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Synthesis of Benzo[c][2,7]naphthyridinones and Benzo[c][2,6]naphthyridinones via Ruthenium-Catalyzed [2 + 2 + 2] Cycloaddition between 1,7-Diynes and Cyanamides

ABSTRACT: A convenient method for the ruthenium-catalyzed synthesis of benzo [c]naphthyridinones derivatives is reported. The [2 + 2 + 2] cycloaddition from various mono-and di-substituted 1,7-diynes and cyanamides provided benzo [c][2,7]naphthyridinones as major products and benzo [c][2,6]naphthyridinones as minor ones in yields up to 79% and regioselectivities up to 95:5. This method is amenable to internal and terminal diynes as well and a number of cyanamides with diverse functional group tolerance.

Benzo [c][2,7]naphthyridinones serve as privileged tricyclic motifs in various alkaloids and diverse organic chemicals. [START_REF] Luo | Synthesis of benzo[c][2,7]naphthyridine-6-ones via cascade aromatization/C(sp2)-H amidation of 1,4-dihydropyridines[END_REF] These scaffolds constitute molecules of great interest because of their biological activities (Figure 1). For example, subarine (I) is an alkaloid isolated from a Singaporean ascidian, involved in the biosynthesis of the pyridoacridines. [2][START_REF] Bijeire | A Total Synthesis of Subarine, a Marine Alkaloid Related to the Pyridoacridine Family[END_REF][START_REF] Nilar; Sidebottom | Three New Pyridoacridine Type Alkaloids from a Singaporean Ascidian[END_REF] Benzo [c][2,7]naphthyridinones II and III are potent inhibitors of Rho-associated protein kinase (ROCK) and adaptatorassociated protein kinase 1 (AAK1). [START_REF] Quan | Tricyclic pyridocarboxamide derivatives as ROCK inhibitors[END_REF][START_REF] Vrudhula | Aryl lactam kinase inhibitors[END_REF][START_REF] Lovell | A Novel Small Molecule Modulator of Amyloid Pathology[END_REF]naphthyridine-1carboxylate, IV) contributes to the significant attenuation of amyloid burden. Through these promising results, BNC-1 could be envisaged as a new therapeutic in Alzheimer's disease. [START_REF] Lovell | A Novel Small Molecule Modulator of Amyloid Pathology[END_REF] Because of the increasing importance of benzo [c][2,7]naphthyridinone derivatives, several synthetic strategies have been developed over the last decades. These methods involve oxidative amidation, 1 cascade Suzukicyclization, 8 palladium-mediated arylation, [START_REF] Basolo | Efficient palladium-catalyzed direct arylation of azines and diazines using ligand-free conditions[END_REF] Hantzsch reaction, 10 Diels-Alder cycloaddition, 11 radical reactions, [START_REF] Ganguly | Synthesis of heterocyclic compounds using radical reactions[END_REF] metalation-palladium-catalyzed cross-coupling [START_REF] Guillier | Combined Metalation-Palladium-Catalyzed Cross Coupling Strategies. A Formal Synthesis of the Marine Alkaloid Amphimedine[END_REF] and rhodium(I)-catalyzed aryl C-H carboxylation. [START_REF] Gao | I)-Catalyzed Aryl C-H Carboxylation of 2-Arylanilines with CO2[END_REF] Additionally, benzo [c][2,6]naphthyridinones are motifs of interest as well as key intermediates for naphthyridine synthesis. [START_REF] Chua | Protein kinase modulators[END_REF][START_REF] Ryckman | Polymorphs and salts of a kinase inhibitor[END_REF] Synthetic methods have been described to prepare this scaffold including anionic ring closure, 8 cross-dehydrogenative annulation, [START_REF] Basolo | Efficient palladium-catalyzed direct arylation of azines and diazines using ligand-free conditions[END_REF][START_REF] Li | Pd-catalyzed dehydrogenative annulation approach for the efficient synthesis of phenanthridinones[END_REF][START_REF] Mandal | A Cross-Dehydrogenative Annulation Strategy towards Synthesis of Polyfluorinated Phenanthridinones with Copper[END_REF] cyclization under acidic conditions, [START_REF] Chilin | Synthesis of some benzo[END_REF] radical reactions, [START_REF] Ganguly | Synthesis of heterocyclic compounds using radical reactions[END_REF][START_REF] Park | Synthesis of 2-Pyridinylbenzoxazole: Mechanism for the Intramolecular Photosubstitution of the Haloarene with the Carbonyl Oxygen of the Amide Bond in Basic Medium[END_REF] rhodium(I)-catalyzed aryl C-H carboxylation [START_REF] Gao | I)-Catalyzed Aryl C-H Carboxylation of 2-Arylanilines with CO2[END_REF] and cascade Suzuki-cyclization. [START_REF] Pierre | Discovery and SAR of 5-(3-Chlorophenylamino)benzo[END_REF][START_REF] Kuwata | Facile Synthesis of Phenanthridinone Alkaloids via Suzuki-Miyaura Cross-coupling[END_REF][START_REF] Rangasamy | New Dual CK2/HDAC1 Inhibitors with Nanomolar Inhibitory Activity against Both Enzymes[END_REF] 
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Selected examples with benzo [c][2,7]naphthyridinone scaffolds.

In parallel to these various approaches, the atom economical catalytic [2 + 2 + 2] cycloaddition represents an alternative synthetic route for the construction of benzo [c][2,7]naphthyridinone and benzo [c][2,6]naphthyridinone moieties. Indeed, [2 + 2 + 2] cyclization between alkynes and cyanamides is a powerful method for the preparation of heterocyclic structures. [24][25][26][27][28][29][30] To the best of our knowledge, however, no general synthesis related to the [2 + 2 + 2] cyclization between 1,7-diynes and cyanamides has been reported thus far. A single example of [2 + 2 + 2] cyclization between a 1,7-diyne and ethyl cyanoformate as an electron-deficient nitrile has been described by Yamamoto et al. using 20 mol% of a Ru-catalyst to access a tricyclic pyridine in 64% yield. [START_REF] Yamamoto | Cp*RuCl-Catalyzed [2 + 2 + 2Cycloadditions of α,ω-Diynes with Electron-Deficient Carbon-Heteroatom Multiple Bonds Leading to Heterocycles[END_REF] Based on our continuing interest in [2 + 2 + 2] cycloadditions, 32 we anticipated that a range of diversely functionalized benzo [c][2,7]naphthyridinone structures could be assembled as key scaffolds to construct several bioactive compounds via [2 + 2 + 2] cyclization between 1,7-diynes and cyanamides. We started by evaluating a variety of organometallic complexes in the [2 + 2 + 2] cycloadditions involving 1,7diyne 1a and dimethylcyanamide 2a at 80 °C in dichloroethane for 24 h using 5 mol% of catalysts (Table 1, entries 1-12). As shown in Table 1, two regioisomers can be formed during the cycloaddition reaction, namely 3a (benzo [c][2,7]naphthyridinone, major isomer) and 3a' (benzo [c][2,6]naphthyridinone, minor isomer).

In the presence of iron, copper, silver and indium catalysts, no conversion was observed (entries 1-7). CpCo(CO) 2 proved to be inefficient for this transformation (entry 8 13-15, respectively). Under these reaction conditions, [Cp*RuCl] 4 was the catalyst of choice for the cycloaddition, leading to the corresponding benzo [c][2,7]naphthyridinone and benzo [c][2,6]naphthyridinone derivatives 3a and 3a' in 79% yield with a regioselectivity of 88:12. Consequently, [Cp*RuCl] 4 was selected as the catalyst for the remainder of the study.

Having determined the optimal reaction conditions, we explored the scope and limitations of the [2 + 2 + 2] cycloaddition reactions. The results are summarized in Table 2. The reactivity of various diynes

1 (R 1 = H 1a, R 1 = 4-Me 1b, R 1 = 4-i-Pr 1c, R 1 = 4-MeO 1d, R 1 = 4-F, 1e, R 1 = 4-Br 1f
) with cyanamides 2a-e was examined. Diyne 1a (R 1 = H) was first studied to investigate the tolerance of nitrile functional groups in the cycloaddition. Cyanamides such as dimethylcyanamide 2a, N-benzyl-N-methyl cyanamide 2b, and N-butyl-N-methyl cyanamide 2c, as well as cyclic cyanamides such as pyrrolidine cyanamide 2d and morpholine cyanamide 2e underwent the cycloaddition to provide the corresponding benzo [c][2,7]naphthyridinones 3 and benzo [c][2,6]naphthyridinones 3' in yields up to 79% and regioselectivities up to 88:12 (entries 1-5). Diynes bearing electron-donating substituents on the aryl moiety (R 1 = 4-Me 1b, R 1 = 4-i-Pr 1c, R 1 = 4-MeO 1d) were well tolerated and reacted with cyanamides 2a-e in yields ranging from 46 to 73% and regioselectivities up to 89 :11 (entries 6-12). Diynes having electron-withdrawing substituents on the aryl moiety (R 1 = 4-F 1e, 4-Br 1f) led to the corresponding cycloadducts in 55-67% yields and regioselectivities up to 81:19 (entries 13-15). Interestingly, internal diynes having methyl or TBDMS substituents yielded the benzo [c][2,7]naphthyridinones 3 in 73% and 59%, respectively, as single regioisomers with >95:5 ratio (entries 16 and 17), demonstrating the crucial role of the R 2 substituent on the regiochemical outcome of the cycloaddition although phenyl-tethered diyne 1i did not produce 3r. Subsequently, the influence of the nitrogen protecting group was studied (not shown). Diynes with N-H, N-Ac or N-Ts protected amines did not react with cyanamide 2a, although N-Me diyne gave the corresponding cycloadduct with a lower 70% yield and an 88:12 regioisomeric ratio. We extended the scope further to disubstituted diynes 1n and 1o, to access 3w/3w' (48%, 80:20) and 3x/3x' (42%, 88:12). It is noteworthy that all major and minor regioisomers 3 and 3' were easily separated by column chromatography and the structures of compounds 3 and 3' were unambiguously confirmed by HMBC and NOESY experiments as well as single-crystal X-ray diffraction for derivatives 3c and 3n (cf. Supporting Information). Moreover, the benzyl protecting group of benzo [c][2,7]naphthyridinones 3a can be removed under acidic conditions (AcOH/HBr 48% (1:1) 0.15 M, KI (5 equiv), 100°C, 72 h, 83%).
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Finally, the utility of the method was demonstrated by performing a gram-scale cycloaddition reaction of diyne 1f and cyanamide 2a to access cycloadducts 3n/3n' (63%, 79:21). The resulting 4-bromo-substituted derivative 3n was post-functionalized through palladium-catalyzed Suzuki-Miyaura and Heck couplings, yielding the corresponding compounds 4 and 5 with 81% and 85% yields, respectively (Scheme 1).

Scheme 1. Gram-scale synthesis and post-functionalization of cycloadduct 3n

In conclusion, we report the first general method for the preparation of benzo [c][2,7]naphthyridinones and benzo [c][2,6]naphthyridinones, based on ruthenium-catalyzed [2 + 2 + 2] cycloaddition reactions from 1,7-diynes and cyanamides bearing electron-donating substituents. Although regioisomers are formed in most cases, they can be separated easily by column chromatography. Thus, this method offers a scalable, straightforward, atom-economical catalytic route to access a wide range of diversely functionalized tricyclic pyridine derivatives with yields up to 79% and regioselectivities up to >95:5.
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  Conditions: Diyne 1 (0.3-0.8 mmol), cyanamide 2 (1.5 equiv), [Cp*RuCl] 4 (2 mol%), toluene (0.3 M), 100 °C, 24 h. b Isolated yield with complete conversion. c Determined by 1 H NMR of the crude product after cycloaddition.

Table 1 .

 1 Optimization of the metal-catalyzed [2 + 2 + 2] cycloaddition with 1,7 diyne 1a and cyanamide 2a

	Entry	Catalyst (mol %)	Temp. (° C)	Conv. (%)	Yield (%)	3a/3a' ratio
	1 a	Fe(acac) 3 (5)	80	0	n/a	n/a
	2 a	FeSO 4 .7H 2 O (5)	80	0	n/a	n/a
	3 a	CuI (5)	80	0	n/a	n/a
	4 a	CuSO 4 .5H 2 O (5)	80	0	n/a	n/a
	5 a	AgSbF 6 (5)	80	0	n/a	n/a
	6 a	AgOTf (5)	80	0	n/a	n/a
	7 a	In(OTf) 3 (5)	80	0	n/a	n/a
	8 a,b	CpCo(CO) 2 (5)	80	16	7	n/a
	9 a	[Rh(cod)Cl] 2 (5)	80	100	n/a	n/a
	10 a	RuCl 3 .nH 2 O (5)	80	0	n/a	n/a
	11 a	Hoveyda-Grubbs	80	16	15	76:24
		II (5)				
	12 a	[Ru(p-	80	100	27	81:19
		cymene)Cl 2 ] 2 (5)				
	13 c	[Cp*Ru(CH 3 CN) 3	100	34	34	82:18
		PF 6 ] (2)				
	14 c	Cp*Ru(cod)Cl (2)	100	63	51	88:12
	15 c	[Cp*RuCl] 4 (2)	100	100	79	88:12

a Reaction conditions: Diyne 1a (0.3-0.8 mmol), cyanamide 2a (1.5 equiv), catalyst (5 mol%), DCE (0.3 M). Isolated yield. b irradiated under visible light. c Ru-catalyst (2 mol%), toluene (0.3 M) as solvent.

  ). In the presence of [Rh(cod)Cl] 2 , only degradation products were observed after 24 h at 80 °C (entry 9). Next, several ruthenium complexes were screened. No reaction occurred with RuCl 3 .nH 2 O (entry 10) although Hoveyda-Grubbs II and [Ru(p-cymene)Cl 2 ] 2 showed low catalytic activities (entries 11 and 12). Thanks to our previous results of [2 + 2 + 2] cycloaddition reactions in the presence of [Cp*Ru]-based catalysts, 32 we evaluated the catalytic properties of [Cp*Ru(CH 3 CN) 3 PF 6 ], Cp*Ru(cod)Cl, and [Cp*RuCl] 4 complexes at 2 mol% of catalyst loading instead of 5 mol%, by switching from DCE to toluene, and by increasing the temperature from 80 °C to 100 °C (entries

Table 2 .

 2 Scope of the cycloaddition reaction a

				R 3				
				N	N			
				R 4				
		O		[Cp*RuCl] 4 (2 mol%)			
		N Bn		toluene, 100 °C, 24 h Conv. 100%			
	Entry	Major cycloaddition Product 3	Yield b (%)	3/3' ratio c	Entry	Major cycloaddition Product 3	Yield b (%)	3/3' ratio c
	1/3a, 3a'		79	88:12	11/3k, 3k'		52	86:14
	2/3b, 3b'		66	83:17	12/3l, 3l'		46	89:11
	3/3c, 3c'		52	86:14	13/3m, 3m'		55	81:19
	4/3d, 3d'		68	87:13	14/3n, 3n'		67	79:21
	5/3e, 3e'		63	81:19	15/3o, 3o'		59	79:21
	6/3f, 3f'		57	86:14	16/3p, 3p'		73	>95:5
	7/3g, 3g'		67	66:34	17/3q, 3q'		59	>95:5
	8/3h, 3h'		73	65:35	18/3r, 3r'		nr	nd
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