊂ Ai = A(Ii) of levels and admissible
exponents (defined from Ii as in 3.7).

We then define A = A(Θ) :=
⋃
Ai ⊂ Q>0 to be the union of all the admissible exponents. This is

a discrete subset and for any k ∈ Q>0 we can define the successor succ(k) ∈ A to be the next element
of A, i.e. the smallest element of A that is > k. If fij = fIi,Ij is the fission exponent between Ii, Ij

then define the gluing exponent
gij := succ(fij) ∈ A

to be the next admissible exponent after the fission exponent.
We then glue the full branches Bi,Bj over the interval [gij ,∞) for each i, j, to define the tree T

equipped with the map h : T → R≥0. The subsets Li ⊂ Ai fit together to define L ⊂ A ⊂ T , and we
set V = h−1(A ∪ {0}) ⊂ T . Let Vk = h−1(k) denote the vertices of height k.

This defines the fission tree T (Θ) = (T ,V,A,L, h, n). All the axioms are clear except 5), which
will follow from Prop. 3.26 below.

21



In case we start with a pointed irregular type Q = [(n1, q1), . . . , (nm, qm)], and not just an irregular
class, then we get a labelled fission tree T̂ (Q), by labelling the nodes V0 according to the labelling of
the exponential factors q1, . . . , qm.

The nodes V ⊂ T may be interpreted in terms of truncated circles as follows. Recall that if k ∈ Q
then τk(q) is the truncation, forgetting monomials of slope < k.

Lemma 3.22. For each k ∈ A ∪ {0}

Vk
∼= {〈τk(q1)〉, . . . , 〈τk(qm)〉} (3.11)

i.e. the vertices of height k are in bijection with the set of Galois orbits of the exponential factors
truncated at k.

Proof. Consider two distinct circles 〈q1〉,〈q2〉, corresponding to two leaves. Consider the minimal
element k of A such that 〈τk(q1)〉 = 〈τk(q2)〉. Then, by definition, k = g12 = succ(f12).

In particular if k > l are two admissible exponents (or zero), we have a surjective map φkl : Vl ↠ Vk

defined by φkl(〈τl(qi)〉) = 〈τk(qi)〉, and this determines the structure of the tree, by defining the unique
parent of each node (if k, l ∈ A are consecutive). This also proves all the gluings of the full branches
can be done consistently.

From this viewpoint, two elements 〈τl(qi)〉, 〈τl(qj)〉 ∈ Vl are descendants of the same vertex in Vk,
where l < k if they have the same truncation to exponent k, i.e. if 〈τk(qi)〉 = 〈τk(qj)〉. Furthermore, if
〈qi〉 and 〈qj〉 are two active circles, corresponding to two leaves, in V0, their closest common ancestor
in the tree corresponds to (the Galois orbit of) their common part (this follows immediately from the
definition of the common part of two exponential factors).
Remark 3.23. Note that the visual image of a tree is clear by thinking about the eigenvalues of a matrix
of meromorphic functions (∼ a meromorphic Higgs field). On the differential equations side this idea
is embedded in the “fission” picture, thinking about the growth/decay of the functions exp(q(x)) as
x → ∞ along a ray, and can be traced back to the Stokes diagram in [53] p.116, reproduced on the
cover of [24] (see also the pictures in [14, 22]). However our exact definition of fission tree is quite
subtle, in order for the main results to follow cleanly (i.e. Thm. 3.27, (3.18) parameterising the
configuration spaces in terms of points of the fission tree and in turn Cor. 3.31, giving the product
decomposition). In particular the simpler definition of trees (as in [55]) on the singularity theory
(spectral curve) side of the wild nonabelian Hodge correspondence are much less useful for either of
these aims6.

3.5 Truncated fission trees

Since any integer is an admissible exponent of any exponential factor, the set of admissible exponents
of any irregular type Q is unbounded from above. For the configuration spaces we are interested in the
admissible exponents are bounded by the Poincaré–Katz rank. Thus we will consider the “truncated
fission tree” T [ = T [(Q) by defining the root vertex to be that of height

η := bKatz(Q) + 1c (3.12)

and then removing all nodes/edges above the root (and marking the root as empty/inadmissible). Note
that η is the smallest integer greater than the Poincaré–Katz rank of Q (the largest slope), so the
admissible nodes A[ ⊂ T [, the subset of A below the root, are exactly the nodes that will contribute
to the configuration space (as these are the admissible nodes of height ≤ Katz(Q)). When drawing
pictures of trees we will truncate as above, but also we will stop at the smallest admissible exponent, so
the leaves will not be drawn. If we are just given a fission tree (and not an irregular type/class) then we
will use the “minimal truncation” at η = bk+1c where k = Katz(T ) := max({0, h(L),max(h(Y))−1}).
Indeed one can check that in the trace-free case Katz(T ) is the Poincaré–Katz rank of any irregular
class with fission tree T . Using this we can attach an integer to any fission tree:

6Specifically if we took the definition in [55] and transposed it to our setting (shifting and truncating suitably), then
the resulting definition is too local: the location of the branchpoints Y would then just depend on the adjacent full
branches so the product decomposition will not work cleanly and moreover some of the points of the tree that should
parametrise distinct coefficients are identified.
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Definition 3.24. The moduli number µ(T ) of a fission tree is one plus the number of admissible
vertices below the root, minus the number of integers below the root height:

µ(T ) :=1 +
∣∣A[

∣∣−(η − 1) =
∣∣A[

∣∣ + 2 − η (3.13)

=1 +
∣∣A1 \ N

∣∣+ m∑
2

∣∣Ai ∩ [0, fi]
∣∣ (3.14)

It is clear that µ just depends on the fission tree and not the irregular class. The dimension of the
special configuration space is µ− 1. In practice the second formulation is more convenient (when the
tree is labelled by 1, . . . ,m) where Ai = h(Ai), fi = minj<i(fij) and

∣∣A1 \ N
∣∣ is as in (3.9).

Example 3.25. Consider the rank 10 pointed irregular type Q = [(1, q1), (1, q2), (1, q3), (1, q4)], with

q1 = x3/2 + x, q2 = x3/2 + 2x, q3 = x1/3, q4 = 2x1/3.

Thus the root height η = 2 and the set of admissible exponents of Q smaller than η is {3/2, 1, 1/2, 1/3}.
The labelled fission tree is drawn in Fig. 1. We will always draw the mandatory vertices (the internal
levels L) as black circles, the inconsequential vertices (A \ L) as white circles, and the empty vertices
without any decoration. The heights are indicated on the left. The root is drawn as a black square.

3/2

1

1/2

1/3

q1 q2 q3 q4

Figure 1: The fission tree T [ associated to Q (not drawn isometrically). The labelling corresponds to
the numbering of the qi. The multiplicities of the leaves are all equal to 1.

We will see below that the configuration space has dimension 8 (the number of nonempty nodes below
the root), and further (in Thm. 3.27) that there are three types of conditions on these 8 coefficients:
those from each black vertex • should be non-zero, those from the two inconsequential siblings ◦
should be distinct, and those from the two mandatory siblings • should have distinct Nth powers
(where N = 3 in this example). For the special configuration space, the dimension is 7 = 8 − 1 since
there is one positive integer height below the root. The moduli number µ(T ) is eight.

3.6 Realisations of a fission tree

Suppose we are given a fission tree T = (T ,V,A,L, h, n), and a map c : A → C with finite support,
i.e. c(v) = 0 for all but a finite number of the admissible vertices v ∈ A ⊂ T .

Then for each leaf i ∈ V0 of the tree we can define an exponential factor

qi =
∑

v∈Ai

c(v)xh(v) (3.15)

summing over the admissible vertices Ai = Bi ∩A on the ith full branch. Thus c gives the coefficients
of a list of exponential factors. Thus if the tree is labelled by some isomorphism ψ : {1, . . . ,m} ∼= V0
then we get an element

Qc = [(n1, q1), . . . , (nm, qm)], (3.16)

23



where qi is determined by c as above, and ni = n(i) is the multiplicity of the leaf i.
We will say that the coefficient map c is a realisation of the tree T if Qc is a pointed irregular

type and T (Qc) ∼= T , i.e. if the fission tree of Qc is isomorphic to T (the labellings match up by
construction).

Thus we wish to make explicit the conditions on c for it to be a realisation.

In effect we just need to check that the tree determined by Qc has the desired branching and
mandatory nodes. Let us focus on a single branchpoint. Let l > k be two consecutive heights of the
tree, and let v ∈ Vl be a vertex with n children Ch(v) = {w1, . . . , wn} ⊂ Vk.

Let q be the exponential factor determined by c at the node v, so that q = τl(qj) for any leaf j that
is a descendant of v. Let qi = q + ciz

k (where ci = c(wi)) be the corresponding exponential factors
of the children, i = 1, . . . , n. Thus for c to be a realisation, the ci have to be such that the Galois
orbits 〈qi〉 are pairwise distinct. Proposition 3.13 allows us to characterise when this is the case. Set
r+ := Ram(q), and write k = s−

r− , with s− and r− coprime.

Proposition 3.26. Let q be an exponential factor with all its exponents greater than k, and let
c1, . . . , cn ∈ C and consider qi = q + ciz

k for i = 1, . . . , n. Now

1. If r− divides r+, then k is not an internal level of any of the qi. Then the 〈qi〉 are distinct if
and only if ci 6= cj for 1 ≤ i < j ≤ n.

2. Otherwise, let us assume that r− does not divide r+, and let N := lcm(r−,r+)
r+ . Then k is a level

of 〈qi〉 if and only if ci 6= 0, otherwise if ci = 0, 〈qi〉 ∈ Vk is an empty vertex. Now the 〈qi〉 are
distinct if and only if

(a) Either one of the ci, i = 1, . . . , n, say ci0, is equal to zero and we have ci 6= 0 for i 6= i0 and
ci 6= ζcj for i, j ∈ {1, . . . , n} \ {i0} for any N -th root of unity ζ.

(b) Or, all of the ci are non-zero, and we have ci 6= ζcj for 1 ≤ i < j ≤ n for any N -th root of
unity ζ.

Proof. This follows immediately from the corresponding cases in Proposition 3.13.

This implies that there are only three possible types of fission at a vertex v in a fission tree, which
correspond to the three cases 1, 2(a), and 2(b) of the proposition, and they yield the axiom 5) in
the definition of fission tree. In the case 1, since k is not an internal level of any of the qi, all the
corresponding vertices are inconsequential, which corresponds to the picture below (the parent vertex
is dotted on the picture to indicate that it could be mandatory, inconsequential or empty).

Otherwise, in the case 2 the vertices corresponding to the qi are all mandatory provided they are
non-empty. There are two possibilities: either, in the case 2(a), there is one empty vertex, which
corresponds to the figure on the left below, or, in case 2(b) there is no empty vertex and all vertices
are mandatory, which corresponds to the figure on the right below.

Thus we can write down the exact conditions for c to be a realisation. Recall that two nodes are
“siblings” if they have the same parent node. In summary the result is the following:

Theorem 3.27. The map c : A → C is a realisation of T if and only if
1) c(L) ⊂ C∗, i.e. c(v) 6= 0 for any mandatory node v,
2) c(u) 6= c(v) for any pair u, v of inconsequential siblings,
3) c(u)N 6= c(v)N for any pair u, v of mandatory siblings where N is the relative ramification of

the parent of u, v (defined in Rmk. 3.19).
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Proof. The first condition (and the definition of A) implies each full branch has the correct internal
levels. Then 2) and 3) show that the tree of Qc has the right branching.

Note that 2),3) can be combined into the single statement: if u, v are admissible (=non-empty)
siblings then c(u)N 6= c(v)N where N is the relative ramification of the parent of u or v (since the
relative ramification of the parent of an inconsequential vertex is 1).
Corollary 3.28. Any fission tree admits a realisation.
Proof. There are just a finite number of Zariski-closed conditions on the coefficients of any set of
siblings, so the space of choices of c is non-empty.

This immediately gives a clearer description of the configuration spaces. First note that the
definition of the fission tree implies:
Lemma 3.29. Suppose Q is any compatible pointed irregular type with (labelled) fission tree T =
T (Q), let r = Ram(Q), x = tr so that

Q := [(n1, q1), . . . , (nm, qm)], qi =
s∑

j=1
ai,jt

j , (3.17)

for some collection of coefficients a = (ai,j) ∈ C. Then there is a unique realisation c = cQ : A → C of
T with c(v) = ai,k for all i, k where v = 〈τk/r(qi)〉 ∈ A is the vertex of T determined by the truncation
of the exponential factor qi.
Proof. This amounts to verifying two conditions, which are now straightforward: 1) ai,k = 0 if
〈τk/r(qi)〉 ∈ V \ A, i.e. if the node of T determined by the circle 〈τk/r(qi)〉 is not admissible, and
2) ai,k = aj,k if 〈τk/r(qi)〉 = 〈τk/r(qj)〉, i.e. if the truncations determine the same node of T .

It follows that the configuration space B(Q) of any compatible pointed irregular type Q is isomor-
phic to the space

B(T [) :={c : A → C
∣∣ c is a realisation of T ,Katz(c) ≤ Katz(Q)} (3.18)

={c : A[ → C
∣∣ 1),2),3) of Thm. 3.27 hold for c}

of realisations of the truncated fission tree T [, Here A[ is the set of admissible nodes of T [ and
Katz(c) = max{h(a)

∣∣ a ∈ A, c(a) 6= 0} is the height of the realisation. In other words we have
established the following:
Theorem 3.30. If Q is a compatible pointed irregular type then B(Q) ∼= B(T [), where T [ is the
truncated labelled fission tree of Q.
Proof. By Thm. 3.17 B(Q) is the set of compatible pointed irregular type Q′ with the same labelled
fission data as Q and Katz(Q′) ≤ Katz(Q). Then as in Lem. 3.21 this is the same as saying the
labelled fission tree of Q′ is isomorphic to that of Q and Katz(Q′) ≤ Katz(Q). Then by Lem. 3.29,
any such Q′ arises uniquely as a realisation c of T [.

This immediately gives a product decomposition of the configuration space. Given a compatible
pointed irregular type Q with fission tree T , for any vertex v ∈ V of T let ChA(v) = A ∩ Ch(v) be
the set of admissible/nonempty children of v and let Ch•(v) = L ∩ Ch(v) be the subset of mandatory
children of v (black vertices). Define the local configuration space for the vertex v ∈ V:

Bv(Q) = Bv(T ) := {c : ChA(v) → C
∣∣ c(Ch•(V )) ⊂ C∗, c(u)N 6= c(w)N ∀u 6= w ∈ ChA(v)} (3.19)

where N is the relative ramification of v (defined in Rmk. 3.19). Bv(T ) is taken to be a point if v
has no non-empty children and otherwise it thus takes the form:

Bv(T ) ∼= Xn := {a1, . . . , an ∈ C | ai 6= aj for i 6= j}, (3.20)

if v has n inconsequential children, or

Bv(T ) ∼= X∗
n,N := {a1, . . . , an ∈ C | ai 6= 0, aN

i 6= aN
j for i 6= j} (3.21)

if v has n mandatory children and relative ramification N .
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Corollary 3.31. Let Q be a compatible pointed irregular type with fission tree T and let V[ be the
vertices of its truncated fission tree T [. The configuration space B(Q) admits a product decomposition:

B(Q) ∼=
∏

v∈V[

Bv(T ).

In particular the dimension of B(Q) is the number of admissible (nonempty) vertices of the fission
tree T of height ≤ the Poincaré–Katz rank of Q.

Proof. Since B(Q) ∼= B(T [) this follows from the characterisation of the realisations c : A[ → C of T [

given in Thm. 3.27.

In particular it follows that the configuration spaces are connected, since each of the local configura-
tion spaces Bv(T ) ∼= Xn orX∗

n,N is connected. This yields a combinatorial/topological characterisation
of admissible deformations, as follows.

Corollary 3.32. Two compatible pointed irregular types are admissible deformations of each other if
and only if they have isomorphic labelled fission trees, if and only if they have the same labelled fission
data.

Proof. Given Q,Q′ suppose that Katz(Q) ≥ Katz(Q′) and consider B(Q). If the labelled fission
trees are isomorphic then Q′ = Qc for some realisation c of T (Q), by Theorem 3.30. Thus, by
connectedness, Q,Q′ are admissible deformations of each other with B = B(Q). The converse is clear.
The last statement follows as in Lem. 3.21.

Corollary 3.33. Two rank n irregular classes are admissible deformations of each other if and only
if they have isomorphic fission trees, if and only if they have the same fission data.

Proof. This follows from Cor. 3.32 by considering local lifts from irregular classes to pointed irregular
types.

Corollary 3.34. Let Q be a compatible pointed irregular type. Then the configuration space B(Q) is
a fine moduli space of all pointed irregular types that are admissible deformations of Q, with Poincaré–
Katz rank ≤ Katz(Q). Similarly SB(Q) is a fine moduli space of all trace-free admissible deformations
of any trace-free pointed irregular type Q.

Proof. The main point is that the product decomposition and the formulae (3.15), (3.16) give a
universal family of pointed irregular types over B(Q) = B(T [(Q)).

Example 3.35. Let us look at a few examples, starting with the ones with two exponential factors
studied previously

• Consider Q = [(1, λxs/r), (1, µxs/r)] with r and s coprime and λ 6= µe2inπ/r for any integer n.
The (labelled) fission tree T is the following:

s/r

(s− 1)/r

1/r
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From the tree we read the space of admissible deformations: we have

B(Q) ∼= X∗
2,r × C2(s−1), X∗

2,r = {a1, a2 ∈ C
∣∣ a1a2 6= 0, ar

1 6= ar
2}.

Indeed, the factor corresponding to the root vertex is X∗
2,r, the factors for the leaves are trivial,

while for all other vertices v the space Bv(T ) is isomorphic to C. Similarly SB(Q) ∼= X∗
2,r ×CN

where N = 2s− 2 − bs/rc, removing one dimension for each integer below the root.

• Let us consider Q = [(1, q1), (1, q2)] with q1 = x3/2 + x1/2, and q2 = x3/2 + 2x1/2. The fission
tree is drawn below.

3/2

1

1/2

From this we read that the space of admissible deformations satisfies

B(Q) ∼= X∗
1,2 ×X1 ×X2 ∼= C∗ × C × {a, b ∈ C | a 6= b}.

• Let us consider Q = [(1, q1), (1, q2)] with q1 = x3/2 + x1/3, and q2 = x3/2. The fission tree is
drawn below.

3/2

1

1/2

1/3

1/6

This yields
B(Q) ∼= X∗

1,2 ×X∗
1,3 ×X3

1
∼= (C∗)2 × C3.

3.7 Topological skeleta

Corollary 3.33 has the following immediate global consequence. Suppose Σ = (Σ,a,Θ) is a rank n wild
Riemann surface, with Σ a compact Riemann surface, a ⊂ Σ a finite subset, and Θ = {Θa

∣∣ a ∈ a}
the data of a rank n irregular class for each marked point. For each a ∈ a let Ta = T (Θa) be the
fission tree of the irregular class Θa. Define the topological skeleton of Σ to be the pair

Sk(Σ) = (g,F)

where g ≥ 0 is the genus of Σ and F =
∑

a∈a[Ta] is the forest of Σ, i.e. the multiset of isomorphism
classes of fission trees determined by all the Ta, as a ranges over the marked points a ⊂ Σ. In general
it is a multiset rather than a set as some of the fission trees at distinct points may be isomorphic. As
explained above the notion of admissible deformations of (twisted) wild Riemann surfaces follows from
the untwisted case of [18] (extending the generic case in [40, 45]). In brief a holomorphic admissible
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deformation of rank n wild Riemann surfaces over a base space B is a holomorphic family π : Σ → B
of compact Riemann surfaces, together with a holomorphic multisection σ ⊂ Σ restricting to a finite
subset ab ⊂ Σb in each fibre Σb = π−1(b) ⊂ Σ, and also the choice of a rank n irregular class Θa at each
point a ∈ ab ⊂ Σb for each b ∈ B. These should be such that the irregular classes vary holomorphically,
and the deformation is admissible: For the pointed surfaces the admissibility condition just means
that each fibre Σb is smooth, and none of the points ab coalesce (so we get the same number of points
in each fibre). Finally we need to define what it means for the irregular classes to vary holomorphically
and admissibly: these are local conditions so we can work over any small enough open subset U of B
and focus on one marked point a ∈ ab. We can then choose a local coordinate z vanishing at a (for
all b ∈ U). Thus we reduce to the situation in the definition of holomorphic admissible deformations
of irregular classes given in Defn. 2.5 above. In turn, two rank n wild Riemann surfaces will be said
to be admissible deformations of each other if they are related by the equivalence relation generated
by the condition of being two fibres of a holomorphic admissible deformation (as defined above).

Corollary 3.33 then implies:

Corollary 3.36. Two rank n wild Riemann surfaces are admissible deformations of each other if and
only if they have the same topological skeleta.

Proof. We may assume the genus and the number of marked points are equal, otherwise the result
is clear. Now if their topological skeleta are distinct then Cor. 3.33 implies there is no admissible
deformation between them. Conversely if they have the same topological skeleta then we can use the
universal family over Teichmuller space (or its version with marked points) to admissibly deform both
wild Riemann surfaces so they have the same underlying Riemann surface with marked points, and
moreover we may assume (since the topological skeleta are the same) that at each marked point the
two fission trees are isomorphic. Finally we use the local statement (Cor. 3.33) to deform the two
irregular classes at each point in an admissible fashion, until they are equal.

In particular, since the set of possible topological skeleta is countable, this gives control over the
set of possible topological types of the wild character varieties MB: as in [18] they form a local system
of varieties over any admissible deformation, so up to isomorphism there is just one (Poisson) wild
character variety for each possible topological skeleton (the key part of the proof in [18] is local on
the circle of directions so works equally well for twisted irregular classes).
Remark 3.37. The irregular Deligne–Simpson problem can then be stated as follows: given a topologi-
cal skeleton (g,F), let L be the set of all the leaves of all the trees in the forest F. Choose a conjugacy
class Ci ⊂ GLni(C) for each leaf i ∈ L, where ni ≥ 1 is the multiplicity of i.

Question: for which choices of skeleton and conjugacy classes is there an irreducible algebraic
connection (V,∇) → Σ◦ = Σ\a with the given topological skeleton and formal monodromy conjugacy
classes? Passing to Stokes local systems [22] (by the Stokes version of the irregular Riemann–Hilbert
correspondence), this can easily be rewritten as a linear algebra problem (as in [18] §9.4, and the
graphical examples in [20] §11).

4 Local wild mapping class groups

4.1 Pure local wild mapping class groups

Let Q be a pointed irregular type. We define the pure local (twisted) wild mapping class group of
Q as the fundamental group Γ(Q) := π1(B(Q)) of the configuration space of admissible deformations
(with basepoint aQ). From the description of B(Q), it follows immediately that Γ(Q) also factorises
as a product of factors associated to each vertex of the fission tree. Note that the usual mapping
class group may be defined in two ways, as the group of mapping classes or as the fundamental group
of the moduli space/stack of Riemann surfaces; in the wild setting we only know the second type of
definition, by generalising the notion of Riemann surface by incorporating non-trivial irregular classes.

Theorem 4.1. Let T be the fission tree of Q and let V[ be the nodes of its truncation. We have

Γ(Q) ∼=
∏

v∈V[

Γv(T ),
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with Γv(T ) := π1(Bv(T )).
Since Bv(T ) is isomorphic to a hyperplane complement of the form Xn or X∗

n,N , setting

Γn := π1(Xn), Γ∗
n,N := π1(X∗

n,N ),

we get that Γ(Q) is always a product of factors of the form Γn or Γ∗
n,N . Notice that Γn is none other

but the pure braid group on n strands PBn. We recover in this way the untwisted case of [32], since
it corresponds to the case where all vertices are inconsequential, hence only the factors Γn will appear
in the factorisation. In comparison with the untwisted case, new factors Γ∗

n,N appear as factors of the
local wild mapping class group.

Let us now look at a few examples. A simple case to look at is when there is only one exponential
factor.
Proposition 4.2. Let q be an exponential factor. Then Γ(q) := π1(B(q)) is isomorphic to Z|Levels(q)|.
Proof. This follows immediately from Prop. 3.8.

Example 4.3. Let us look once again at our previous examples:
• Consider Q = [(1, λxs/r), (1, µxs/r)] with r and s coprime and λ 6= µe2inπ/r for any integer n.

The space of realisations is homotopy equivalent to

X∗
2,r = {a, b ∈ C∗ | ∀k ∈ Z, a 6= be2ikπ/r}

The fundamental group is thus Γ(Q) ∼= Γ∗
2,r.

• Let us consider Q = [(1, q1), (1, q2)] with q1 = x3/2 + x1/2, and q2 = x3/2 + 2x1/2. The space of
realisations is homotopy equivalent to

X∗
1,2 ×X2 = C∗ × {(a, b) ∈ C2 | a 6= b}.

Its fundamental group thus satisfies Γ(Q) ∼= Γ∗
1,2 × Γ2 ∼= Z2.

• Let us consider Q = [(1, q1), (1, q2)] with q1 = x3/2 + x1/3, and q2 = x3/2. The space of admis-
sible deformations is homotopy equivalent to X∗

1,2 × X∗
1,3

∼= (C∗)2, so its fundamental group is
isomorphic to Z2.

Remark 4.4. It turns out that the new building blocks Γ∗
n,N which appear in the twisted case coincide

with some braid groups studied in the literature on complex reflections, in particular by Broué–Malle–
Rouquier [27]. More precisely, the group Γ∗

n,N is the same as the group denoted P (N, 1, n) there, and
the hyperplane complement X∗

n,N is equal to the one denoted by M#(N,n) there (introduced in their
Lemma 3.3). Our study of the local wild mapping class groups thus gives a modular interpretation
(in 2d gauge theory) for this class of complex braid groups (coming from hyperplane arrangements
of the reflecting hyperplanes of these complex/unitary reflection groups). We will see below that
the corresponding complex reflection groups, the generalised symmetric groups S(n,N) = G(N, 1, n),
appear also in our setting, when passing from irregular types to irregular classes.

4.2 Full local wild mapping class groups

Given an irregular class Θ we have defined a fission tree T = T (Θ) and this determines a configuration
space B(Q) ∼= B(T ) ⊂ Map(A[,C) where A[ is the finite set of admissible nodes of the truncated fission
tree. Now we will define a finite group W (T ) (the Weyl group of the tree) and a free action of W (T )
on B(T ) so that two points Q1, Q2 ∈ B(T ) are in the same orbit if and only if [Q1] = [Q2], i.e. if they
determine the same irregular class. This leads to the full local wild mapping class group.

For certain simple examples of fission trees T we will then find

W (T ) ∼= Symn ⋉ (Z/NZ)n

i.e. the Weyl group is a so-called generalised symmetric group S(N,n), isomorphic to the complex
reflection group denoted G(N, 1, n) in the Shephard–Todd classification [52] (they are the symmetry
groups of the regular complex polytopes called the generalised cubes γN

n and the generalised octahedra
βN

n , see e.g. §13.4, p.147 of Coxeter’s book [28] on regular complex polytopes).
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The Weyl group of a fission tree. Let T be a fission tree, let p = |V0| be the number of leaves
of T , and choose a labelling ψ : {1, . . . , p} ∼= V0. Let vi = ψ(i) be the ith leaf, and let vij ∈ T
be the branchpoint where the full branches Bi,Bj meet, i.e. the nearest common ancestor of vi, vj .
Let ri = Ram(vi) ∈ N be the ramification index of the ith leaf, and let rij = Ram(vij), for all
i, j = 1, 2, . . . , p, so that rij divides both ri and rj .

The group Aut(T ) of automorphisms of T embeds in the symmetric group Symp = Aut(V0) since
any automorphism of the tree is determined by its action on the leaves. Thus Aut(T ) acts on the
product (Z/r1Z) × · · · × (Z/rpZ) of cyclic groups, permuting the factors (since if two full branches
are isomorphic then they have the same ramification index ri). Thus we can consider the semi-direct
product

Aut(T ) ⋉
(
(Z/r1Z) × · · · × (Z/rpZ)

)
(4.1)

defined via this action. The Weyl group of T is the following subgroup of this semi-direct product.

Definition 4.5. The Weyl group of the fission tree T is the subgroup of (4.1) defined by

W (T ) :=
{
(π, (d1, . . . , dp)) ∈ Aut(T ) ⋉ (Z/r1Z × · · · × Z/rpZ)

∣∣ di ≡ dj mod rij
}
.

Note that since rij

∣∣ ri there is a quotient map pri : Z/riZ ↠ Z/rijZ and the statement that
di ≡ dj mod rij just means that pri(di) = prj(dj). If p = 1 then W (T ) = Z/r1Z.

In the rest of this section we will prove the following.

Theorem 4.6. Let Q be a compatible pointed irregular type with fission tree T . The Weyl group W (T )
acts freely on the configuration space B(Q) = B(T ) and the quotient

sB(Θ) = sB(T ) := B(Q)/W

is the space of all irregular classes that are admissible deformations of Θ := [Q] with bounded Poincaré–
Katz rank.

It follows that sB(Θ) is a manifold and we can define the full local wild mapping class group to be

sΓ(Θ) = π1(sB(Θ)). (4.2)

Action on pointed irregular types. The semi-direct product (4.1) is easy to understand via its
action on pointed irregular types. Let Q = ([n1, q1], . . . , [np, qp]) be a pointed irregular type with
fission tree T as above. Let G denote the corresponding group (4.1) defined as a semi-direct product.
If g = (π,d) ∈ G with d = (d1, . . . , dp) then we can obtain another pointed irregular type g · Q with
fission tree T by the formula:

g ·Q = (π, 0) · ([n1, σ
d1(q1)], . . . , [np, σ

dp(qp)])
= ([nπ(1), σ

dπ(1)(qπ(1))], . . . , [nπ(p), σ
dπ(p)(qπ(p))])

so that the cyclic groups rotate the choices of “pointing” and π permutes the exponential factors which
have isomorphic full branches.

Note that g · Q will always have the same fission tree as Q but it may not be an admissible
deformation of Q, i.e. it may not be a point of the configuration space B(Q). The Weyl group W (T )
is the subgroup characterised by this property:

Lemma 4.7. Suppose Q is a compatible pointed irregular type, and g ∈ G is an element of the semi-
direct product (4.1). Then g · Q is an admissible deformation of Q (i.e. g · Q ∈ B(Q)) if and only if
g ∈ W (T ).

Proof. This amounts to characterising the g ∈ G such that g · Q is still compatible since 1) Any
admissible deformation of Q will still be compatible, and 2) by Lemma 3.29, any compatible g ·Q will
be in B(Q). Now to see if g · Q is still compatible, we need the exponential factors to “branch” like
the circles they determine (i.e. their Galois orbits), and this comes down to requiring

τk(σdi(qi)) = τk(σdj (qj))
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where k = gij is the height of the nearest common ancestor of the leaves i, j in T , for all indices i 6= j.
But this just says that σdi(qc) = σdj (qc) where qc = τk(qi) = τk(qj) is the common part of qi, qj . Now
since rij is the ramification order of qc this just means that di ≡ dj modulo rij , as in the definition of
W (T ).

This implies that the finite group W (T ) acts on the configuration space B(Q) ∼= B(T ), and we
can now prove the rest of the theorem.

Proof (of Thm 4.6). It remains to show the action is free, and the orbits in B(Q) are the subsets
with the same irregular class. The action is free since 1) the circles corresponding to isomorphic full
branches are indeed distinct circles (as else they would be recorded in the multiplicity of the leaf of
the full branch), so the permutation is trivial, and 2) the ri are indeed the exact sizes of the Galois
orbits of the qi, so no smaller cyclic shift will act trivially. Finally note that the pointed irregular
types with given irregular class are just related by a choice of ordering of the circles, and the pointings
of each circle, are related by the group G. Thus Lemma 4.7 implies the W orbits in B(Q) ∼= B(T )
are exactly the points with the same irregular class. □

Remark 4.8. The Weyl group W (T ) is thus a subgroup of the symmetric group of all permutations
of the exponential factors in the corresponding full irregular type (the leaves of the corresponding
full/naive fission tree, as in the proof of Prop. 3.1, closely related to the “3d fission tree” in [22]).

Example 4.9. Suppose Q = ([1, q1], . . . , [1, qp]) with qi = aix
s/N , i = 1, . . . , p where (s,N) = 1, N > 1

and the ai are generic complex numbers (in the sense that ai 6= 0 and aN
i 6= aN

j if i 6= j). Then the
top part of T [(Q) looks as follows, with p mandatory nodes branching from the root:

Thus Aut(T ) = Symp, and in turn W (T ) = Symp ⋉ (Z/NZ)p is the generalised symmetric group
S(N, p) ∼= G(N, 1, p), since the ramification indices rij are all equal to 1. For example any symmetric
irregular class I(a :b) :=

∑m
i=1〈εixa/b〉 falls into this setting (p = m,N = b/m). Here a, b are positive

integers with highest common factor m, and ε = exp(2πi/b). These are the classes obtained by pulling
back a Stokes circle of the form 〈w1/b〉, under the cyclic covering w = xa, and occur for the Molins–
Turrittin differential equation y(n) = xνy, which has the same exponential factors as the irregular class
I(n+ ν :n) (up to an overall scale factor of n/(n+ ν)) [48, 54].

As in the untwisted case [33], there is an explicit recursive description of the automorphism groups
of the fission trees, and in turn the Weyl group. Define a “maximal subtree” of a fission tree T to
be one of the trees obtained by removing the highest branch node of T (and all the higher edges), so
the root of the subtree was the highest branch vertex of T . The function Ram on T (from Rmk.3.19)
restricts to define a function on any such subtree, so its Weyl group is well-defined.

Theorem 4.10. Let T be a fission tree.
If T consists only of one full branch whose leaf has ramification order r then Aut(T ) is trivial and

W (T ) is isomorphic to Z/rZ.
Otherwise, let sT1, . . . , sTs be the distinct isomorphism classes of decorated trees among its maximal

subtrees, and for i = 1, . . . , s let ni ∈ N denote the number of such maximal subtrees having the
isomorphism class sTi. Then Aut(T ) is a product of wreath products:

Aut(T ) ∼=
s∏

i=1
Symni

o Aut( sTi).

In turn if r the ramification order of the root of all the subtrees sTi then

W (T ) ∼=
{

(πi, (gi,1, . . . , gi,ni))i=1,...,s ∈
s∏

i=1
Symni

oW ( sTi)
∣∣ ∀i 6= j, ∀k, l, δ(gi,k) ≡ δ(gj,l) mod r

}
,
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where δ(gi,k) denotes the shift at the root of the subtree induced by the automorphism gi,k.

Proof. For the untwisted automorphism group the proof is exactly the same as the one in [33] for the
twisted case. For the Weyl group, the proof is similar, the only difference is that the compatibility
conditions for the root shifts δ(gi,k) imply that we must restrict to a subgroup of the wreath product∏s

i=1 Symni
oW ( sTi) that we would get otherwise.

The general picture we finally arrive at is the following: the full local wild mapping class group
sΓ(Θ) is an extension of the Weyl group W (T ) of the fission tree by the pure local wild mapping class
group Γ(Θ), i.e. we have a short exact sequence

1 −→ Γ(Q) −→ sΓ(Θ) −→ W (T ) −→ 1 (4.3)

The case of one active circle. In general, the exact sequence does not split, so it is not easy to
get a fully explicit description of the full local wild mapping class group. In the simple case of only
one exponential factor however, we will now see it is possible to be more explicit and to determine
completely the full local mapping class group:

Theorem 4.11. Let Θ = 〈q〉 be an irregular class with one circle determined by the exponential factor
q. Then the full local wild mapping class group sΓ(Θ) is isomorphic to Z| Levels(q)|.

Proof. Let r = Ram(q) and qi = σi(q), i = 0, . . . , r − 1 denote the Galois orbit of q =
∑
aix

i/r. Let
us write L(q) = Levels(q) = (k1 > · · · > km) and ki = ni/r. Let us consider the loop γi : [0, 1] → B,
i = 1, . . . ,m, such that γi makes the coefficient ani of xki go once around the origin, and leaves the
other coefficient constant. Let us also consider the path ν in B such that

ν(t) =
∑

j

aje
−2

√
−1πjt/rxj/r,

so that ν(0) = q, ν(1) = q1. Then sΓ(q) is the abelian group generated by the homotopy classes
determined by γ1, . . . γm and ν, while the subgroup Γ(q) is generated by γ1, . . . γm. There are no
relations between the generators γ1, . . . γm, which recovers the fact that Γ(q) ∼= Zm = Z|L(q)|. On the
other hand the family γ1, . . . γm, ν is not free. Indeed, if we follow r times the loop determined by ν, it
is the image of a loop upstairs, going from q0 to itself, with the coefficient ani going around the origin
a number of times equal to gcd(ni, r) =: di. We thus have the following relation between the m + 1
generators

d1γ1 + · · · + dmγm = rν

(we have used an additive notation here since the group is abelian). Using that gcd(r, n1, . . . , nm) =
1, the Schmidt algorithm used to classify finitely generated abelian groups transforms the vector
(d1, . . . , dm,−r) ∈ Zm+1 corresponding to this relation into (1, 0, . . . , 0), which implies that sΓ(q) ∼=
Zm = Z|L(q)|.

In particular, the short exact sequence here reads

0 −→ Z|L(q)| −→ Z|L(q)| → Z/rZ −→ 0,

and does not split.

5 Outlook
Several of the directions we plan to pursue are as follows:

1) Extend this work beyond type A to any G: the notion of irregular class is already in [24], the
analogue of fission trees for any G in the untwisted case is in [32, 33] and the definition of admissible
deformations will again follow from that in the untwisted case [18]. Presumably this will lead to other
examples of (non-real) complex reflection braid groups.
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2) Apply the fission trees to the Lax project [21], classifying the (wild) nonabelian Hodge spaces up
to isomorphism/deformation. For example how many distinct deformations classes are there in each
complex dimension 2, 4, 6, . . .? Can the fission trees be “combined” with the diagrams of [25, 31] (which
are invariant under Fourier–Laplace) to give a refined invariant? This encompasses the question of
classifying isomonodromy systems, and the Painlevé equations are amongst the dimension 2 examples.

3) Study further the full moduli spaces/stacks Mg,F of admissible deformations of any wild Rie-
mann surface, whose fundamental groups are the wild mapping class groups (as in [18], [19] §8),
generalising the Riemann moduli spaces Mg,m and Mg,{m} in the tame case (where {m} means m
unordered marked points), as well as their universal covers (analogues of Teichmüller spaces). For
example for g = 0 and F = [T ] a single tree, this just amounts to quotienting the configuration
space sB(T ) by the two dimensional group of Möbius transformation fixing one point of the Riemann
sphere. All the Painlevé equations (in their standard Lax representations) are especially nice since
their (trace-free) moduli spaces Mg,F have dimension one, so are wild modular curves, reflecting the
fact they are ODEs not PDEs (their time variable ranges over a finite cover of this moduli space).

4) Finally we are interested in quantising the symplectic/Poisson local systems of wild character
varieties MB → B → Mg,F (and the corresponding de Rham isomonodromy connections) to get linear
representations of the wild mapping class groups (see [1, 10, 41, 57, 50, 51, 35] for some examples).
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