
HAL Id: hal-03788302
https://hal.science/hal-03788302

Preprint submitted on 26 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Equivalence between the theoretical model and the
standard algorithm of Asynchronous Traffic Shaping

Marc Boyer

To cite this version:
Marc Boyer. Equivalence between the theoretical model and the standard algorithm of Asynchronous
Traffic Shaping. 2022. �hal-03788302�

https://hal.science/hal-03788302
https://hal.archives-ouvertes.fr

Equivalence between the theoretical model and
the standard algorithm of Asynchronous Traffic
Shaping
Marc Boyer
ONERA/DTIS
Marc.Boyer@onera.fr

Abstract
The Asynchronous Traffic Shaping (ATS) has been designed by the Time Sensitive Networking
(TSN) group as a reshaping mechanism for real-time data flows, based on the initial proposition
of Urgency Based Shaped (UBS). Several studies have exhibited properties and limitations of this
solution, but they all are based on the model presented in the UBS definition [14], whereas the
implementation described in the standard uses a different architecture and algorithm. This paper
presents an equivalence proof between the model and the standard specification.

2012 ACM Subject Classification Networks → Formal specifications; Networks → Packet-switching
networks; Networks → Cyber-physical networks; Networks → Traffic engineering algorithms

Keywords and phrases TSN, Time Sensitive Networking, ATS, Asynchronous Traffic Shaping,
802.1Qcr

1 Introduction

The Time Sensitive Networking (TSN) group of IEEE aims at defining addenda to extend
Ethernet with real-time properties (this extended Ethernet is commonly called TSN). This is
done, among other things, be adapting or defining new arbitration policies in output ports:
the credit-based shaper (CBS, [2]), the Enhancements for Scheduled Traffic (sometime called
“Time Aware Shaper”, [7]) and last the Asynchronous Traffic Shaping (ATS, [5]), which is
the main subject of this paper.

The initial proposition was called Urgency-Based Scheduler [14]. It defines a new TSN
class where flows are re-shaped after reception by a switch before being put in the output
queue. This re-shaping requires specific queues (to store frames that need to be delayed),
and some active elements (called “regulators”) in charge of deciding when each head of queue
can be forwarded to the output queue.

This mechanism has been standardised as a TSN addendum, under the name “Asyn-
chronous Traffic Shaping” (ATS, [5]), but with a quite different architecture: instead of
storing frames and deciding if a frame must be forwarded to the output queue or delays
when it becomes the head of queue, an algorithm computes, when the frame is received, an
“eligibility time”, and the frame is then forwarded to the output queue, but it will be eligible
for transmission only after the eligibility time.

In this paper, we will call the initial model the “theoretical model”, and the mechanism
presented in the standard will be called the “standard model”.

Then, a lot of studies have been done on the theoretical model of ATS [10, 16, 20, 12].
This paper proves that the standard model is, up to the reordering of frames with the same
eligibility time, equivalent to the theoretical model. It also shows that some implementation
variability allowed by the standard (the place of some ATS sub-component in the switch)
have an impact on the interactions between ATS and the Frame Replication and Elimination
for Reliability mechanism (FRER, [3]),

The paper is organised as follow. Section 2 presents ATS, starting by the theoretical

https://orcid.org/0000-0003-0344-6991
mailto:Marc.Boyer@onera.fr

2 Equivalence between the ATS model and its algorithm

model (Section 2.1) and then its standard specification (Sectin 2.2). The equivalence is given
in Section 3. Providing a formal equivalence requires first to give a formal model of the ATS
theoretical model (Section 3.3) and of the standard algorithm (Section 3.4). The equivalence
itself is stated and proved in Section 3.5. The impact of the relative place of ATS and FRER
in the forwarding process is presented in Section 4. The relation between this work and state
of the art is discussed in Section 5.

2 Presentation of ATS behavior

2.1 The theoretical model

This section presents the theoretical model of ATS, as defined in [14] (up to some renaming
to ease readability). It starts with some recall on the notion of token bucket in Section 2.1.1.
Then, ATS is presented as the assembling of different elements. Section 2.1.2 presents the
“shaped queue”, a queue that is shared by different token buckets, that has been generalised
under the name “interleaved regulator”. Different shared queues can be assembled into an
“ATS queing system”, as presented in Section 2.1.3. Last, Section 2.1.4 will show how such
system was designed to be integrated into an ATS switch, and givse a list of requirements
for the flow to queue allocations.

2.1.1 Recall on the token bucket

The token bucket is a well known mechanism in network [19] but since it exists several
flavors, and no reference naming, here is proposed a terminology (a discussion takes place in
Section 5).

A token bucket is a system with two parameters: a capacity, also known as burst, b (in
some data unit, e.g. bits or frame) and a replenishment rate r (in data unit per time unit).
The state of the bucket is the number of tokens it contains. There are three main evolution
rules.
TB1 The bucket is initially full.
TB2 The bucket is continuously replenished at rate r, but is limited to is capacity b.
TB3 When a frame of size s is forwarded, the bucket is decremented either by one (if the

data unit is the frame) or by the size of the frame (if the data unit is the byte, the bit, or
an equivalent unit).

From theses common rules, three kinds of token bucket based system can be defined:
traffic shaping token bucket (sTB): Such a system also involves a queue, and it is designed
to regulate (or shape) a flow. If there are not enough tokens (this number can be 1 if the
token unit is the frame, or the frame size in bits, bytes, etc.), it is delayed up to having
enough tokens. The output is then “shaped” or “regulated”. It is illustrated in Figure 1.
policing token bucket (pTB): In policing token bucket, there is no queue. When a frame
arrives, if there are not enough tokens, the frame is dropped.
classifier token bucket (cTB): In classifier, there is no queue. When a frame arrives, if
there are not enough tokens, the frame is marked with a specific tag as “out of contract”
with a specific tag (a drop tag, a red or orange colour [11],...), and forwarded without
modification of the bucket state.

The ATS mechanism relies on traffic shaping token bucket.

Marc Boyer 3

time
1 2 3 4 5 6 7 8 9 10 11 12

bu
ck
et

1

2

3

(A,2)

A

A

(B,2)

B

B

(C,3)

C

C

(D,2),(E,2)

D E

D

E

A B C D E

(X,n)
Arrival of frame X of length n

of tockens

X
Departure of frame X

X BucketEmptyTime related to X

Figure 1 Illustration of behaviour of a traffic shaping token bucket with r = 1, b = 3. – The
BucketEmptyTime will be defined in Section 2.2.3 – The bucket is initially full. When the frame A
of size 2 is received at time 1, there are enough tokens, the frame is delivered and the bucket is
decreased by 2. Then, it is replenished up to time 2, at reception of frame B, that goes through,
consuming all tokens. When frame C is received at time 3, there is only 1 token in the bucket,
whereas the size of C is 3. Then, C is delayed up to time 5. The plateau between times 8 and 9
shows that the replenishment is bounded by the bucket capacity. Then two frames, D and E, are
received at the same instant, but there are enough tokens only for the first one, and the second is
delayed.

Figure 2 Shaped queue: single queue and multiple token buckets.

2.1.2 Shaped queue / interleaved regulator
We first present UBS/ATS “in isolation”, i.e. as a mechanism regulating a set of flows,
without any considerations on routing, switching or TSN.

Let first consider a sub-part, called the “shaped queue” [14, § III.A].
Consider a set of m flows, that we will name “group”, G = {f1, f2, . . . , fm}, a single queue

q, and a set of m token buckets, the i-th having parameters (ri, bi) (the initial paper consider
two kinds of regulators, the token bucket and the Length Rate Quotient (LQR) but since
the standard only consider token bucket, its is the only one presented in this paper). The
specific point is that all token buckets share the same queue. This architecture in isolation is
presented in Figure 3.

The behaviour of the system is the following. Each flow deposits packets in the queue.
The queue is handled in a FIFO way. Each token bucket maintains its number of tokens,
applying the rules of a traffic shaping token bucket. When a frame reaches the head of queue,
the system identifies to which flow it belongs. Then, it asks to the associated token bucket if
they are enough tokens. If yes, the frame is forwarded, applying rule TB3. If not, the frame

4 Equivalence between the ATS model and its algorithm

Figure 3 An ATS “queuing system”: several shaped queues and one ready queue.

is delayed up to point in time when the replenishment add set enough token, like a traffic
shaping token bucket. The specific point is that the rest of the queue is also delayed (due to
FIFO rule), even if there next frame has enough tokens in its own bucket. Keep in mind that
if there is always at most one token bucket handling the head of queue, the others continue
to be replenished during this time.

Such a kind of system has been called “interleaved regulators” in [10].

2.1.3 ATS queuing system

The next system is based on the assembly of several shaped queues.
Consider a set of n groups, G1, . . . , Gn, each group Gi being a set of mi flows, i.e.

Gi = {fi,1, fi,2, . . . , fi,mi
}, sharing a shaped queue qi with token bucket parameters ri,j , bi,j .

Each flows belongs to only one queue (∀i, j : Gi ∩Gj = ∅). To this system is also associated
a queue, that we call the “ready queue”, the output of all token buckets, as illustrated in
Figure 3.

Even the first presentation of UBS, in [14], suggests to have an implementation different
from the theoretical model. It suggests that the implementation does not require a ready
queue (and this queue is called “pseudo-queue”), but only add to ready frames a time tag,
that stores the instant when this frame has been accepted for forwarding by its queuing
token bucket. Then, instead of selecting the head of queue of the ready queue, one may
simply select the head of queue of the shaped queues with the smallest ready time tag.

We will not give more details on this simplification here. The interested reader may find
details in [14].

We found no explicit name for such a assembly, so we called it an “ATS queuing system”.

2.1.4 ATS as a TSN class

In an Ethernet or TSN switch, an Ethernet frame can have a priority level, in 0..7 (7 being
the highest priority), and there are 8 traffic classes1. To each class, in each output port, is
associated a “queuing system” (in this report, we will use the term “queuing system” whereas
the standard use the term “queue”, but with the following note “A queue in this context is
not necessarily a single FIFO data structure. A queue is a record of all frames of a given
traffic class awaiting transmission on a given Bridge Port.” [5, § 8.6.6, Note 3]).

To each traffic class is associated a “Transmission selection algorithm” (TSA), that can
be either “Strict priority”, “Credit-based shaper”, “Enhanced Transmission Selection”, “ATS

1 In fact, it may exist less, but for sake of simplicity, we keep this assumption here.

Marc Boyer 5

Figure 4 Architecture of a TSN output port, with one ATS queuing system (theoretical model)

Transmission Selection” or some vendor specific value [5, Table 8-6]. For the 3 first, the
queuing system can be a simple FIFO queue.

Each traffic class is also controlled by a gate, which is open or closed, depending of the
clock value and a configuration table. A static priority arbiter always selects the frame in
the highest priority traffic class (if is has a frame ready for transmission).

That is to say, the head of queue of the ready queue is selected for transmission by the
output port only if the gate allows it (it is open, and there is sufficient time to send the
frame before the next closing event), if there is no higher priority class with a frame ready
for transmission (including its own gate condition), and if there is no lower priority frame
using the link (up to some fragmentation condition [6]).

Figure 4 illustrates the architecture of a TSN output port, with 8 traffic classes, without
any details on the transmission selection algorithm for classes 0,1,6,7, and with an ATS
queuing system in traffic class 2.

It may exist several traffic classes with an ATS transmission selection algorithm.
Then, [14] and [10] also assume that two frames with different priority levels in the

previous node can not share the same shaped queue. In fact, three conditions are given in
[14, § III.B]:
QAR1 [two frames] are not allowed to share a [shaped] queue if both are received from

different servers,
QAR2 [two frames] are not allowed to share a queue if both are sent by the same server in

different priority levels,
QAR3 [two frames] are not allowed to share a queue if both are sent by [the local node] in

different priority levels.
Also note that ATS (in fact, PSFP, [8]) allows to assign to a frame a priority level (the
Internal Priority Level, IPV) different from the one of the priority field of the frame.

Such local assignment, with an adequate number of shaped queue (one per switch input

6 Equivalence between the ATS model and its algorithm

ATS Asynchronous Traffic Shaping: Mechanism defined in [5], using
per flow token bucket regulation and shared queues.

TAS Time Aware Shaper: Name used in the literature to reference the
implementation of a Time-Triggered scheduling using [7] addendum.
This acronyms is never used in the IEEE addenda.

TSA Transmission Selection Algorithm Generic name for the mecha-
nisms that allow one frame in a traffic class queue to be selected for
transmission. Current possible values are listed in Section 2.1.4. They
are often called “shapers”.

CBS Credit-based ShaperA TSA introduced in [2], in the context of
Audio-Video Bridging (AVB).

CBS Committed Burst Size Size of the burst (capacity) of the token
bucket used to regulate flows in ATS.

Table 1 Some "confusing" acronyms in TSN

port sending ATS frames considered traffic class of a given port), allow to satisfy these
conditions.

Note that there is no requirement that an UBS/ATS frame has the same priority in each
switch: the requirement is that there is no merging of frame having different priority levels
in the previous node.

2.2 The standard specification of ATS

Let first present a global view of ATS as specified in [5].
The ATS mechanism is presented and implemented in way a slightly different from the

theoretical model: once an ATS frame is received, after the Egress filtering [4, § 8.6.4],
it enters the Per-stream classification and metering [5, § 8.6.5.2], that does some filtering
an metering (more details will be presented in Section 2.2.2). Such capabilities have been
already introduced by the Per-Stream Filtering and Policing amendment, [8]). But ATS
introduces new behaviour: the assignment of an “eligibility time” to each ATS frame by the
“ATS scheduler”2. This eligibility time corresponds to the instant when the frame would
have been forwarded to the ready queue in the theoretical model. Then, ATS frames are
forwarded to the corresponding ATS queuing system (a traffic class). This queuing system is
managed by an “ATS transmission selection algorithm”. It allows a frame to be forwarded if
its eligibility time is earlier than (or equal to) the current time. If several frames respect this
condition, the one with the oldest eligibility time is selected. If several frames have the same
eligibility time, some supplementary conditions hold, detailed in Section 2.2.3.1.

As already mentioned in Section 2.1.4, this means that the queue of a traffic class is not
a single FIFO. This is why we chose in this report the term “queuing system”.

This global architecture is represented in Figure 5.

Notice that some other terms may induce confusion for a novice reader of TSN documents.
A full list of abbreviations is presented in [4, § 4] but Table 1 gives a short list of some
confusing ones.

2 “Asynchronous Traffic Shaping (ATS) schedulers assign eligibility times to frames” [5, § 8.6.5.6].

Marc Boyer 7

Figure 5 Illustration of the global TSN forwarding process architecture illustration

2.2.1 ATS scheduler groups
ATS schedulers are grouped in “ATS scheduler groups”. There is one group per reception port
and per upstream traffic class. All ATS scheduler handling frames from the same reception
port and the same upstream traffic class are in the same ATS scheduler group.

When considering the theoretical model, it means that where there was a shaped queue,
there is one corresponding scheduler group.

Each group has:
an identifier (an integer value),
a MaximumResidenceTime, which is a parameter that “limits the duration for which
frames can reside in a Bridge” [5, § 8.6.11.3.13],
and a “group eligibility time”, a variable shared by all ATS schedulers in the group, used
in the computation of the eligibility time of each ATS frame,

2.2.2 Insertion of ATS in the forwarding process
As quickly mentioned in the introduction of Section 2.2, once a frame is received in a reception
port, it goes to an “Active topology enforcement” process, in charge of some routing activities,
then to a sequence of filtering processes (“Ingress filtering”, “Frame filtering” and “Egress
filtering”), mainly in charge of discarding frames that should not go this route, and then
a “Flow metering” process, before the “Queuing frame” process, in charge of copying each
frame in the queues of the output ports corresponding to the adequate routing (cf. [4, Figure
8-12] for an overview of the process).

The Flow metering has been enhanced first by the Per-Stream Filtering and Policing
amendment [8]. PSFP mainly added a classification of flows (“Stream filtering”), and, based
on this classification

the ability to discard frames based on their size (“Maximum SDU Size Filtering”),
a “Stream gating” capability that is a time-driven table, that allows

to drop frames if the gate is “closed” at this instant,
to set an Internal Priority Value (IPV) to the frame, that will be used to select the
traffic class of the frame (overloading the frame own priority value),

and a “Flow metering”, that checks if flows respects a token bucket specification, and can
mark out-of-contract frames.

The ATS amendment adds the “ATS Eligibility Time Assignment” (also named “ATS
scheduler” at the end of this chain), whose behaviour will be presented in Section 2.2.3.

This eligibility time assignment is of course the core of ATS behaviour, but the ability to
set the IPV is also of importance in order to forward ATS frames to an ATS traffic class.

8 Equivalence between the ATS model and its algorithm

This architecture is depicted in Figure 5 (with a single input port and a single output
port, for readability).

Note that this figure relies on the assumption that the switch is build as an assembly of
input ports, doing metering, and output ports, doing queuing and arbitration, connected by
a switching fabric. But other architectures may exist, like having a global memory for all the
switch, or having a metering hardware component shared by all input ports, etc.

In particular, Note 3 in [5, § 8.6.5.6] states that the computation of the eligibility time can
be done in the input or the output port (“Whether ATS scheduler instances, ATS scheduler
group instances, the scheduler instance table, and the scheduler group instance table are
located in reception ports or in transmission ports is implementation specific.").

Such difference may have an impact, in particular when using both ATS and the Frame
Replication and Elimination for Reliability addenda (FRER, [3]), as will be shown in Section 4.

2.2.3 Computation of the eligibility time

The previous sections has presented the global architecture, and this one presents the details
of the ATS scheduler.

Each scheduler has two parameters: a Committed Burst Size parameter (CBS, same
acronym as the Credit Based Shaper defined in [2]), and a Committed Information Rate
parameter (CIR). Each scheduler is also linked to an “ATS scheduler group” (cf. Section 2.2.1),
that has a “Maximum Residence Time” parameter, as mentioned in Section 2.2.1.

The main role of the scheduler is to compute the eligibility time of each frame.
To ease reproducibility of results, the algorithms are presented using the Python language,

whereas obviously the standard does not impose any language.
The data structure related to the architecture is presented in Program 1 and the compu-

tation itself is in Program 2.
Consider the same example of frame arrival as in Figure 1. As expected, the Eligibility

Time computed by the ATS processFrame algorithm is equal to the delivery time of the token
bucket. The sequence of BucketEmptyTime is also represented in Figure 1. When the letter
B in a circle stands at time 2, it means that after processing frame B, the BucketEmptyTime
value is equal to 2. We have represented the sequence this way to show the graphical relation
between the number of tokens and this variable: the BucketEmptyTime after the delivery
of frame X is the intersection between the abscisse line and the line with slope r passing
through the value of the bucket after the delivery of frame X (the exact relation is the core
of the equivalence relation, will be given in eq. (25).

Also note that BucketEmptyTime is described as “A state variable that contains the most
recent instant of time at which the token bucket of the ATS scheduler instance was empty,
in seconds.” [5, § 8.6.11.3.3], but such definition do not match the trace in Figure 1. For
example, after handling of frame D, the BucketEmptyTime value is 8, whereas the token
bucket was empty at instant 5 for the last time. It is also described as “the time when there
are no tokens existing in the bucket” [21, § 3.3], which also does not match since they are
tokens at time 8 in the trace.

2.2.3.1 Tie breaker for same eligibility time

In case of frames with the same eligibility time, the queuing system must still respect some
conditions already existing in previous version of the standard. The emission order must be
preserved for frames coming from the same input port and having the same “VID, priority,

Marc Boyer 9

class Frame :
" " "A frame i s simply c a r a c t e r i s e d by i t s length , arrivalTime time and
e l i g i b i l i t y T i m e " " "
def __init__ (s e l f , name , arr ivalTime , l e n g t h) :

s e l f . name= name # For p r i n t & debug
s e l f . a r r iva lTime= arr iva lTime
s e l f . l e n g t h= l e n g t h
s e l f . e l i g i b i l i t y T i m e= None

class Queue :
" " "A queuing system of an output port i s simply represented by a l i s t
of Frames " " "
def __init__ (s e l f) :

s e l f . queue= []

class ATSgroup :
" " "An ATS group i s l i n k e d to an output queuing system , and has a
MaxResidenceTime parameter . I t a l s o maintains a GroupEl ig ib i l i tyTime
value , shared by a l l ATS s h e d u l e r s of the group . " " "
def __init__ (s e l f , MaxResidenceTime , queue) :

s e l f . MaxResidenceTime= MaxResidenceTime
s e l f . queue= queue

Assume i n i t time i s 0
s e l f . G r o u p E l i g i b i l i t y T i m e= 0

class ATSscheduler :
" " "An ATS schedu ler be longs to an ATS group . I t has two parameters
(CIR and CBS) and maintains a BucketEmptyTime value " " "
def __init__ (s e l f , CommittedInformationRate , CommittedBurstSize , atsGroup) :

s e l f . CommittedInformationRate= CommittedInformationRate
s e l f . CommittedBurstSize= CommittedBurstSize
s e l f . group= atsGroup

Assume i n i t time i s 0
s e l f . BucketEmptyTime= − (CommittedBurstSize / CommittedInformationRate)

Program 1 Data structure (and initial values) for illustrating the computation of eligibility time
in ATS

class ATSscheduler :

def processFrame (s e l f , frame) :
lengthRecoveryDurat ion= frame . l e n g t h / s e l f . CommittedInformationRate
emptyToFullDuration= s e l f . CommittedBurstSize / s e l f . CommittedInformationRate
s c h e d u l e r E l i g i b i l i t y T i m e= s e l f . BucketEmptyTime + lengthRecoveryDurat ion
bucketFullTime= s e l f . BucketEmptyTime + emptyToFullDuration ;
e l i g i b i l i t y T i m e = max(frame . arr ivalTime , \

s e l f . group . GroupEl ig ib i l i tyTime , \
s c h e d u l e r E l i g i b i l i t y T i m e)

i f (e l i g i b i l i t y T i m e <= frame . arr iva lTime + s e l f . group . MaxResidenceTime) :
s e l f . group . G r o u p E l i g i b i l i t y T i m e = e l i g i b i l i t y T i m e
i f e l i g i b i l i t y T i m e < bucketFullTime :

s e l f . BucketEmptyTime = s c h e d u l e r E l i g i b i l i t y T i m e
else :

s e l f . BucketEmptyTime = s c h e d u l e r E l i g i b i l i t y T i m e \
+ e l i g i b i l i t y T i m e − bucketFullTime

frame . e l i g i b i l i t y T i m e= e l i g i b i l i t y T i m e
s e l f . group . queue . queue . append (frame)

else :
pass # Discard i n v a l i d frame

Program 2 Algorithm computing the eligibility time of an ATS frame

10 Equivalence between the ATS model and its algorithm

flow hash, and destination address and source address” for unicast frames, and same “VID,
priority, flow hash, and destination address” for multicast frames [4, § 8.6.6].

2.2.3.2 Difference between ATS scheduling and ATS selection clocks

The computation of the eligibility time is done by the ATS scheduler, whereas the selection
for transmission is done by the ATS transmission selection element. And both refer to a
notion of current time, based on the access to a clock. In a given hardware, the ATS scheduler
(can be place placed in the input port) and the ATS transmission selection element (should
be in the output port) may access to different clocks, having different values at the same
instant. The standard formalises the differences between these clocks in [5, § 8.6.11.2], but
for sake of simplicity, this report does not consider these differences. Its does neither consider
clock drifts. Such analysis is left for further work.

3 Equivalence between the theoretical and the standard models

To prove that the theoretical model and the implementation model are equivalent, we are
going to prove that the eligibility time computed by the ATS standard algorithm for a frame
is the same that the date when this frame would have been forwarded to the ready queue in
the theoretical model.

3.1 Partial equivalence
This is not a complete equivalence since the theoretical model assume a FIFO behavior of
each shaped queue and the ready queue. Then, it has to maintain the reception order between
frames having the same release dates, whereas the ATS transmission selection must select
the frame with the smaller eligibility time but in case of equality, its tie breaker (presented
in Section 2.2.3.1) allow to invert the order of to frames coming from the same input port
but with different destination addresses.

Moreover, the token bucket algorithm assigns an infinite release time to a frame whose
size is larger than the burst size, whereas the ATS algorithm computes a finite eligibility
time in this case.

Last, ATS associates to each group a MaximumResidenceTime, used to drop frames whose
waiting time would be too large, whereas this does not exist for a token bucket.

3.2 Building the equivalence
The equivalence is not straightforward since the common presentation of the token bucket
[14, Listing 2], [1, pp. 407 – 411] is based on a variable representing the number of tokens,
whereas the algorithm in [7] maintains another variable, the BucketEmptyTime.

The core of the contribution relies on the exhibition of the relation between these variables,
already illustrated in Figure 1.

The working plan is the following: we are going to consider one single shaped queue.
Let An be the arrival date of the n-th message in the queue, and Ln its length. Then, we
can define Dn the departure instant when it is forwarded in the ready queue, and eTn the
eligibility time computed by the ATS scheduler. The aim is to prove that ∀n : Dn = eTn

(the notations are inspired from [10] to ease comparison and further works).
The two first steps consists in building the sequences Dn (Section 3.3) and eTn (Sec-

tion 3.4). The equivalence itself is given in Section 3.5.

Marc Boyer 11

3.3 Modelling the interleaved regulator

Let first model a token bucket, with parameter (r, b). As recalled in Section 2.1.1, a shaping
token bucket allows a frame to be forwarded at instant t is the number of tokens at time
t is not less than the frame size. So, one need to model this number. Since the bucket is
replenished continuously, we may propose the model the number of tokens as a functions of
time. But when a frame is selected for transmission, it instantaneously consume the tokens.
Then, it is more convenient to build the number of tokens as a sequence, depending on arrival
instants, departure instants and frames sizes.

Consider an instant t when a frame arrives at head of queue. Let B denote the number of
tokens in the bucket just after the last departure of a frame, occurred at time D. Then, the
current number of tokens is B + r(t−D) and the frame can be released if L ≥ B + r(t−D).
Otherwise, it has to wait up to time t′ = min {u > t L ≥ B + r(t−D)} i.e. t′ = L−B

r −D.
Now, we can define the departure sequence Dn as a function of An, Ln and Fn.
Let first introduce Bf

n the number of tokens in the bucket devoted the flow f just after
the departure of the n-frame.

Let also introduce a notation 	1, that given an index n returns the previous index of a
packet of the same flow, defined as

n	 1 = sup {n′ < n F (n′) = F (n)} (1)

with the convention that sup ∅ = 0.
Then, the behaviour of an interleaved regulator regulating each flow f with rate rf and

burst bf can be given using six rules, the first fours ones considering the emission time, the
last two one on the bucket management.

IR1 If the n-th frame arrives (at An) in an empty queue, and there are enough tokens at
this instant, then it is immediately forwarded,

IR2 If the n-th frame arrives (at An) in a non empty queue, and there are not enough tokens
at this instant, then it has to wait until its bucket is enough replenished,

IR3 If a frame arrives in a non empty queue n-th, it will becomes the head of queue at time
Dn−1, and if there are enough tokens at this instant, then it is forwarded at this instant,

IR4 If a frame arrives in a non empty queue n-th, it will becomes the head of queue at time
Dn−1, and if there are enough tokens at this instant, then it has to wait until its bucket
is enough replenished,

IR5 Each buffer replenishes at its rate up to the maximal burst.

IR6 When a frame is emitted, the number of tokens is decreased by the frame size.

For the following, keep in mind that, if r ≥ 0

L ≥ B + r(t−D) ⇐⇒ t ≥ L−B

r
+ D. (2)

Then the condition “there are enough tokens at time t for a frame of size L” can be expressed
as t ≥ L−B

r + D if D is the last departure instant for this token bucket, and if B was the
number of tokens after the departure.

Then, the behaviour of an interleaved regulator regulating each flow f with rate rf and

12 Equivalence between the ATS model and its algorithm

burst bf can be defined as

∀f : Bf
0 = bf (3)

D0 = 0 (4)

∀n > 0 : Dn =



An if An ≥ Dn−1, An ≥
Ln−B

F (n)
	1

rFn
+ Dn	1

Ln−B
F (n)
n	1

rFn
+ Dn	1 if An ≥ Dn−1, An <

Ln−B
F (n)
	1

rFn
+ Dn	1

Dn−1 if An < Dn−1, Dn−1 ≥
Ln−B

F (n)
	1

rFn
+ Dn	1

Ln−B
F (n)
n	1

rFn
+ Dn	1 if An < Dn−1, Rn−1 <

Ln−B
F (n)
	1

rFn
+ Dn	1

(5)

Bn = min
{

bFn , BFn
n	1 + rFn(Dn −Dn	1)

}
− Ln (6)

Equation 5 is a re-writing of the rules IR1-IR4, Equation 6 is based on rules IR5-IR6, but
the replenishment is not given for all instants, only from departure to departure. Now, notice
that the expression “x = u if u ≥ v, v otherwise” is a definition of a maximum, so Equation 5
can be simplified into

Dn = max
{

An, Dn−1,
Ln −BFn

n	1
rFn

+ Dn	1

}
. (7)

3.4 Modelling the eligibility time algorithm
The computation of eligibility time given in Program 2 can be also modelled as a sequence
quite easily since each variable is assigned only once per call. The code related to the
Maximum Residence Time will be ignored. We also assume that there is no parallelism
between the schedulers of the same group and that the functions calls are made in the order
of arrival, i.e. the n-th frame (with parameters An, Ln) is handled in the n-th call of the
function.

So, to each variable will be assigned a sequence, where the n-th value corresponds to the
n-th call of the function. For notation simplicity, the sequence associated to a variable is
made of its first letter and the sequence of capital letters (e.g. lengthRecoveryDuration
becomes lRD).

To make the equivalence clearer, the frame length, CommittedInformationRate and
CommittedBurstSize will be respectively denoted L, r, b.

We also assume that there is bijection between flows and ATS scheduler instances. So, the
flow name will be used as an exponent for parameters of variables related to ATS scheduler
instances. For example, self.CommittedBurstSize becomes bf for the instance associated
to flow f . And since Fn is the flow of the n-frame, corresponding to the n-th call of the
function, it becomes bFn in the sequence.

Also note that there are only two variables that are kept from one call to another:
BucketEmptyTime, which is local to an ATS scheduler, and each instance will have its flow
name as exponent and GroupEligibilityTime which is global to the group.

The BucketEmptyTime is “initialized with a time earlier than CommittedBurstSize/ Com-
mittedInformationRate in the past, as perceived by the ATS Scheduler Clock.” [5, § 8.6.11.3.3].
We assume that the ATS clock gives always positive value, and use -CommittedBurstSize/
CommittedInformationRate as initialisation value.

The GroupEligibilityTime “is initialized with a time earlier or equal to the current time,
as perceived by the ATS scheduler clock.” [5, § 8.6.11.3.10]. We use 0 as initialisation value.

Marc Boyer 13

Then, Program 2 can be transformed into the following sequence:

lRDn
def= Ln

rFn
(8)

eTFDn
def= bFn

rFn
(9)

sETn
def= BETFn

n−1 + lRDn (10)

bFTn
def= BETFn

n−1 + eTFDn (11)

eTn
def= max {An,GETn−1, sETn} (12)

GETn
def= eTn (13)

BETFn
n

def=
{
sETn if eTn < bFTn

sETn + eTn − bFTn otherwise
(14)

Now, we can do a first simplification: each variable Xf is modified only when self correspond
to the flow f , i.e. by a call such that Fn = f , and between two calls, it keeps the previous
value: ∀n, ∀m : n > m ≥ n	 1 =⇒ XFn

n′ = XFn
n	1. In particular, XFn

n−1 = XFn
n	1.

By applying this relation, and by replacing lRDn, eTFDn, and sETn by their definition,
the sequences can be simplified into:

∀f : BETf
0 = − bf

rf
(15)

GET0 = 0 (16)

∀n > 0 : bFTn = BETFn
n	1 + bFn

rFn
(17)

eTn = max
{

An, eTn−1,BETFn
n	1 + Ln

rFn

}
(18)

GETn = eTn (19)

BETFn
n =

{
BETFn

n	1 + Ln

rFn
if eTn < bFTn

eTn + Ln−bFn

rFn
otherwise

(20)

= Ln

rFn
+
{
BETFn

n	1 if eTn < BETFn
n	1 + bFn

rFn

eTn − bFn

rFn
otherwise

(21)

= Ln

rFn
+
{
BETFn

n	1 if eTn − bFn

rFn
< BETFn

n	1

eTn − bFn

rFn
otherwise

(22)

= Ln

rFn
+ max

{
BETFn

n	1, eTn −
bFn

rFn

}
(23)

3.5 Equivalence between the theoretical model and the
implementation model

I Theorem 1 (Equivalence between the theoretical model and the implementation model). Let
G be a set of flows, and for each flow f ∈ G, let rf , bf ∈ R+, rf > 0, bf > 0. Let let
An, Ln, Fn be infinite sequences with An ≥ 0, Fn ∈ G, bFn ≥ Ln > 0.

Then, the sequences Bn, Dn defined in equations 3, 5, 6, and the sequences eTn, GETn,
BETn defined in equations (18), (19), (23) satisfy

∀n > 0 : Dn = eTn. (24)

14 Equivalence between the ATS model and its algorithm

The proof relies on the relation between the BucketEmptyTime, the EligibilityTime,
the rate and the bucket value, as illustrated in Figure 1 and explained in Section 2.2.3. The
formal relation is presented in eq. (25).

Proof. The proof is made by induction, and will use a stronger assumption, involving not
only the equality between departure dates and eligibility time but also between the bucket
state and the BucketEmptyTime

∀n > 0 : Dn = eTn, BETFn
n = eTn −

BFn
n

rFn
(25)

1. Base case: n = 1 Consider first the token bucket sequence.

D1 = max
{

A1, 0,
Ln −BFn

n	1
rF1

+ 0
}

= max
{

A1, 0,
Ln − bFn

rF1
+ 0
}

(26)

= A1 since bFn ≥ Ln (27)

BF1
1 = min

{
bFn , BFn

n	1 + rF1(D1 −D0)
}
− Ln (28)

= min
{

bFn , bFn + rF1(D1 −D0)
}
− Ln (29)

= bF1 − L1 (30)

Now, the ATS sequence gives:

eT1 = max
{

A1,GET0,BETF1
0 + L1

rF1

}
(31)

= max {A1, 0, 0} = A1 (32)
GET1 = eT1 = A1 (33)

BETF1
1 = L1

rF1
+ max

{
BETFn

0 , eTn −
bFn

rFn

}
(34)

= L1

rF1
+ max

{
− bF1

rF1
, A1 −

bF1

rF1

}
(35)

= A1 −
bF1 − L1

rF1
(36)

This allow to verify the property in eq. (25) at base case n = 1.

D1 = A1 = eT1 BETFn
n = A1 −

bF1 − L1

rF1
= eT1 −

BF1
n

rFn

2. Induction step: assume the eq. (25) holds for any index up to n−1, with n > 2
In fact, we need to consider two cases: either n 	 1 = 0, meaning that this is the first

packet of the flow Fn, or n	 1 > 0.
2.1 Assume n	 1 = 0. It is very similar to the base case. Consider first the token bucket.

Dn = max
{

An, Dn−1,
Ln −BFn

n	1
rFn

+ Dn	1

}
= max

{
An, Dn−1,

Ln − bFn

rFn
+ 0
}

(37)

= max {An, Dn−1} since bFn ≥ Ln (38)

BFn
n = min

{
bFn , BFn

n	1 + rFn(Dn −Dn	1)
}
− Ln (39)

= min
{

bFn , bFn + rFn(Dn −D0)
}
− Ln (40)

= bFn − Ln (41)

Marc Boyer 15

Now turn to the ATS function.

eTn = max
{

An, eTn−1,BETFn
n	1 + Ln

rFn

}
(42)

by induction, eTn−1 = Dn−1, and in this sub-case, BETFn
n	1 = BETFn

0 = − bFn

rFn

= max
{

An, Dn−1,− bFn

rFn
+ Ln

rFn

}
(43)

= max {An, Dn−1} (44)

BETFn
n = Ln

rFn
+ max

{
BETFn

n	1, eTn −
bFn

rFn

}
(45)

= Ln

rFn
+ max

{
− bFn

rFn
, eTn −

bFn

rFn

}
(46)

= eTn −
bFn − Ln

rFn
(47)

This allow to verify the property in eq. (25) in this sub-case:

Dn = max {An, Dn−1} = eTn BETFn
n = eTn −

bFn − Ln

rFn
= eTn −

BFn
n

rFn

2.2 Assume n	 1 6= 0. Let first consider Dn and eTn.

Dn = max
{

An, Dn−1,
Ln −BFn

n	1
rFn

+ Dn	1

}
(48)

eTn = max
{

An, eTn−1,BETFn
n	1 + Ln

rFn

}
(49)

The induction step states that ∀m < n : eTm = Dm and BETFm
m = eTm− BFm

m

rFm
. Now, notice

that, by definition of k 	 1, for any k, Fk = Fk	1, so

BETFn
n	1 = BETFn	1

n	1 (50)

= eTn	1 −
B

Fn	1
n	1

rFn	1
by induction hypothesis (51)

= eTn	1 −
BFn

n	1
rFn

(52)

By substitution of this expression into eq. (49)

eTn = max
{

An, eTn−1, eTn	1 −
BFn

n	1
rFn

+ Ln

rFn

}
(53)

= max
{

An, Dn−1,
Ln −BFn

n	1
rFn

+ Dn	1

}
= Dn (54)

Now that the first part of the induction relation is proved, we have to prove that BETFn
n =

eTn − BFn
n

rFn
. Let start with BETFn

n .

BETFn
n

(23)= Ln

rFn
+ max

{
BETFn

n	1, eTn −
bFn

rFn

}
(55)

(18)= Ln

rFn
+ max

{
BETFn

n	1, max
{

An, eTn−1,BETFn
n	1 + Ln

rFn

}
− bFn

rFn

}
(56)

= Ln

rFn
+ max

{
BETFn

n	1, An −
bFn

rFn
, eTn−1 −

bFn

rFn
,BETFn

n	1 + Ln

rFn
− bFn

rFn

}
(57)

16 Equivalence between the ATS model and its algorithm

Since each frame is smaller than the burst size, Ln ≤ bFn , so the fourth term of the max is
not greater than the first, leading to

BETFn
n = max

{
BETFn

n	1, An −
bFn

rFn
, eTn−1 −

bFn

rFn

}
(58)

= max
{

Dn	1 −
BFn

n	1
rFn

, An −
bFn

rFn
, Dn−1 −

bFn

rFn

}
by induction (59)

And now, we will reduce eTn − BFn
n

rFn
to the same expression.

eTn −
BFn

n

rFn

(6)= eTn −
min

{
bFn , BFn

n	1 + rFn(Dn −Dn	1)
}
− Ln

rFn
(60)

= Ln

rFn
+ eTn + max

{
− bFn

rFn
,−

BFn
n	1

rFn
+ Dn	1 −Dn

}
(61)

(18)= Ln

rFn
+ max


An

eTn−1

BETFn
n	1 + Ln

rFn

+ max

−
bFn

rFn

−BFn
n	1

rFn
+ Dn	1 −Dn

(62)

By induction hypothesis, apply eq. (25).

= Ln

rFn
+ max


An

Dn−1

Dn	1 −
BFn

n	1
rFn

+ Ln

rFn

+ max

−
bFn

rFn

−BFn
n	1

rFn
+ Dn	1 −Dn

(63)

= Ln

rFn
+ max



An − bFn

rFn

Dn−1 − bFn

rFn

Dn	1 −
BFn

n	1
rFn

+ Ln

rFn
− bFn

rFn

An −
BFn

n	1
rFn

+ Dn	1 −Dn

Dn−1 −
BFn

n	1
rFn

+ Dn	1 −Dn

Dn	1 −
BFn

n	1
rFn

+ Ln

rFn
− BFn

n	1
rFn

+ Dn	1 −Dn

(64)

= Ln

rFn
+ max



An − bFn

rFn

Dn−1 − bFn

rFn

Dn	1 −
BFn

n	1
rFn

+
(

Ln

rFn
− bFn

rFn

)
Dn	1 −

BFn
n	1

rFn
−Dn + An

Dn	1 −
BFn

n	1
rFn

−Dn + Dn−1

Dn	1 −
BFn

n	1
rFn

−Dn + Ln

rFn
− BFn

n	1
rFn

+ Dn	1

(65)

= Ln

rFn
+ max



An − bFn

rFn

Dn−1 − bFn

rFn

Dn	1 −
BFn

n	1
rFn

+
(

Ln

rFn
− bFn

rFn

)
Dn	1 −

BFn
n	1

rFn
−Dn + max


An

Dn−1

Ln

rFn
− BFn

n	1
rFn

+ Dn	1

(66)

Marc Boyer 17

Figure 6 Illustration of FRER configuration: frames A, B are duplicated in the first switch, the
B frame is lost on the upper path, and the recovery function removes one A duplicate.

Notice that max
{

An, Dn−1, Ln

rFn
− BFn

n	1
rFn

+ Dn	1

}
is equal to Dn, cf. eq (7), so

eTn −
BFn

n

rFn
= Ln

rFn
+ max



An − bFn

rFn

Dn−1 − bFn

rFn

Dn	1 −
BFn

n	1
rFn

+
(

Ln

rFn
− bFn

rFn

)
Dn	1 −

BFn
n	1

rFn
+ 0

(67)

Since each frame is smaller than the burst size, Ln ≤ bFn

eTn −
BFn

n

rFn
= Ln

rFn
+ max


An − bFn

rFn

Dn−1 − bFn

rFn

Dn	1 −
BFn

n	1
rFn

(68)

This ends the induction steps: from eq. (59) and (68), BETFn
n = eTn − BFn

n

rFn
. J

4 On ATS and FRER

Theorem 1 have proven that the eligibility time computed by ATS are the same than the
release time of the theoretical model. Nevertheless, it does not mean that one may neglect
the implementation architecture. In particular, the place of the ATS scheduler in the
forwarding process may interfere with other mechanisms. Here is reported an impact of
Frame Replication and Elimination for Reliability addenda (FRER, [3]).

FRER allows to duplicate frames in the network, in order to improve the reliability, and
to remove duplicates at joining points (as illustrated in Figure 6). We focus here on the
relative position of the ATS scheduler (that computes the eligibility time) and the FRER
recovery function (that remove duplicates) in the forwarding function of switch.

If the recovery function is set before the ATS scheduler, the ATS scheduler will handle
only the remaining frames. But since the duplicates may come from different input ports, its
is not easy to implement it in input ports, since it require to exchange some information, as
illustrated in Figure 9. And if the recovery is in the output port, also is the ATS scheduler.

If the recovery function is set after the ATS scheduler, the ATS scheduler will compute
the eligibility time of all frames, without knowing which one is going to be kept and which
one is going to be discarded. Then, the frames that are kept will be delayed by discarded
frames. In this case, the ATS scheduler can be put in the input ports.

Both architecture have the same functional behaviour, but the timing behaviour is not
the same since both do not consume the same number of tokens.

To sum up, the ATS mechanism is implemented with three elements: the ATS scheduler,
that computes eligibility time, and the ATS queuing system and the ATS transmission
selection, that selects in the ATS queuing system the frames whose eligibility time is not less

18 Equivalence between the ATS model and its algorithm

Figure 7 Inclusion in the global forwarding process of FRER (right) and ATS (left), inspired
from [3, Fig. 8-2] and [?, Fig. 8-13]

Figure 8 Setting FRER before ATS in forwarding process, and equivalent model.

Figure 9 Setting FRER after ATS in forwarding process, and equivalent model.

Marc Boyer 19

than the current time. The relative order between theses elements and the FRER recovery
functions have an impact on the global sequence behaviour, matching different theoretical
models. Thus, the Note 3 in [5, § 8.6.5.6] that allows ATS scheduler to be implemented in
input or output port have strong implications.

5 State of the art

On token bucket

The idea of a data flow regulation based on tokens in a bucket seems to appear first in [19],
under the term “leaky bucket”: “ Perhaps the simplest approach is the so-called “leaky bucket”
method. A counter associated with each user transmitting on a connection is incremented
whenever the user sends a packet and is decremented periodically. If the counter exceeds a
threshold upon being incremented, the network discards the packet. The user specifies the rate
at which the counter is decremented (this determines the average bandwidth) and the value of
the threshold (a measure of burstiness).” This is a “policing” regulation, packets arriving
when the counter is too small are dropped, not stored and delayed.

This leaky-bucket model is referenced by [13], but to model a traffic shaping element, and
the release of a packet decreases the number of tokens by the number of bits of the packets.
Then, despite the name, it correspond to what is currently called a token bucket.

The term “token bucket filter” is introduced by [9] in its modern sense “A token bucket
filter is characterized by two parameters, a rate r and a depth b. One can think of the token
bucket as filling up with tokens continuously at a rate r, with b being its maximal depth.
Every time a packet is generated p tokens are removed from the bucket, where p is the size of
the packet.” It also gives the formal definition of “the number of tokens residing in the bucket
after the i’th packet leaves” as

n0 = b ∀i > 0 : ni = min {b, ni−1 + (ti − ti−1)r − pi} (69)

with ti and pi respectively the release time and the size of the i-th packet. Up to variable
names, and the delay introduced by the interleaving of flows, it corresponds to eq. (6).

A discussion between “leaky bucket” and “token bucket” can be found in [1, pp. 407 –
411].

On ATS algorithm

The initial proposition of a per-flow shaper fro ATS has been done in [14], under the name
Urgency Based Shaped (UBS).

An algorithm for the per flow token bucket emulator (TBE) is given in [14, Listing 2]. Its
expression is very similar to our modelling of the token bucket based interleaved regulator
(Section 3.3), since it maintains the number of tokens during the bucket lifetime.

But the ATS standard main algorithm, the ProcessFrame function, given in [5, § 8.6.11.3],
maintains another variable, the BucketEmptyTime, without any reference to the algorithm
in [14, Listing 2]. It only refers to [1, pp. 407 – 411] but this reference presents the token
bucket only with natural language and provides no explicit algorithm.

Then, in order to do a formal proof of equivalence, we have redone the token bucket
interleaved regulator model from scratch, not by re-using [14, Listing 2].

Both the algorithms of TBE and ProcessFrame are presented in [21], but nothing is said
on their differences and relations. This work presents ATS and a Paternoster algorithms, and
provides some simulations to compare their mean delays, buffer occupancy and loss rates.

20 Equivalence between the ATS model and its algorithm

On ATS perfomances

Some delay bounds provided by ATS are provided in [14].
The interleaved regulator has been modelled and generalised under the notion of Π-

regulator in [10]. It also proves a very important properties of these regulator, called
“reshaping-for- free”. It states that, under reasonable routing assumptions (inspired by QAR1,
QAR2, QAR3), if a flow respects a traffic shape at network input, then the Π-regulation
that re-shapes the flow in each hop does not increase the worst per hop delay.

The impact of nonideal clocks on ATS has been studied in [15], but on the theoretical
model, that is to say, without considering the difference between the clock used to compute
the eligibility time and the one used to release frames whose eligibility time is not less than
the current time (cf. Section 2.2.3.2).

The reshaping of ATS can be used to cut cyclic dependencies in the network analysis: an
algorithms to minimise the number of ATS queues, LCAN, has been introduced in [17].

Based on the results of [10], the relations between FRER and ATS in the case on non
ideal clocks has been studied in [18], under the assumption that FRER duplicates discarding
is put before ATS.

Note that all these works are based on the theoretical model of ATS.

6 Conclusion

The Asynchronous Traffic Shaping (ATS) is one promising TSN mechanism, and a lot of
research have been made to evaluate its benefits and limits. Nevertheless, all studies have
been done on a theoretical model, whose architecture and algorithms are different from the
implementation described in the standard.

This paper presents both and formally proves an equivalence relations between both (the
equality between the release time of frames in the theoretical model and the eligibility time
computed by the standard algorithm).

This equivalence was made under the assumption that the theoretical clock and the
implementation ones have the same behaviour. Since they are in fact two clocks in an ATS
implementation (one for computing eligibility time at frame arrival, and one for testing
eligibility time for frame departure), a further work may consider nonideal clocks, as in [15].

This paper also shows that, when ATS and the reliability mechanism FRER are both
used in a switch, the order between the different elements leads to different behaviours. It
may be of interest to redo the analysis of [18] when the ATS scheduler is executed before the
FRER recovery.

References
1 Computer Networks, 5th ed. New Jersey: Prentice Hall, 2010.
2 Virtual Bridged Local Area Networks Amendment 12: Forwarding and Queuing Enhancements

for Time-Sensitive Streams. Technical Report IEEE 802.1Qav, IEEE, 2010.
3 Ieee standard for local and metropolitan area networks – frame replication and elimination for

reliability. Technical Report 802.1CB, IEEE, September 2017.
4 IEEE standard for local and metropolitan area networks – bridges and bridged networks.

IEEE Standard 802.1Q, IEEE, 2018.
5 IEEE standard for local and metropolitan area networks – asynchronous traffic shaping.

Technical Report 802.1Qcr, IEEE, September 2020.

Marc Boyer 21

6 Ieee standard for local and metropolitan area networks – bridges and bridged networks –
amendment 26: Frame preemption. IEEE Standard 802.1Qbu, 2016. doi:10.1109/IEEESTD.
2016.7553415.

7 IEEE standard for local and metropolitan area networks–bridges and bridged networks–
amendment 25: Enhancements for scheduled traffic. IEEE Standard 802.1Qbv, IEEE, 2015.
doi:10.1109/IEEESTD.2016.8613095.

8 Ieee standard for local and metropolitan area networks–bridges and bridged networks–
amendment 28: Per-stream filtering and policing. Standard 802.1Qci, IEEE, 2017. doi:
10.1109/IEEESTD.2017.8064221.

9 David D. Clark, Scott Shenker, and Lixia Zhang. Supporting real-time applications in
an integrated services packet network: Architecture and mechanism. SIGCOMM Comput.
Commun. Rev., 22(4):1426, oct 1992. doi:10.1145/144191.144199.

10 Jean-Yves Le Boudec. A theory of traffic regulators for deterministic networks with application
to interleaved regulators. IEEE-ACM Transactions On Networking, 26(6):2721–2733, 2018.

11 MEF. Subscriber ethernet service attributes. Technical Report MEF 10.4, MEF Forum, 2018.
URL: http://www.mef.net/resources/technical-specifications.

12 Ehsan Mohammadpour, Eleni Stai, and Jean-Yves Le Boudec. Improved credit bounds for the
credit-based shaper in time-sensitive networking. IEEE Networking Letters, 1(3):136–139, Sep.
2019. doi:10.1109/LNET.2019.2925176.

13 A. Parekh and R. Gallager. A generalised processor sharing approach to flow control in
integrated services networks: the single-node case. IEEE transactions on networking, June
1993.

14 Johannes Specht and Soheil Samii. Urgency-based scheduler for time-sensitive switched
ethernet networks. In Proc. of the 28th Euromicro Conference on Real-Time Systems (ECRTS
2016), 2016.

15 Ludovic Thomas and Jean-Yves Le Boudec. On time synchronization issues in time-sensitive
networks with regulators and nonideal clocks. Proceedings of the ACM on Measurement and
Analysis of Computing Systems, 4(2):1–41, 2020.

16 Ludovic Thomas and Jean-Yves Le Boudec. On time synchronization issues in time-sentive
networks with regulators and nonideal clocks. Proceedings of the ACM on Measurement
and Analysis of Computing SystemsJune 2020 Article No.: 27, 4(2), June 2020. URL:
https://dl.acm.org/doi/10.1145/3392145, doi:10.1145/3392145.

17 Ludovic Thomas, Jean-Yves Le Boudec, and Ahlem Mifdaoui. On cyclic dependencies and
regulators in time-sensitive networks. In 2019 IEEE Real-Time Systems Symposium (RTSS),
pages 299–311. IEEE, 2019.

18 Ludovic Thomas, Ahlem Mifdaoui, and Jean-Yves Le Boudec. Worst-case delay bounds in
time-sensitive networks with packet replication and elimination. IEEE/ACM Transactions on
Networking, pages 1–15, 2022. doi:10.1109/TNET.2022.3180763.

19 J. Turner. New directions in communications (or which way to the information age?). IEEE
Communications Magazine, 20(10), 1986.

20 Luxi Zhao, Paul Pop, and Sebastian Steinhorst. Quantitative performance comparison of
various traffic shapers in time-sensitive networking, 2021. URL: https://arxiv.org/abs/
2103.13424v1, arXiv:2103.13424.

21 Zifan Zhou, Michael Stübert Berger, and Ying Ruepp, Sarah Renée annd Yan. Insight into the
IEEE 802.1 Qcr asynchronous traffic shaping in time sensitive network. Advances in Science,
Technology and Engineering Systems Journal, 4(1):292–301, 2019.

A Code usage

Some supplementary code that can be used to test the ATS processFrame function is given
in Programs 3 and 4.

https://doi.org/10.1109/IEEESTD.2016.7553415
https://doi.org/10.1109/IEEESTD.2016.7553415
https://doi.org/10.1109/IEEESTD.2016.8613095
https://doi.org/10.1109/IEEESTD.2017.8064221
https://doi.org/10.1109/IEEESTD.2017.8064221
https://doi.org/10.1145/144191.144199
http://www.mef.net/resources/technical-specifications
https://doi.org/10.1109/LNET.2019.2925176
https://dl.acm.org/doi/10.1145/3392145
https://doi.org/10.1145/3392145
https://doi.org/10.1109/TNET.2022.3180763
https://arxiv.org/abs/2103.13424v1
https://arxiv.org/abs/2103.13424v1
http://arxiv.org/abs/2103.13424

22 Equivalence between the ATS model and its algorithm

class Frame :

def __repr__(s e l f) :
i f s e l f . e l i g i b i l i t y T i m e == None :

return " Frame (" + s e l f . name + " , " + str (s e l f . a r r iva lTime) + " , " + \
str (s e l f . l e n g t h) +") "

else :
return " Frame (" + s e l f . name + " , " + str (s e l f . a r r iva lTime) + " , " + \

str (s e l f . l e n g t h) +")−>" + str (s e l f . e l i g i b i l i t y T i m e)

Program 3 Pretty print of Frame object.

i f __name__ == "__main__" :
S i n g l e f low in queue
queue= Queue ()
ats_group= ATSgroup (100000 , queue)
ats_sched= ATSscheduler (1 , 3 , ats_group)
ats_sched . processFrame (Frame ("A" , 1 , 2))
ats_sched . processFrame (Frame ("B" , 2 , 2))
ats_sched . processFrame (Frame ("C" , 3 , 3))
ats_sched . processFrame (Frame ("D" , 9 , 2))
ats_sched . processFrame (Frame ("E" , 9 , 2))
print (queue . queue)

ATS with two queues
queue= Queue ()
ats_group= ATSgroup (100000 , queue)
ats_schedA= ATSscheduler (50 ,100 , ats_group)
ats_schedB= ATSscheduler (50 ,100 , ats_group)

F i r s t frame A: d e l i v e r e d as soon as arrived , take a l l tokens
ats_schedA . processFrame (Frame ("A1" , 0 , 100))
Second frame A, has to wait D_2 = A_1 +1 = 2
ats_schedA . processFrame (Frame ("A2" , 1 , 100))
F i r s t frame B, enough tokens , but has to wait A2
ats_schedB . processFrame (Frame ("B1" , 1 , 50))
Second frame B, enough tokens , d e l i v e r e d as soon as arrived , take a l l tokens
ats_schedB . processFrame (Frame ("B2" , 2 , 50))
Third frame B, has to wait
ats_schedB . processFrame (Frame ("B3" , 2 , 100))
Third frame A, s i z e l a r g e r than CBS
ats_schedA . processFrame (Frame ("B3" , 10 , 1000))

Program 4 Examples of tests.

	Introduction
	Presentation of ATS behavior
	The theoretical model
	Recall on the token bucket
	Shaped queue / interleaved regulator
	ATS queuing system
	ATS as a TSN class

	The standard specification of ATS
	ATS scheduler groups
	Insertion of ATS in the forwarding process
	Computation of the eligibility time

	Equivalence between the theoretical and the standard models
	Partial equivalence
	Building the equivalence
	Modelling the interleaved regulator
	Modelling the eligibility time algorithm
	Equivalence between the theoretical model and the implementation model

	On ATS and FRER
	State of the art
	Conclusion
	Code usage

