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Abstract

Structural reliability analysis aims at assessing the safety of structures which often operate
under uncertain conditions. Approximation-, simulation- or surrogate-based methods are
used in this context to estimate the failure probability. Surrogate-based methods are the least
computationally intensive and consist in building a cheaper proxy of the original limit-state
function, which is calibrated using a limited set of samples known as the experimental design.
The latter is sequentially enriched to increase the accuracy of the surrogate in areas of interest,
hence allowing for an accurate estimation of the failure probability.

A large number of such techniques has been recently developed in the literature (e.g.,
active Kriging - Monte Carlo simulation). However most of these techniques consider a single
limit-state function. These methods lose efficiency when used to solve system reliability
problems, where failure is defined by a non-trivial combination of multiple limit-states. This
is due to some peculiarities of the system problem such as the presence of disjoint failure
domains or the uneven contribution of each limit-state to the overall failure.

In this work, we propose an efficient algorithm combining Kriging/PC-Kriging and subset
simulation to solve system reliability problems in their most general setting, i.e., with an
arbitrary combination of components. We devise a new learning function which first identifies
candidate samples and then selects for enrichment the specific limit-state that contributes
the most to system failure. The algorithm is validated on a set of analytical functions and
compared with existing methods in the literature.

1 Introduction

Civil and engineering structures often operate in an environment not entirely known throughout
their life cycle. The level of safety of the structure may be assessed through structural reliability
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analysis. Generally, this is carried out in a probabilistic setting using a set of random variables
X ∼ fX that describe the state of the system and a set of so-called limit-state functions
{gj (x) , j = 1, . . . , p}. Ultimately, the goal is to estimate the probability of failure of the
structure under these conditions. This is more specifically defined by:

Pf =
∫

Df

fX (x) dx, (1)

where Df denotes the failure domain. In component reliability, i.e., when p = 1, failure is
conventionally defined by g (x) = g1 (x) ≤ 0. The definition of the failure domain is more
complex for system reliability problems, i.e., when p > 1. Such systems may be described
as an assembly of components in a series, parallel or general configuration [1, 2]. A series
system is one that fails when any of its components does. In contrast, a parallel system
is a more robust one that fails only when all the components do. The failure domain for
these systems are defined respectively by Dseries

f = {x ∈ X : min (g1 (x) , . . . , gp (x)) ≤ 0} and
Dparallel

f = {x ∈ X : max (g1 (x) , . . . , gp (x)) ≤ 0}. In this work, we consider a more generic
configuration where a composition of Boolean operators (e.g., a combination of max and min
operators) defines the limit-state function. Denoting this function by h, the system limit-state
function can then be cast as

h (g1 (x) , . . . , gp (x)) = h (g (x)) , (2)

where h is assumed to take negative values in the failure domain.

The solution of structural reliability problems, which entails solving an integration problem
over the implicitly defined failure domain (Eq. 1), generally involves computationally intensive
methods based on simulation techniques. Examples include crude Monte Carlo simulation or
more advanced variance reduction techniques such as importance sampling, subset simulation or
line sampling [3]. These methods however require repetitive calls to the limit-state function, in
the order of tens to hundreds of thousands, which makes them unaffordable when the limit-state
function arises from an expensive-to-evaluate computational model.

An efficient solution to these computational drawbacks has been introduced by the use of surrogate
models in a so-called active learning reliability framework [4]. The idea is to build a surrogate
of the limit-state function to be used when locating the failure domain. This surrogate model
is built by learning over a small set of limit-state function evaluations known as experimental
design. Its efficiency comes from the fact that the limit-state function is evaluated sparingly and
only in regions of interest, in a sequential scheme. This allows for a very precise identification of
the limit-state surface and henceforth of the failure domain.

Milestone contributions in this field include the early work of [5, 6], which respectively introduced
the so-called efficient global reliability analysis (EGRA) and active Kriging - Monte Carlo
simulation (AK-MCS) that both rely on widely-used Gaussian process models as surrogates.
Since then, multiple active learning reliability strategies have been introduced to efficiently solve
Eq. (1), as evidenced by the recent reviews in [7] and [4]. Most of these contributions were
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however only introduced for component reliability problems and are not optimally efficient for
system reliability problems. Indeed the latter is more complex due to the likely presence of
multiple failure domains and the uneven contribution of the different limit states to failure. This
calls for special algorithms capable of handling such peculiarities.

A few attempts have been made in that direction. The most direct adaptation of component
active learning reliability algorithms to systems is derived by directly considering h (g (x)) as
the function to approximate. The main limitation of such an approach is that h is by definition
non-smooth and may present discontinuities, making it difficult to build an accurate surrogate
model. Specific methods accounting directly for multiple limit-states have been introduced as well.
[8, 9] proposed a composite learning function well suited for parallel and series system problems.
More recently, [10] proposed the so-called ALK-TCR-SYS method which includes a scheme
to select the most pertinent candidate sample for enrichment, leveraging on the knowledge
of the system configuration (i.e., parallel or series). Similarly, [11] analytically derived the
so-called system expected risk function (SERF) which is embedded in a reliability-based design
optimization framework.

All these approaches are limited to simple series or parallel configurations and only consider
the sole adaptation of the learning function, ignoring other important components such as the
surrogate model or the reliability estimation algorithm, which are equally important to devise
an optimal solving strategy [4]. The latter is however important as it ultimately defines the
accuracy of the estimated failure probability, regardless of that of the surrogate model.

In this paper, we propose an approach to efficiently solve the system reliability problem by
building a single surrogate for each component and only enriching the ones that are the most
relevant in a given iteration of the algorithm. We make use of both subset simulation [12] and
Sobol’ sensitivity [13] analysis to identify the enrichment candidates and the relevant limit-states
to be evaluated. The proposed method is illustrated on two mathematical problems and its
efficiency is assessed against similar methods found in the literature.

2 Proposed method

The proposed method follows the general framework for active learning reliability described in
[4], with a few modifications aimed at enhancing efficiency with respect to system reliability.
The flowchart in Figure 1 summarizes the main steps, which are the following:

1. Initialization: For each limit-state gj , j = 1 . . . , p, an experimental design D(0)
j is built by i.

first sampling m
(0)
j points in the input domain using space-filling techniques, such as Latin hy-

percube sampling, and ii. evaluating them using the corresponding limit-state function. The
experimental design therefore reads D(0)

j =
{(

X (i)
j , Y(i)

j

)
: Yj = gj

(
X (i)

)
∈ R, X (i) ∈ X ⊂ RM ,

i = 1 . . . m
(0)
j

}
. The initial number of samples m

(0)
j is typically chosen small, i.e., in the

orders of tens of samples. We further assume in this work that they are the same for all
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Initialization:
D(0)

1 , . . . ,D(0)
p , η̄Pf

, q, etc.

k = 0

Build surrogate models ĝ
(k)
1 , , . . . , ĝ

(k)
p

Estimate the failure probability

P̂
(k)
f using subset simulation

Select and filter the candi-
dates for enrichment X̃ (k)

SP

Is ηPf
≤ η̄Pf

?
Evaluate the learning

function Usys on X̃ (k)
SP

Select next samples to add and
the corresponding limit-state

Update the experimental design

k = k + 1

End

no

yes

Figure 1: Flowchart of the proposed system active learning reliability algorithm.

limit-states, i.e., m
(0)
1 = . . . = m

(0)
p . Following this initialization, the algorithm enters a

loop where the construction of a surrogate model, its enrichment and reliability analysis
are alternatively performed.

2. Surrogate: At iteration k of the algorithm, a surrogate model ĝ
(k)
j , herein Kriging or

PC-Kriging, is built for each limit-state using the current experimental design. Details on
the construction of the surrogate are given in Section 3.

3. Reliability analysis: The failure probability P̂
(k)
f is then estimated using the current

surrogate model. In this work, we consider subset simulation in a so-called overkill setup,
which simply consists in choosing parameter settings that allow to decrease the variance of
the estimated failure probability. As shown in [4], such a setting, which can be obtained in
subset simulation by increasing the batch sample size and the target conditional failure
probability, is extremely efficient compared to a traditional setting. More details regarding
this setting are given in Section 4.

4. Convergence: Once the failure probability is estimated, the convergence of the algorithm
is assessed. In this work, we simply check the stability of the estimated failure probability
over two consecutive iterations. Convergence is assumed when the relative variation between
iterations

∣∣∣P̂ (k)
f − P̂

(k−1)
f

∣∣∣ /P̂
(k)
f is below a given threshold η̄pf

.

5. Enrichment: If convergence is not achieved, the experimental design is enriched to improve
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the local accuracy of the critical limit-states. The bulk of the developments of the proposed
strategy lies in this step, as we aim not only to find the next best candidate sample
as in traditional component reliability analysis, but also to select the most appropriate
limit-states for enrichment. The goal is to be as efficient as possible by evaluating only the
limit-states that contribute to failure in a given input space region. Details of the proposed
approach are given in Section 5.

Once the experimental design is updated, the algorithm returns to Step 2 and iterates
until convergence. In the next sections, we give more details regarding the important
components of the framework.

3 Surrogate models

The proposed algorithm is built using a modular framework where any surrogate model can be
employed. The learning function proposed in this work however relies on the surrogate prediction
error. We therefore consider in this paper Kriging and polynomial chaos - Kriging (PC-Kriging),
which are briefly described in the sequel.

Kriging: Kriging, also known as Gaussian process modelling, is a popular surrogate technique
where the underlying function to approximate is assumed to be the realization of a stochastic
process [14]:

M̂KRG(x) = βT f(x) + σ2Z(x, ω). (3)

The first part of this equation represents the mean of the process and is known as its trend. In
its most common form, it may be written using polynomials, where f = {fj : j = 1, . . . , P}
are basis functions and β = {βj : j = 1, . . . , P} are the corresponding coefficients. The second
summand is the actual stochastic process with variance σ2 and completely defined by the zero-
mean unit-variance stationary Gaussian process (GP) Z(x, ω) with auto-correlation function
R(x, x′; θ).

The surrogate model is derived by fitting the parameters of the GP by learning over a set
of observations of the model, known as experimental design. Following this learning stage,
predictions can be made for any new sample, which is assumed to follow a multivariate Gaussian
distribution: 




Ŷ (x)
Y



 ∼ NN+1







f(x)T β

Fβ



 , σ2





1 rT (x)
r(x) R






 , (4)

where F is the observation matrix with Fi,j = fj(x(i)); i = 1, . . . , N ; j = 1, . . . , P , r(x) is the
vector of the cross-correlations with ri = R(x, x(i); θ), i = 1, . . . , N and R is the correlation
matrix with elements Ri,j = R(x(i), x(j); θ), i, j = 1, . . . , N . The mean and the variance of this
Gaussian random variable Ŷ (x) are given by:

µ
Ŷ (x) = fT (x)β̂ + rT (x)R−1(Y − Fβ̂

)
, (5)
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σ2
Ŷ (x) = σ̂2

(
1 − rT (x)R−1r(x) + uT (x)(FT R−1F)−1u(x)

)
, (6)

where β̂ = (FT R−1F)−1FT R−1Y is the weighted least-square estimate of the regression coeffi-
cients and u(x) = FT R−1r(x) − f(x) is introduced for convenience.

The learning step consists in first selecting the correlation function, which is assumed to be an
anistropic Gaussian kernel in this work, i.e.,

R(x, x′, θ) =
M∏

i=1
Ri(xi, x′

i; θi) =
M∏

i=1
exp

(
−1

2

(
xi − x′

i

θi

)2)
. (7)

The optimal hyperparameters of the model
{

β̂, σ̂, θ
}

are obtained here by maximum likelihood
estimation [15].

PC-Kriging PC-Kriging is an extension of universal Kriging developed in [16, 17], where the
deterministic trend is chosen as polynomial chaos expansions (PCE), i.e.,

M̂PCK(x) =
∑

α∈A
yαΨα(x) + σ2Z(x, ω), (8)

where ∑α∈A yαΨα(x) is a truncated series of weighted orthonormal polynomials representing
the GP trend. In this trend, yα are coefficients to be calibrated, A is a truncation set and
Ψα = ∏M

i=1 Ψαi(xi) are orthonormal polynomials whose components Ψαi are chosen in accordance
with the probability distribution fXi of Xi.

The calibration of this surrogate model is a two-stage process where on the one hand, the
coefficients of the trend are identified and on the other hand, the optimal Kriging hyperparameters
are estimated. [16] proposed two approaches to achieve this. In this work, we consider the
so-called optimal PC-Kriging approach where the surrogate model is built in an iterative scheme
with the Kriging and PCE parts being jointly calibrated.

4 Subset simulation

Subset simulation is a variance-reduction reliability estimation algorithm [12]. It is particularly
adapted to problems with small failure probability where the failure domain is in remote areas
of the random space. The underlying principle is to decompose the failure event into multiple
events whose probability of occurrence is magnitudes higher.

More specifically, let us consider a set of nested domains D1 ⊃ D2 ⊃ · · · ⊃ Dm = Df such that
Df = ∩m

k=1Dk. The intermediate domains are defined using a sequence of decreasing thresholds
t1 > t2 > · · · > tm = 0 such that Dk = {x : g(x) ≤ tk}. It follows that the failure probability can
be recast as:

Pf = P (Df ) = P (∩m
k=1Dk) = P (D1)

m−1∏

i=1
P (Di+1|Di) (9)
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The initial failure probability P (D1) is estimated using Monte Carlo simulation and the remaining
conditional failure probabilities are computed using a dedicated Markov Chain Monte Carlo
(MCMC) simulation. The intermediate thresholds are set on-the-fly such that the P (Di+1|Di) = p0

is large enough. While in usual settings p0 is chosen to be 0.1, we consider here p0 = 0.25. The
sample size for the initial Monte Carlo simulation and the intermediate MCMC steps is set to
105. These settings correspond to the aforementioned overkill setup [4]. This essentially allows
us to reduce the variance of the failure probability estimate and, at the same time, enhance the
robustness of the active learning scheme.

5 Enrichment strategy for system reliability analysis

The core of the novel strategy we propose lies in this step of the algorithm. In order to
efficiently allocate computational resources, we resort to a four-step enrichment procedure, which
is described in the following paragraphs.

5.1 Search space

In the first step of the enrichment we define the search space, i.e., the set of samples that
will eventually be considered as candidates for enrichment. We consider here all the samples
generated during the reliability analysis in the previous iteration. As previously mentioned,
subset simulation is used in this work in an overkill setup. The samples generated in this step
are therefore the starting point for enrichment and are denoted by XSP.

5.2 Learning function

A learning function is used to determine which points from XSP are more likely to locally improve
the limit-state function surrogates and henceforth the accuracy of the estimated failure probability.
Many such functions have been proposed in the context of component reliability analysis. They
are built with the aim of a balanced exploitation and exploration of the input space. Exploration
in this context means looking for new samples far away from existing ones in order to increase
the overall knowledge of the limit-state function landscape, while exploitation tends to focus on
those samples that are the closest to the currently estimated limit-state surfaces.

The starting point for the learning function we propose is the so-called deviation number proposed
by [6] for component reliability, which reads

U (x) =

∣∣∣µĝ (x)
∣∣∣

σĝ (x) , (10)

where µĝ and σ2
ĝ

are respectively the Kriging or PC-Kriging mean prediction and variance.
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To adapt this learning function, we first start by noting that using a Kriging or PC-Kriging
model to emulate separately each limit-state function, we obtain that for each sample x ∈ XSP,

Zj (x) = ĝj (x) ∼ N
(
µĝj

(x) , σ2
ĝj

(x)
)

, (11)

while the prediction for the system limit-state is given by

Zsys = h (Z1 (x) , . . . , Zp (x)) . (12)

We then propose an adaptation of the U learning function which reads as follows:

Usys = |µsys (x)|
σsys (x) , (13)

where µsys (x) and σsys (x) are respectively the mean and standard deviation of the limit-state
approximation Zsys = h (ĝ (x)) defined in Eq. (12).

Since the distribution of Zsys is generally not known, we estimate its moments empirically.
It follows from Eq. 11 and from the mutual independence of the component-wise surrogate
model predictions that the joint probability distribution of Z (x) is an independent multivariate
Gaussian, i.e.,

Z (x) ∼fZ (Z1 (x) , . . . , Zp (x)) =
p∏

j=1
fZ (Zj (x)) =

p∏

j=1
N
(
µĝj

(x) , σ2
ĝj

(x)
)

.
(14)

For each sample x ∈ XSP, we can therefore draw Ns samples
(
z(1), . . . , z(p)

)
from fZ and

empirically estimate the mean and variance as follows:

µ̂sys (x) = 1
Ns

Ns∑

i=1
h
(
z(i)

)
,

σ̂sys (x) = 1
Ns − 1

Ns∑

i=1

(
h
(
z(i)

)
− µ̂sys (x)

)2
.

(15)

An estimate of the system learning function is then obtained by using these quantities, i.e.,

Ûsys (x) = |µ̂sys (x)|
σ̂sys (x) . (16)

The next best point to add is eventually selected as the minimizer of Eq. 16.

5.3 Filtering and clustering

Instead of adding a single point per enrichment iteration, we rather consider adding multiple
ones at the same time. This helps accelerate convergence by simultaneously targeting multiple
failure regions. To achieve this, we resort to clustering techniques.
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Prior to clustering, we filter the candidate samples in XSP by keeping only the samples that are
most likely to improve the limit-state surface as defined by the learning function. This subset is
defined by

X̃SP =
{

x ∈ XSP : Ûsys (x) < uq

}
, (17)

where uq is a lower q-quantile of Ûsys as computed on XSP. By choosing a small value of q, say
in the order of 1% − 5%, we can discard samples that are not relevant for enrichment.

This also makes the clustering step more efficient as only samples associated to relevant limit-
states remain. In this work, we use DBSCAN [18] which is a density-based clustering technique.
Its main advantage is that it does not require specifying a fixed number of clusters a priori.
Instead, it learns from the data and returns the most optimal number of clusters together with
their configuration. In practice, it often turns out that each cluster corresponds to one specific
limit-state.

For each cluster we select for enrichment the point that minimizes the learning function, provided
that its value is larger than a threshold set equal to 2. The latter condition allows us to ignore
limit-states that are already accurately approximated. The set of enrichment samples selected as
this stage is denoted by XEn.

5.4 Sensitivity analysis

The final step of enrichment consists in defining which limit-state to evaluate for each sample
in XEn. We therefore need to define which component limit-state affects the most the system
for each of these points. We resort to Sobol’ sensitivity analysis [13] to achieve this. The
model of interest in this case is the composition function h whose random inputs are jointly
Gaussian. More specifically, as shown earlier, for each sample x ∈ XEn, the surrogate predictions,
Z (x) = {Z1 (x) , . . . , Zp (x)} follow a normal distribution. Using Sobol’ indices, we can therefore
estimate the shares of the variance of h (Z (x)) associated to each component {1, . . . , p}. This
quantity can be summarized into the so-called total Sobol’ indices

{
ST

1 , . . . , ST
p

}
. The specific

limit-state to evaluate is eventually obtained by selecting the one corresponding to the largest
total Sobol’ index.

It is important to note at this stage that this step is not very computationally intensive, since the
composition function h is known analytically and it is straightforward to sample from Z ∼ fZ .
No evaluation of the limit-state is carried out in this step. Furthermore, only a few samples per
iteration are selected for the computation of the Sobol’ indices, which are obtained by Monte
Carlo simulation.

6 Application examples

In this section, we validate the proposed method using two different mathematical functions.
Convergence is assumed when the relative error introduced in Section 2 is below η̄Pf

= 0.01 for
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two consecutive iterations. To assess the accuracy of the algorithm, we evaluate the following
relative errors:

∆Pf
= |Pf − Pf,ref|

Pf,ref
,

∆β = |β − βref|
βref

,

(18)

where Pf (resp. β) is the estimated failure probability (resp. reliability index) and Pf,ref (resp.
βref) is the reference failure probability (resp. reliability index) obtained using the original model
and a large Monte Carlo sample set.

To assess the robustness of the algorithm, the analysis is repeated 20 times. The median results
are eventually used for a benchmark with existing methods in the literature. The analysis is
carried out using UQLab [19], a modular framework for uncertainty quantification.

6.1 Four-branch function

The four-branch function is a popular two-dimensional function used to illustrate active learning
reliability analysis methods. It can be seen as a series system with four components g1, . . . g4

defined as follows:

g1(X) = 3 + 0.1(X1 − X2)2 − 1√
2

(X1 + X2),

g2(X) = 3 + 0.1(X1 − X2)2 + 1√
2

(X1 + X2),

g3(X, a) = (X1 − X2) + a√
2

,

g4(X, a) = (X2 − X1) + a√
2

,

(19)

where a is a constant set equal to 6 or 7 in the numerical examples.

The associated inputs follow a bivariate independent standard Gaussian distribution, i.e.,

X =


X1

X2


 ∼ N




0

0


,


1 0

0 1




 . (20)

Running the algorithm 20 times, we obtain multiple estimates of the failure probability, which
are slightly dependent on the initial experimental design. Figure 2 summarizes these estimates in
boxplots for both Kriging and PC-Kriging. We can note that in the two cases the results are very
close to the actual reference solution shown by the dotted black line. The scatter is relatively
small even though there is a bias where the algorithm has the tendency to slightly underestimate
the failure probability. The median relative errors are 0.83% and 1.03% respectively for Kriging
and PC-Kriging. When considering the reliability index, these errors respectively become ≈ 0.01%
and 0.12%, respectively.
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Figure 2: Example 1 - Estimated failure probabilities for 20 random repetitions of the algorithm.

The second criterion of interest to assess the proposed algorithm is its efficiency, i.e., its capacity
to find accurate solutions using the fewest possible calls to the original limit-state functions.
Figure 3 shows the boxplots of the number of calls to each limit-state function for both Kriging
and PC-Kriging. Overall, PC-Kriging is much more efficient as it is more adapted to approximate
such a polynomial limit state function. Furthermore, limit-states g3 and g4 which are linear
are well approximated by the initial experimental design and no further points are added to
these limit-states during the enrichment process. Only g1 and g2 are enriched, with PC-Kriging
converging much faster than Kriging.

Figure 3: Example 1 - Number of added samples for each limit-state for 20 random repetitions
of the algorithm.

The algorithms converge without any additional sample added to g3 and g4 thanks to two of its
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feature: i. the filtering step that allows us to ignore limit-states that are already accurate and ii.
the Sobol’ sensitivity analysis that allows us to target only the limit-state that is relevant for a
given sample. This is illustrated in Figure 4, which corresponds to the fifth enrichment step of
the solution scheme corresponding to the median results in terms of ∆Pf

.

Figure 4: Example 1 - Illustration of the enrichment process.

In this figure, the candidates for enrichment XSP are shown in gray. They have been generated by
subset simulation in the previous iteration and the five shades of gray represent the intermediate
steps of subset simulation. The colored samples in cyan and magenta represent the two clusters
that have been identified by DBSCAN while the yellow dots show the two samples selected for
enrichment. Each of the subsets actually correspond to one of the two limit-states g1 and g2.
The limit-states, together with the initial experimental design samples, are shown in Figure 5 for
reference.

Finally, we compare the proposed algorithms to various methods available in the literature.
Table 1 mainly features active learning algorithms developed for component reliability and used in
the context of multiple limit-state by approximating h (g (x)). Table 2 shows methods developed
specifically for system reliability. In the two cases, we can see that the method we propose is the
most efficient and accurate. Furthermore, the coefficient of variation of the estimated failure
probability is comparatively small, thanks to the use of the overkill setup.

6.2 Liquid hydrogen tank

This example investigates the design of a liquid hydrogen fuel tank to be used on a space launch
vehicle [22]. Built using a honeycomb sandwich composite material, the tank is subjected to
various stresses caused by ullage pressure, head pressure, vehicle acceleration and fuel weight.
There are three failure modes corresponding to von Mises stresses, isotropic strength and
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Figure 5: Example 1 - Initial experimental design and limit-state surface contours.

Table 1: Four-branch function (a = 7) performance comparison from [20].

Method P̂f (×10−3) Error(%) CoV(%) Neval

MCS 2.224 - 0.67 107

SuS 2.260 0.85 2.43 28 · 103

IS 2.251 0.45 2.66 14.4 · 104

AK-MCS 2.271 1.34 2.10 408
AK-IS 2.210 1.38 2.67 1446
AK-SS 2.228 0.31 2.51 268
Proposed (KRG) 2.223 0.82 0.55 53.5
Proposed (PCK) 2.223 1.03 0.55 25

Table 2: Four-branch function (a = 6) performance comparison from [21].

Method P̂f (×10−3) Error(%) CoV(%) Neval

MCS 4.48 - 0.47 107

AK-SYS 4.45 0.24 1.49 63.3
ALK-TCR 4.48 0.43 1.49 61.3
ALK-SIS 4.45 0.24 1.29 62.4
Proposed (KRG) 4.44 0.32 0.47 56
Proposed (PCK) 4.45 0.31 0.47 24

honeycomb buckling. The system fails when any one of the limit-state is reached. It is therefore
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a series system whose component limit-state functions read:

g1 (X) = 0.847 + 0.96x1 + 0.986x2 − 0.216x3

+ 0.077x2
1 + 0.11x2

2 + 0.007x2
3

+ 0.378x1x2 − 0.106x1x3 − 0.11x2x3,

g2 (X) = 84000 tplate√
N2

x + N2
y − NxNy + 3N2

xy

− 1,

g3 (X) = 8400 tplate
|Ny| − 1,

(21)

where x1 = 4(tplate − 0.075), x2 = 20(th − 1) and x3 = −6000
(

1
Nxy

+ 0.003
)
. Five random

variables describe the system, namely the plate thickness tplate, the honeycomb thickness th and
the running loads Nx, Ny and Nxy. They all follow a Gaussian distribution whose parameters
are given in Table 3.

Table 3: Liquid hydrogen tank input marginal properties.

Variable Distribution Mean Standard deviation

tplate Gaussian 0.07433 0.005
th Gaussian 0.1 0.01
Nx Gaussian 13 60
Ny Gaussian 4751 48
Nxy Gaussian -684 11

The problem is solved using an initial experimental design of size 10 independently drawn for each
of the limit-state functions. Figure 6 shows boxplots of the resulting failure probability estimates
for 20 repetitions when using Kriging and PC-Kriging. The black dotted line corresponds to
the reference solution. In the two cases, the solutions are close to the reference one and yield a
median relative error which is smaller than 1%, with Kriging being slightly more accurate than
PC-Kriging.

However, as shown in Figure 7, PC-Kriging is much more efficient than Kriging, as its average
number of model evaluations is smaller. Furthermore, similarly to the previous example, limit-
state components g1 and g3 are easier to approximate and require almost no additional samples
after the initial step.

7 Conclusion

System reliability analysis specifically targets problems where there are multiple failure modes.
One of the most efficient ways to solve such problems requires using surrogate models in a
so-called active learning scheme. Such techniques were originally developed in the context of
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Figure 6: Example 2 - Estimated failure probabilities for 20 random repetitions of the algorithm.

Figure 7: Example 2 - Number of added samples for each limit-state for 20 random repetitions
of the algorithm.

component reliability analysis, where only one limit-state function describes the failure of the
structure. The presence of multiple failure modes and the uneven contribution of each limit-state
to failure make such an approach suboptimal for system reliability.

This work aimed at extending the currently used active learning scheme to efficiently solve system
reliability problems, in their most general form, i.e., considering any arbitrary combination of
limit-states. We have specifically focused on combining Kriging and PC-Kriging with subset
simulation and a novel enrichment scheme. The latter is the ingredient making the entire
framework efficient as it allows us to select the samples that are most likely to improve the
limit-states and to evaluate only the limit-state function that is the most impacted by the selected
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sample. This is achieved by using an adaptation of the popular U-learning function to system
problems, a clustering technique that can identify and differentiate automatically failure regions
and Sobol’ sensitivity analysis to assess the impact of any sample to each limit-state.

The algorithm is validated and illustrated on two analytical examples. It is shown to be accurate,
robust and efficient. Furthermore, the algorithm is shown to be more efficient than many similar
techniques found in the literature.
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