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Abstract6

Avoidance games are games in which two players claim vertices of a hypergraph and try to7

avoid some structures. These games have been studied since the introduction of the game of SIM in8

1968, but only few complexity results have been found out about them. In 2001, Slany proved some9

partial results on Avoider-Avoider games complexity, and in 2017 Bonnet et al. proved that short10

Avoider-Enforcer games are Co-W[1]-hard. More recently, in 2022, Miltzow and Stojaković proved11

that these games are NP-hard. As these games correspond to the misère version of the well-known12

Maker-Breaker games, introduced in 1963 and proven PSPACE-complete in 1978, one could expect13

these games to be PSPACE-complete too, but the question has remained open since then. Here,14

we prove here that both Avoider-Avoider and Avoider-Enforcer conventions are PSPACE-complete.15

Using the PSPACE-hardness of Avoider-Enforcer, we provide in appendix proofs that some particular16

Avoider-Enforcer games also are.17
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1 Introduction25

1.1 Related works26

Avoidance games belong to the class of positional games, that were introduced by Hales and27

Jewett in 1963 [14] and popularized by Erdős and Selfridge in 1973 [11]. In this class of games,28

the board is a hypergraph and two players alternately claim a vertex of the hypergraph that29

has not been claimed before. Winning conditions depend on the convention and are related30

to the hyperedges. Tic-Tac-Toe and Hex are two famous examples of positional games.31

To learn more about positional games, we refer the reader to the recent survey of Hefetz et32

al. [18].33

Among positional games, a natural dichotomy exists: on the one hand, there are games34

in which players seek to build a structure, and on the other hand, there are games in35

which players want to avoid a structure. The former set contains both Maker-Maker and36

Maker-Breaker conventions, in which the hyperedges are winning sets, and the player either37

wants to fill up a winning set (Maker role), or to play at least once in each of them (Breaker38

role). The latter contains Avoider-Avoider and Avoider-Enforcer conventions, that can be39

seen as the misère version of the former. In these games, the hyperedges are losing sets, and40

the players either want not to fill up one losing set (Avoider role), or to force their opponent41

to fill up one of them (Enforcer role).42

When positional games were introduced, the focus was on Maker-Breaker games, i.e.43

games in which one player, Maker, aims to fill up a hyperedge, and the second one, Breaker,44
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wants to prevent it by claiming at least one vertex in each hyperedge. This convention is45

the most popular one, and several games have been studied according to this convention. In46

particular, the survey of Beck [5] presents several results obtained for Maker-Breaker games.47

The field of Maker-Breaker games is still well investigated today, and some Maker-Breaker48

games were introduced recently [10, 25].49

The first Avoider-Avoider game was introduced in 1968 with the game of SIM and is50

presented in [28], but the first study of the complexity of Avoidance games was done by51

Schaefer in 1978 [27]. Avoider-Enforcer games were introduced later by Lu in 1991 [22, 23]52

under the name of Antimaker-Antibreaker games and correspond to the misère version53

of Maker-Breaker games. The standard name for this convention, Avoider-Enforcer, was54

popularized by Hefetz and different co-authors in 2007 [15, 16, 19, 20]. In this game, Enforcer55

wins if at some point during the game, Avoider has claimed all the vertices of a hyperedge,56

otherwise Avoider wins.57

Even if most of the studies of positional games are focused on Maker-Breaker games,58

Avoider-Enforcer games have become more and more relevant: the famous Ramsey game was59

introduced in Avoider-Enforcer convention by Beck in 2002 [4] as a generalization of SIM.60

As it was done in the Maker-Breaker convention, some games on graphs were introduced in61

Avoider-Enforcer or Avoider-Avoider conventions, where the loosing sets correspond to some62

structure in the graph, see [2, 3, 13, 17].63

In terms of complexity, an overview of the field is proposed by Demaine [9]. In positional64

games, as they are perfect information games, one player always has a winning strategy65

(or both players can ensure a draw). The natural decision problem related to games is66

therefore: does the first player have a winning strategy? This problem was quickly proven to67

be PSPACE-complete for Maker-Breaker games by Schaefer in 1978 [27] even restricted to68

11-uniform hypergraphs (i.e. hypergraphs in which all hyperedges have size 11). This bound69

was recently improved by Rahman and Watson in 2021 [26], proving that the problem is still70

PSPACE-complete if the hypergraph is 6-uniform. These two proofs are very technical and71

a simpler proof of the PSPACE-completeness was provided by Byskov in 2004 [8], proving72

at the same time that Maker-Maker games are also PSPACE-complete. The complexity73

of Maker-Breaker games is still studied today, as Galliot et al. [12] have proven that the74

winner of a 3-uniform Maker-Breaker game can be computed in polynomial time, but the75

gap between the complexity of 6-uniform hypergraphs and 3-uniform hypergraphs remains76

to be closed.77

Despite the fact that Avoidance games were introduced at the same time as Maker-Breaker78

games, only partial results on complexity are known: determining the winner in Avoider-79

Avoider games, was proven to be PSPACE-complete by Slany in 2002 [29] for endgames,80

i.e. games in which some vertices are already attributed to the players, but there are no81

results yet in the general case. Concerning Avoider-Enforcer, Bonnet et al. in 2017 [6]82

mentioned that the complexity of this problem is still open, when they proved that short83

games, i.e. games in which a player only has few moves to make, are co-W[1]-hard, with the84

number of moves taken as a parameter. The best known result today is due to Miltzow and85

Stojaković in 2022 [24] that states the NP-hardness of this decision problem and conjectures86

its PSPACE-completeness.87

1.2 Presentation of the results88

The Avoider-Enforcer game is played as follows: given a hypergraph H, two players, called89

Avoider and Enforcer, alternately claim an unclaimed vertex of H with Avoider starting. The90

game ends when all the vertices have been claimed. If Avoider has claimed all the vertices of91
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a hyperedge, Enforcer wins. Otherwise, Avoider wins. The related decision problem is the92

following one.93

I Problem 1. Avoider-Enforcer94

Input: A hypergraph H.95

Output: True if and only if Avoider has a winning strategy in the Avoider-Enforcer game on96

H.97

This paper will focus on the proof of the following result:98

I Theorem 2. The Avoider-Enforcer problem is PSPACE-complete, even when the entry99

is restricted to hypergraphs with hyperedges of size at most 6.100

Our proof of Theorem 2 follows a similar idea to the proof of Rahman and Watson [26]101

and the proof of Schaefer [27], by constructing some hyperedges forcing the order of the102

moves. Contrary to Maker-Breaker games, in Avoider-Enforcer convention, there is no vertex103

in which the players are urged to play, as in general, players do not want to move in avoidance104

games. The key idea of this reduction is to create some structures in which playing first is a105

losing move. In the provided construction, at any moment of the game, only few moves are106

not losing moves. Thus, we can control the vertices played by the two players.107

The proof provided for PSPACE-completeness of Avoider-Enforcer games, enables us to108

state the following corollary for Avoider-Avoider games that will also be proven later:109

I Problem 3. Avoider-Avoider110

Input: A hypergraph H.111

Output: True if and only if the second player has a winning strategy in the Avoider-Avoider112

game on H.113

I Corollary 4. The Avoider-Avoider problem is PSPACE-complete, even when the entry114

is restricted to 7-uniform hypergraphs.115

This paper is organized as follows. In Section 2, we introduce two lemmas that will be116

used in the proof of Theorem 2. In particular, we show that pairing strategies that are117

often used in Maker-Breaker conventions can also be applied to Avoider-Enforcer games.118

Section 3 describes the reduction used to prove the PSPACE-completeness and define an119

order on the move that we call the legitimate order. We also show in this section that the120

proof holds if both players follow the legitimate order. In Section 4, we show that if a player121

does not follow the legitimate order then it cannot be a disadvantage to the other player,122

completing the proof of Theorem 2. Finally, in Section 5, we reduce the Avoider-Enforcer123

problem to 6-uniform hypergraphs and prove Corollary 4. One use of these results is to124

prove the PSPACE-completeness of particular Avoider-Enforcer games. In appendix we give125

two examples of such reductions with the cases of the Avoider-Enforcer domination game126

and the Avoider-Enforcer vertex H-game127

2 Preliminaries128

In Maker-Breaker games, if a vertex is in all the hyperedges, it is always an optimal move for129

both players to play it. Here, we present a similar result for Avoider-Enforcer games. This130

result was proved by Miltzow and Stojaković [24], and intuitively states that if a vertex v is131

in all the hyperedges that contains another vertex u, then claiming v before u cannot benefit132

any player.133
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I Lemma 5. Let H be a hypergraph, and u, v two vertices of H such that, for every hyperedge134

e containing u, e also contains v. If a player has a winning strategy, then this player has a135

winning strategy in which he never claims v while u is unclaimed.136

The second tool we introduce here is pairing strategies in Avoider-Enforcer games. In137

Maker-Breaker convention, these strategies are often described by using the fact that a player138

can claim at least one vertex in each pair of vertices. Here in Avoider-Enforcer convention,139

the main idea of pairing strategies is that this is always possible to force the opponent to140

claim at least one vertex in each pair.141

In this section, we will refer to the players as Alice and Bob, as the strategy can be142

applied both by Avoider and by Enforcer.143

I Lemma 6. Let H = (V,E) be a hypergraph. Suppose that Alice plays last in H, i.e. if144

the game is played until all the vertices have been claimed, Alice will claim the last one. Let145

(a1, b1), . . . , (an, bn) be pairwise disjoint pairs of vertices, and let v 6∈
n⋃

i=1
{ai, bi}.146

Alice has a strategy which forces Bob to claim at least one vertex in each pair (ai, bi).147

Bob has a strategy which forces Alice to claim v and at least one vertex in each pair (ai, bi).148

A strategy satisfying the hypothesis of Lemma 6 will be called a pairing strategy.149

Proof. Consider the following strategy for Alice:150

If Bob claims a vertex in a pair (ai, bi), she claims the other vertex of the pair.151

Otherwise, she claims any vertex that is not in a pair.152

By construction; when it is Bob’s turn, in any pair in which he has played, Alice has also153

played. Therefore, when it is Alice’s turn, there is at most one pair of vertices in which she154

has to play. As Alice plays the last move, whenever it is her turn to play, the number of155

remaining vertices is odd. Therefore, if Bob does not play in a pair, at least one vertex in no156

pair will be available for Alice. Thus, Alice has a strategy to force Bob to claim at least one157

vertex in each pair (ai, bi).158

Now, consider the following strategy for Bob:159

If Alice claims a vertex in a pair (ai, bi), he claims the other vertex of the pair.160

If Alice claims v, if there exists at least one pair (a, b) in which Alice has not played, he161

claims a and he considers now that b is the new vertex that Alice will be forced to claim.162

Otherwise, he claims any vertex that is not in a pair nor v.163

For the same reason, with this strategy, when it is Alice’s turn, in any pair in which she164

has played, Bob has played too. When it is Bob’s turn, note that the number of remaining165

moves is even, and there always exists exactly one vertex that is not in a pair, and that Bob166

wants Alice to claim. Thus, the number of vertices on which Bob cannot play before Alice is167

odd. Therefore, he always has an available move that fulfills this strategy. J168

3 Proof of the main theorem169

In this section, we begin the proof of Theorem 2 by describing the reduction from 3-QBF,170

introducing an order on the move of Avoider and Enforcer called the legitimate order and171

providing a sketch of the general proof.172

I Theorem 2. The Avoider-Enforcer problem is PSPACE-complete, even when the entry173

is restricted to hypergraphs with hyperedges of size at most 6.174

The first step of the proof is to prove that this game is in PSPACE.175
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I Lemma 7. The Avoider-Enforcer problem is in PSPACE.176

Proof. Let H = (V,E) be a hypergraph. As the players are not allowed to play an already177

claimed vertex, any game ends after at most |V | moves. Therefore, according to Lemma 2.2178

of Schaefer [27], as the game has a polynomial length and a polynomial number of moves, its179

winner can be computed with polynomial space. J180

3.1 Construction of the hypergraph181

We reduce the problem 3-QBF to an Avoider-Enforcer game. This problem has been182

proven PSPACE-complete by Stockemeyer and Meyer [30], and we use the gaming version183

of this problem as it was formulated by Rahman and Watson [26]. The game is played184

on a quantified formula ϕ of the form ∀X1∃X2 . . . ∀X2n−1∃X2nψ, with ψ a 3-SAT formula.185

Alternately, two players, namely Falsifier and Satisfier, chose valuation for the variables,186

Falsifier for the odd variables (quantified with a ∀) and Satisfier for the even ones (quantified187

with a ∃). When all the variables have a valuation Satisfier wins if ψ is satisfied, otherwise,188

Falsifier wins.189

I Problem 8. 3-QBF190

Input: A 3-SAT quantified formula ϕ of the form ∀X1∃X2 . . . ∀X2n−1∃X2nψ.191

Output: True if and only if Satisfier has a winning strategy in the 3-QBF game on ϕ192

Given a 3-QBF formula of the form defined in Problem 8, we construct a hypergraph193

with 10n vertices x1, x1, . . . , x2n, x2n, u1, u2, . . . , u6n.194

A round in a 3-QBF formula corresponds to a step i during which Falsifier gives a valuation195

to X2i−1 and then Satisfier gives a valuation to X2i. In this reduction, any round corresponds196

to ten vertices and eight hyperedges. Four of the ten vertices are {x2i−1, x2i−1, x2i, x2i}, and197

the six others are u6i−5, u6i−4, u6i−3, u6i−2, u6i−1, u6i. The eight hyperedges are constructed198

as follows:199

A2i = (x2i, x2i, u6i+1, u6i+3)
C+

6i = (u6i, u6i+1, u6i+3, x2i)
C+

6i−2 = (u6i−2, u6i−1, u6i+1, x2i)
C+

6i−4 = (u6i−4, u6i−3, u6i−1, x2i−1)

B2i−1 = (x2i−1, x2i−1, u6i−1)
C−6i = (u6i, u6i+1, u6i+3, x2i)

C−6i−2 = (u6i−2, u6i−1, u6i+1, x2i)
C−6i−4 = (u6i−4, u6i−3, u6i−1, x2i−1)

200

If some of these vertices do not exist, we still add the hyperedges, but with fewer vertices in201

them. For instance, A2n = {x2n, x2n}. Moreover, for each clause Fj = lj1 ∨ l
j
2 ∨ l

j
3 ∈ ψ where202

the vertices lj1, l
j
2 and lj3 are literals either positive or negative, we add a hyperedge Dj . For203

k = 1, 2, 3, if ljk is a positive variable Xp, then xp is in Dj , if ljk is a negative one ¬Xp, then204

xp is in Dj . Moreover, If p is odd, then u6p−1 is in Dj , if p is even, then u6p+1 is in Dj .205

Finally, the CNF game ϕ is reduced to the hypergraph H = (V,E) with206

V = {{xi}1≤i≤2n ∪ {xi}1≤i≤2n ∪ {uj}1≤j≤6n}

E =
{
{A2i}1≤i≤n ∪ {C+

2i}1≤i≤3n ∪ {C−2i}1≤i≤3n ∪ {B2i−1}1≤i≤n ∪ {Dj}1≤j≤m

}
With this construction, we say that Avoider and Enforcer follow a legitimate order if they207

claim board elements in the following order for increasing i:208

Legitimate order during round i209

1. Avoider starts and claims u6i−5.210

2. Enforcer claims u6i−4.211

3. Avoider claims u6i−3.212

4. Enforcer claims one of x2i−1 or x2i−1.213
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5. Avoider claims the remaining vertex in (x2i−1, x2i−1)214

6. Enforcer claims u6i−2.215

7. Avoider claims u6i−1.216

8. Enforcer claims u6i.217

9. Avoider claims one of x2i or x2i.218

10. Enforcer claims the remaining vertex in (x2i, x2i).219

3.2 Sketch of the proof220

To prove that, with our construction, Avoider wins the Avoider-Enforcer game, if and221

only if Satisfier wins the QBF game, we first prove that this statement is true if the order222

of the moves is legitimate, as the moves will correspond to a valuation obtained in QBF.223

To force the players to play in the legitimate order, the main idea of the construction is224

that players want to claim some vertices as late as possible. Therefore, we prove that it is225

always optimal to respect the legitimate order of the moves. We introduce the following226

three lemmas that will be proved in the next section.227

I Lemma 9. When the game is restricted to the legitimate order, Avoider has a winning228

strategy in the Avoider-Enforcer game on H if and only if Satisfier has a winning strategy229

for the 3-QBF game on ϕ.230

I Lemma 10. If Enforcer has a winning strategy in H when the legitimate order is respected231

by the two players, then he has a winning strategy in H.232

I Lemma 11. If Avoider has a winning strategy in H when the legitimate order is respected233

by the two players, then she has a winning strategy in H.234

We first admit these lemmas and we prove Theorem 2.235

Proof. First, according to Lemma 7, we know that Avoider-Enforcer is in PSPACE. We now236

prove the PSPACE-hardness of the problem by reduction from 3-QBF.237

Let ϕ be a 3-SAT quantified boolean formula of the form described in Problem 8.238

Consider the hypergraph H obtained from ϕ by following the construction of Section 3.1.239

This construction has polynomial size. According to Lemma 9, when the order is respected, if240

Satisfier (Falsifier resp.) has a winning strategy in ϕ, Avoider (Enforcer resp.) has a winning241

strategy in H. Thus, according to Lemma 11 (Lemma 10 resp.), if Avoider (Enforcer resp.)242

has a winning strategy on H when the legitimate order is respected, she (he resp.) has one243

in general in H. Thus, Satisfier wins on ϕ if and only if, Avoider wins on H. Therefore, the244

Avoider-Enforcer problem is PSPACE-complete.245

As all the construction provides a hypergraph H in which all the hyperedges have of246

size at most six, the Avoider-Enforcer problem is PSPACE-complete even restricted to247

hypergraphs in which all the hyperedges have size at most six. J248

3.3 Game in legitimate order249

In this section, we suppose that both players follow a legitimate order of moves.250

If the order of moves is legitimate, the only choices available for Avoider and Enforcer are251

on the vertices xi and xi. For each 1 ≤ i ≤ 2n, Avoider claims one of xi, xi and Enforcer252

the other. Therefore, if both Avoider and Enforcer play one vertex in {xi, xi}, we define the253

underlying valuation given to ψ as the following one:254
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Xi =
{
True if Avoider has claimed xi and Enforcer has claimed xi

False if Avoider has claimed xi and Enforcer has claimed xi
255

256

We now prove Lemma 9257

Proof. Consider a game played on H for which both Avoider and Enforcer respected the258

legitimate order through the whole game.259

B Claim 12. Avoider won the game on H if and only if the formula ψ is satisfied by the260

underlying valuation of the Xis.261

Proof. Since the legitimate order is respected, Enforcer claimed all the vertices u2i and thus262

played at least once in all the hyperedges C+
2i and C

−
2i. Moreover, for each pair of variables263

(xi, xi), Enforcer claimed one of the vertices of the pair, and so he has claimed at least one264

vertex in all the hyperedges Ai and Bi. Thus, the only hyperedges that could possibly be265

fully played by Avoider are the hyperedges Dj .266

Since, in the legitimate order, Avoider claimed all the vertices u2i+1, a hyperedge Dj267

corresponding to a clause Fj is fully played by Avoider if and only if she played on all the268

vertices x(ljk) for lk ∈ Fj , where x(ljk) = xp if ljk = Xp and x(ljk) = xp if ljk = ¬Xp. If this269

is the case, then this means that the formula ψ is not satisfied by the underlying valuation270

because the clause Fj has all its literals assigned to False. On the contrary, if the formula ψ271

is satisfied by the underlying valuation, then, for all clause Fj , at least one of the literals in272

it is assigned to True and so Enforcer played at least once in each hyperedge Dj .273

Therefore, Avoider won the game on H if and only if ψ is satisfied. C274

Suppose Satisfier has a winning strategy S on ϕ. We define a strategy for Avoider as275

follows: Whenever Avoider has to play a vertex x2k or x2k, Avoider considers the underlying276

valuation given to the Xis with i < 2k. Then, if Satisfier had put X2k to True, she claims277

x2k. Otherwise, she claims x2k. With this strategy, at the end of the game, the underlying278

valuation of the variables of H will the same as the valuation given by the game that Satisfier279

played on ϕ. Since Satisfier has a winning strategy on ϕ, the underlying valuation satisfies ψ280

and so Avoider wins the game.281

Similarly, if Falsifier has a winning strategy, Enforcer can follow the strategy in such a282

way that at the end the valuation of variables in the game played by Falsifier correspond to283

the underlying valuation in H. Since Falsifier wins on ϕ, Enforcer wins the game on H. J284

4 Proofs of Lemma 10 and Lemma 11285

The first part of our constructions showed that, if the legitimate order is respected, Avoider286

wins if and only if Satisfier wins the 3-QBF game. We now prove that, if a player has a287

winning strategy when the order is respected, he has one even if his opponent does not288

respect the order. We introduce here different sets of variables. These sets will be the main289

tools of the proofs of Lemma 10 and Lemma 11.290

For i = 1 to 4n, we define the set of vertices Si as S4n = {u6n, x2n, x2n} and for i < 4n:291

if i = 4k, Si = {u6k, x2k, x2k, u6k+1} ∪ Si+1292

if i = 4k − 1, Si = {u6k−2, u6k−1} ∪ Si+1293

if i = 4k − 2, Si = {x2k−1, x2k−1} ∪ Si+1294

if i = 4k − 3, Si = {u6k−4, u6k−3} ∪ Si+1295
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4.1 Proof of Lemma 10296

We now prove Lemma 10297

Proof. Suppose Enforcer has a winning strategy when the legitimate order is respected.298

Consider a strategy for Enforcer in which he plays according to the legitimate order until299

Avoider does not. If Avoider respects the order until all the vertices are played, by assumption,300

Enforcer wins. Otherwise, the proof of the following claim provides a winning strategy for301

Enforcer.302

B Claim 13. If, during the game, Avoider plays in a set Si in which Enforcer has not played303

yet, then, after this move, Enforcer has a strategy to win the game.304

Proof. The proof is by induction on i.305

First, notice that each Si has an odd number of vertices and, as the total number of306

vertices in H is 10n, there is also an odd number of vertices outside Si. Therefore, if Avoider307

plays first in an Si, Enforcer answers by playing an arbitrary vertex that is not in Si and308

considers an arbitrary pairing outside Si, which exists as there is an even number of vertices309

outside Si after his move. This way, Avoider has to be the next player to play in Si.310

Base cases:311

Case i = 4n: If Avoider plays first is S4n, by pairing the two other vertices in S4n, by312

using Lemma 6, Enforcer can force Avoider to play another vertex in S4n. Hence, as313

(u6n, x2n), (u6n, x2n) and (x2n, x2n) are three hyperedges, Avoider will claim the two314

vertices of one of them and thus lose.315

Case i = 4n− 1: As shown previously, Enforcer has a strategy such that Avoider is the316

next player to play in S4n−1. If Avoider has played at least one of her two first moves317

in S4n, she has lost by the case i = 4n. Otherwise, she has claimed exactly u6n−2 and318

u6n−1. In this case, Enforcer claims u6n and pairs x2n and x2n and by Lemma 6 he forces319

Avoider to claim all the vertices of C+
6n−2 or C−6n−2.320

Induction steps: Suppose that the first time Avoider does not respect the order of the321

move, she plays in a set Si for i ≤ 4n − 2. If the second move of Avoider in Si is in Si+1,322

Enforcer wins by induction hypothesis. Thus, we can suppose that Avoider has claimed two323

vertices in Si \ Si+1. Moreover, as Enforcer has arbitrarily paired the vertices outside Si,324

we describe here the strategy in Si, and Enforcer plays according to the pairing outside Si.325

This strategy ensures that the moves in Si alternate between both players.326

Case i = 4k: Avoider has played twice in {u6k, x2k, x2k, u6k+1}. At least one of327

{u6k, x2k, x2k} is available. Enforcer claims it. Avoider has to claim the third ver-328

tex in this quadruple, otherwise, she plays first in Si+1 and loses by induction, and329

necessarily one of the three vertices she has claimed is u6k+1. Enforcer claims u6k+2.330

Avoider either plays first in Si+2 and loses by induction hypothesis, or claims u6k+3. At331

this moment, Avoider has played on the vertices u6k+1 and u6k+3, and two of the vertices of332

{u6k, x2k, x2k}. So she has completed one of the hyperedges C+
6k = (u6k, u6k+1, u6k+3, x2k),333

C−6k = (u6k, u6k+1, u6k+3, x2k) or A2k = (x2k, x2k, u6k+1, u6k+3).334

Case i = 4k − 1: Avoider has claimed u6k−2 and u6k−1. Enforcer claims u6k. Avoider335

has to play on vertex in {x2k, x2k, u6k+1}, (otherwise she plays first in Si+2 and loses by336

induction). Enforcer claims either x2k or x2k, as at least one of them is available. If Avoider337

plays a vertex in Si+2 she loses by induction. So she has to play the last vertex available338

in Si \Si+1. With this strategy, Avoider has necessarily claimed u6k+1 and one of x2k and339

x2k. Thus, she has played all the vertices of either C+
6k−2 = (u6k−2, u6k−1, u6k+1, x2k) or340

C−6k−2 = (u6k−2, u6k−1, u6k+1, x2k).341
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Case i = 4k − 2: Avoider has claimed x2k−1 and x2k−1. Enforcer claims u6k−2. Either342

Avoider plays first in Si+2 and loses by induction, or she claims u6k−1, the last available343

vertex in Si+1 and loses by having played all the vertices in B2k−1 = (x2k−1, x2k−1, u6k−1).344

Case i = 4k − 3: Avoider has claimed u6k−4 and u6k−3. Enforcer claims x2k−1. Avoider345

has to claim x2k−1, otherwise she plays first in Si+2 and loses by induction. Then346

Enforcer claims u6k−2. If Avoider plays in Si+3 she loses by induction. The last vertex347

available in Si \Si+3 is u6k−1, and if Avoider claims it, she loses by playing all the vertices348

C−6k−4 = (u6k−4, u6k−3, u6k−1, x2k−1).349

By applying this induction, at any moment of the game, if Avoider plays first in a set Si,350

she looses. C351

Finally, if Enforcer has played according to the legitimate order, at any moment of the352

game, Avoider has to play in a set Si in which Enforcer has already played. Therefore, she353

has to respect the order of the moves. The only moment when she can change this order is354

by claiming u6k+1 instead of one of the vertices x2k, x2k. But if she does so, Enforcer can355

claim one of them, for instance x2k, and Avoider will be forced to claim x2k. If this happens,356

everything happens as if Avoider has claimed x2k first and u6k+1 after. Since these moves357

could have occurred in the legitimate order, the strategy can then continue as if the order358

has been respected.359

To conclude, if Enforcer has a winning strategy when the legitimate order is respected,360

Enforcer has a winning strategy in H even without this restriction. J361

4.2 Proof of Lemma 11362

In this section, we prove that if Avoider has a winning strategy when the legitimate order363

is respected, she also has one if Enforcer does not respect the order. The main idea of the364

strategy is to respect the order, and if Enforcer does not respect the order, Avoider has a365

pairing strategy to force Enforcer to claim a vertex in some pair (xi, xi), or the odd uj that366

follows them. By construction, any hyperedge containing a vertex xi or xi also contains the367

next odd vertex uj in the legitimate order, and this will prove that whenever Enforcer does368

not respect the order, it benefits Avoider. We now will prove Lemma 11.369

Proof. Suppose Avoider has a winning strategy when the legitimate order is respected. We370

now describe a winning strategy for Avoider in the general case.371

While Enforcer respects the legitimate order, Avoider also respects it. Suppose that at372

some moment of the game, Enforcer does not respect the legitimate order. Denote by yA the373

vertex he would have played according to the legitimate order, and by yE the vertex he has374

claimed instead. If yA is a vertex x2i or x2i, Avoider pairs it with u6i+1 and continues as if375

Enforcer had to play u6i+2. If this is the case, consider yA = u6i+2. Note that, according to376

Lemma 5, we can suppose that yE is not a vertex uj with j odd. Indeed, for each vertex377

u2i+1, the hyperedges that contain the previous vertex in the legitimate order (if this vertex378

is a vertex xj or xj this is true for either of them) also contain u2i+1. As any hyperedge379

containing x2i or x2i also contains u6i+1 which is the next vertex Avoider should have played380

according to the legitimate order, it benefits her if Enforcer finally claims u6i+1 instead of381

x2i or x2i according to Lemma 5.382

Denote by k the smallest integer such that yE /∈ Sk, and by k′ the largest integer such383

that yA ∈ Sk′ . We consider k = 4n + 1 if yE ∈ S4n, with S4n+1 = ∅. Note that all the384

vertices outside Sk′ have already been played or are paired, and that Sk′ \ Sk is then the385

set of vertices perturbed by the move of Enforcer. As all the sets Si have an odd number386
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of vertices, we know that the number of remaining vertices outside Sk is odd, as an even387

number of moves have been played in it. By assumption, Avoider was following a winning388

strategy for the legitimate order. She can then consider an arbitrary sequence of moves for389

Enforcer following the legitimate order and her answers according to her strategy until all the390

vertices in Sk′ \ Sk are played. According to these moves, we will denote by xE
j the vertex391

among (xj , xj) claimed by Enforcer and by xA
j the vertex played by Avoider.392

Avoider claims yA, the vertex that Enforcer should have claimed according to the legitimate393

order, and will consider one strategy in Sk and another one outside Sk:394

In H\Sk, she plays according to a pairing strategy, that is presented in the next paragraph.395

In Sk, Avoider considers the strategy she would have played if all the vertices outside Sk396

were played according to the legitimate order, with the vertices xE
j claimed by Enforcer397

and the vertices xA
j claimed by Avoider.398

The pairing we define is the following one: (u6i−4, x
A
2i−1), (u6i−3, u6i−6), (xE

2i−1, u6i−1),399

(u6i−2, x
A
2i), (u6i+1, x

E
2i). This pairing concerns all the vertices that have to be played after yA400

in the legitimate order that are not in Sk, and we consider only pairs containing at least one401

vertex outside Sk. Note that, by construction, exactly one vertex of this pairing is already402

played, and exactly one paired with a vertex in Sk. Therefore, to make the pairing contain403

only vertices not played and outside Sk, some modifications are done. These modifications404

are presented in Figure 1. By applying Lemma 6, Avoider can ensure that Enforcer plays at405

least one in each of these pairs.406

yA changes
u6i−4 u6i−3 ←→ xA

2i−1

x2i−1 or x2i−1 x∗
2i−1 ←→ u6i−1

u6i−2 u6i−1 ←→ xA
2i

u6i u6i+3 ←→ xA
2i

yE changes
u6i−4 no changes

x2i−1 or x2i−1 x∗
2i−1 ←→ u6i−4

u6i−2 no changes
u6i no changes

x2i or x2i x∗
2i ←→ u6i+1, u6i−2 ←→ u6i

Figure 1 Changes of the matching. x∗
j refers to the variable in {xk, xk} that has not been played,

arrows represent new pairs of vertices in the matching.

B Claim 14. The pairing strategy ensures that Enforcer plays at least once in each hyperedge407

Ai, Bi or Ci containing all their vertices in Sk′ and at least one outside Sk.408

Proof. First, if the hyperedge contains no vertex whose pairing has been modified because of409

their belonging to yA or yE , it contains two paired vertices. We show in bold text the paired410

vertices:411

A2i = (xA
2i,x

E
2i,u6i+1, u6i+3)

CA
6i = (u6i, u6i+1,u6i+3, x

A
2i)

CE
6i = (u6i,u6i+1, u6i+3,x

E
2i)

CA
6i−2 = (u6i−2, u6i−1, u6i+1,x

A
2i)

CE
6i−2 = (u6i−2, u6i−1,u6i+1,x

E
2i)

B2i−1 = (xA
2i−1,x

E
2i−1,u6i−1)

CA
6i−4 = (u6i−4, u6i−3, u6i−1,x

A
2i−1)

CE
6i−4 = (u6i−4, u6i−3,u6i−1,x

E
2i−1)

412

For the first hyperedges of the matching, there are two paired vertices.413

Recall first that if Enforcer was supposed to play in {x2i, x2i}, Avoider pairs this vertex414

with u6i+1 and considers yA = u6i+2. The only one hyperedge among the Ai, Bi and Ci that415

was concerned with this change is A2i, in which two vertices are now paired. In any other416

case, the following vertices are paired:417

If yA = u6i−4, only the hyperedges CE
6i−4 and CA

6i−4 are concerned by the changes. In418

the former xE
2i−1 is paired with u6i−1, in the latter xA

2i−1 is paired with u6i−3.419
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If yA ∈ {x2i−1, x2i−1}, the only hyperedges concerned by the change is B2i−1. In it, the420

other vertex in {x2i−1, x2i−1} is paired with u6i−1421

If yA = u6i−2, only the hyperedges CE
6i−2 and CA

6i−2 are concerned by the changes. In422

the former xE
2i is paired with u6i+1, in the latter xA

2i is paired with u6i−1.423

If yA = u6i, only the hyperedges CE
6i and CA

6i are concerned by the changes. In the former424

xE
2i is paired with u6i+1, in the latter xA

2i is paired with u6i+3.425

For the last hyperedges that contain vertices of the matching, the following happens:426

If yE = u6i−4, the pairing stops at u6i−3. The only two hyperedges that contain at least427

one vertex in Sk and one vertex outside Sk are C+
6i−4 and C−6i−4, in which Enforcer has428

claimed yE .429

If yE = x2i−1 or x2i−1, the pairing stops after the second vertex in {x2i−1, x2i−1}. The430

only one hyperedge containing at least one vertex in Sk and one outside Sk is B2i−1, in431

which Enforcer has already claimed yE .432

If yE = u6i−2, the pairing stops at u6i−1. The only two hyperedges that contain at least433

one vertex in Sk and one vertex outside Sk are C+
6i−2 and C−6i−2, in which Enforcer has434

claimed yE .435

If yE = u6i, the pairing stops at u6i+1. The three hyperedges that contain both vertices436

in Sk and vertices outside Sk are C+
6i, C

−
6i and A2i. In C+

6i, C
−
6i, Enforcer has claimed437

yE , and in A2i, Enforcer will play one of xE
2i or u6i+1 as these two vertices are paired438

together.439

If yE = x2i or x2i, the pairing stops at u6i+1. The three hyperedges that contain vertices440

inside Sk and outside Sk are C+
6i, C

−
6i and A2i. As the second vertex in {x2i, x2i} is441

paired with u6i+1, either Enforcer has claimed both x2i and x2i, and any of these three442

hyperedges contains at least one of them; or Enforcer has claimed u6i+1 which is in these443

three hyperedges.444

If the pairing stops because it goes until the end (i.e. k = 4n + 1), one vertex is not445

paired. According to Lemma 6, as Enforcer plays the last move in H, Avoider can force him446

to play it and still play once in each pair of the pairing.447

Finally, in any hyperedge Ai, Bi or Ci containing at least one vertex of the matching,448

Enforcer has played at least one vertex. C449

Now, we can prove that the strategy we defined for Avoider is a winning strategy. In all450

the hyperedges Ai, Bi or Ci, Enforcer played at least once. Indeed, if Enforcer has respected451

the order until he plays in one of these hyperedges, there is nothing to do. Otherwise, by452

Claim 14, Avoider can force Enforcer to play in it as this hyperedge is considered in a set453

of hyperedges in which Enforcer has not respected the order, and thus contains two paired454

vertices.455

In the hyperedges Dj , as the strategy in the legitimate order is a winning strategy, it456

forces at least one vertex xi or xi to be claimed by Enforcer in Dj (since all the vertices uk457

of odd indices are played by Avoider in the legitimate order). Then, by construction, if when458

this vertex has to be claimed the order was respected, Enforcer has played it. If the order459

was not respected, then Avoider has paired this vertex with the next vertex uk of odd index,460

forcing Enforcer to play one of them. In both cases, Enforcer has played in Dj . J461
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5 Uniform hypergraphs and applications462

The construction provided in Section 3.1 provided a hypergraph in which any hyperedge have463

size at most six. We prove here that the PSPACE-hardness can be generalized to uniform464

hypergraphs.465

5.1 From 6-hypergraphs to 6-uniform hypergraphs466

A hypergraph H = (V,E) is a k-hypergraph if any hyperedge e ∈ E has size at most k. It is467

said to be k-uniform if any hyperedge e ∈ E has size exactly k.468

I Lemma 15. Let H = (V,E) be a k-hypergraph. Let m = min
e∈E
|e|. If m < k, there exists469

a k-hypergraph H ′ = (V ′, E′) where min
e∈E
|e| = m+ 1, having |E′| ≤ 2|E| and |V ′| ≤ |V |+ 2470

such that Avoider has a winning strategy in the Avoider-Enforcer game on H if and only if471

she has one in H ′.472

Proof. Let H = (V,E) be a k-hypergraph. Let m = min
e∈E
|e|. We define H ′ = (V ′, E′) as473

follows. We start from V ′ = V . We add two vertices {a1, a2} in V ′. For each hyperedge474

e ∈ E, we add hyperedges in E′ as follows:475

If |e| > m, we add a copy of e in E′.476

If |e| = m, we add two hyperedges e1 = e ∪ {a1} and e2 = e ∪ {a2} in E′.477

We have |V ′| = |V |+ 2, |E′| ≤ 2|E| and min
e∈E′
|e| = m+ 1.478

Now, if Avoider (Enforcer resp.) had a winning strategy S in E, we can define a strategy479

S ′ in E′ as follows:480

If the opponent plays a vertex in V , or if it is the first move of the player, play as in S.481

If the opponent plays a vertex in {a1, a2}, or if there is no vertex in V available, play an482

available vertex in {a1, a2}.483

Following this strategy, Avoider (Enforcer resp.) has played exactly the same vertices in H ′484

as he (she resp.) would have played in H according to S with, in addition, exactly one of485

{a1, a2}.486

Therefore, if Avoider had a winning strategy in H, then for each e ∈ E, there exists one487

vertex v ∈ e, that Enforcer has played. Let e′ ∈ E′ be a hyperedge. If e′ is a copy of some488

hyperedge e ∈ E, then Enforcer has played in it, as he would have played in e according to S.489

If e′ is a hyperedge e1 or e2 created from a hyperedge e ∈ E, as Enforcer would have played490

in e according to S, he has played the same vertex in e′.491

If Enforcer had a winning strategy in H, following this strategy, there exists a hyperedge492

e ∈ E in which Avoider has claimed all the vertices. If |e| ≥ m+ 1, Avoider has also played493

all the vertices of e ∈ E′, so Enforcer has won. If |e| = m, as the strategy S ′ forces Avoider494

to play at least one of {a1, a2}, suppose without loss of generality that she has claimed a1.495

Then, she has claimed a1 and all the vertices of e, so she has filled up the edge e1. Therefore,496

this strategy is a winning strategy for Enforcer.497

Finally, H ′ has the same outcome as H and min
e∈E′
|e| = m+ 1. J498

I Corollary 16. Avoider-Enforcer is PSPACE-complete even restricted to 6-uniform hyper-499

graphs500

Proof. The construction provided in the proof of Theorem 2 builds a 6-hypergraphs in which501

all hyperedges have size at least two. Therefore, by applying Lemma 15 four times, with502

m = 2, 3, 4, 5, we obtain a hypergraph having at most eight more vertices and eight times503
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more hyperedges. Thus, this construction is still polynomial and the hypergraph obtained is504

6-uniform. J505

5.2 Avoider-Avoider games506

We prove Corollary 4, i.e. that Avoider-Avoider games are PSPACE-complete, even restricted507

to 7-uniform hypergraphs.508

Proof. Consider the construction provided in the proof of Corollary 16. Consider H ′ the509

hypergraph obtained by adding a vertex v0 in H and adding it in all the hyperedges of H.510

Note that, as any hyperedge of H has size six, any hyperedge of H ′ have size exactly seven.511

According to Lemma 5 (note that the result also apply to Avoider-Avoider games), both512

players have an optimal strategy in which v0 will be played last, and as the graph has an513

odd number of vertices, the first player will play it. Therefore, the second player cannot fill514

up a hyperedge and plays as Enforcer would in the Avoider-Enforcer game. By applying the515

same strategy as in Avoider-Enforcer, if Avoider wins in Avoider-Enforcer, the game ends by516

a draw, otherwise the second player wins. J517
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A Particular Avoider-Enforcer games582

Several games have been proven to be PSPACE-complete in the Maker-Breaker convention,583

thanks to the proofs of Schaefer or of Rahman and Watson. Due to the similarities between584

the two conventions, some reductions may be adapted to prove that these games are PSPACE-585

complete in the Avoider-Enforcer convention. In particular, we prove in this section that586

the domination game and the vertex H-Game are PSPACE-complete in Avoider-Enforcer587

convention.588

A.1 Avoider-Enforcer domination game.589

The Maker-Breaker domination game was introduced by Duchêne et al. in 2020 [10] and590

follows the study of domination games on graphs, which were investigated since 2002 [1, 7].591

In Maker-Breaker, two players, namely Dominator and Staller alternately claim an unclaimed592

vertex of the graph, Dominator wins if he manages to claim all the vertices from a dominating593

set. Otherwise, Staller wins. They proved that determining whether Dominator or Staller has594

a winning strategy is PSPACE-complete using a reduction from the general Maker-Breaker595

game. The Avoider-Enforcer domination game can be similarly defined, with Anti-Staller596

winning if Anti-Dominator claims a dominating set and Anti-Dominator winning otherwise.597

We prove here that determining the winner of the Avoider-Enforcer domination game is598

PSPACE-complete. Note that the proof is very similar to the reduction from Maker-Breaker599

games to Maker-Breaker domination game.600

I Problem 17. Avoider-Enforcer domination game601

Input: A graph G602

Output: True if and only if Anti-Dominator wins the Avoider-Enforcer domination game603

on G.604

I Theorem 18. The Avoider-Enforcer domination game problem is PSPACE-complete605

Proof. First, Avoider-Enforcer domination game is in PSPACE, as the number of moves in a606

game is the number of vertices, and as determining if a set is a dominating set or not can be607

done in polynomial time, the game is in PSPACE.608

Let H = (VH , EH) be a hypergraph. Without loss of a generality, we can suppose that609

each vertex is in at least one hyperedge, otherwise the vertices in no hyperedge will be played610

first according to Lemma 5, and we can just remove them, up to change the first player to611

go. We construct the following graph G = (V,E) as follows:612

For each vertex ui in VH , we add a vertex vi in V .613

For each hyperedge C in EH , we add two vertices v1
C and v2

C in V .614

If a vertex ui of VH belongs to a hyperedge C of EH , we add the edges viv
1
C and viv

2
C to615

E.616

Note that the graph created here is bipartite617

Suppose Avoider (Enforcer resp.) has a winning strategy S in H. We define a strategy618

S ′ for Anti-Staller (Anti-Dominator resp.) in G as follows.619

If Avoider (Enforcer resp.) plays the first move in H, he claims first a vertex vi such that620

ui is the first vertex claimed in S.621

If the opponent claims a vertex vi, he claims a vertex vj such that uj is the answer to622

the vertex ui in S.623
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If a player plays a vertex vk
C for k ∈ {1, 2}, he claims the vertex vk′

C for k′ 6= k ∈ {1, 2}.624

Now if Avoider had a winning strategy in H, by applying the strategy S ′, for any vertex625

vi
C , Anti-Staller has not played all the vjs adjacent to it. Therefore, Anti-Dominator has626

claimed one of them and all the vi
Cs are dominated. Moreover, all the vertex ujs are in at627

least one edge C of H, and thus vj is dominated by Anti-Dominator, as she has played one628

of (v1
C , v

2
C). Finally, Anti-Dominator has dominated the graph and Anti-Staller has won.629

Reciprocally, if Enforcer had a winning strategy in H, by applying the strategy S ′,630

Anti-Dominator knows that there exists a pair of vertices (v1
C , v

2
C), such that Anti-Staller631

has played all the vjs adjacent to them. As Anti-Staller has played one of them, and all its632

neighbors, this vertex is not dominated. Therefore, Anti-Dominator has won. J633

In Figure 2 we provide an example of reduction. Note that the construction provided is634

exactly the same as the one used to prove the PSPACE-completeness in Maker-Breaker in635

[10].636

v1 v2 v3 v4

v1
A v2

A v1
B v2

B v1
C v2

C

u1

u2 u3

u4

A
B

C

Figure 2 Reduction from Avoider-Enforcer game to Avoider-Enforcer domination game.

I Remark 19. Up to add all the edges between the vis, the game is still PSPACE-complete637

on split graphs.638

A.2 Avoider-Enforcer vertex H-Game639

The vertex H-Game has been introduced by Kronenberg, Mond and Naor in [21] on random640

graphs. It is presented in several conventions, but we will focus here on the Avoider-Enforcer641

one. The game is played as follows:642

Let H be a graph. Avoider and Enforcer play on the vertex set of another graph G.643

Alternately, Avoider and Enforcer claim an unclaimed vertex of G. Avoider wins if the set of644

vertices she has claimed do not contain H as a subgraph (not necessarily induced). Otherwise,645

Enforcer wins.646

I Problem 20. Avoider-Enforcer vertex H-Game647

Input: A graph G648

Output: True if and only if Avoider wins the Avoider-Enforcer vertex H-Game played on G.649

We first need to define some graphs and operations that will be helpful to describe the650

graphs of this section:651

We will denote by Ik the graph being an independent set of size k, i.e. containing k652

vertices and no edge.653
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If G and H are two graphs, we denote by G ./ H their join, i.e. if G = (VG, EG) and654

H = (VH , EH), we have G ./ H = (V,E) with V = VG ∪ VH and E = EG ∪ EH ∪655

{(vG, vH)|vG ∈ VG, vH ∈ VH}.656

If G and H are two graphs, we denote by G�H their strong product, i.e. if G = (VG, EG)657

and H = (VH , EH), we have G � H = (V,E) with V = {xu,v|u ∈ VG, v ∈ VH} and658

E = {(xu1,v1 , xu2,v2)| (u1 = u2 or (u1, u2) ∈ EG) and (v1 = v2 or (v1, v2) ∈ EH)}.659

Remark that for any graph G, G� P2 (where P2 design the path of length 2) is obtained660

by taking two copies of G and connecting each vertex to its copy and its copy’s neighbors.661

We prove here that determining the winner of the Avoider-Enforcer vertex H-Game is a662

PSPACE-complete problem for several graphs H .663

I Theorem 21. Let H0 be a graph containing at least one edge or at least 6 vertices, and664

let k ≥ 6. Consider H = Ik ./ H0. The Avoider-Enforcer vertex H-game problem is665

PSPACE-complete.666

Note that complete bipartite graphs Kn,m, with n,m ≥ 6, are of this type. Indeed,667

Kn,m = Ik ./ H0 for H0 = Im and k = n.668

Proof. First, the Avoider-Enforcer vertex H-game is in PSPACE. Indeed, as it is a positional669

game, if G = (V,E) is a graph, the game ends after at most |V |moves. After that, determining670

whether a graph H is a subgraph of a graph G can be done in polynomial space.671

We do our reduction from Avoider-Enforcer on 6-uniform hypergraphs (proven to be672

PSPACE-complete in Corollary 16). Let H0 be a graph containing at least one edge or at673

least 6 vertices, and let k ≥ 6. Let H = Ik ./ H0. To avoid confusion while describing the674

strategies in the two games, we will call the players of the Avoider-Enforcer vertex H-Game675

Alice and Bob, with Alice avoiding creating a subgraph H and Bob forcing her to create one.676

Let H ′ = (V ′, E′) be a 6-uniform hypergraph. Let H ′0 be the strong product H0 � P2.677

We build G = (V,E) an instance of the Avoider-Enforcer vertex H-Game as follows:678

Step 1: For any vertex v′i ∈ V ′, we add a vertex vi ∈ V .679

Step 2: For any hyperedge C ∈ E′, we add 2(k − 6) vertices vC
1 , . . . , v

C
2(k−6) (note that680

if k = 6, no vertex is added during this step).681

Step 3: For any hyperedge C ∈ E′, we add a copy HC
0 of the graph H ′0 in G, and we682

connect any vertex of HC
0 to all the vertices vi such that v′i ∈ C and to all the vertices683

vC
j for 1 ≤ j ≤ 2k − 6.684

B Claim 22. If Avoider has a winning strategy in H ′, Alice has a winning strategy in G.685

Proof. Suppose Avoider has a winning strategy S ′ in H ′. We define Alice’s strategy S in G686

as follows:687

She starts by claiming the vertex vi, corresponding to the vertex v′i that Avoider would688

have claimed in H ′ according to S ′.689

If Bob claims a vertex vi, she answers with the vertex vj corresponding to the vertex v′j690

that Avoider would have claimed by S ′ in H ′ if Enforcer has claimed v′i.691

In HC
0 , as it is a strong product H0 � P2, Alice considers the pairing between any vertex692

of H0 and its copy in the strong product. If Bob plays in one pair of this pairing, she693

claims the second vertex of this pair.694

For any hyperedge C in H ′, Alice considers the set of vertices vC
j for 1 ≤ j ≤ 2k − 6. If695

Bob claims one of them, she also claims one. As there is an even number of them, this is696

always possible.697
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At the end of the game, by the matching strategy, for each hyperedge C in H ′, Alice698

will have played exactly a copy of H0 in each HC
0 , exactly k − 6 vertices among the vC

j for699

1 ≤ j ≤ 2(k − 6), and the vertices vi corresponding to the v′i that Avoider would have played700

according to S ′ in H ′.701

Now, consider any copy H1 of H in G. Suppose that Alice has played all the vertices of702

H1.703

Suppose that H0 has at least one edge. We first prove that H1 cannot contain two vertices704

vC and vC′ for C 6= C ′ that have been created by the Steps 2 or Step 3 of our construction.705

Suppose it does. Consider a decomposition of H1 = Ik ./ H
1
0 . By construction, the vCs and706

the vC′s are not adjacent. Therefore, as these two components are fully connected one to the707

other, they must either be both in Ik or both in H1
0 .708

Let e = (u1, u2) be an edge of H1
0 . vC and v′C cannot be both adjacent to u1, otherwise,709

by construction, we would have C = C ′. Therefore, as only vertices created during Step 1710

can be adjacent to both vC and vC′ , any vertex in Ik must be a vertex vi. Which is not711

possible otherwise, Alice would have play k ≥ 6 vertices vi adjacent to a same vC , which712

means that, according to S ′ she would have played k ≥ 6 vertices in the same hyperedge in713

H ′, which contradicts the fact that S ′ was a winning strategy for Avoider in H ′.714

Now, as all the vertices of H1 are either vis or were created by considering the same715

hyperedge C, and |H1| = |H0|+ k, by the pairing, we know that exactly 6 of them are vis.716

As there are no edges between the vis, they must all be on the same side of the join, and717

therefore, they are all connected to a same vertex. By construction, this is only the case if718

these six vertices are in a same hyperedge of H ′ which contradicts that S ′ was a winning719

strategy for Avoider in H ′, as these six vertices would then form a hyperedge.720

Suppose now that H0 has no edges and has k′ ≥ 6 vertices.721

This means that H can be written Ik ./ Ik′ for k, k′ ≥ 6 (note that H is a complete722

bipartite graph). Once again, consider two vertices vC and vC′ for C 6= C ′ in H1. As723

they cannot be adjacent, they must be both in Ik or both in Ik′ . Thus, vC and vC′ have724

min(k, k′) ≥ 6 common neighbors. This implies that, if C 6= C ′, at least one of their common725

neighbor is not a vertex vi created during Step 1, otherwise Alice would have played six726

vertices in the same hyperedge of H ′. This is not possible by construction. So once again,727

H1 cannot contain vC and vC′ created from different hyperedges C and C ′ in H ′. Now, if728

Alice has played all the vertices of H1, by construction as |H1| = k + k′, and as her pairing729

strategy ensures her to play k− 6 vertices created during step 2 and k′ created during step 3,730

necessarily, she has played six vertices vi creating during step 1. As there are no edges731

between these six vertices, they must all be in the same independent set Ik or Ik′ . Thus,732

they have a common neighbor. This common neighbor must then be a vertex vC creating733

during step 3 as only them are connected to the vis. Finally, these six vertices corresponds734

to six vertices v′is that are in the same hyperedge C of H ′. Once again, this contradicts the735

fact that S ′ was a winning strategy for Avoider in H ′.736

C737

B Claim 23. If Enforcer has a winning strategy S ′ in H ′, Bob has a winning strategy in G.738

Proof. Let S ′ be a winning strategy for Enforcer in H ′. We consider a strategy S for Bob in739

G as follows:740

If Alice claims a vertex vi, he answers with the vertex vj that corresponds to the vertex741

v′j that Enforcer would have claimed in response to v′i in S ′.742
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In HC
0 , as it is a strong product H0 � P2, Bob considers the pairing between any vertex743

and its copy in the strong product. If Alice plays in one pair of the pairing, he plays the744

second vertex of the pair.745

For any edge C ∈ H ′, Bob pairs the vertices vC
j for 1 ≤ j ≤ 2k− 6. If Alice claims one of746

them, he claims one of them too.747

If at a certain moment of the game, it is Bob’s turn and the remaining vertices are all in748

some HC
0 or vertices vC

j s, he applies the pairing strategy, so that Alice plays once in any749

pair of the matching by Lemma 6.750

Consider the graph at the end of the game. As S was a winning strategy for Enforcer in751

H ′, there exists a hyperedge C ∈ H ′ in which Avoider has claimed the six vertices. Up to a752

renaming of the vertices, denote by v′1, . . . , v′6 be these six vertices. Alice has then claimed753

v1, . . . , v6 in G. According to the pairing strategy, Bob knows that Alice will play exactly754

on k − 6 vertices from the vC
j , denote them v7, . . . , vk, and exactly one copy H1 of H0 from755

the vertices of HC
0 . Now, by construction, the vertices v1, . . . vk are a stable set and all the756

edges exist between any vi (1 ≤ i ≤ k) and any vertex v of H1. Thus, the subgraph formed757

by these vertices, which were all played by Alice, is isomorphic to Ik ./ H0 = H. Thus, Bob758

has won. C759

Finally, Alice has a winning strategy in the Avoider-Enforcer vertex H-Game played on G760

if and only if Avoider has one in the Avoider-Enforcer game played on H ′, and determining761

the winner of the Avoider-Enforcer vertex H-Game is PSPACE-complete. J762
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