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Abstract

Seismic structural performances are typically characterized by fragility models. A fragility
model provides the probability of exceeding a certain level of damage in the structure given
a set of intensity measures (IMs) of the seismic excitations. The damage level is defined as
a function of a given Engineering Demand Parameter (EDP) (e.g., the maximal interstory
drift for a multi-story building, the maximum lateral drift of piers for a bridge). In practice,
performing fragility analysis is usually difficult due to limited seismic records and high cost
of experiments or simulations. In this study, we model the seismic input by a stochastic
artificial ground motion model. This stochastic ground motion model is a filtered white-noise
parameterized by a set of engineering-meaningful parameters (i.e., a given set of parameters
can generate an infinite number of seismic signals). As a result, the corresponding EDP
is a random variable conditioned on the parameters of the ground motion model, and the
input-output relationship can be viewed as a stochastic simulator. Given this representation,
the fragility model can be defined as a function of the parameters of the ground motion model
or any other IMs of interest (estimated from the input ground motion samples). To alleviate
the computational burden of the fragility analysis, we propose using the generalized lambda
surrogate model. The latter uses the flexible generalized lambda distribution to represent the
distribution of the EDP for a given set of IMs. We illustrate the performance of the proposed
method on a three-story shear frame. The results show that it outperforms a parametric
linear model and a non-parametric kernel model.

1 Introduction

In Performance-Based Earthquake Engineering (PBEE) [1], the seismic risk is computed by
convolving the output of Probabilistic Seismic Hazard Analysis (PSHA) with fragility, damage,
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and loss models. The results of the PSHA analysis are so-called hazard curves, which represent
the rate of occurrence of a given intensity measure (IM). In its general form, the fragility model
is a conditional probability distribution that relates a given IM (or vector of IMs) to structural
performance. This is usually defined based on a quantity of interest (e.g., the maximum interstory
drift for a multi-story building) called the engineering demand parameter (EDP). The development
of a robust fragility model is key to accurate seismic risk assessments; therefore, it is not surprising
that it has generated a significant amount of research by the structural engineering community.
Among the broad landscape of fragility models, simulation-based fragility models have recently
received more attention. In this setting, the structure is represented by a computational model,
and the input is given by ground motion time series, which can be real or synthetic. In the first
case, the ground motions are usually selected (and modified) based on the site and a return
period of a given IM. In the second case, artificial ground motions are typically generated from a
stochastic ground motion model fitted to a dataset of real ground motions. The latter case is of
great interest because it allows a formal uncertainty quantification (UQ) framework to be defined
to assess structural performance and, thus, to compute fragility models. Using this approach
has significant advantages since it can unlock the use of the latest developments in forward UQ
analysis to overcome the obstacle of traditional methods. These include (but are not limited to)
the scarcity of actual ground motions for specific sites, the scaling of ground motions, and the
high computational costs of time-history analysis.

Following this recent line of research, Abbiati et al. [2] developed a replication-based approach.
In this framework, the ground motion parameters that generate the synthetic earthquake load
are used as IMs. Multiple (e.g., 100) artificial ground motions are generated for the same ground
motion parameters. The associated structural responses are realizations of the EDP conditioned
on the given ground motion parameters. As a result, quantiles of the conditional EDP can be
calculated from the realizations which are called replications in the sequel. This procedure is
repeated for different ground motion parameters. The estimated quantiles (based on replications)
are then represented by Kriging as deterministic functions of the ground motion parameters.
These functions of quantiles characterize the distribution of the conditional EDP.

In this paper, we propose using the generalized lambda model developed by Zhu and Sudret
[3] to emulate the distribution of EDP conditioned on IMs. This approach features no need for
replications, i.e., the simulation is only performed once for each set of ground motion parameters.
Moreover, we further extend the method to an adaptive approach which automatically selects the
degree for the shape parameters of the model. The resulting surrogate model directly produces
the conditional probability function which can be used for fragility analysis in a straightforward
way.

The remainder of the paper is structured as follows. In Section 2, we recap the principle of
fragility analysis. In Section 3, we summarize the main ingredients of the generalized lambda
model and present a novel method to build the surrogate model in an adaptive manner. We
describe a computational example in Section 4. The detailed numerical results are given in
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Section 5 to illustrate the performance of the proposed method. Finally, we conclude the main
finding of the study and give outlook for future research in Section 6.

2 Fragility analysis

In PBEE, seismic loads are typically characterized by the IMs. An incomplete list of conventional
IMs include peak ground acceleration, spectral acceleration, peak ground velocity, and Arias
Intensity [4]. However, in general, an IM can represent any “optimal” feature of the seismic
load. According to [4], optimal is defined as being practical, sufficient, effective, and efficient
(see [4] for further details). Following this line, in [2], a set of IMs have been identified with a
particular set of physically meaningful parameters of the stochastic ground motion model. In
risk assessment, IMs are modeled by random variables to account for uncertain earthquake loads
in the considered area. As a result, we represent the IMs by a random vector denoted by X.
The lower case x corresponds to a specific realization of IMs.

Because IMs are summary quantities, they cannot uniquely determine the detailed time series. In
other words, for a given x, one can find different earthquake signals that share the same values
of IMs. Consequently, conditioned on x, the EDP denoted by Y is still a random variable rather
than a deterministic value.

Fragility analysis aims at computing the failure probability conditioned on the IMs. More
precisely, the failure probability is defined as the probability that EDP exceeds a given threshold

pf (x) = P (Y > δ0 |X = x) , (1)

where pf is the fragility function, and δ0 corresponds to the threshold that is selected based on
the safety demand.

When aggregating the risk to evaluate the decision variables (e.g., monetary losses, casualties,
downtime), the complete conditional probability is required [5]. As the fragility function in
Eq. (1) can be directly evaluated by post-processing the conditional distribution, we focus on
estimating the later for general purpose in this paper.

3 Generalized lambda models

To estimate the distribution of the EDP, Y , conditioned on the IMs, X = x, we propose using
the generalized lambda model [3]. The generalized lambda model relies on the generalized lambda
distribution to represent the conditional distribution. The distribution parameters as functions of
x are represented by polynomial chaos expansions. In this section, we briefly review the principle
of this model.
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3.1 Introduction

A generalized lambda model assumes that the conditional distribution can be approximated by
the generalized lambda distribution. This distribution family is a very flexible and can accurately
represent most of the common parametric distributions, among others, uniform, normal, and
extreme value distributions [6].

A generalized lambda distribution is given by a parameterization of its quantile function [7], that
is,

Q(u; λ) = λ1 + 1
λ2

(
uλ3 − 1
λ3

− (1− u)λ4 − 1
λ4

)
, (2)

where λ = (λ1, λ2, λ3, λ4) is the vector of the four distribution parameters: λ1 is the location
parameter, λ2 is the scale parameter, λ3 and λ4 control the shape of the distribution. In order
that Q(u; λ) defined in Eq. (2) is a valid quantile function (increasing on [0, 1]), it is required
that λ2 > 0. From the quantile function, we can derive the probability density function (PDF)

fGLD
Y (y; λ) = λ2

uλ3−1 + (1− u)λ4−11[0,1](u),

with u = Q−1(y; λ),
(3)

where 1 is the indicator function. As indicated by Eq. (3), the PDF does not have an explicit
form, and one needs to solve a nonlinear equation to evaluate it numerically.

Under the assumption that the conditional distribution can be approximated by the generalized
lambda distribution, the distribution parameters λ1–λ4 are functions of x, denoted by λ(x). In
the generalized lambda model, these functions are represented by polynomial chaos expansions
[8]

λl (x) ≈ λPC
l (x; c) =

∑

α∈Al

cl,αψα(x), l = 1, 3, 4,

λ2 (x) ≈ λPC
2 (x; c) = exp


 ∑

α∈A2

c2,αψα(x)


 .

(4)

The exponential transform is used to guarantee the positiveness of λ2. Here, ψα is a multivariate
polynomial chaos basis function defined by the multi-index α whose j-th component αj denotes
the polynomial degree of ψα in xj , cl,α is the associated coefficient for λPC

l , and Al is the
truncation set that defines all the polynomial basis considered to represent λl. The most
commonly used truncation scheme is the “full basis” of degree p which contains all the basis
functions of total degree less than p

AM,p def=



α ∈ NM :

M∑

j=1
αj ≤ p



 . (5)

For independent random variables X, the basis function is defined as a product of univariate
polynomials:

ψα(x) =
M∏

j=1
ϕ(j)

αj
(xj), (6)
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where
{
ϕ

(j)
k : k ∈ N

}
is the orthogonal polynomial basis with respect to the marginal distribution

fXj , i.e.,

E
[
ϕ

(j)
k (Xj)ϕ(j)

l (Xj)
]

=





1 if l = k

0 otherwise
. (7)

For normal, uniform, and exponential distributions, the associated univariate orthogonal polyno-
mials are well-known as Hermite, Legendre and Laguerre polynomials [8].

When X has dependent components (as it is usually the case in earthquake engineering [2]), one
common way to build the basis functions is to transform X into an auxiliary vector Ξ = T (X)
with independent components (e.g., a standard normal vector) using the Nataf or Rosenblatt
transform [9]. Then, the polynomial basis is defined with respect to the transformed variables

ψα(x) =
M∏

j=1
ϕ(j)

αj
(ξj). (8)

where
{
ϕ

(j)
k : k ∈ N

}
is given by the marginal distribution of Ξj .

3.2 Build a generalized lambda model from data

To build a generalized lambda model, one needs to select a set of basis functions, i.e., a truncation
set, for each component of λPC and determine the associated coefficients, as shown in Eq. (4).
In this section, we recall the method proposed in Zhu and Sudret [3] which features no need for
replications. Furthermore, we will enrich this method by adaptively selecting appropriate basis
functions for λ3 and λ4.

In the first step, we generate/collect data to build the surrogate. X =
{

x(1), . . . ,x(N)
}

contains
N realizations of IMs. For each point x(i) of X , the associated EDP y(i) is recorded in Y ={
y(1), . . . , y(N)

}
.

If the truncation sets {Al : l = 1, . . . , 4} are given, the maximum likelihood estimation can be
used to calibrate the coefficients of the basis functions based on X and Y:

ĉ = arg max
c

L (c) , (9)

where L is the log-likelihood given by

L (c) =
N∑

i=1
log

(
fGLD

(
y(i); λPC

(
x(i); c

)))
. (10)

As suggested in Eq. (9), this estimator does not require replications.

To determine the truncation sets A1 and A2 for λPC
1 and λPC

2 , we plug the sparse solver hybrid-
least angle regressions [10] into the modified feasible generalized least-squares framework proposed
in Zhu and Sudret [3]. The latter consists in alternatively fitting the mean and the variance
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function of EDP. The resulting basis functions for the mean form the truncation set A1 for λPC
1 ,

and those for the variance function form A2 for λPC
2 .

Zhu and Sudret [3] proposed selecting polynomials with relatively low degree, namely 1, for λPC
3

and λPC
4 if the shape of the distribution is not expected to change in a strongly nonlinear way.

In this study, we propose Algorithm 1 based on the Bayesian information criterion (BIC) [11] to
adaptively choose an appropriate degree for λPC

3 and λPC
4 . In this algorithm, we first build an

generalized lambda model with λPC
3 and λPC

4 being constant (corresponding to the truncation
set AM,0) and evaluate the associated BIC score:

BIC def= −2L(ĉ) + log(N)∥ĉ∥0, (11)

where L is the log-likelihood function defined in Eq. (10), ĉ is the vector of the coefficients
estimated by applying Eq. (9) to the selected truncation sets, and ∥·∥0 is the ℓ0-norm which
gives the number of non-zero terms of a vector. Then, we increase the degree of λPC

3 (λPC
4 ) by

1 and construct a generalized model accordingly, whose BIC score is calculated as BIC3 (resp.
BIC4). The smaller value between BIC3 and BIC4 is defined by BICl with l ∈ {3, 4} indicating
the corresponding index. If BICl improves the current best BIC score, i.e., BICl < BIC, we
update the optimal BIC score to BICl and keep the associated truncation set Al. We repeat this
procedure until when increasing the degree for λPC

3 and λPC
4 does not further improve the BIC

score.

3.3 Fragility analysis with generalized lambda models

After building a generalized lambda model, we can post-process it to calculate the fragility
function defined in Eq. (1). For given values of IMs x, one can evaluate Eq. (4) to calculate
the distribution parameters λ = λPC(x; ĉ) for the associated EDP. As the generalized lambda
distribution is parameterized by its quantile function Eq. (2), one needs to inverse this nonlinear
function to evaluate the cumulative probability function (CDF) that is necessary to calculate the
exceeding probability.

More precisely, for a given threshold δ0, we first solve

δ0 = Q(u; λ). (12)

Because δ0 can be outside the range of the distribution, a solution between [0, 1] may not exist.
In this case, the CDF will take the value 0 or 1 depending on the range of the distribution and
the value of δ0. Therefore, the CDF evaluated at δ0 is given by

P(Y ≤ δ0 |X = x) =





0 Q(0; λ) ≥ δ0

Q−1(δ0; λ) Q(0; λ) < δ0 < Q(1; λ)

1 Q(1; λ) ≤ δ0

(13)

Finally, the fragility function is computed by

pf (x) = P(Y ≥ δ0 |X = x) = 1− P(Y ≤ δ0 |X = x). (14)
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Algorithm 1 Adaptive selection of truncation sets for λPC
3 and λPC

4
1: Input: A1, A2, X , Y
2: A3 ← AM,0, A4 ← AM,0

3: Build a generalized lambda model following Eq. (9)
4: Calculate BIC associated with the model
5: p3 ← 0, p4 ← 0, Stop ← false
6: while not Stop do
7: A3 ← AM,p3+1, A4 ← AM,p4

8: Build a generalized lambda model following Eq. (9)
9: Calculate BIC3 associated with the model

10: A3 ← AM,p3 , A4 ← AM,p4+1

11: Build a generalized lambda model following Eq. (9)
12: Calculate BIC4 associated with the model
13: l← arg min {BICl : l ∈ {3, 4}}
14: if BICl < BIC then
15: pl ← pl + 1, BIC← BICl

16: else
17: Stop ← true
18: end if
19: end while
20: Output: A3 ← Ap3 , A4 ← Ap4

4 Computational example

4.1 Synthetic ground motion

In this paper, we use a simplified version of the site-based ground motion model introduced in [12]
for broad-band motions. The model is the frequency-domain version of the original time-domain
model implemented in [13]. Specifically, the model is defined via spectral representation using an
Evolutionary Power Spectral Density (EPSD), which preserves the key advantage of separating
the temporal and spectral components of the process.

The spectral content of the process is represented by a normalized stationary Kanai-Tajimi Power
Spectral Density (KT-PSD), which is completely characterized by the main frequency parameter,
ωg, and the bandwidth, ζg. Therefore, in this preliminary study, we neglect the non-stationary
spectral characteristics of the ground motion. Moreover, we estimate the main frequency at
the strong ground motion phase and fix the bandwidth parameter to 0.9 (representative of
broad-band motions). The stationary process is modulated in time by a gamma modulating
function ([13], [12]), which is completely defined by the expected Arias intensity Ia, the time at
which 45% level of the expected Arias intensity is reached, tmid, and the effective duration of the
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motion, D5−95. The complete EPSD is derived by combining the normalized KT-PDS and the
modulating function; moreover, to ensure zero residual velocity and displacement, a high-pass
filter is applied according to the evolutionary theory of Priestley as described in details in [12].
To summarize, the free parameters of the model are x = [Ia, tmid, D5−95, ωg].

Next, the model is fitted to a catalog of recorded far-field ground motions retrieved from the
PEER NGA-West2 database. Specifically, the catalog includes 71 ground motions recorded at
a range of distances (10-90 km) and site conditions from reverse earthquakes with magnitude
between 6 and 7.6. The two horizontal components of each record are rotated into the major and
intermediate principal directions. Only the major component is used in this study. The procedure
used to estimate ωg is described in details in [12]. However, in [12], ωg is a time-varying function,
while in this study ωg corresponds to the main frequency of the ground motions at tmid (which is
considered the strong phase of the ground motion). The procedure to estimates the parameters
Ia, tmid, D5−95 follows [13].

From the 71 estimates of the free parameters, we define and fit a joint-probability model to
account for the parameter variability and their dependence structure. In essence, we transform
the vector of model parameters, x, in a random vector, X. The probabilistic model is based on
log-normal marginal distributions and a Gaussian copula (i.e., a joint log-normal distribution).
The parameters defining the log-normal marginal distributions together with the Gaussian copula
are reported in Table 1.

Provided with this joint probability model, the simulation of the ground motions is given by
a two-step procedure. First, the model parameters are sampled from the joint log-normal
distribution; then, time series are generated by filtering white noise Gaussian vectors with the
EPSD and the high-pass filter. It is important to recognize that this is a stochastic simulator
setting, i.e., for a given set of model parameters X = x, multiple time series can be generated.
It follows that when these time series are used as inputs into a computational model, the model
response of interest (i.e., the EDP) is a random variable even when X = x.

Table 1: Ground motion parameters

Name Distribution

Ia LN (−4.61, 1.452)

tmid LN (2.55, 0.902)

D5−95 LN (2.67, 0.532)

ωg LN (1.42, 0.592)

Correlation
matrix

R =




1 0.015 −0.23 −0.13
0.015 1 0.68 −0.36
−0.23 0.68 1 −0.11
−0.13 −0.36 −0.11 1



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4.2 Three-story frame

In this Section, we introduce the properties of a three-story shear frame idealized as a three
degree of freedom system. We are interested in the dynamic response of the system subjected to
the ground motions generated according to Section 4.1 The interstory behavior is inelastic, with
a force-interstory-drift relationship based on a Bouc-Wen hysteretic model [14]. Specifically, the
i-th interstory restoring force is written as

qi(vi(t), v̇i(t)) = ki [αvi(t) + (1− α)z(t)] , (15)

where vi(t) denotes the interstory-drift, α is a parameter that controls the degree of inelasticity
(i.e., α = 1 corresponds to the linear case), ki is the initial elastic interstory stiffness, and z(t) is
the hysteretic response governed by the following law

ż(t) = −γ |v̇(t)| |z(t)|n−1 − η |z(t)|n v̇i(t) +Av̇(t), (16)

where γ, n,A and η are the model parameters. The values of structural properties, including the
local masses mi and damping ci, and model parameters are reported in Table 2. The story yield
displacement, δy, is set to 0.01[m] and the post-hardening stiffness is set at 10% of the elastic
stiffness ki for all the three stories. The EDP of interest is the maximum interstory-drift, i.e.,

Y = max [max[v1(t), v2(t), v3(t)]] . (17)

Table 2: Structural properties and Bouc-Wen parameters

mi [kg] ci [Ns/m] ki [N/m] α n γ[1/mn] η[1/mn] A

Storey 1 1E6 1.73E6 3.0E8 0.1 5 1/(2δy)n 1/(2δy)n 1
Storey 2 1E6 1.73E6 2.4E8 0.1 5 1/(2δy)n 1/(2δy)n 1
Storey 3 1E6 1.73E6 1.5E8 0.1 5 1/(2δy)n 1/(2δy)n 1

5 Numerical results

In this section, we compare the generalized lambda model (GLaM) in presented Section 3 with
two other statistical models for fragility analysis of the case study in Section 4. The first model
is a simple linear model (LM), where we assumes that the model output is a linear function of
the IMs (in the log-space) with a homoskedastic Gaussian noise, i.e.,

log (Yx) =
∑

j=1
βj log(xj) + e. (18)

Here, βj ’s are the coefficients, and e ∼ N (0, σ2). β and σ are estimated by ordinary least-squares
[15]. The second model is a state-of-the-art kernel conditional density estimator (KCDE) from
the package np [16] implemented in R.
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We select the four ground motion parameters in Table 1 as IMs. This choice allows for not only
using replications to validate the surrogate models but also capturing the dependency between
the source and the EDP without going through intermediate variables [2].

To get data, we generate 105 realizations of the random ground motion parameters with Latin
hypercube sampling (LHS) [17]. The 3-DOF nonlinear Bouc-Wen model is evaluated once for
each realization. To build the surrogate model, we randomly subsample this big data set to
obtain training dataset of a desired size N .

(a) x = (0.03, 16.9, 9.6, 1.6) (b) x = (0.001, 8.9, 12.6, 6.7)

Figure 1: Comparisons of emulated PDFs, N = 1,000.

Fig. 1 illustrates the PDFs of the maximum interstory drift for two sets of IMs. The surrogate
models in comparison are built on a training set of size N = 1,000. The results demonstrate
that GLaM outperforms the other two models. In the left plot Fig. 1a, GLaM more accurately
represents the tail of the distribution. In the right plot Fig. 1b, GLaM has a similar performance
to the linear model: both models approximate well the underlying distribution, whereas the
nonparametric model KCDE overestimates the spread of the distribution.

To quantitatively compare the accuracy of the surrogate models for representing the conditional
distribution, we define an error metric by

ε =
EX

[
d2

WS

(
YX , ỸX

)]

Var [Y ] (19)

where Yx is the EDP for given IMs x, Ỹx corresponds to that of the emulator, and dWS is the
Wasserstein distance of order two [18] defined by

d2
WS (Y1, Y2) def= ∥Q1 −Q2∥22

=
∫ 1

0
(Q1(u)−Q2(u))2 du ,

(20)

where Q1 and Q2 are the quantile functions of two random variables Y1 and Y2, respectively.

In this study, we use a test set of 50 to calculate the expectation in Eq. (19). For each point
of the test set, we repeatedly run the simulator 1,000 times as a reference to evaluate Eq. (20).
To compare the convergence behaviors of the surrogate models, we vary the size of the training
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set N ∈ {250; 500; 1,000; 2,000; 4,000}. Each scenario is run 20 times with independent training
samples to account for statistical uncertainty.

Figure 2: Comparison of the convergence among the surrogate models in terms of the normalized
Wasserstein distance. The dashed lines denote the average value over 20 repetitions of the full
analysis.

Fig. 2 summarizes the convergence of the surrogate models. For a few data N = 250, LM provides
slightly more accurate results than GLaM. This is because the linear model is very simple and
restrictive, which can result in a large bias but a small variance. Increasing N almost does not
improve the performance of the linear model. This implies that the error is mainly dominated by
the bias. For large data set, namely N ≥ 2,000, LM performs the worst among the three models.
In contrast, GLaM and KCDE are flexible models, and thus they have a smaller bias but a bigger
variance. With increasing N , both models show a clear decay of the errors. For N = 500, GLaM
has a similar performance to LM. For N ≥ 1,000, GLaM outperforms the other two models.

Now, we study the accuracy of the surrogate models for estimating failure probabilities in the
context of fragility analysis. In this study, we fix the threshold to δ0 = 0.02[m], i.e., the structure
fails when the maximum interstory drift exceeds 0.02m.

Following Eq. (1), the failure probability is a function of the IMs. As a result, we use the
normalized mean-squared error as a performance indicator

εp =
EX

[
(pf (X)− p̃f (X))2

]

Var [pf (X)] , (21)

where pf (x) is the reference value calculated from 1,000 replications at x, p̃f (x) is the failure
probability predicted by the surrogate model. The expectation and variance are estimated from
the test set (of size 50).

Fig. 3 compares the accuracy of the surrogate models in terms of estimating the fragility function
with the threshold value δ0 = 0.02m. Similar to Fig. 2, the performance of LM does not improve
by using more data. Despite the decay of the error, KCDE estimates poorly the failure probability
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Figure 3: Comparisons of the surrogate models for the estimation of the fragility function with
the threshold value δ0 = 0.02m. The dashed lines denote the average value over 20 repetitions of
the full analysis.

even for a large number of data. GLaM clearly outperforms the other models for all sizes of the
data. Moreover, for N = 4,000, the average error of GLaM (1.7× 10−3) is almost one order of
magnitude less than that of LM (8.7× 10−3) and KCDE (1.6× 10−2).

Finally, we plot the fragility function in the Ia − ωg plan of a GLaM built upon 1,000 model
evaluations in Fig. 4. The other variables are fixed at their mean value. As a comparison,
we run the simulator for a validation set of nine points obtained by the Cartesian product of
Ia ∈ {0.02, 0.06, 0.1} and ωg ∈ {2, 6, 10}. The reference failure probability associated with each
validation point is computed by 1,000 replications (i.e., totally 9,000 model runs for validation).
As seen in Fig. 4, the diamonds representing the reference points lie fairly well on the estimated
fragility surface. The maximum absolute error of GLaM among the 9 validation points is 0.08 at
Ia = 0.1 and ωg = 6.

6 Conclusions

Fragility analysis plays a central role in performance-based earthquake engineering. This consists
in computing the probability that the engineering demand parameter exceeds a certain level given
the values of intensity measures. In this paper, we propose using the generalized lambda model
to emulate the dependence of EDP on IMs. In such a surrogate, the conditional distribution is
represented by the flexible generalized lambda distribution. The four distribution parameters
are modelled by polynomial chaos expansions as functions of IMs. As this model produces the
conditional distribution, the fragility function can be directly computed by post-processing the
surrogate.

Compared to the original approach for GLaM presented in [3], we propose in this contribution
an adaptive algorithm to select appropriate truncation degrees for the shape parameters. This
novel approach is compared with a simple linear model and a state-of-the-art non-parametric
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Figure 4: Fragility function in the Ia − ωg plan of a GLaM built on 1,000 samples. The diamond
points correspond to the reference value computed from 1,000 replications.

model on a numerical example using synthetic ground motions calibrated from records. In the
case study of a three-story frame, the four parameters used to generate artificial ground motions
are considered as IMs, and the maximum interstory displacement is selected as EDP. Based on
this choice, we use replications to obtain a reference distribution of the EDP conditioned on
given values of the IMs.

The numerical results show that the proposed approach can accurately represent the EDP-IMs
dependence. In terms of approximating the entire conditional distribution, the generalized lambda
model generally outperforms its two counterparts. Compared with the simple linear model,
it demonstrates a similar performance for relatively small sample sizes, but it shows a much
steeper decay of the errors. Compared with the non-parametric model, it always yields smaller
errors. Moreover, the generalized lambda model always gives the most accurate estimation of
the fragility function for all sizes of the training data.

For future research, we will examine the accuracy of the generalized lambda model in estimating
fragility curves with other classical IMs, e.g., peak ground acceleration and spectral acceleration
[19]. Besides, we plan to incorporate the model in the PBEE framework to evaluate the decision
variables [5], as the conditional distribution is directly given by the surrogate.
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