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Forest expansion dominates China’s land
carbon sink since 1980

Zhen Yu1,2,3, Philippe Ciais4, Shilong Piao 5, Richard A. Houghton 6,
Chaoqun Lu 7, Hanqin Tian 8, Evgenios Agathokleous1, Giri Raj Kattel 9,10,11,
Stephen Sitch 12, Daniel Goll 4, Xu Yue 13, Anthony Walker 14,
Pierre Friedlingstein 15, Atul K. Jain 16, Shirong Liu 2 & Guoyi Zhou 1

Carbon budget accounting relies heavily on Food and Agriculture Organization
land-use data reported by governments. Here we develop a new land-use and
cover-change database for China, finding that differing historical survey
methods biased China’s reported data causing large errors in Food and Agri-
culture Organization databases. Land ecosystemmodel simulations drivenwith
the new data reveal a strong carbon sink of 8.9 ±0.8 Pg carbon from 1980 to
2019 in China, which was not captured in Food and Agriculture Organiza-
tion data-based estimations due to biased land-use and cover-change signals.
The land-use and cover-change in China, characterized by a rapid forest
expansion from 1980 to 2019, contributed to nearly 44% of the national ter-
restrial carbon sink. In contrast, climate changes (22.3%), increasing nitrogen
deposition (12.9%), and rising carbon dioxide (8.1%) are less important con-
tributors. This indicates that previous studies have greatly underestimated the
impact of land-use and cover-change on the terrestrial carbon balance of China.
This study underlines the importance of reliable land-use and cover-change
databases in global carbon budget accounting.

Land-use and cover-change (LUCC) resulting from anthropogenic
activities are nearly ubiquitous across Earth’s surface, impacting bio-
geochemical cycles, and regional and global climate1. LUCC-induced
carbon (C) emission is one of the most uncertain terms in the global C
budget2,3, and is thought to be responsible for approximately 25% of
the historical atmospheric increase in CO2 concentration

4. To quantify
the related emissions, land use change reconstructions are needed,
which are used to drive either bookkeeping or Dynamic Global Vege-
tation Models, e.g. the 5th and 6th Assessment Reports of the Inter-
governmental Panel on Climate Change (IPCC) or the annual updates
of the Global Carbon Budget2,5.

The standard gridded land use change reconstruction used by
carbon models is the Land-Use Harmonization (LUH2) dataset2. LUH2
is based on Food and Agriculture Organization (FAO) reports of
country-level agricultural area disaggregated in space. It integrates the
History Database of the Global Environment (HYDE) land use model,
with the Miami-LU model to predict the area occupied by forests

before human land use6, and a simulation of secondary forests area
driven by harvest and agricultural land expansion6. HYDE represents
long-term cropland spatial distribution changes with global coverage,
developed by assimilating both inventory and satellite data. Region-
ally, the distribution of cropland areamodeled byHYDE canbe biased7

however, since it is not fully constrained by observed changes ofmajor
land cover types such as grassland and forests. Specifically, the LUH2
dataset was built from national agricultural land area data, but was not
constrained by forest area8. Sub-national changes of cropland are
determinedby theHYDEmodel, using a number of rules and suitability
criteria to decide if a pixel is agricultural9.

From regional sources, better data can be collected at a fine scale
for alternative datasets, such as higher-resolution gridded maps and
more accurate measurements. For example, Yu and Lu10 and Yu et al.7

developed a multi-source harmonized LUCC database for the US and
corrected land use change data in LUH2. Such corrections markedly
switched LUCC-induced C flux from a strong C sink (−30.3 ± 2.5 Tg C
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per year, LUH2-based) to a small C source (13.6 ± 3.5 Tg C per year) in
the US during 1980–2016.

China has experienced intensive deforestation and afforestation,
cropland expansion and abandonment, and grassland and wetland
shrinkage and recovery since 1900. Records of land-use history are
relatively scarce and sometimes inconsistent11. LUCC information has
been improved with the use of remote sensing products since the
1980s, but the LUCC’s impact on the C budget of China is uncertain.
Earlier assessments of the LUCC impact differed among regions, time
periods, and biomes12–14. For example, LUCC-induced cumulative C
emission in China may differ by a factor of three to five according to
different studies (17–33 Pg C vs 6.18 Pg C from 1700 to 2000) based on
similar bookkeeping models12,14. Such discrepancies mainly stem from
the use of different LUCC data14. The accuracy and the reliability of the
LUCC databases are generally not thoroughly examined, and the
spatio-temporal distributions of the major biomes in different data-
bases can be dramatically different. For example, this was the case for
the forest areas fromLUH2GlobalCarbonBudget dataset15 (LUH2-GCB
hereafter) and the State Forestry Administration of China16 (Supple-
mentary Fig. S9). Thus, there is still a lack of long-term comprehensive
LUCC databases with known, corrected biases, suggesting that the
estimation of LUCC-induced C flux can be further improved. More-
over, model representation of forest C dynamics in China is also gen-
erally simplified. None of the earlier studies considered different forest
types (i.e., planted or natural forest) and nor was forest management
simulated in assessing LUCC-induced C balance. Planted forests (PFs)
and natural forests (NFs) should be distinguished because their capa-
cities of C uptake and storage vary considerably due to different spe-
cies composition, stand structure, age, and impact of management
context17.

To address these challenges, we have developed a new compre-
hensive LUCC database addressing known issues by harmonizing
multiple sources of inventory data and high-resolution satellite images
(see Methods and Supplementary Information 1). Then, we used the
database to drive a process-based land ecosystem model (Dynamic
Land Ecosystem Model, DLEM) to derive resulting C fluxes. The
simulations were compared with MsTMIP and TRENDY, the two most
recognized and influential multi-model intercomparison projects. Our
goal was to compile an improved data set to assess C storage dynamics
in China’s terrestrial ecosystems from 1900 to 2019, with a specific
emphasis on the LUCC impacts since 1980 – a period when intensive
forest expansion occurred – while also considering contributions of
climate, forest management, nitrogen (N) deposition, and CO2

fertilization.

Results and discussion
Historical land use and cover changes
Existing databases differed significantly in representing historical
LUCC in China (Fig. 1). Generally, datasets agree on the direction of
change in cropland area until 1980 in Liu and Tian18, Ramankutty19,
Houghton20, and this study (Fig. 1b, c), while the magnitude of change
varied greatly. Specifically, the total cropland expansion in China was
comparable between our new data set and the LUH2-GCB from 1900
onwards (56 vs 60Mha, Fig. 1b), but cropland area changes since 1980
diverged considerably (−14 vs 41 Mha, Fig. 1c). The differences were
also evident across space and more distinct during the period of 1980
to 2019 (Fig. 2a–d), in which the cropland coverage was mainly
declining in our reconstructed data but increasing in LUH2-GCB
(Fig. 2b, d). We found that the distinct changes are derived from the
abrupt cropland increases in the FAO data reported from China, upon
which LUH2-GCB was based (see Supplementary Information 3).

The problems of cropland area expansion reported to FAO are
likely caused by changes in the underlying database, in which the
Chinese Agricultural Yearbook (CAY)was used prior to 1996, the China
Land and Resources Statistical Yearbook (LRSY) from 1996 to 2007,

and the National Land and Resources Bulletin (NLRB) after 2007
(Supplementary Information 3).

These three datasets are not consistent with each other because
surveying methods were distinct. For example, cropland area in CAY
before 1982 used an extrapolation method (i.e. “production-to-acre-
age” approach) due to limited field survey data11. Specifically, the
extrapolation method was widely adopted for convenience and for
taxation purposes in the early period, such as in the framework of the
first benchmark cropland survey conducted in 1953. Such methods
assumed that low-productivity cropland occupied an area of 1/3–1/8 of
a predetermined, “standard-productivity” cropland21, which greatly
underestimates the acreages of low productivity cropland. Biases
accumulated in this method persisted until the satellite era (1980s),
while the 1953 surveying data were used as the baseline for CAY to
update cropland area on an annual basis.

Besides the survey method, policies also contributed to a bias of
reported cropland area. To tackle rising food demands, cropland
expansion was highly encouraged by the government before the
1980s, implementing an incentive policy to allow new tax-free crop-
land without reporting to the government for the first 3–5 years22,23.
Even after the initial reporting free period, these newly cultivated
croplands continued to be unreported due to political incentives to
show increasing crop yield to the local authorities23,24.

When the first comprehensive and systematic survey (i.e. the
second national cropland survey conducted during 1985–1996) was
completed, the cropland area was found to be larger than previously
reported in CAY11. Similarly, the shift from the use of LRSY toNLRB also
introduced a spurious cropland area increment from 2007 to 2010 as
small, fragmented croplands were identified by better technologies
adopted in NLRB, which had remained undetected previously (Sup-
plementary Fig. S10).

Thus, LUH2-GCB has inherited spurious temporal signals of
abrupt cropland increment in FAO from the 1980s to 2010 (Fig. 1a
and Supplementary Fig. S10). Therefore, if the areas of other land
cover types (e.g. forest) are indirectly constrained from cropland
area change, cropland area biases were mirrored in the area change
of other land use types. This is the case for the LUH2-GCB and for Liu
and Tian’s previous land use gridded datasets. Our new database,
rebuilt from Yu et al.11, corrected these problems in temporal
dynamics by assimilating multiple data sources (Fig. 1a). More spe-
cifically, we retrospectively reconstructed information about crop-
land and forest areas year by year, using tabular data from official
agencies (Supplementary Information 1 and Supplementary Data 1).
To further reduce the aforementioned biases, we used the most
recent and authoritative record of provincial cropland and forest
areas available as the benchmark, and then spatialized the cropland
and forest distributions using gridded maps as ancillary data (Sup-
plementary Information 1). The area changes were also validated
using inventory-based benchmark data (Fig. 1a, d, details were pre-
sented in Yu et al.11 and Supplementary Information 1.2).

Changes in forest area in China also varied dramatically among
databases. Based on Ramankutty and Foley19 and LUH2-GCB, a net
forest loss was found from 1900 to the last available year, at 33–108
Mha whereas Liu and Tian18 and Houghton and Nassikas20 reported a
net increase of 15Mha (1900–2005) and 70Mha (1900–2015) in forest
area, respectively (Fig. 1d, e).

By assimilating multiple source records, reports, and national
surveys, however, our newly reconstructed and intensively validated
database (Supplementary Figs. S4, S5, and S8) with corrected biases
suggests that the forest area increased by 58 Mha from 1900 to 2019
(Fig. 1e). In particular, our data suggest that there is a surprisingly large
underestimation of forest expansion in all other databases (38–102
Mha) after 1980 (Fig. 1f). We performed spatial analyses and show that
widespread forest expansion in our reconstructed data was repre-
sented as a forest decline in LUH2-GCB during the period 1980–2019
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(Fig. 2f, h). These existing biases in the dataset during the last four
decades can be simply removed using recently available and spatially
explicit forest products (Supplementary Table S2).

Bias in forest change might be explained by two reasons. First,
gridded datasets inherited and transferred errors from the use of FAO-
based cropland dataset in developing global land use databases such
as HYDE and thus LUH2-GCB8. Second, the FAO forest area reported is
an important reference data used in these databases. The FAO forest
area is reported based on a “land use” definition, which under-
estimated gross “land cover” change signals between reported years
(Supplementary Information 1.3). Specifically, the FAO forest area
describes lands that have been forested and will continue to be used
for forestry (e.g. cut-over area, fired-over area, unestablished affor-
estation land) (Supplementary Table S5). This approach overestimates
forest area by including lands used for reforestation where no forest
was yet created. Thus, for example, the FAO statistics reported a 157.2

Mha forest area in 1990 (Supplementary Fig. S7), which is ~30Mha
higher than officially released data.

More importantly, newly established forests were underestimated
in such an accounting approach. The forest area expansion in China
reported in the FAO statistics was 61Mha from 1990 to 2019, which is
30Mha lower than the officially released data16. Our reconstructed
dataset, in agreement with officially released forest area, uses a “land
cover” definition that characterizes the distribution of annually
established forests. Therefore, the FAO statistics - a data set with
definition specified to describe the area of land use – should be used
with caution for constraining the temporal evolution of forest cover
distribution in gridded data reconstruction, and the modeling com-
munity should be alerted to treat the LUCC data appropriately.

Nonetheless, the FAO and the related LUH2 products were the
dominant LUCC forcing data used in multiple studies3,25, including
various process-model-based intercomparison projects (e.g. MsTMIP,
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Fig. 1 | Temporal, net changes of cropland and forest from 1900 (unit: Mha).
Panel a–c: cropland; paneld–f: forest; the bar charts indicate the total accumulated
areas (b, e) from 1900 and (c, f) from 1980 until the last available year; LUH2-GCB
was the latest version of LUH2 data used in Global Carbon Budget assessments
projects (LUH2 used in MsTMIP and TRENDY were showed in Supplementary
Figs. S7 and S10); Houghton data were derived from Houghton and Nassikas20 and

the data in 1900 were interpolated from 1850 and 1950; Liu&Tian and Ramankutty
data were derived from theworks of Liu and Tian16 andRamankutty and Foley18; the
open circles indicate the changes of cropland and forest areas derived from
inventory-based benchmark data; details of the benchmark data for cropland and
forest were presented in Yu et al.11 and Supplementary Information 1.2 of this study,
respectively; error bars: one standard deviation from the mean.
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LUMIP, NMIP, TRENDY), annually released Global Carbon Budget
reports2,26, and IPCC reports5, implying a potential bias of these
assessments for the China region. In contrast, changes in forest area
from our database were independently developed (Supplementary
Information 1.2), intensively calibrated, and validated using officially
released national forest inventories (NFIs, see Supplementary Figs. S4
and S5), which can help to reduce the potential bias of C balance
assessment in China.More specifically, the total forest area andPF area
in our database were compared with historical NFIs released by the
National Forestry and Grassland Administration at provincial level
since 1949 (Supplementary Figs. S4 and S5), which supports the
reliability of our reconstructed data.

Historical carbon stock changes
To illustrate the bias in the C balance of China when using previous
LUCC dataset, we performed simulations with the DLEMmodel for the
period 1900–2019 at a resolutionof 0.5 × 0.5degree forced by our new
LUCC dataset. We validated the distribution and changes of C stock
using published studies and previously reported inventory-based
estimations (Supplementary Information 6 and 7). The model could
capture well C dynamics in China using inventory-based forest C stock
changes at both provincial and national levels as the validation data set
(Supplementary Fig. S14).

Our results show that the total C stock decreased by 6.9 ± 0.6 Pg
from 1900 to 1980 and increased by 8.9 ± 0.8 Pg C from 1980 to 2019
(Fig. 3, derived from experiment S1 in Supplementary Table S10). Such
a large C stock increment since the 1980s, which is dominated by
vegetation biomass C accumulation, was not captured in the MsTMIP
and TRENDY projects driven by different versions of the LUH2 data
(Fig. 3). This is attributed to the fast expansion of forest area(s) that
was not captured by this land use forcing (Fig. 1).

We found that the large-scale forest expansion inChina alone has
caused a substantial C accumulation since 1980 (0.21 ± 0.006 PgC
per year, Table 1). In contrast, the forest C sink of the TRENDYmodels
is negligible (−0.02 ± 0.05 Pg C per year, Table 1). A moderate C
source (0.10 ± 0.08 Pg C per year, Table 1) was even found in the
MsTMIP models, since these models were driven by continuous

forest area loss and cropland expansion since the 1980s (Supple-
mentary Fig. S7).

A recent atmospheric inversion-based study reported that China’s
land ecosystems were a large CO2 sink of −1.11 ± 0.38 Pg C per year27,
which seems to be ecologically implausible and critically sensitive to
the assimilation of the CO2 record from one station28. The compilation
of previous studies from inventory- and satellite-based estimation,
atmospheric inversion, and process-based models suggested that the
Chinese C sink wasmuch smaller (−0.18– −0.45 Pg C per year; Table 1).
Our model-simulated terrestrial sink (~−0.28 ±0.06 PgC per year) was
in this range (Table 1).

While our simulated C balance in different categories or biomes is
close to previous estimations, three major differences are observed
(Table 1). First, because the LUCC data used in previous global models
suffered from biases as shown above, the national C sink was generally
underestimated in these simulations (Table 1). Second, our estimation
of the forest sink is around two to three times larger than the previous
one during 1949–199829. This was mainly because forest area was
underestimated by over 33% (53Mha) in the previous study29 compared
to the national forest inventory (NFI)16. This underestimation may stem
from exclusion of economic and bamboo forests. The third major dif-
ference is the role of grassland soils in C balance during the period
1980–2000.China’s grassland soilswere previously reported as aminor
sink of −0.007–−0.022 PgC per year from the 1980s to the 2000s
(Table 1), while our simulations suggest that grassland soils were a C
source of 0.062–0.066PgC per year. This discrepancy lies in the
approaches used and the accounting boundaries between studies (i.e.
whether the transitions of grassland were considered), in which LUCC
impactswere representeddifferently. For example, impervious surfaces
(part of urbanized area) expanded into ~15Mhaof natural lands inChina
from 1978 to 201730, which further drove redistribution of cropland into
marginal lands with the majority converted from grassland, causing
wind erosion, habitat loss, andmorewater and fertilizer consumption31.
Earlier studies using a static grassland map exclude the C stock loss in
the land-use transition32. Thus, the distinct roles of grassland soils (i.e.
sink vs source) derived from our simulations and earlier studies are not
contradictory but are due to differences in accounting boundaries.
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(This study)
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Cropland 1900-1980
(LUH2-GCB)

(a) (d)
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Fig. 2 | Spatial distribution of the fractional coverage changes of cropland and
forest in China (unit: %). Panels a–d: cropland; panel e–h: forest; panels
a, b, e, and f indicate the results derived from this study; data in panels c, d, g, and

hwere from LUH2-GCB; panels a, c, e, and g show the changes from 1900 to 1980,
whereas panels b, d, f, and h show the changes from 1980 to 2019; negative and
positive values indicate coverage reduction and increment, respectively.
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LUCC impacts on carbon stock changes
Our DLEM simulation indicates that LUCC induced a C loss of
5.1 ± 0.7 PgC from 1900 to 2010s (Fig. 4a), which is substantially lower
than that from MsTMIP (13.8 ± 7.7 PgC, 1900–2010) and TRENDY
(9.4 ± 3.3 Pg C, 1900–2019; Fig. 4e, f and Supplementary Fig. S18d, g).
From 1980 onward, LUCC increased C storage by 4.3 ± 0.7 PgC, with
the major contribution from vegetation biomass C increment in the
southwestern and northeastern regions (Fig. 4d and Supplementary
Fig. S19a). Nonetheless, this C increase in biomass was not captured in
MsTMIP and TRENDY models (Fig. 4e, f and Supplementary Fig. S19d,
g), which simulated that LUCC continued to reduce C stock by 7.5 ± 1.6
and 5.3 ± 2.3 PgC during the period 1980 to the 2010s, respectively
(Fig. 4 and Supplementary Fig. S20).

To confirm that such discrepancy was induced by LUCC data but
not the DLEM model, we set up additional DLEM simulations
using the LUH2-GCB database (Supplementary Information 8). The
simulated C losses induced by LUCC when DLEM was driven with
LUH2-GCB were 6.5 ± 0.4 and 11.4 ± 0.6 Pg C during the periods of
1980–2019 and 1900–2019, which are close to MsTMIP and TRENDY
simulations. These results confirm that the LUCC forcing database is
the major contributor to the difference between our simulations and
the MsTMIP and TRENDY projects. An earlier study reported that
global LUCC-induced C emissions are substantially underestimated
due to underrepresented tree harvesting and land clearing from
shifting cultivation33. Our simulation revealed that regional LUCC-
induced C emission could also be overestimated in China due to a
bias in the LUCC data.

There are alsodisputes overwhether the LUCC induced aC sink in
China since the 1990s or not (Supplementary Table S8). By using an
updated LUCC database, our simulations revealed that LUCC was a
strong C sink in China, and that itsmagnitudewas larger than previous
estimates since the 1990s (Supplementary Table S8). Our results using
an improved LUCC forcing data can facilitate narrowingdown thewell-
known, large uncertainty in LUCC-induced C change at regional scale.

Attributions of different factors on C stock changes since 1980
By using the DLEM model with factorial simulations (see Supplemen-
tary Information 8 for details), we examined the direct and interactive
contributions of different drivers to terrestrial C stock change in China

for the period 1980–2019, including LUCC, climate, forest manage-
ment, N deposition, and CO2 fertilization (see Methods, Fig. 5). Note
that historical C stock change is not equivalent to the sum of factorial
attributions as the baseline conditions differ (see Supplementary
Information 8).

Overall, 81.9% (6.5 PgC) of the terrestrial C sink during this period
was attributed to direct impacts of all major factors, while the inter-
active effect contributed 18.1% (1.43 PgC; Fig. 5c). Among all the fac-
tors examined, LUCC was the dominant driver accounting for 50.3%
(3.96 Pg C) of the total C increment during the period 1980–2019
(Fig. 5c), which was largely attributed to biomass C accumulation
(70.0%; Fig. 5a, c). Tian et al.13 reported that LUCC’s contribution to the
sink in China was at 0.05 Pg C yr−1 since the 1980s – an amount that is
only about 30%of our simulations. The discrepancy is attributed to the
different representation of forest expansion in model simulations,
whichwas 65Mha from 1980 to 2005 in our database but only ~14Mha
in Tian et al.13. Similarly, the increase in the global land sink during the
recent period (1998–2012) was also mainly attributed to LUCC (i.e.
decreased tropical forest area loss and increased afforestation in
northern temperate regions), instead of CO2 or climate change34.

Climate change enhanced biomass C stocks by 1.63 Pg but caused
a soil C loss of 0.30 Pg, thus contributing to land sink of 1.41 Pg C
(18.0% of the total with all factors) since 1980 (Fig. 5). Other global
change factors, such as N fertilizer application, atmospheric N
deposition, and rising CO2, had a relatively minor contribution
(0.1–9.54%) to the terrestrial C sink. Therefore, conversely to previous
studies13,35–37, we showed that LUCC was the dominant driver of the
recent landC sink inChina, andother factors including climate change,
rising CO2, and N deposition, contributedmuch less (0.1–18.0%) to the
C stock increment in China (Fig. 5c). Tian et al.13 pointed out that LUCC
effects in China should not be ignored and that the CO2 fertilization
effect might be overestimated in Piao et al.38.

Our simulations confirm these statements, and further show that
LUCC was actually the largest contributor to land sink in China since
1980 (Fig. 5). In those studies which did not account for the influence
of LUCC separately, the effects of other global change factors may
have been overestimated by including LUCC impacts. For example,
Chen et al.39 and He et al.37 attributed China’s C sink into different
components including climate change, leaf area index (LAI) change,
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rising CO2, and N deposition. Such partition inevitably masked the
separate contribution from LUCC, because LAI changes are closely
related to land-cover changes. Thus, the accurate representation of the
LUCC should be prioritized in future modeling attribution studies.

Carbon stock changes in each land cover type since 1980
The contribution of the establishment of young and new forest plan-
tations to C sink has received increasing attention3,40–42. Our simulation
(experiment S1, see Methods section) revealed that the increase in
terrestrial C stock was dominantly contributed by biomass C accu-
mulation (76.3%) (Fig. 5), in which the natural and planted forests
accounted for 65% (2.9 PgC) and 35% (1.6 PgC) during the last four
decades. We examined the LUCC effect (i.e. the largest contributor of
C stock increment in Fig. 5) on the C stock of different biomes and
confirmed that forest was the major contributor of the net C accu-
mulation in China since 1980, while other biomes, including cropland,
grassland, shrubland, andwetland, were relatively stable, varying from
−0.3 to 0.3 Pg C during the same period (Fig. 6). A recent study
documented that forest expansion was essential for a large C sink in
southern China during 2002–2017, where newly-established and
existing forests contributed to 32% and 34% of land C sink in the
region43. In comparison to the large biomass C increase since 1980
(3.0 PgC, Fig. 6a), the SOC increase was much lower (0.7 Pg C) during
the concurrent period, although SOC changes in each biome varied
greatly (–3.4–8.6 Pg C; Fig. 6b) due to area change from land conver-
sions. The biome-level analyses further revealed that the LUCC-
induced C stock increment was dominantly contributed from forest
and by area expansion, while C storage in grassland and shrublandwas
reduced by LUCC (Fig. 6).

This study highlights the dominant role of LUCC in determining
the terrestrial C sink in China. Becauseof inaccurate representations of
land cover change in China, previous estimates of the terrestrial C sink
have been strongly underestimated. In contrast, forest expansion and
cropland abandonment have been overestimated in the U.S., resulting
in an underestimated C emission since 19807. Hence, we highlighted

that the global LUCC database should be further improved, which
could potentially narrow down the C imbalance reported in global C
budget accounting2. In contrast to the previous studies, we showed
that the contributions of factors including rising CO2, N deposition,
and climate change to the land C sink in China weremuch smaller than
LUCC over the past four decades (1980-present time). Thus, refor-
estation projects could represent important climate changemitigation
pathways, with co-benefits for biodiversity33. To achieve the ‘C neu-
trality’ goal as the Chinese government declared, future climate policy
should be directed to improve land management, especially forest
ecosystems.

Implications for future LUCC data improvements
This study provides a novel reconstruction of recent land use change
in China and assesses its implications in quantifying for terrestrial C
storage dynamics. The improved dataset more accurately depicts the
spatiotemporal dynamics of LUCC in China because the historically
contradictory surveying records were identified, which helped to
correct the biased temporal signals. Specifically, the improved sur-
veying methods and the socioeconomic factors have greatly shaped
the LUCC signals. We advocate that these impacts should be con-
sidered in the reconstruction of the national and global LUCC dataset,
especially in the areas that have been intensively disturbed by human
activities as is the case of China. These endeavours will be worthwhile,
as demonstrated by the large impact that these bias corrections have
on China’s C dynamic assessments since 1900. Thus, accurate deli-
neation of LUCC forcing should be stressed in global simulations,
including C budget accounting, biodiversity assessments, and eco-
system services evaluations.

Methods
To quantify and attribute factors affecting C stock changes in China,
we examined simulation results from MsTMIP and TRENDY. Both
MsTMIP and TRENDY projects provide factorial experiments designed
to quantify the impacts of eachmajor environmental driver on C stock

Table 1 | Comparison of reported carbon fluxes from various biomes in China

Category/biome Method Reported C fluxa

(Pg C per year)
Period Ref. This study

China Atmospheric inversion −1.11 ± 0.38 2010–2016 27 −0.28 ± 0.06

China Process-based model 0.10 ± 0.08
0.04 ±0.09

1980–2010
2000–2010

MsTMIP −0.21 ± 0.017
−0.30 ±0.019

China Process-based model −0.02 ±0.05
−0.03 ±0.11

1980–2019
2010–2019

TRENDY −0.23 ±0.018
−0.28 ± 0.023

China Atmospheric inversion −0.26 ± 0.09 2000–2005 72 −0.33 ± 0.021

China Process-based model −0.12 ± 0.03
−0.26 ± 0.11
−0.29 ± 0.08
−0.18 - −0.24

1981–2000
1996–2005
2000–2005
1961–2005

13 −0.16 ± 0.015
−0.29 ±0.019
−0.33 ± 0.021
−0.10 ±0.010

China Inventory estimate + atmospheric inversion −0.17 ± 0.05 1980–2002 38 −0.17 ± 0.016

China Atmospheric inversion −0.33 2001–2005 73 −0.33 ± 0.020

China Atmospheric inversion −0.39 - −0.51
−0.33

2006–2009 74 −0.34 ±0.022

China Forest Inventory estimate 0.022
−0.021

1949–1980
1977–1998

29 0.042 ±0.001
−0.067 ±0.010

China Forestb Inventory estimate −0.055 1973–2003 75 −0.063 ±0.008

China vegetation Inventory estimate + atmospheric inversion −0.35 ±0.33 1996–2005 38 −0.22 ± 0.015

China soilc Inventory estimate + atmospheric inversion −0.075 ±0.066 1980–2002 38 −0.205 ±0.015

China soil Process-based model −0.094 ± 0.047 1981–2000 13 −0.055 ±0.004

Cropland soil Inventory estimate −0.026 ±0.011 1980s,1990s 76,77 −0.047 ±0.003

Grassland soil Remote sensing + statistical model −0.007 ±0.003 1982–1999 32 0.062 ±0.001

Grassland soil Process-based model −0.022 ±0.01 1981–2000 13 0.066 ±0.001
aNegative and positive values indicate C sink and source, respectively; btotal C sink/source during the period; cincludes forest, shrubland, grassland, and cropland only (wetland and urban were
excluded). Data reported in this study indicate mean ± 1 standard deviation.
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Fig. 4 | Spatial distribution of LUCC impacts on ecosystem carbon storage.
Panel a–c: LUCC impacts for period of 1900–2019; panel d–f: LUCC impacts for
period of 1980–2019 (d–f). Panels a and d are from this study; data in panels b and
e are fromMsTMIP; data in panels c and f are from TRENDY; negative and positive

values indicate sink and source, respectively; green and yellow bar stacked in the
insert indicate LUCC impacts on vegetation and soil organic carbon in Pg C; spatial
map unit: g Cm−2; error bars: one standard deviation from the mean of LUCC
impacts on total carbon storage.
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changes, such as climate, land use, atmospheric CO2, and N
deposition44–46.

For comparison and quantification of the impacts of LUCC on C
stock using different databases, we used DLEM - a process-based bio-
geochemical model used in both model intercomparison projects of
MsTMIP andTRENDY (v9) – to examine the impacts of land-use forcing
data on the C budget in China. The DLEM model has been widely
acknowledged for its regional and global C storage estimations7,47–50,
and has contributed to the 2013 US national climate assessment
report, the MsTMIP, the global N2O Model Intercomparison Project
(NMIP), the TRENDY project (v9), and the Global Carbon Budget
assessments2. The model is driven by atmospheric chemistry (i.e. CO2,
N deposition), climate, forest management, and land-use change at a
daily time-step from 1900 to 2019 at a resolution of 0.5 × 0.5°.

Newly-developed land-use and cover-change datasets
The historical, gridded land-use datasets were developed using mul-
tiple sources of data, including gridded images from 1887 to 2019,
vector maps in 1980s, and tabular data from 1949 to 2018 (Supple-
mentary Table S1). Specifically, the distribution of lake, river, and
barren areas was derived from the GlobeLand30 produced by the
Ministry of Natural Resources of China (https://lcviewer.vito.be/
download), and we assumed that these land cover types remained
unchanged since 1900 (Supplementary Table S2). The impervious land
was directly resampled from published data covering the period
1978–201730, while the periods 1900–1977 and 2018–2019 were
assumed to be the same as in 1978 and 2017, respectively (Supple-
mentary Table S2). Other vegetation cover types, including cropland,
forest, wetland, grassland, and shrubland were reconstructed indivi-
dually. To do so, we developed a top-down model to reconstruct the
historical distribution of cropland, forest, and wetland in China span-
ning the period 1900–2019. The model was upgraded from the pre-
vious version10 by allocating a specific, prior-determined, provincial-
level area of different biomes to grids in China. The newly recon-
structed LUCC database assimilates land conversion signals from
reports, field surveys, and satellite images (Supplementary Table S1
and Supplementary Data 1).

The newly reconstructed LUCC database was validated with both
provincial statistics and remote-sensing product in a spatial frame-
work. Specifically, forest and cropland areas were validated at each
province using historical NFIs, annual yearbooks from the National
Forestry and Grassland Data Center (NFGDC), and publications (forest
validation: Supplementary Figs. S2–S5, cropland validation: Yu et al.11).
Besides, the forest and cropland maps were compared with other
gridded products (e.g. HYDE, LUH2-GCB) in the years of 1980, 1990,

and 2018 (Supplementary Figs. S8 and S9). Our reconstructed maps
aremore consistent in depicting forest and cropland distribution if the
remote-sensing images are used as a reference. More details can be
found in Supplementary Information 1.

Forest distribution, type, age, and harvesting datasets
developed
The structure, composition, and dynamic of natural and planted for-
ests are distinct. In this study, we separated NF and PF from the pre-
viously developed forest distribution dataset, which facilitated the
representation and implementation of forest management in simula-
tions. Similar to the construction of LUCC datasets, the annual pro-
vincial PF and NF areas were determined before developing the spatial
distribution maps. The provincial-level forest areas were obtained
from the NFI data officially released by the State Forestry Adminis-
trationofChina from1949 to 2018 (see SupplementaryTableS3),while
the data for the period 1900–1948 were linearly interpolated from
Yang et al.51 The PF areas were obtained from the NFI and Liu et al.52

study covering the period 1973–2018; however, the period 1900–1972
was extrapolated using historical records (see Supplementary Infor-
mation 1.2). The annual NF time-series were the differences of total
forests and the PF. Then, we used the same model developed
previously53 to reconstruct PF distribution in eachbase year from 1900
to 2019 (see Supplementary Information 1.2), while the years between
thebase yearswere linearly interpolated. Historical distributions ofNF,
PF, and all forests are presented in Supplementary Figs. S2 and S3.
Besides, forest age and typemapsofNF andPFwere obtained fromour
previous study53.

Forest harvesting information were obtained from the LUH2
land transition dataset (https://daac.ornl.gov/VEGETATION/guides/
LUH2_GCB2019.html). The annual, spatial-explicit harvesting data
cover the entire study period (1900–2019) at a 0.5° resolution. We
then split the annually harvested forest area into NF and PF by the
harvesting ratio obtained from annual Yearbooks and publication54.
The harvesting ratio of the entire study period can be divided into 13
periods (see Supplementary Information 5). Since data were not
available before 1949, we assumed that NF and PF harvesting inten-
sities (ratio) were the same as the earliest period available (i.e.
1950–1962). For the period after 2004 when no data were available
either, we assumed that NF harvesting gradually decreased while PF
harvesting increased since China has policies enforced to shift forest
harvesting to PF55. The protocol implemented in C loss from forest
harvesting is explained in Supplementary Information 5, and the
model simulated C loss from forest harvesting was showed in Sup-
plementary Fig. S13.
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Crop rotation and fertilizer datasets
Crop rotation maps were obtained from Liu et al.56 for the period
1980–2011, while the crop type during the periods before 1980 and
after 2011 was set constant to the nearest year available. Historical,
crop specific N fertilizer use rates were obtained from the FAOwebsite
(http://www.fao.org/faostat/) and the study of Li et al.57 Annualmanure
applications in croplandwere obtained from the study of Zhang et al.58

Climatic and atmospheric chemical condition datasets
We reconstructed daily climate data frommeteorological stations and
published datasets available for the period 1900 to 2019. Specifically,
the maximum, minimum, and average air temperature as well as the
precipitation data were derived from observations from 839 meteor-
ological stations and the historical monthly gridded data of Peng
et al.59 For the period 1980–2019, the daily climatic factors were spa-
tially interpolated using the Anusplin software (Ver. 4.1; Australian
National University, Center for Resources and Environmental Studies,
Canberra, Australia), according to the approach elaborated in Yu
et al.60 For the period 1900–1979, we derived the daily climatic factors
using the monthly gridded data of Peng et al.59 and the daily change
pattern of the interpolated images from the meteorological station
in 1980.

Similarly, the reconstruction of the shortwave radiation data was
also divided into two periods. For the first period from 1984 to 2019,
the radiation dataset was downloaded and resampled from the global
surface solar radiationdataset at 3-h, 10-km resolution provided by the
National Tibetan Plateau Data Center61. For the second period from
1901 to 1983, radiation data were obtained from the high-resolution
gridded data products provided by the North American Carbon Pro-
gram Multiscale Synthesis and Terrestrial Model Intercomparison
Project (NACP MsTMIP)62,63.

Other atmospheric chemical components, including atmospheric
CO2 concentration, and nitrogen deposition data, were retrieved from
IPCC historical CO2 data and the NACPMsTMIP (https://daac.ornl.gov/
NACP). We also updated N deposition maps for the period of 1996 to
2015 using the product provided by Jia et al.64, whichwas also served as
the baseline to proportionally adjust the period before 1996. All the
datasets were prepared at or resampled to 0.5 × 0.5° for simulations.

Model validation
The DLEM model has been intensively calibrated and validated at
various temporal scales ranging from a few days to hundreds of
years7,50,65–67, and spatial levels from sites to globe47,50,68–70. This study
also conducted rigorousmodel calibration of biomass and soil C stock
usingmeasurement data collected fromanationwidefield campaign in
China. The field campaign was conducted in 2011–2015, during which
the information of geographical characteristics, forest origins (natural
or planted forests), soil properties, vegetation properties, dis-
turbances, and PFmanagement were recorded17,53 (see Supplementary
Information 4). The model validation results can be found in Supple-
mentary Fig. S11.

Experimental design and statistical analysis
In this study, we set up simulations to distinguish and quantify the
effects of LUCC, climate, CO2, N deposition, and forestmanagement on
terrestrial C storage change in China from 1900 or 1980 to 2019 (see
Supplementary Fig. S21 for approached used to quantify LUCC
impacts). We first obtained the initial condition of each biome in each
grid cell (equilibrium state), which is defined as the interannual varia-
tions of a 20-year net flux of C, N, andwater less than 1 gCm−2 per year,
1 gNm−2 per year, and 1mmm−2 per year, respectively7,50. A 10-year spin-
up run was applied before the transient run using initial state infor-
mation obtained from the equilibrium run, which helps avoiding abrupt
changes resulting from mode transition. The transient run was forced
by various drivers designed specifically (Supplementary Table S10).

We designed three groups of experiments to quantify each major
driver’s impacts on the terrestrial C stock. Specifically, the first group
includes two experiments (Group-1 in Supplementary Table S10),
which were used to examine the historical accumulated impacts of
LUCC on the terrestrial C stock over the entire study period from 1900
to 2019. Two additional groups of experiments (Group-2 and 3 in
Supplementary Table S10)were alsodesigned toquantify the effects of
each major driver for the recent four decades (1980–2019), during
which the forest expansion was initiated by the Chinese government.
Specifically, the two groups of experiment simulations were designed
to examine the direct and interactive contributions of each major
driver (e.g. LUCC, climate, N deposition, rising CO2, and forest man-
agement) to the changes of terrestrial C stock in China since 1980. For
example, Group-2 experiments (S3-S8 in Supplementary Table S10)
weredesigned tokeep a specific environmental factorfixed at the 1980
level, while varying other drivers during the entire study period.
Conversely, Group-3 experiments (S9-S15 in Supplementary Table S10)
were designed to let at most one environmental factor vary during the
period 1980–2019, while keeping the other factors constant at the
1980 level. By keeping a particular environmental factor constant at
the 1980 level in Group-2 experiments, the direct impact of the factor
and the interactive effects of the fixed factor with other factors were
excluded. Therefore, by comparing Group-2 experiments and S1, we
are able to quantify the total effects of the particular driver, including
both direct and interactive effects. On the other hand, by allowing a
specific environmental factor to vary while keeping all other factors
fixed at the 1980 level, the interactive effects of the factor were
excluded. Thus, the direct effects attributed solely to the specific
factor can be quantified by comparing S10 and Group-3 experiments,
and the interactive impacts can be derived from Group-2 and Group-3
experiments. Additionally, for uncertainty analysis, we designed two
more sets of experiments (Supplementary Table S10) with parameters
varying by 1 standard deviation. All the simulations were performed at
a 0.5 × 0.5°. Due to limited available experiments designed in MsTMIP
and TRENDY, the LUCC-induced C changes are different as their
simulations have different interactive effects included. For example, in
MsTMIP, the LUCC impact on C storage changes were derived from
simulation ‘SG1’ (time-varying climate and constant CO2 and N
deposition combined with no LUCC) and ‘SG2’ (time-varying climate
and constant CO2 and N deposition in combination with historical
LUCC) (https://nacp.ornl.gov/). While in TRENDY, LUCC impacts were
derived from simulation ‘S2’ (time-varying climate and CO2 in combi-
nationwith no LUCC) and ‘S3’ (time-varying climate andCO2 combined
with LUCC) (https://sites.exeter.ac.uk/trendy).

Note that historical C sink/source of a periodwasderived from the
initial and final years in experiment S1, while the attributions were
derived from the factorial simulations (e.g. S3-S8, S10-S15) and a
baseline simulation (e.g. S1 for S3-S8, S9 for S10-S15; Supplementary
Fig. S21). Similar to former studies7,50, we quantified uncertainty sour-
ces from model parameters (i.e. LUCC-induced instantaneous C
emission) and croplandmanagement (i.e. crop residue return).We also
considered uncertainties introduced by NF and PF management. Var-
ious forest management practices have been applied in China’s forest.
Specifically, NFsmaybe improved by tending, conservation (close hills
to facilitate natural growth), and recoveryof degraded forests. For PFs,
management practices such as thinning, shrub/grass removal, tending,
fertilization, and irrigation may be implemented53,71. The management
type, intensity, and distribution, however, were unknown for both NFs
and PFs. We hereby designed two types of simulations with forest
management incorporated or not in NFs and PFs. More specifically, for
simulations considering that the forest is managed, we assumed that
management helps to increase N uptake ability by 20% in the NFs. For
PF, we assumed that (1) irrigation was implemented; (2) fertilizer was
applied annually during the first 5 years after planting and 3 years
before reaching mature stage at a rate of 15 gNm−2 per year; and
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(3)management helps to increaseNuptake ability by 20% in the PF due
to understory harvesting and tending.

Data availability
The reconstructed LUCC data used in this study are provided along
with this paper. The TRENDY datasets can be requested from S. Sitch
(s.a.sitch@exeter.ac.uk) and P. Friedlingstein (p.friedlingstein@ex-
eter.ac.uk). TheMsTMIPdata are available fromtheOakRidgeNational
LaboratoryDistributedActive ArchiveCenter (https://doi.org/10.3334/
ORNLDAAC/1225).

Code availability
The code used in this study is available from the corresponding author
on request.
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