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Efficient and Near-Optimal Online Portfolio Selection

Rémi Jézéquel∗† Dmitrii M. Ostrovskii∗‡ Pierre Gaillard§

Abstract

In the problem of online portfolio selection as formulated by Cover (1991) [12], the trader
repeatedly distributes her capital over d assets in each of T > 1 rounds, with the goal of maximiz-
ing the total return. Cover proposed an algorithm, termed Universal Portfolios, that performs
nearly as well as the best (in hindsight) static assignment of a portfolio, with an O(d log(T )) log-
arithmic regret. Without imposing any restrictions on the market this guarantee is known to be
worst-case optimal, and no other algorithm attaining it has been discovered so far. Unfortunately,
Cover’s algorithm crucially relies on computing certain d-dimensional integral, which must be
approximated in any implementation; this results in a prohibitive Õ(d4(T +d)14) per-round run-
time for the fastest known implementation due to Kalai and Vempala (2002) [22]. We propose
an algorithm for online portfolio selection that admits essentially the same regret guarantee as
Universal Portfolios—up to a constant factor and replacement of log(T ) with log(T + d)—yet
has a drastically reduced runtime of Õ(d2(T + d)) per round. The selected portfolio minimizes
the observed logarithmic loss regularized with the log-determinant of its Hessian—equivalently,
the hybrid logarithmic-volumetric barrier of the polytope specified by the asset return vectors.
As such, our work reveals surprising connections of online portfolio selection with two classical
topics in optimization theory: cutting-plane and interior-point algorithms.

1 Introduction

In the problem of portfolio selection in its most general form, the goal is to allocate capital over
a set of assets in such a way as to maximize the aggregate return; see e.g. [32, 43] and references
therein. At a high level, one can distinguish two rather different approaches to this general problem.

(a) Markowitz’s mean-variance theory [31] in which the tradeoff between the expected return and
its variance allows to account for the market uncertainty in a one-time investment scenario.

(b) The capital growth theory ascending to [23]—see [30] for a modern treatment—which focuses
on the expected log return of a portfolio and naturally addresses multiple-period investment.

We shall focus here on the online portfolio selection framework introduced by T. Cover [12, 14].
While being close in spirit to the second approach and addressing the case of multi-period invest-
ment, Cover’s framework allows to avoid making any stochastic assumptions about the market.
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This results, on the one hand, in a robust theory well suited for dynamic environment and, on the
other hand, in a plethora of algorithms with great practical performance and strong guarantees [28].

Cover’s framework can be summarized as follows. Given the unit initial capital Cap0 = 1, in
each round t ∈ {1, 2, ..., T} the trader chooses an allocation wt ∈ ∆d of her previously earned
capital Capt−1 over d assets; here ∆d is the standard simplex in Rd and wt[i]—the ith entry of wt—
is the share of capital invested into asset i ∈ {1, 2, .., d} at this round. Then the returns—the ratios
of the closing and opening prices in this round—are revealed in the form of xt ∈ Rd

+ (hereafter Rd
+

is the nonnegative orthant of Rd, and Rd
++ is its interior), and the trader’s capital is updated as

Capt = Capt−1 x
⊤
t wt.

By Cover, the performance of a strategy that selected portfolios w1:T := (w1, ..., wT ) for the market
given by x1:T := (x1, ..., xT ) is quantified by comparing the final capital CapT =

∏T
t=1 x

⊤
t wt against

CapoT := max
w∈∆d

T∏

t=1

x⊤t w,

the “idealized” final capital attained by the best (in hindsight for x1:T ) “static” strategy constrained
to select the same portfolio in all rounds. Due to the multiplicative structure of CapT and CapoT , it
is natural to define the regret of w1:T on market x1:T as the negative logarithm of CapT /Cap

o
T , i.e.

RT (w1:T |x1:T ) :=
∑

t∈[T ]

ℓt(wt) − min
w∈∆d

∑

t∈[T ]

ℓt(w) (1)

where we let [T ] := {1, 2, ..., T} for T ∈ N with the convention [0] = ∅, and define the instantaneous
(logarithmic) loss ℓt : ∆d → R by

ℓt(w) := − log(x⊤t w). (2)

Since the instantaneous losses are convex, this formulation falls into the framework of online con-
vex optimization, with (1) matching the standard notion of regret for an online optimization algo-
rithm [19, Sec. 1.1]; thus, we can benefit from an abundance of techniques developed by the cor-
responding community [19]. Despite conveniently putting us into the framework of online convex
optimization, comparison against the class of “static” strategies, also called constantly rebalanced
portfolios (CRP), might seem restrictive. Yet, there are at least two other arguments in its favor.

• On the one hand, CRP strategies are known to be optimal in the i.i.d. stochastic setup
where xt’s, instead of being adversarially chosen in each round, come from a a static distribu-
tion unknown to the trader; see [13, Theorem 15.3.1]. Clearly, a uniform upper bound for the
regret (1), i.e. one valid for any sequence x1:T , also applies in the i.i.d. setup. Such models are
adequate for practical markets in the case of moderate observation horizons; hence, we may
expect good practical performance for a strategy admitting a uniform regret bound against
the best CRP. This intuition is verified by extensive real-data experiments reported in [27].

• On the other hand, the regret measured against the best sequence of portfolios can be as large
as T log(d),1 i.e. grow linearly with time horizon T . Meanwhile, the regret measured against
the best CRP strategy, cf. (1), is expected to be sublinear in T for any reasonable algorithm;
in fact, this is the case for all algorithms we shall discuss from now on.

1Indeed: given any wt ∈ ∆d, let xt = ei(t) with i(t) ∈ Argmin16i6d wt[i] where {e1, ..., ed} is the canonical basis

of Rd. Then log(ΠT ) = log(
∏

t6T wt[i(t)]) 6 log[( 1
d
)T ] = −T log d, but at the same time ℓt(w) vanishes on ei(t) ∈ ∆d.
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In addition to introducing the framework, in his seminal work [12] Cover proposed and studied
an algorithm for online portfolio selection, termed Universal Portfolios, which consists in selecting

wt =

∫

∆d

wφt(w)dw (3)

where φt(w) is the probability density on ∆d proportional to the capital the trader would have
earned by the current round t by selecting portfolio w in all the previous rounds—in other words,

φt(w) ∝ exp


−

∑

τ∈[t−1]

ℓτ (w)


 . (4)

The idea here is to give preference to portfolios for which the observed cumulative loss is rela-
tively small without completely discarding portfolios with large losses. In fact, the same procedure
under different names (e.g., the method of exponential weights, exponentially weighted averaging
forecaster) arises in other contexts: prediction with expert advice [11], online learning in metric
spaces [41], and statistical estimation [26, 16, 15, 42, 5, 6]. Cover justified his algorithm by showing
that for any market realization x1:T , the regret of portfolio sequence w1:T produced in (3) satisfies

RT (w1:T |x1:T ) = (d− 1) log(T + 1) (5)

see [12, Thm. 4] and [11, Thm. 10.3].2 This result justifies the name “Universal Portfolios:” (3)
admits a strong—nearly independent of T—regret guarantee for any market. Moreover, this regret
bound turns out to be optimal up to a constant factor: it can be shown that the worst-case over x1:T
regret for any algorithm is at least d−1

2 log(πTd )+εd(T ) where εd(T ) → 0 as T → ∞; see [11, p. 282].
Unfortunately, Cover’s algorithm has a major drawback: it relies on integration over ∆d, which

cannot be performed explicitly, and thus has to be approximated with sufficient accuracy to ob-
tain a tractable implementation. A natural approach would be to sample from φt—a log-concave
distribution—using some Markov Chain Monte Carlo techniques. This approach was carried out
by Kalai and Vempala in [22], resulting in a Õ(T 5(T +d)9d4) per-round runtime.3 (Hereinafter Õ(·)
hides a polylogarithmic factor.) Albeit polynomial in d and T , this runtime essentially rules out any
practical application scenario. Even though this can be improved via the recent advances in log-
concave sampling (see e.g. [9, 35, 17, 10, 48]), the dependency on T is likely to remain prohibitive.
Meanwhile, none of the algorithms proposed since Cover’s original work is known to admit a regret
bound matching (5) up to a constant factor. In other words, the following problem stands:

Propose a computationally feasible and near-optimal online portfolio selection algorithm.

We shall address this problem by presenting such an algorithm, proving that its regret admits a
bound matching (5) up to a constant factor and replacement of log(T ) with log(T+d), and proposing
an efficient implementation for it. In the remaining part of this section, we shall informally stating
our main result, briefly summarize our contributions, discuss the related work, and give an outline
of the subsequent sections of the paper. Let us now give an abridged formulation of our main result.

2See also [20, Theorem 7] for a short self-contanted proof of this upper bound with an additional constant term.
3In [46] this result is miscited as Õ(T 3(T+d)d2), seemingly due to neglecting that 1

δ2
0

= T (T+d)2d in [22, Thm. 2].
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Theorem 1.1 (cf. Theorem 4.1). There is an algorithm for online portfolio selection which has
an O(d log(T + d)) regret, runs in Õ(d2T + d3) per round, and utilizes O(dT + d2) memory.

We see that the improvement of runtime compared to the algorithm of Kalai and Vempala [22]—
the only one known so far with a regret guarantee of the same order—is drastic; in particular, our
proposed algorithm can be run on a personal computer for d and T in the range of thousands.
Moreover, in addition to favorable computational guarantees the algorithm is conceptually easy to
implement: in each round one has to minimize a convex potential function with a readily available
second-order oracle, so one can simply use Newton’s method. In fact, the potential we use belongs to
the class of self-concordant functions—“canonical” objectives for Newton’s method [37]; this allows
us to implement the algorithm while performing only O(log(T )) Newton steps in each round.

We shall now briefly summarize the contributions of our paper and outline its organization.

Contributions and outline of further sections. In Section 2 we present our key contributions.

• We introduce a new algorithm for online portfolio selection, called VB-FTRL—the acronym
stands for Volumetric-Barrier enhanced Follow-The-Regularized-Leader,—and state
Theorem 2.1 showing that the regret of VB-FTRL admits an O(d log(T + d)) upper bound.

• We then investigate an intriguing question of how VB-FTRL is related to Cover’s Universal
Portfolios algorithm. To this end, we first pass to a variational formulation of Cover’s update
by finding a functional over distributions supported on ∆d which is minimized by φt(·), cf. (4).
We then show that the update of VB-FTRL corresponds to solving this minimization problem
approximately, by passing to the class of appropriately truncated Gaussian distributions with
unknown expectation and covariance, and solving for covariance with a given expectation.
Moreover, we quantify the accuracy of this approximation (Propositions 2.2 and 2.3); this
result might be of independent interest and find use beyond the context of portfolio selection.

Section 3 is devoted to analyzing the regret of VB-FTRL and proving Theorem 2.1. Finally, in
Section 4 we present a procedure implementing VB-FTRL, and quantify its time and memory costs.

1.1 Overview of related work

Since Cover’s work [12], the online portfolio selection framework has been studied extensively due
to its practical usefulness and theoretical challenges. Here we focus on the line of research done
in the online convex optimization community and concerned with designing efficient methods with
provable regret guarantees; for reader’s convenience we recap these results in Table 1. For a more
application-centered perspective and experimental comparison of algorithms one may refer to [28].

To the best of our knowledge, the authors of [21] were the first to realize that Cover’s problem of
competing with the best CRP can be reformulated as online convex optimization on the simplex ∆d

with logarithmic instantaneous loss ℓt(w) = − log(x⊤t w), cf. (1). They advocated the exponentiated
gradient (EG) method [25] over the basic online gradient descent [50], due to EG being better
adapted to the simplex type geometry. Unfortunately, both methods require the loss gradients to
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Algorithm Regret Runtime (per round) Sources

Universal Portfolios d log(T ) d4T 14 [12, 22]

Online Gradient Descent G2

√
T d [50]

Exponentiated Gradient G∞

√
T log(d) d [25, 21]

Online Newton Step (ONS) G∞d log(T ) d2+ generalized projection on ∆d
4 [1, 20]

Soft-Bayes
√
dT log(d) d [39]

Ada-BARRONS d2 log4(T ) d2.5T [29]

BISONS d2 log2(T ) poly(d) [49]

AdaMix+DONS d2 log5(T ) d3 [34]

VB-FTRL d log(T ) d2T our paper

Table 1: Regret guarantees and per-round runtime for various online portfolio selection algorithms.
Gp is an upper bound on max16t6T ‖∇ℓt(w)‖p whenever such a bound is assumed. For brevity we
omit a constant factor for the regret and a polylogarithmic factor for the runtime, and assume T > d.

be bounded, which is a restrictive assumption. Indeed, letting ‖ · ‖p be ℓp-norm on Rd we have that

‖∇ℓt(w)‖p =
‖xt‖p
x⊤t w

. (6)

For EG, the assumption is that ‖∇ℓt(w)‖∞ 6 G∞ for some G∞ < ∞; by (6) this can be enforced
in either of two ways: (a) by restricting the set of portfolios to {w ∈ ∆d : miniw[i] > 1/G∞}, or (b)

by bounding the dynamic range of asset returns, i.e. requiring that maxi xt[i]
mini xt[i]

6 G∞ for all 1 6 t 6 T .

Another issue with these methods is that the regret is suboptimal in T , growing as
√
T , cf. Table 1.

The two issues afflicting the previous methods were addressed—in isolation—in [39] and [1, 20].
Namely, the Soft-Bayes algorithm from [39] achieves an O(

√
dT log(d)) regret without assuming

boundedness of the loss gradients. Meanwhile, Online Newton Step (ONS), an algorithm proposed
in [1, 20], has an O(G∞d log(T )) regret under the same assumption of ℓ∞-bounded loss gradients
as for EG, which matches the guarantee (5) for Universal Portfolios in the regime of a constant G∞.
All these algorithms can be implemented in a fully incremental fashion, with per-round runtime
depending only on d, namely Õ(d) for the first-order methods (EG, Soft-Bayes) and O(d2) for ONS.

The next improvement was achieved in [29]. In their algorithm called Ada-BARRONS, the
authors managed to reach a polylogarithmic in T regret without a gradient boundedness assumption.
This was done by combining ONS with a logarithmic barrier regularizer, a clever strategy of adaptive
stepsize selection, and the use of self-concordance in the analysis. However, the regret remained
suboptimal, scaling as O(d2 log4(T )). In addition, the per-round runtime deteriorated to Õ(d2.5T ),
thus becoming T -dependent. Very recently, two competing works [49, 34] achieved a T -independent
per-round runtime while preserving the Õ(d2) regret guarantee of Ada-BARRONS. In both cases,
the crucial step was to combine Ada-BARRONS with an appropriate scheme of adaptive restarts.

Despite all these efforts and a plethora of computationally feasible algorithms resulting from
them, Universal Portfolios has remained the only algorithm so far with an optimal O(d log(T ))

4Namely, finding argminw∈∆d
‖w − ŵ‖2H for a given ŵ ∈ R

d, where H ≻ 0. Choletsky’s decomposition translates

this to a second-order cone program which can be solved in Õ(d3) via interior-point methods; see [37, Section 4.3.6].
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regret. The challenge of providing a practical algorithm with a similar regret guarantee is well
known. The interest to it was reignited in [46], where it was conjectured that Follow-The-Leader
regularized with a logarithmic barrier (LB-FTRL)—an algorithm coninciding with VB-FTRL with-
out a volumetric regularizer, i.e. with µ = 0—is regret-optimal. Since such an algorithm could be
implemented with Õ(d2T ) per-round runtime via Newton’s method, this would result in a regret-
optimal and computationally feasible procedure. Yet, [49] recently disproved this conjecture: as
it turns out, the regret of LB-FTRL can be of order 2d log(T ) log(log(T )) whenever T > poly(2d).
In addition to the arguments we give in Section 2, this negative result demonstrates that adding a
volumetric-barrier regularization term is crucial for obtaining a regret-optimal FTRL-type strategy.

Connections with cutting-plane and interior point methods. An interesting byproduct of
our work is shedding new light on the volumetric barrier of a polytope, an object first studied by
P. Vaidya in his seminal work [45] in the context of cutting-plane methods for convex optimization.
Vaidya’s goal was to supercede the ellipsoid method [44, 24, 36] as the state-of-the-art cutting plane
method, and he used the volumetric barrier as the key component of his algorithm. Once the general
theory of interior-point methods (IPM) had been developed by Nesterov and Nemirovskii [38],
the volumetric barrier was used by K. Anstreicher [3] as a self-concordant barrier for a polytope,
replacing the logarithmic barrier in this role; this resulted in a faster-converging IPM for linear
programming. Remarkably, in both these scenarios further improvements were obtained using the
“hybrid” volumetric-logarithmic barrier (see [45, 3]), which mimics the potential used in VB-FTRL

(see Section 3) except for a different choice of regularization parameter µ (namely, [3] prescribes µ =
T+d−1
d−1 ). To our best knowledge, the volumetric and hybrid barriers have never been used in online

learning. Their emergence in this context—and in such a vital role—came as a suprise to us, and
then challenged us to derive VB-FTRL as an approximation of Universal Portfolios (see Section 2.2).

2 Proposed algorithm and its connection with Universal Portfolios

In this section, we present VB-FTRL and derive it as an approximation of Universal Portfolios [12].
First of all, let us establish the notation and briefly recap the setup of online portfolio selection.

Notation. We let R := R ∪ {+∞}. Assuming d > 1, we denote by Rd
+ the nonnegative orthant

in Rd, by ∆d the standard simplex in Rd, and by ri(∆d) the relative interior of ∆d. We let ei be
the ith canonical basis vector in Rd, and x[i] be the ith entry of x. 1d be the vector of all ones in Rd,
and Id is the d×d identity matrix; we also write I when the dimension is clear from the context. [n]
be the set of the first n positive integers; [0] is the empty set. We use standard asymptotic notation:
given two functions f, g > 0 of the same argument a > 1, notation g = O(f) tells that g(a) 6 cf(a)
for some generic constant c > 0 and all a in the common domain of f and g; g = Õ(f) means
that g(a) 6 cf(a) logc(ea). We let ‖ · ‖p, p > 1, be the ℓp-norm on Rn. We let Sn,Sn+,S

n
++

be the sets of n × n symmetric, positive-semidefinite, and positive-definite matrices, and we use
boldfaced capital letters for such matrices. For M ∈ Sn+ and u, v ∈ Rn, we let ‖u‖M :=

√
u⊤Mu

and 〈u, v〉
M

:= u⊤Mv. We let ‖M‖ the operator norm of a matrix M . We use the “Matlab”
matrix notation: [A1, A2] (resp. [A1; A2]) is the horizontal (resp. vertical) concatenation of two
matrices A1, A2 with compatible dimensions.
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Affine reparametrization. Assuming that d > 1,5 simplex ∆d ⊂ Rd has empty interior, which
prevents us from using the machinery of self-concordant functions. To circumvent this issue, define

∆d−1 := {v ∈ R
d−1
+ : 1⊤

d−1v 6 1}, (7)

a “solid” simplex in Rd−1, and note that the affine mapping v 7→ Av+ ed with a d× (d− 1) matrix

A :=

[
Id−1

−1⊤
d−1

]
(8)

bijectively maps ∆d−1 onto ∆d, and Rd−1 onto the affine span of ∆d, i.e. onto the hyperplane

Ad := {w ∈ R
d : w⊤

1d = 1}. (9)

As such, restricting a function f : Rd →R to Ad and reparametrizing results in f1 : Rd−1 →R,

f1(v) := f(Av + ed), (10)

with the gradient and Hessian as follows:

∇f1(v) = A⊤∇f(Av + ed) and ∇2f1(v) = A⊤∇2f(Av + ed)A. (11)

Since A has full column rank, f1 is strictly convex (on Rd−1) whenever f is strictly convex on Ad.
Finally, one can easily check that the mapping v 7→ Av+ ed of Rd−1 to Ad has the inverse given by

w 7→ A+(w − ed) (12)

where A+ = (A⊤A)−1A⊤, A+ ∈ R(d−1)×d, is the left pseudoinverse of A, i.e. such that A+A = Id−1.

Summary of the setup. Online portfolio selection is a game between the learner (i.e. the trader)
and her adversary (the market) played over T > 1 rounds according to the following protocol:

In each round t ∈ [T ]:

1. The learner selects a new portfolio, i.e. a distribution wt ∈ ∆d.

2. The adversary observes wt and selects a new vector of asset returns xt ∈ Rd
+.

3. The learner observes xt and suffers the loss ℓt(wt) where ℓt(w) := − log(x⊤t w) for w ∈ ∆d.

Formally, an online portfolio selection algorithm or strategy is a sequence of mappings (S0,S1, ...ST−1)
where St−1 maps the history (wτ , xτ )τ∈[t−1] on ∆d, that is wt = St−1(w1, x1, ..., wt−1, xt−1) for t > 1
and w1 = S0(∅). Pitting it against an adversary, as per the above protocol, results in two sequences

w1:T := (w1, ..., wT ), x1:T := (x1, ..., xT ). (13)

As previously discussed, we quantify the performance of an algorithm that produced a sequence of
portfolios w1:T for the market realization x1:T , in terms of its regret against the best CRP for x1:T :

RT (w1:T |x1:T ) :=
∑

t∈[T ]

ℓt(wt) − min
w∈∆d

∑

t∈[T ]

ℓt(w).

5The case d = 1 is trivial: wt ≡ 1 is a unique possible strategy. As such, from now on we tacitly assume that d > 1.
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Following [12] and subsequent works, we aim at constructing an algorithm for which RT (w1:T |x1:T )
admits an upper bound of the form (5) uniformly over all choices of x1, ..., xT ∈ Rd

+. Note that
such a bound would imply that at any round t ∈ [T ] the adversary is allowed to know the learner’s
algorithm—i.e. the whole sequence (S0, ...,ST−1) rather than just the portfolios w1:t selected so far.

We are now ready to present our proposed algorithm and a regret guarantee that it admits.

2.1 Algorithm and main result

Our algorithm relies on some auxiliary functions. Let λ, µ > 0 be two regularization parameters
whose values will be specified a bit later. The logarithmic barrier R : Rd →R of Rd

+ is defined by

R(w) :=





−
∑

i∈[d]

log(w[i]) if w ∈ R
d
++,

+ ∞ otherwise.

(14)

Note that, R(w) is proper, lower semicontinuous, and strictly convex. Moreover, R1(v), cf. (7)–(10),
is a barrier on ∆d−1—in other words, dom(R1) = int(∆d−1), and R1(v) diverges as v approaches
the boundary of ∆d−1. Now, let Lt(w) be the observed cumulative loss regularized by R(w), namely

Lt(w) :=
∑

τ∈[t]

ℓτ (w) + λR(w) (15)

for λ > 0 to be specified later; note that L0(w) = λR(w). Define the volumetric barrier Vt : Rd →R:

Vt(w) :=

{
1
2 log det(A⊤∇2Lt(w)A) if w ∈ R

d
++,

+ ∞ otherwise.
(16)

Finally, for µ > 0 that shall also be speficied later, define the potential function Pt : Rd →R by

Pt(w) := Lt(w) + µVt(w). (17)

Our proposed algorithm, called VB-FTRL, amounts to iteratively minimizing this potential, that is:

wt = argmin
w∈∆d

Pt−1(w). (VB-FTRL)

Correctness of this update—i.e. that wt defined above exists and is unique—follows from the
strict convexity of Vt for all t ∈ [T ] and λ, µ > 0. For λ = µ = 1 this is well known [45, 3], and the
general case is analogous (see Appendix C). In fact, direct differentiation allows to obtain explicit
formulae for the gradient and Hessian of Pt(w); following [3], one can then show that P1

t (v) is a
self-concordant function on ∆d−1. (We provide these conceptually straightforward, but tedious cal-
culations in Appendix C, and give some background on self-concordant functions in Appendix A.3.)
Such functions are known as the “natural” class of objectives for Newton’s method, on which this
method admits affine-invariant global convergence guarantees (see [37, Chapter 4]). This natu-
rally leads to an algorithmic implementation of VB-FTRL via Newton’s method; we shall present
this implementation and discuss its tractability in Section 4. Postponing further discussion of the
computational matters to Section 4, let us now state and discuss a regret guarantee for VB-FTRL.
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Theorem 2.1 (Regret of VB-FTRL). For any T ∈ N and market realization x1:T , one has that

RT (w1:T |x1:T ) 6 (λ+ 2µ)(d− 1) log(T + λd)

for the sequence w1:T produced by (VB-FTRL) with λ, µ satisfying 1
λ

(
1+ 2µ

λ

)2
6 min

{
1
4 ,

5µ
8(1+λ)

}

and λ > 2e. In particular, with λ = 16 and µ = 7 we guarantee that

RT (w1:T |x1:T ) 6 30(d − 1) log(T + 16d).

On the one hand, the regret bound for VB-FTRL matches the bound for Universal Portfolios,
albeit with a worse constant factor (cf. (5)), and also matches the worst-case lower bound from [11].
In other words, the regret optimality of Universal Portfolios is preserved in the proposed algorithm.

On the other hand, the update in VB-FTRL reduces to solving a convex optimization problem,
and thus can be efficiently implemented; as such, we address the challenge put forward in Section 1.
This is in stark contrast with Universal Portfolios where one has to compute a multivariate integral
in each round. In fact, the update in Universal Portfolios can be seen as minimizing a certain convex
functional on the space of probability measures supported on ∆d, which is way more challenging,
from an algorithmic standpoint, than convex optimization on ∆d. In Section 2.2 we discuss this
point in more detail, and shed light on the connection between VB-FTRL and Universal Portfolios.

Finally, putting µ = 0 in (VB-FTRL) we recover Follow-The-Leader regularized with a logarith-
mic barrier (LB-FTRL), the algorithm conjectured to have an O(d log(T )) regret in [46]. As we have
already observed in Section 1.1, the recent refutation of this conjecture in [49] indicates that time-
dependent regularization is instrumental in achieving regret of the right order with an FTRL-type
strategy. The regret analysis of VB-FTRL in Section 3 demonstrates this on a technical level.

2.2 VB-FTRL as an approximation of Universal Portfolios

In this section, our goal is to show that (VB-FTRL) naturally arises as an approximation of the
Universal Portfolios update (3); moreover: informally speaking, the accuracy of this approximation
can be controlled in natural terms. Although arguably quite natural, the argument about to be
presented is a rather delicate one, and the corresponding accuracy bound depends on some auxiliary
objects that have to be introduced first. For the sake of exposition, we shall split this argument into
three logical steps that are briefly outlined below, and defer some technical details to Appendix B.

1o. We first incorporate two parameters (λ, µ) into (3), so that “vanilla” Cover’s update cor-
responds to λ = 1, µ = 0. We then establish Proposition 2.1 stating that the generalized
strategy is optimal for any (constant) λ and µ. Besides, we observe that the corresponding
distribution φt admits a variational formulation as a minimizer of the Gibbs’ potential Ft−1[·],

φt ∈ argmin
φ∈Supp(∆d)

Ft−1[φ]; (18)

here Supp(∆d) is the set of distributions supported on ∆d, and Ft−1[·] shall be defined in (23).

9



2o. Next we focus on minimization problem (18). Using self-concordance [37], we show that

c tr(∇2Lt−1(ŵ) Cov[φ]) − µEnt[φ] 6 Ft−1[φ] − Lt−1(ŵ) 6 C tr(∇2Lt−1(ŵ) Cov[φ]) − µEnt[φ]
(19)

for any distribution φ with expectation ŵ ∈ ∆d, covariance Cov[φ], differential entropy Ent[φ],
and supported on rescaled Dikin ellipsoid Et−1,1/2(ŵ) := {w ∈ Ad : ‖w − ŵ‖∇2Lt−1(ŵ) 6 1/2}.
It is well known that Et−1,1(w) is contained in ∆d for any w ∈ ∆d [37]; as such, a natural
idea is to approximate φt by minimizing the upper bound for Ft−1[φ], as per (19), over such
distributions. This relaxation is indeed reasonable: the corresponding minimizer φ̄t satisfies

Ft−1[φt] 6 min
φ ∈ Supp(∆d)

Ft−1[φ] +O(µd log(T + λd)). (20)

That is, Ft−1[·] is minimized up to an error of the order of the desired regret. This result,
rigorously formulated as Proposition 2.2, is proved via self-concordance machinery and some
volume estimates, the proof being rather technical; we believe it to be of independent interest.

3o. We then focus on the relaxation of (18) described in step 2o, i.e. replacing Ft−1[φ] with its
upper bound from (19), and imposing the constraint φ ∈ Supp(Et−1,c(ŵ)) for some c 6 1/2.
We relax this “hard” support constraint into a “soft” covariance constraint, namely

φ ∈ Supp(Ad), Cov[φ] 4 c2Lt−1(ŵ)−1.

As it happens, the minimum is attained on the Ad-marginal of the Gaussian distribution with
covariance ∇2Lt−1(ŵ)−1 and expectation wt—precisely as in (VB-FTRL). The correspondence
between (VB-FTRL) and (generalized) Cover’s update is thus specified. Moreover, we show
(see Proposition 2.3) that the truncation of this Gaussian distribution to the appropriate Dikin
ellipsoid around wt is an approximate minimizer of Ft−1[·] with accuracy O(µd log(ed))—in
other words, the Gaussian relaxation does not lead to a further loss of accuracy beyond (20).
In our view, this result—just as (20)—may find uses beyond the context of portfolio selection.

We are now about to implement these steps. Before doing so, let us make one remark. One might
expect that the above approximation result—the one representing (VB-FTRL) update as an approx-
imation of generalized Universal Portfolios with the “right” accuracy of order O(d log(T ))—would
directly lead to a shorter and/or simpler proof of Theorem 2.1 than the one to be presented in
Section 3, via some formal reduction to the regret bound for (λ, µ)-Universal Portfolios in Propo-
sition 2.1. However, we were unable to find such an alternative proof. In fact, the actual proof
of Theorem 2.1 in Section 3 has very little to do—if anything at all—with the proofs of Proposi-
tions 2.2–2.3—in particular, it is non-probabilistic and does not use the variational formulation (18).

Step 1o : (λ, µ)-generalized Universal Portfolios update and its variational formulation.
Recall that Cover’s original method (3)–(4) amounts to playing the expectation over the density
proportional to exp

(
−∑τ∈[t−1] ℓτ (w)

)
, w ∈ ∆d, at round t. Now, consider the generalized strategy

wt = Ew∼φt[w] where φt(w) ∝ exp

(
− 1

µ
Lt−1(w)

)
, w ∈ ∆d, (21)

where we introduced two parameters λ > 0 and µ > 1, so that (4) corresponds to λ = 0, µ = 1.
Here, parameter µ plays the role of temperature: the larger it is, the closer φt is to the uniform

10



distribution on ∆d. Meanwhile, λ biases φt towards the Dirac measure on 1
d1d, the uniform portfolio.

We first observe that the regret optimality of Cover’s algorithm extends to the whole range of λ, µ.

Proposition 2.1. For any T ∈ N and any market realization x1:T , the sequence of portfolios w1:T

constructed by (λ, µ)-generalized Universal Portfolios (21) with parameters λ > 0, µ > 1 satisfies:

RT (w1:T |x1:T ) 6 µ(d− 1) log(T + 1) + λ(d− 1) log

(
4e
T + λd

λd

)
+ µ− λ log(d).

The argument, given in Appendix B, extends the proof of [20, Theorem 7] to allow for λ > 0.
The key observation is that exp(− 1

µℓt(w)) = (x⊤t w)1/µ is a concave function whenever µ > 1. By
Jensen’s inequality, this leads, through a telescoping argument, to the bound as follows:

∑

t∈[T ]

ℓt(w) 6 −µ log

[∫

∆d

exp

(
− 1

µ
LT (w)

)
dw

]
+ µ log

[∫

∆d

exp

(
−λ
µ
R(w)

)
dw

]
. (22)

The right-hand side is then related to minw∈∆d

∑
t∈[T ] ℓt(w) through the rescaling technique from [7].

For what is to follow, it is crucial to make a couple of observations. First, φt, as defined in (21),
is the unique optimal solution to the following optimization problem (see e.g. [47, Lemma 4.10]):

min
φ∈Supp(∆d)

Ft−1[φ] := Ew∼φ[Lt−1(w)] − µEnt[φ] (23)

where Supp(∆d) is the set of probability densities supported on ∆d, and Ent[φ] := Ew∼φ[− log φ(w)]
is the differential entropy of φ. Moreover, Ft−1[φt] is the (rescaled) negative log-partition function:

Ft−1[φt] = −µ log

∫

∆d

exp

(
− 1

µ
Lt−1(w)

)
dw.

In particular, we recognize the first term in the right-hand side of (22) as nothing else but FT [φT+1].

Step 2o : restriction to the Dikin ellipsoid. Fix ŵ ∈ ri(∆d), and for r > 0 and t ∈ [T ] define

Et−1,r(ŵ) :=
{
w ∈ Ad : ‖w − ŵ‖∇2Lt−1(ŵ) < r

}
, (24)

the r-Dikin ellipsoid [37] of Lt−1(·) at ŵ restricted to hyperplane Ad, cf. (9). It can be routinely
checked (see Appendix A.3) that when λ > 1, the function L1

t−1(v) = Lt−1(Av+ed) on Rd−1, cf. (10),
is self-concordant with domain int(∆d−1). By [37, Theorems 4.1.5], the “unit” ellipse Et−1, 1(ŵ) is
contained in ri(∆d). Moreover, on smaller ellipses one can control the remainder of the quadratic
expansion of Lt: from [37, Theorems 4.1.6–4.1.8] it follows (see Lemma A.8) that

1

5
‖w − ŵ‖2∇2Lt−1(ŵ) 6 Lt−1(w) − Lt−1(ŵ) −∇Lt−1(ŵ)⊤(w − ŵ) 6

4

5
‖w − ŵ‖2∇2Lt−1(ŵ)

for all w ∈ Et−1, 1/2(ŵ).
(25)

Hence, any distribution φ with mean Eφ[w] = ŵ ∈ ri(∆d) and supported in Et−1, 1/2(ŵ), satisfies

1

5
tr
(
∇2Lt−1(ŵ) Cov[φ]

)
−µEnt[φ] 6 Ft−1[φ]−Lt−1(ŵ) 6

4

5
tr
(
∇2Lt−1(ŵ) Cov[φ]

)
−µEnt[φ] (26)
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where Cov[φ] is the covariance matrix of φ. The upper bound suggests us to approximate (23) with

min
ŵ ∈ ∆d, Eφ[w] = ŵ,

φ ∈ Supp(Et−1, 1/4(ŵ))

Lt−1(ŵ) +
4

5
tr
(
∇2Lt−1(ŵ) Cov[φ]

)
− µEnt[φ]

︸ ︷︷ ︸
:=F t−1[φ]

(27)

—in other words, to focus on distributions supported in a small Dikin ellipsoid around the expec-
tation. Now: since Et−1, 1/4(ŵ) ⊂ ∆d, any optimal solution φt to (27) is feasible in (23); hence (27)
overestimates (23). Moreover, the following result gives the accuracy of this upper approximation:

Proposition 2.2. When λ > 1, any optimal solution φt to (27) satisfies the following inequalities:

Ft−1[φt] 6 Ft−1[φt] 6 min
φ ∈ Supp(∆d)

Ft−1[φ] + 1.5µ(d − 1) log(T + λd) + 3.9µ(d + 1) + 0.1.

The proof of this result is relegated to Appendix B and proceeds in two steps. First, we show that

Ft−1[φt] 6 F t−1[φt] 6 min
ŵ ∈ ∆d, Eφ[w] = ŵ,

φ ∈ Supp(Et−1, 1/2(ŵ))

Ft−1[φ] + µ(d− 1) log(2).

Here the first inequality is trivial, and the second one follows by comparing the covariance and
entropy for the random variables w ∼ φ and ŵ + 1

2(w − ŵ). The second step consists in showing
that (λ, µ)-generalized Universal Portfolios distribution φt, as defined in (21), can be truncated to
the Dikin ellipsoid around its mode at the expense of an O(µ(d− 1) log(T + λd)) increase in Ft−1.
This is done by expressing Ft−1[φt] as the log-partition function, controlling the integrand via self-
concordance, and lower-bounding the volume of the Dikin ellipsoid by arguing that the mode of φt
cannot be too close to the relative boundary of ∆d thanks to the logarithmic-barrier regularizer.

Step 3o : reduction to the Gaussian distribution. Departing from (27), we note that its
objective F t−1[φ] depends on φ only through the mean, covariance, and differential entropy of φ.
However, the support constraint, namely φ ∈ Supp(Et−1, 1/4(ŵ)), interferes with higher moments. A
natural idea is then to replace the “hard” support constraint with a “soft” covariance one, namely

φ ∈ Supp(Ad), Cov[φ] 4
1

16
∇2Lt−1(ŵ)−1. (28)

This results in a relaxation of (27). Indeed, Ew∼φ[w] = ŵ ∈ ∆d and φ ∈ Supp(Et−1, 1/4(ŵ)) together

imply that 1⊤
d (w− ŵ) = 0 (φ-a.s.), that is φ ∈ Supp(Ad); on the other hand, by Jensen’s inequality

∥∥∥∇2Lt−1(ŵ)1/2Cov[φ]∇2Lt−1(ŵ)1/2
∥∥∥ 6 Ew∼φ

[
‖w − ŵ‖2∇2Lt−1(ŵ)

]
6

1

16
. (29)

We can now satisfy the support constraint in (28) “automatically” by reformulating it as follows:

w ∼ φ is such that w = Av + ed for v ∼ φ1 ∈ Supp(Rd−1) (30)

where the mean v̂ ∈ ∆d−1, covariance, and entropy of φ1 are related to those of φ according to

ŵ = Av̂ + ed, Cov[φ] = ACov[φ1]A⊤, Ent[φ] = Ent[φ1] − 1
2 log det(A⊤A)

12



where det(A⊤A) = d. The matrix constraint in (28) translates to Cov[φ1] 4 1
16 (A⊤∇2Lt−1(ŵ)A)−1

by simple linear algebra. As such, in terms of ŵ, Cov[φ1], and Ent[φ1], the objective in (27) becomes

F t−1[φ] = Lt−1(ŵ) +
4

5
tr
[
Cov[φ1]A⊤∇2Lt−1(ŵ)A

]
− µEnt[φ1]. (31)

Clearly, N (v̂,Σ) maximizes Ent[φ1] given the constraints Eφ1 [v] = v̂ and Cov[φ1] = Σ, with the
value Ent[N (v̂,Σ)] = 1

2 log det(Σ) + cd where cd depends only on d. This gives a relaxation of (27),

min

ŵ ∈ ∆d, 0 4 Σ 4
1

16
(A⊤∇2Lt−1(ŵ)A)−1

Lt−1(ŵ) +
4

5
tr
[
ΣA⊤∇2Lt−1(ŵ)A

]
− µ

2
log det(Σ), (32)

that depends on φ only through the mean and covariance. Finally, in Appendix B.4 we show that,
when µ > 0.1, the minimum over Σ is attained at Σ̂ = 1

16 (A⊤∇2Lt−1(ŵ)A)−1, and (32) reduces to

min
ŵ∈∆d

Lt−1(ŵ) +
µ

2
log det(A⊤∇2Lt−1(ŵ)A). (33)

This is nothing else but (VB-FTRL). To summarize, (VB-FTRL) appears after relaxing the “hard”
support constraint in (27), so that the optimum is attained on a Gaussian distribution. Moreover:
the result below shows that, essentially, this relaxation comes at no extra cost (cf. Proposition 2.2).

Proposition 2.3. Assume that µ > 0.1. Let φt be optimal in (27), wt be as in (VB-FTRL),
Σt = 1

16(A⊤∇2Lt−1(wt)A)−1, and let gtrct be the truncation of N (wt, AΣtA
⊤) to Et−1, 1/2(wt). Then

Ft−1[gtrct ] 6 F t−1[φt] + 0.5µ(d− 1) log(350d) + 0.01µ.

The proof of this result relies on the feasibility of φt in (32) and an estimate of the decrease of
entropy when truncating a Gaussian distribution to its covariance ellipsoid (see Lemma B.2).

Finally, by combining Propositions 2.2 and 2.3 we establish a quantitative correspondence be-
tween (VB-FTRL) and generalized Cover’s update in its variational form (18). Namely, portfolio wt

computed in (VB-FTRL) generates a distribution—precisely, N (wt,
1
16A(A⊤∇2Lt−1(wt)

−1A)−1A⊤)
truncated to the Dikin ellipsoid Et−1, 1/2(wt)—that solves (18) up to the accuracy of O(µd log(T )).

3 Regret analysis

In this section, we start by giving an outline of the proof of Theorem 2.1 and discussing the role of
volumetric regularization. After that, we are going to present the full proof of the theorem.

3.1 Overview of the proof and the role of volumetric regularization

Key decomposition. We shall specify the values of λ, µ in the later stages of the proof; for now
we consider general λ, µ > 0. Let us decompose the regret of the sequence generated in (VB-FTRL)
through telescoping:

RT (w1:T |x1:T ) 6
∑

t∈[T ]

[
ℓt(wt) + min

w∈∆d

Pt−1(w) − min
w∈∆d

Pt(w)
]
− min

w∈∆d

∑

t∈[T ]

ℓt(w) + min
w∈∆d

PT (w)

=
∑

t∈[T ]

[
Pt(wt) + µVt−1(wt) − µVt(wt) − Pt(wt+1)

]
− min

w∈∆d

∑

t∈[T ]

ℓt(w) + min
w∈∆d

PT (w).

(34)
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Here the inequality holds since P0(w) = λR(w) > 0 on ∆d, cf. (14). In other words, we have that

RT (w1:T |x1:T ) 6 BiasT +
∑

t∈[T ]

[Misst + Gaint] (35)

where the three kinds of differences BiasT ,Misst,Gaint are defined as follows:

Misst := Pt(wt)−Pt(wt+1), Gaint := µ[Vt−1(wt)−Vt(wt)], BiasT := min
w∈∆d

PT (w)− min
w∈∆d

∑

t∈[T ]

ℓt(w).

Here, BiasT is the “bias” term arising since (VB-FTRL) minimizes Pt−1(w) instead of
∑

τ∈[t−1] ℓτ (w),
the observed sum of losses—in other words, due to our use of regularization “per se.” Misst is the
“lagged” term that arises since we only “follow” the (regularized) leader, i.e. minimize Pt−1 instead
of Pt. Finally, Gaint appears due to our use of a time-varying volumetric regularizer. Since Pt−1

in (VB-FTRL) includes Vt−1 rather than Vt, we expect Gaint to be negative and decrease the regret.

Big picture. Our proof proceed as follows. On the one hand, we shall bound the “bias” term as

BiasT 6 (λ+ 2µ) (d − 1) log(T + λd) (36)

under the assumption that λ > 2e. This is not too involved, and can be done via a combination of
standard techniques. Way more interesting is another step, in which we show that the inequalities

Misst + Gaint 6 0, ∀t ∈ [T ], (37)

hold when λ, µ are as in the premise of the theorem. The result then follows by combining (35)–(37).

Volumetric regularization mechanism. First, convexity of log det(·) on Sn+ implies that

Gaint 6 −µ
2
πt(wt) with πt(w) :=

∥∥∥A⊤∇ℓτ (w)
∥∥∥
2

(A⊤∇2Lt(w)A)−1
, (38)

see Lemma A.4. Under the affine reparametrization in (10), πt(wt) becomes the leverage score of xt
at wt, cf. (11). On the other hand, Misst is the suboptimality gap of wt in terms of Pt or P1

t :

Misst = Pt(wt) − min
w∈∆d

Pt(w) = P1

t (vt) − min
w∈∆d

P1

t (v).

Now, self-concordance of P1
t allows to bound Misst in terms of the squared Newton decrement:

Misst 6 CDecr2t with Decrt =
∥∥∥A⊤∇Pt(wt)

∥∥∥
(A⊤∇2Pt(wt)A)−1

, (39)

for some C > 0, once we have shown that Decr2t 6 c < 1 (see Lemma A.7 or [37, Theorem 4.1.13]).
Finally, the optimality condition for wt implies that

A⊤∇Pt(wt) = A⊤∇ℓt(wt) + µA⊤[∇Vt(wt) −∇Vt−1(wt)].

Departing from this identity and exploting the algebraic structure of leverage scores, we manage to
control the contribution of the term µA⊤[∇Vt(wt)−∇Vt−1(wt)] to Decr2t , as µ increases, by simulta-

neously increasing λ. More precisely, we show that Decr2t 6
1+λ
λ

(
1+ 2µ

λ

)2
πt(wt), while πt(wt) 6

1
1+λ

by Lemma C.1. Thus, selecting λ appropriately we can enforce Decr2t 6 c < 1 for any µ > 0. But
then, combining the bound on Decr2t with (38)–(39) and selecting µ appropriately, we enforce (37).
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Remark 3.1. In the actual proof, instead of Decrt we focus on the Newton decrement Decrt of

P1

t (v) = L1

t (v) + µ
[
V 1

t (vt) + ∇V 1

t (vt)
⊤(v − vt)

]
,

a lower bound for P1
t (v) tight at v = vt. As it turns out, while Decrt is somewhat larger than Decrt,

focusing on Decrt allows to avoid explicit use of the self-concordance of P1
t , using self-concordance

of L1
t instead. (Of course, we use the differential properties of Vt, in particular the algebraic struc-

ture of its derivatives, when bounding Decrt.) The point is that P1
t is only 21-self-concordant (see

Lemma C.1), rather than 1-self-concordant as L1
t , so working with Decrt, P

1
t instead of Decrt, P

1
t al-

lows to reduce the constants. Meanwhile, in the proof of Theorem 4.1 on the regret of (VB-FTRL-qN),
a procedure implementing (VB-FTRL), we have to use self-concordance of P1

t directly because of a
quasi-Newton method applied to P1

t ; the resulting constant factor is an order of magnitude larger.

3.2 Proof of Theorem 2.1

1o. Our goal in this step is to establish (36). Let us further decompose the “bias” term as

BiasT = VolBiasT + LogBiasT (40)

where the two terms correspond to the two regularizers VT (w) and R(w) respectively:

VolBiasT := min
w∈∆d

PT (w) − min
w∈∆d

LT (w), LogBiasT := min
w∈∆d

LT (w) − min
w∈∆d

∑

t∈[T ]

ℓt(w).

Defining w⋆
T := argminw∈∆d

LT (w) we then observe that

VolBiasT 6 PT (w⋆
T ) − LT (w⋆

T ) = µVT (w⋆
T ) 6

µ

2
(d− 1) log(‖A⊤∇2LT (w⋆

T )A‖)

6
µ

2
(d− 1) log(d‖∇2LT (w⋆

T )‖) (41)

where in the last step we used that ‖A‖ =
√
d. On the other hand, we can estimate ‖∇2LT (w⋆

T )‖
using that the entries of w⋆

T cannot be too small. Indeed, according to Lemma A.1 we have that

w⋆
T [i] >

λ

T + λd
, ∀i ∈ [d] (42)

—a variation of the well-known result for the logaritmic-barrier regularizer (see e.g. [29]). But then

∇2LT (w⋆
T ) =

∑

t∈[T ]

xtx
⊤
t

(x⊤t w
⋆
T )2

+
∑

i∈[d]

λeie
⊤
i

w⋆
T [i]2

4
(T + λd)2

λ2

(
∑

t∈[T ]

xtx
⊤
t

‖xt‖21
+ λ

∑

i∈[d]

eie
⊤
i

)
4

(T + λd)3

λ2
Id,

that is

‖∇2LT (w⋆
T )‖ 6

(T + λd)3

λ2
. (43)

Returning to (41) and using that λ > 1 to simplify the argument of the logarithm, we find that

VolBiasT 6 2µ(d− 1) log(T + λd). (44)

15



Now, in order to bound LogBias take any wo
T ∈ Argminw∈∆d

∑
t∈[T ] ℓt(w) and define wo

T,α ∈ ∆d by

wo
T,α = (1 − α)wo

T +
α

d
1d with α =

λ(d− 1)

T + λ(d− 1)
.

On the one hand, we have that

R(wo
T,α) 6 max

w∈∆d

R
(

(1 − α)w +
α

d
1d

)
= (d− 1) log

(
d

α

)
6 (d− 1) log

(
2
T + λd

λ

)

where we used that a convex function with a compact domain is maximized at an extremal points,
and also that d

d−1 6 2. On the other hand, by Lemma A.2 proved in appendix, for any w ∈ ∆d

∑

t∈[T ]

ℓt

(
(1 − α)w +

α

d
1d

)
− ℓt(w) 6

α

1 − α
T = λ(d− 1),

whence
∑

t∈[T ] ℓt(w
o
T,α) − ℓt(w

o
T ) 6 λ(d− 1). Combining these two results, we conclude that

LogBiasT 6 LT (wo
T,α)−

∑

t∈[T ]

ℓt(w
o
T ) 6 λR(wo

T,α)+
∑

t∈[T ]

ℓt(w
o
T,α)−ℓt(wo

T ) 6 λ(d−1) log

(
2e
T + λd

λ

)
.

(45)
We arrive at the desired estimate, cf. (36), by plugging (44) and (45) into (40) and using that λ > 2e.

2o. Next we turn to proving (37). To streamline the exposition, we define x−i = ei for i ∈ [d],
let τ vary over the extended index set [t]+ := [t] ∪ {−1, . . . ,−d}, and define the abridged notation:

H t(w) := A⊤∇2Lt(w)A, ∇τ (w) := A⊤∇ℓτ (w),

Ĥt := Ht(wt), ∇̂τ := ∇τ (wt).
(46)

Moreover, with a slight abuse of notation we let

λτ := λ1{τ<0}, τ ∈ [t]+, (47)

so that Lt(w) =
∑

τ∈[t]+ λτ ℓτ (w) and, as a consequence,

H t(w) =
∑

τ∈[t]+

λτ∇τ (w)∇⊤
τ (w), Ĥ t =

∑

τ∈[t]+

λτ∇̂τ∇̂
⊤
τ . (48)

Finally, we define the Gram matrix Π(w) ∈ S
t+d
+ of the extended dataset, with entries given by

πτ,ν(w) :=
√
λτλν

〈
∇τ (w),∇ν(w)

〉
Ht(w)−1 , ∀τ, ν ∈ [t]+, (49)

rows/columns indexed on [t]+, and dependence on t omitted for brevity. Also, let Π̂ := Π(wt), i.e.

π̂τ,ν :=
√
λτλν

〈
∇̂τ , ∇̂ν

〉
Ĥ

−1
t
, ∀τ, ν ∈ [t]+. (50)

For brevity, we refer to the diagonal entries with a single index: πτ (w) := πτ,τ (w) and π̂τ := π̂τ,τ .
When w ∈ ∆d, πτ (w) is the squared leverage score for the reparametrized and

√
λτ -rescaled losses:

πτ (Av + ed) = λτ‖∇ℓ1τ (v)‖2∇2L1
t (v)

−1 .
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In fact, Π(w) is a projection matrix, i.e. Π(w) = Π(w)2; see [45]. We will use a weaker property:

πτ (w) =
∑

ν∈[t]+

πτ,ν(w)2, ∀τ ∈ [t]+. (51)

For the paper to be self-contained, this and other properties of Π(w) are proved in Appendix C.
3o. Now, in terms of the notation we have just introduced, for each term Gaint we have:

Gaint =
µ

2
log




det
(
Ĥ t − ∇̂t∇̂

⊤
t

)

det
(
Ĥ t

)


 6 −µ

2
tr
[
∇̂t ∇̂

⊤
t Ĥ

−1
t

]
= −µ

2
π̂t. (52)

Here the inequality relies on the fact that log det(·) is a convex function on Sn+ (see Lemma A.4). As
such, to verify (37) it suffices to show that, for the values of λ, µ as in the premise of the theorem,

Misst 6
µ

2
π̂t. (53)

To that end, let us define P t : Rd
++ → R as follows:

P t(w) = Lt(w) + µ
[
Vt(wt) + ∇Vt(wt)

⊤(w − wt)
]
. (54)

From [45] it is known that Vt is convex. (For the paper to be self-contained, we reprove this result
in Lemma C.4.) As such, P t(w) 6 Pt(w) for all w. Since P t(wt) = Pt(wt), we obtain the estimates

Misst 6 P t(wt) − P t(wt+1) 6 P t(wt) − min
w∈∆d

P t(w). (55)

Next, let P1

t : Rd−1 →R be the affine reparametrization (cf. (10)) of P t restricted to Ad, namely:

P1

t (v) := P t(Av + ed). (56)

Clearly, P1

t has int(∆d−1), cf. (7), as its domain, and v 7→ Av + ed is a bijection from ∆d to ∆d−1.
As a result, minw∈∆d

P t(w) = minv∈∆d−1
P1

t (v); recalling (55), this results in

Misst 6 P1

t (vt) − min
v∈∆d−1

P1

t (v). (57)

Function P1

t (·) is standard self-concordant in the sense of [37, Section 4.1], or 1-self-concordant in
terms of our Definition 1 in Appendix A.3. (The reader may consult Appendix A.3 for the essential
results on self-concordance.) As such, upper-bounding its Newton decrement

Decrt :=
∥∥∇P1

t (vt)
∥∥
∇2P 1

t (vt)
−1 (58)

with some c < 1 would suffice for showing that P1

t (vt) − minv∈∆d−1
P1

t (v) 6 CDecr2t , where C
depends only on c; in particular, Lemma A.7 shows that c = 0.5 allows for C = 0.8. Therefore, it
remains to prove that Decrt 6 0.5, while lower-bounding the right-hand side of (53) with 0.8Decr2t .

4o. Since ∇2P1
t (v) = A⊤∇2P t(Av+ed)A, cf. (11), and ∇2P t(wt) = ∇2Lt(wt), cf. (54), one has

∇2P1

t (vt) = Ĥt. (59)
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Meanwhile, since vt = argminv∈∆d−1
P1
t−1(v) belongs to int(∆d−1), we get ∇P1

t−1(vt) = 0. Defining

Dt(w) := Vt(w) − Vt−1(w) (60)

we thence arrive at

∇P1

t (vt)
(54)
= ∇P1

t (vt) = ∇P1

t (vt) −∇P1

t−1(vt) = A⊤ [∇Pt(wt) −∇Pt−1(wt)]

= A⊤ [∇Lt(wt) −∇Lt−1(wt) + µ∇Dt(wt)]

= ∇̂t + µA⊤∇Dt(wt). (61)

Plugging (59) and (61) into (58) we conclude that

Decr2t =
∥∥∥∇̂t + µA⊤∇Dt(wt)

∥∥∥
2

Ĥ
−1
t

. (62)

Let us now focus on ∇Dt(wt). Observe that, for any w ∈ Rd
++,

−Dt(w) =
1

2
log det

(
Id−1 −∇t(w)∇t(w)⊤H t(w)−1

)
=

1

2
log (1 − πt(w)) (63)

where we used that ∇t(w)∇t(w)⊤ is rank-one. Whence by the composition formula:

∇Dt(w) =
1

2(1 − πt(w))
∇πt(w). (64)

Finally, a rather tedious computation allows to differentiate πt(w) explicitly (see Lemma C.3):

1

2
∇πt(w) = πt(w)∇ℓt(w) −

∑

τ∈[t]+

πt,τ (w)2∇ℓτ (w). (65)

Collecting (62)–(65) we arrive at the following estimate:

Decr2t 6
1

(1 − π̂t)2

∥∥∥∥∥∥
[1 + (µ − 1)π̂t] ∇̂t − µ


 ∑

τ∈[t]+

π̂2t,τ ∇̂τ



∥∥∥∥∥∥

2

Ĥ
−1
t

. (66)

5o. Let α̂t := 1 + (µ− 1)π̂t, then developing the square in the right-hand side of (66) results in

Decr2t 6
α̂2
t π̂t + 2µα̂t|Ê1| + µ2Ê2

(1 − π̂t)2
(67)

with Ê1 and Ê2 as follows (cf. (47)–(50)):

Ê1


:=

∑

τ∈[t]+

〈
∇̂t, ∇̂τ

〉
Ĥ

−1
t
π̂2t,τ


 =

∑

τ∈[t]+

1√
λτ
π̂3t,τ , (68)

Ê2


:=

∑

τ,ν∈[t]+

〈
∇̂τ , ∇̂ν

〉
Ĥ

−1
t
π̂2t,τ π̂

2
t,ν


 =

∑

τ,ν∈[t]+

π̂τ,ν√
λτλν

π̂2t,τ π̂
2
t,ν . (69)
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Now, by Lemma C.1 proved in the appendix, we have the following bounds for the entries of Π̂:

|π̂t,τ | 6
1

1 + λ
∀τ ∈ [t]; |π̂t,τ | 6

1√
1 + λ

∀τ < 0;
|π̂τ,ν |√
λτλν

6
1

λ
∀τ, ν ∈ [t]+. (70)

The first bound implies that α̂t 6
λ+µ
1+λ . Combining the first two bounds in (70) with (51) we get

|Ê1| 6
1

λ

∑

τ∈[t]+

π̂2t,τ
(51)
=

π̂t
λ
. (71)

Finally, applying the third and then the first bound in (70), we have that

Ê2 6
1

λ


 ∑

τ∈[t]+

π̂2t,τ




2

(51)
=

π̂2t
λ

6
π̂t

λ(1 + λ)
. (72)

Plugging (71)–(72) and the bound for α̂t back into (67) leads to

Decr2t 6

(
1 + λ

λ

)2
[(

λ+ µ

1 + λ

)2

+
2µ(λ+ µ)

λ(1 + λ)
+

µ2

λ(1 + λ)

]
π̂t 6

(1 + λ)(λ+ 2µ)2

λ3
π̂t. (73)

From the first bound in (70) we get Decr2t 6
1
λ

(
1 + 2µ

λ

)2
, thus Decr2t 6 min

{
1
4 ,

5µ
8 π̂t

}
under the

premise of the theorem. By Lemma A.7 and (57), this gives Misst 6 0.8Decr2t 6
µ
2 π̂t, cf. (53),

leading to (37). The theorem is proved.

4 Efficient implementation

We are now about to present an implementation of (VB-FTRL) based on a quasi-Newton method
run from the previous portfolio. Let us first explain why this choice is natural in our context.

First, as we verify in Appendix C, function P1
t , to be minimized in each round of VB-FTRL

after the reparametrization (10), is self-concordant. Such functions were initially proposed in [38]
as the ones for which Newton’s method has a global convergence guarantee. Moreover, it converges
quadratically when initialized at a point with a small Newton decrement. On the other hand, when
proving Theorem 2.1 we have shown (when bounding Decrt) that portfolio wt gives a small Newton
decrement in terms of P1

t−1. As such, Newton’s method run from w̃t ≈ wt[= argminw∈∆d
Pt−1(w)]

will produce an accurate approximation w̃t+1 of wt+1 in just a few steps, enforcing that w̃t+1 ≈ wt+1.
Furthermore, the convergence guarantees for Newton’s method, when run on a self-concordant

function, are affine-invariant—just as the regret bound established in Theorem 2.1. This would not
be so if we used, instead, a first-order method such as gradient descent. Given a substantial research
effort that had been spent in obtaining affine-invariant regret guarantees for various algorithms,6 it
would be quite unsatisfactory if such a regret bound—even an optimal one—came only at the price
of a computational guarantee that lacks affine-invariance. (We stress this point, as it seems to be
rather poorly understood in the theoretical machine learning and online optimization communities.)

6Specifically, getting rid of the gradient norm parameters G2, G∞; cf. Table 1 and the accompanying discussion.
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Finally, we have at our disposal a computationally cheap approximate second-order oracle for Pt

(and thus for P1
t as well). Namely, it can be verified (see Lemma C.4) that the gradient of Vt(w) is

∇Vt(w) =
∑

τ∈[t]+

πτ (w)∇ℓτ (w), (74)

and the Hessian of Vt satisfies the bounds Qt(w) 4 ∇2Vt(w) 4 3Qt(w) with Qt(w) as follows:

Qt(w) =
∑

τ∈[t]+

πτ (w)∇2ℓτ (w). (75)

Now, the point here is that Qt(w) can be computed in O(d2(T + d)) arithmetic operations (a.o.’s),
whereas computing ∇2Vt(w) exactly would take O(d2(T + d)2) a.o.’s. (The latter can be seen
from the explicit representation of ∇2Vt as the sum of (T + d)2 outer-product terms, cf. (121)
in Appendix C.) On the other hand, it can be shown that a quasi-Newton method in which the
exact Hessian of a self-concordant objective is replaced with such an approximation—i.e., the one
with a constant relative error as is the case for ∇2Vt(w) and Qt(w)—admits strong convergence
guarantees—namely, local linear convergence in a Dikin ellipsoid of the optimum; see Lemma A.10.

Conceptual procedure. The above discussion suggests to replace (VB-FTRL) with the update
shown in Fig. 4, and referred to as (VB-FTRL-qN) later on. In (VB-FTRL-qN), the next portfo-
lio w̃t is obtained by running S steps of a quasi-Newton method for the minimization problem
in (VB-FTRL), under the affine reparametrization of ∆d onto ∆d−1, cf. (10)–(12), starting from the
previously chosen portfolio w̃t−1, and approximating the Hessian ∇2Pt(w) with ∇2Lt(w)+3µQt(w).

Input: w̃t−1 ∈ ∆d.

1. Initialize w
(0)
t = w̃t−1.

2. For s = 0, 1, ..., S − 1 do:
(VB-FTRL-qN)

M
(s)
t−1 = A⊤

[
∇2Lt

(
w

(s)
t

)
+ 3µQt

(
w

(s)
t

)]
A,

w
(s+1)
t = w

(s)
t −A

[
M

(s)
t−1

]−1
A⊤∇Pt

(
w

(s)
t

)
.

Output: w̃t = w
(S)
t .

Figure 1: Conceptual implementation of (VB-FTRL) via a quasi-Newton method.

Computational guarantees. Algorithm 1 is a concrete implementation of the update rule
in (VB-FTRL-qN), with O(dT + d2) overall memory use, and O(d2T + d3) runtime per one New-
ton step. As we are about to see next (in Theorem 4.1), it suffices to perform O(log(T + d))
Newton steps to match the regret guarantee of Theorem 2.1 up to a constant factor; thus, the
overall runtime is Õ(d2T + d3) per round.7 The runtime and memory use estimates we have just

7More precisely, round t takes O(d2t+ d3) a.o.’s, but this gives O(d2T + d3) per round on average over T rounds.
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announced can be verified by a line-by-line inspection of Algorithm 1. Indeed, in each round t we

start by translating wt−1 into vt−1 = v
(0)
t−1 as per (12) to translate the problem on ∆d−1 a set with

nonempty interior; clearly, this can be done in O(d). Next, when given the previous iterate v
(s)
t ,

we compute the individual loss gradients ∇τ = ∇ℓ1τ (v
(s)
t ) for each datapoint τ ∈ [t − 1]+ (in-

cluding the “fictional” datapoints {e1, ..., ed} corresponding to the logarithmic-barrier term); this
takes O(dt + d2) a.o.’s in total, and requires O(dt + d2) of storage space. These data are then

used to compute the Hessian H
(s)
t−1 = ∇2L1

t−1

(
v
(s)
t

)
as the sum of O(t + d) one-rank matrices of

the form λ1{τ<0}
∇

(s)
τ

[
∇

(s)
τ

]⊤
, in O(td2 + d3) a.o.’s and O(d2) additional storage. After that, we

compute the inverse of H
(s)
t−1 with O(d3) runtime and O(d2) additional storage, and use [H

(s)
t−1]

−1

to compute O(t+ d) leverage scores π
(s)
τ , cf. line 11 of the algorithm, in O(d2) a.o.’s per each π

(s)
τ .

Using these, we then compute ∇P1
t−1

(
v
(s)
t

)
, compute and invert M

(s)
t−1 (cf. line 15) that satisfies

1

3
M

(s)
t−1 4 ∇2P1

t−1

(
v
(s)
t

)
4 M

(s)
t−1, (76)

and perform a matrix-vector multiplication (line 16). This takes O(td2 + d3) time and O(d2) space.

4.1 Regret guarantee for VB-FTRL-qN

As we are about to see, performing a logarithmic in T + d number of quasi-Newton steps, instead
of full minimization as per (VB-FTRL), suffices to match the regret bound of Theorem 2.1. More
precisely, we have the following result for the regret of VB-FTRL-qN (a.k.a. Algorithm 1).

Theorem 4.1. For any T ∈ N and market realization x1:T , Algorithm 1 produces w̃1:T such that

RT (w̃1:T |x1:T ) 6 (λ+ 2µ) [(d− 1) log(T + λd) + 1]

if we choose λ, µ, S satifying the following conditions: λ > 2e,

1

λ

(
1 +

2µ

λ

)2

6 min

{
1

556
,

5µ

8(1 + λ)

}
, S > 9 log

(
2 max

{
(T + d+ 1)2, 104

√
1 + 3µ

})
. (77)

In particular, choosing λ = 560, µ = 2, and S = 18⌈log(T + d+ 164)⌉ + 7 allows to guarantee that

RT (w̃1:T |x1:T ) 6 564d log(T + 560d).

Proof. As previously noted, Algorithm 1 precisely corresponds to the updates in (VB-FTRL-qN).
Let w̃1:T and w1:T be two sequences produced by (VB-FTRL-qN) and (VB-FTRL) correspondingly
on the same x1:T . Let also w0 = 1

d1d, and observe that w̃0 = w0 = w1 is the exact minimizer of P0.
The following technical result claims, in a nutshell, that w̃t remains very close to wt for all t ∈ [T ].

Lemma 4.1. Let λ, µ, S be as in the premise of Theorem 4.1. Then for all t ∈ {0} ∪ [T ], one has

‖w̃t − wt‖∇2Lt(wt) 6 min

{
1

(T + d+ 1)2
, 10−4(1 + 3µ)−1/2

}
. (78)
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Algorithm 1 VB-FTRL-qN : Efficient implementation of VB-FTRL via a quasi-Newton method

Input: λ > 0, µ > 0, S ∈ N

1: w̃0 := 1
d1d ⊲ w̃0 = argminw∈∆d

P0(w)
2: for t ∈ [T ] do

3: v
(s)
t := A+(w̃t−1 − ed) ⊲ map w̃t−1 ∈ ∆d to ∆d−1, cf. (12)

4: for s ∈ {0, ..., S − 1} do
5: for τ ∈ [t− 1]+ do ⊲ [t− 1]+ = [t− 1] ∪ {−1, ...,−d}
6: λτ := λ1{τ<0} ⊲ recall that x−j = ej for j ∈ [d]

7: ∇
(s)
τ := − 1

x⊤
τ

(
Av

(s)
t +ed

)A⊤xτ ⊲ ∇
(s)
τ = ∇ℓ1τ

(
v
(s)
t

)

8: end for

9: H
(s)
t−1 :=

∑

τ∈[t−1]+

λτ∇
(s)
τ

[
∇

(s)
τ

]⊤
⊲ H

(s)
t−1 = ∇2L1

t−1

(
v
(s)
t

)

10: Σ
(s)
t−1 :=

[
H

(s)
t−1

]−1

11: for τ ∈ [t− 1]+ do

12: π
(s)
τ := λτ

∥∥∥∇(s)
τ

∥∥∥
2

Σ
(s)
t−1

13: end for

14: g
(s)
t−1 :=

∑

τ∈[t−1]+

(
λτ + µπ(s)τ

)
∇

(s)
τ ⊲ g

(s)
t−1 = ∇P1

t−1

(
v
(s)
t

)

15: M
(s)
t−1 := H

(s)
t−1 + 3µ

∑

τ∈[t−1]+

π(s)τ ∇
(s)
τ

[
∇

(s)
τ

]⊤

16: v
(s+1)
t := v

(s)
t −

[
M

(s)
t−1

]−1
g
(s)
t−1 ⊲ quasi-Newton step for P1

t−1(·)
17: end for
18: Predict w̃t := Av

(S)
t + ed ⊲ map v

(S)
t ∈ ∆d−1 back to ∆d

19: Receive xt ∈ Rd
+

20: end for

Deferring the proof of Lemma 4.1 to Appendix D we shall now focus on proving the theorem.
1o. Mimicking (35) we get

RT (w̃1:T |x1:T ) 6 BiasT +
∑

t∈[T ]

[
ℓt(w̃t) + min

w∈∆d

Pt−1(w) − min
w∈∆d

Pt(w)
]

6 BiasT +
∑

t∈[T ]

[
ℓt(w̃t) + Pt−1(w̃t) − Pt(wt+1)

]

6 BiasT +
∑

t∈[T ]

[M̃isst + G̃aint] (79)

where the term BiasT is the same as in the proof of Theorem 2.1, and the terms summed over t are

M̃isst := Pt(w̃t) − Pt(wt+1), G̃aint := µ[Vt−1(w̃t) − Vt(w̃t)]. (80)

Since λ > 2e, BiasT admits the same bound (36) as before. Moreover, for Misst = Pt(wt) −
Pt(wt+1) and Gaint = µ[Vt−1(wt) − Vt(wt)] we still have that Misst + Gaint 6 0 for all t ∈ [T ],
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simply because these terms, just like (36), depend only on w1:T (and not w̃1:T ), and the constraint
on λ, µ imposed in (77) is stronger than its counterpart in Theorem 2.1. Thus, it remains to show

that
∑

t∈[T ] Ẽrrort 6 λ+2µ for the sum of approximation errors Ẽrrort := M̃isst−Misst+G̃aint−Gaint.
2o. Clearly,

Ẽrrort = Lt(w̃t) − Lt(wt) + µ[Vt−1(w̃t) − Vt−1(wt)].

By Lemma 4.1, Lemma A.9, and since L1
t (·) and L1

t−1(·) are 1-self-concordant, cf. Corollary A.1,

(1 − ε)2H t(wt) 4 H t(w̃t) 4
1

(1 − ε)2
H t(wt),

(1 − ε)2H t−1(wt) 4 H t−1(w̃t) 4
1

(1 − ε)2
H t−1(wt)

where ε is the right-hand side of (78), and the second line is due to ‖w̃t −wt‖∇2Lt−1(wt) 6 ε. Thus,

µ[Vt−1(w̃t) − Vt−1(wt)] =
µ

2
log det

(
H t−1(wt)

−1/2H t−1(w̃t)H t−1(wt)
−1/2

)
6 µ(d− 1) log

(
1

1 − ε

)

6 2µ(d− 1)ε.

where in the end we used that 1
1−u 6 1+2u for u ∈ [0, 12 ]. On the other hand, applying Lemma A.8

to L1
t (·) and noting that ‖∇Lt(w)‖∇2Lt(w)−1 6 t+ d by triangle inequality, we get

Lt(w̃t) − Lt(wt) 6 ∇Lt(wt)
⊤(w̃t − wt) + 0.8 ‖w̃t − wt‖2∇2Lt(wt)

6 (T + d)ε + 0.8ε2 6 (T + d+ 1)ε.

As such, we have a (very conservative) bound
∑

t∈[T ] Ẽrrort 6 (λ+ 2µ) (T + d+ 1)2 ε 6 λ+ 2µ.
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A Auxiliary results

A.1 Logarithmic barrier and smoothed portfolios

Lemma A.1. Let w⋆
T = argminw∈∆d

LT (w), then

w⋆
T [i] >

λ

T + λd
, ∀i ∈ [d]. (81)

Proof. Let 1/w be the vector with entries w[i] = 1/w[i]. The first-order optimality conditions read

(w −w⋆
T )⊤

(
λ

w⋆
T

+
∑

t∈[T ]

xt

x⊤t w
⋆
T

)
6 0, ∀w ∈ ∆d.

Rearranging, we conclude that

λ
∑

i∈[d]

w[i]

w⋆
T [i]

+
∑

t∈[T ]

x⊤t w

x⊤t w
⋆
T

6 λd+ T.

The second sum is nonnegative; choosing w = ei for i ∈ [d] violating (81) gives a contradiction.
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Lemma A.2. For all w ∈ ∆d, the smoothed portfolio [w]α := (1 − α)w + α
d1d, α ∈ [0, 1), satisfies

∑

t∈[T ]

ℓt([w]α) − ℓt(w) 6
α

1 − α
T.

In particular, for α = λ(d−1)
T+λ(d−1) we have that

∑

t∈[T ]

ℓt([w]α) − ℓt(w) 6 λ(d− 1).

Proof. Observe that w − [w]α = α
1−α ([w]α − 1

d1d). Whence by convexity we get

∑

t∈[T ]

ℓt([w]α) − ℓt(w) 6
∑

t∈[T ]

x⊤t (w − [w]α)

x⊤t [w]α
=

α

1 − α

∑

t∈[T ]

(
1 − 1

d
· 1⊤

d xt

x⊤t [w]α

)
6

α

1 − α
T.

Lemma A.3. For all w ∈ Rd
++ and x ∈ Rd

+, function R(·) in (14) satisfies ∇2R(w) < 1
(x⊤w)2

xx⊤.

Proof. Equivalently, we must prove that, for w, x as in the premise of the lemma, and for any u ∈ Rd,

(x⊤w)2
∑

i∈[d]

u[i]2

w[i]2
> (x⊤u)2.

Clearly, it suffices to consider u ∈ Rd
+. Let r ∈ Rd

+ have entries r[i] = u[i]
w[i] , then we have that

√√√√
∑

i∈[d]

u[i]2

w[i]2
x⊤w = ‖r‖2 x⊤w > ‖r‖∞ x⊤w >

∑

i∈[d]

r[i]x[i]w[i] = x⊤u.

A.2 Facts from linear algebra

Lemma A.4 ([20, Lemma 12]). For any H ≻ H ′
< 0, it holds that log

(
det(H)

det(H−H
′)

)
> tr(H−1H ′).

In particular, if H ′ is rank-one, i.e. H = uu⊤ for some vector u, then log
(

det(H)
det(H−uu⊤)

)
> ‖u‖2

H
−1 .

Proof. The result follows by using that log det(·) is concave on the positive-semidefinite cone (see [8]):

log

(
det(H)

det(H −H ′)

)
= log det(H(H −H ′)−1) > tr(I − (H −H ′)H−1) = tr(H−1H ′).

Lemma A.5. Let H ∈ Sn++ and u, v ∈ Rn. Then ∇H(〈u, v〉
H

−1) = −1
2H

−1(uv⊤ + vu⊤)H−1. In
particular,

∇H(‖u‖2
H

−1) = −H−1uu⊤H−1.

Proof. Fix an arbitrary symmetric matrix M ∈ Rn×n, and consider t ∈ R for which H − tM ≻ 0.
In terms of the Cholesky factorization H = RR⊤ we have that, as t→ 0,

(H + tM)−1 = R−⊤(I − tR−1MR−⊤)R−1 + o(t) = H−1 − tH−1MH−1 + o(t).

Whence u⊤H−1u−u⊤(H+tM)−1u = t tr(MH−1uu⊤H−1)+o(t), and the formula for ∇H(‖u‖2
H

−1)
is verified. More generally,

u⊤H−1v − u⊤(H + tM)−1v = ttr(MH−1vu⊤H−1) + o(t) =
t

2
tr(MH−1(uv⊤ + vu⊤)H−1) + o(t).

Since H−1(uv⊤ +vu⊤)H−1 is a symmetric matrix, this verifies the formula for ∇H(〈u, v〉
H

−1).
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A.3 Self-concordant functions

In this section, we recall the notion of self-concordant functions and the key properties of such
functions. This class of functions was thoroughly studied in the seminal work of Nesterov and
Nemirovski [38] in connection with interior-point methods; earlier, Vaidya used similar tools in the
context of cutting-plane methods [45]. The results presented next are well known; their proofs can
be found in [37, Section 4], see also [40, Proposition B.2] for a more concise proof of Lemma A.9.

Definition 1. Let f : Rn → R be convex, proper, and three times differentiable on its do-
main dom(f) := {z : f(z) <∞} which is open, has nonempty interior, and does not contain straight
lines. Then f is called M-self-concordant if it is a barrier on its domain—i.e. f(z) →z→z0 ∞ for
any z0 in the boundary of dom(f)—and the following inequality holds for all z ∈ domf and u ∈ Rn:

∣∣∇3f(z)[u, u, u]
∣∣ 6 2M

(
∇2f(z)[u, u]

)3/2
. (82)

The following property of self-concordant functions is well-known, see e.g. [37, Section 4.1].

Lemma A.6 ([37, Theorem 4.1.1]). Let f1 and f2 be M1- and M2-self-concordant, respectively.
For λ1, λ2 > 0, the function λ1f1 + λ2f2 has domain dom(f1) ∩ dom(f2) and is M-self-concordant,

M = max

{
M1√
λ1
,
M2√
λ2

}
.

Lemma A.6 implies self-concordance of the reparametrized logarithmic-barrier function L1
t (·).

Corollary A.1. Assume λ > 1, then the restriction L1
t : Rd−1 →R of Lt to Ad as in (9), namely

L1

t (v) = Lt(Av + ed)

with A defined in (8), is 1-self-concordant according to Definition 1 with domain int(∆d−1), cf. (7).

Proof. It is evident that dom(L1
t ) = int(∆d−1) where ∆d−1 is the “solid” simplex in Rd−1, cf. (7).

In particular, dom(L1
t ) is open and does not contain straight lines, and L1

t → +∞ on its boundary.
Thus, the requirements on the domain are verified. On the other hand, inequality (82) holds
with M = 1 for each of the functions ℓτ (Av + ed), τ ∈ [d], and with M = 1/

√
λ 6 1 for the

functions −λ log(e⊤i (Av + ed)), i ∈ [d]. Applying Jensen’s inequality as in the proof of Lemma A.6
(cf. [37, Theorem 4.1.1]) we verify (82) with M = 1 for L1

t (·). That is, L1
t (·) is 1-self-concordant.

Following [37, Section 4.1] we now define a pair of mutually conjugate functions ω,ψ on R+ by

ω(r) := r − log(1 + r), ψ(r) := −r − log(1 − r). (83)

Note that ω and ψ are increasing, ω(r) 6
1
2r

2 6 ψ(r), and these bounds are tight at r = 0. In
fact, ω(r) is a Huber-type function, so ω(r) = (1−o(1))r as r → ∞; meanwhile, ψ(r)→+∞ as r ↑ 1.
More specifically, it can be verified that ω(r) > 0.3r2 for r 6 1, and ψ(r) 6 0.8r2 for r 6 0.5.

Lemma A.7 ([37, Theorems 4.1.10–4.1.11, 4.1.13]). Let f be 1-self-concordant, and some ẑ ∈
dom(f) satisfies ‖∇f(ẑ)‖∇2f(ẑ)−1 < 1. Then f has a unique minimizer z⋆, and

ω
(
‖∇f(z)‖∇2f(z)−1

)
6 f(z) − f(z⋆) 6 ψ

(
‖∇f(z)‖∇2f(z)−1

)

where the lower bound holds for all z ∈ dom(f), and the upper bound requires ‖∇f(z)‖∇2f(z)−1 < 1.
In particular, 0.3 ‖∇f(z)‖2∇2f(z)−1 6 f(z) − f(z⋆) 6 0.8 ‖∇f(z)‖2∇2f(z)−1 if ‖∇f(z)‖∇2f(z)−1 6 0.5.
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Lemma A.8 ([37, Theorems 4.1.5, 4.1.7–4.1.8]). Let f be 1-self-concordant, z ∈ dom(f), then

ω
(
‖z′ − z‖∇2f(z)

)
6 f(z′) − f(z) −∇f(z)⊤(z′ − z) 6 ψ

(
‖z′ − z‖∇2f(z)

)
.

Here, the lower bound holds ∀z′ ∈ dom(f) and the upper bound on 1-Dikin ellipsoid Ef,1(z) where

Ef,r(z) := {z′ ∈ R
n : ‖z′ − z‖∇2f(z) < r}. (84)

In particular, Ef,1(z) is contained in dom(f). Moreover, for z′ ∈ Ef, 1
2
(z) we have the following:

0.3 ‖z′ − z‖2∇2f(z) 6 f(z′) − f(z) −∇f(z)⊤(z′ − z) 6 0.8 ‖z′ − z‖2∇2f(z).

Lemma A.9 ([37, Theorem 4.1.6]). Let f be 1-self-concordant and z ∈ dom(f), then we have

(
1 − ‖z′ − z‖∇2f(z)

)2 ∇2f(z) 4 ∇2f(z′) 4
1

(
1 − ‖z′ − z‖∇2f(z)

)2 ∇2f(z)

for all z′ ∈ Ef,1(z). In particular, for z′ ∈ Ef, 1
2
(z) we have that 0.25∇2f(z) 4 ∇2f(z′) 4 4∇2f(z).

A.4 Quasi-Newton method

Next we focus on a quasi-Newton method in which the actual Hessian is replaced with an approx-
imation with a constant relative accuracy. Such a method converges linearly if initialized in a
constant-radius Dikin ellipsoid of the minimizer of a self-concordant function. Analogous results
were obtained in [33, Lemma 11], for a modified notion of self-concordance.

Lemma A.10 (Linear convergence for a quasi-Newton method). Let f be 1-self-concordant, z ∈
dom(f) be such that ‖∇f(z)‖∇2f(z)−1 6

c
3 for some c 6 1, and consider z+ := z− ∼

H −1∇f(z) with

c
∼
H 4 ∇2f(z) 4

∼
H.

Then z+ ∈ dom(f), and we have that ‖∇f(z+)‖∇2f(z+)−1 6 (1 − c
3)‖∇f(z)‖∇2f(z)−1 .

Proof. Define H(z′) := ∇2f(z′) for any z′ ∈ dom(f), and J := H(z)1/2
∼
H −1H(z)1/2. Then, by

the premise of the lemma, cH(z)−1 4
∼
H −1

4 H(z)−1, which implies

cI 4 J 4 I and 0 4 I − J 4 (1 − c)I.

As a result, defining δ(z′) := ‖∇f(z′)‖∇2f(z′)−1 for brevity, we get

‖z+ − z‖2
H(z) = ‖ ∼

H −1∇f(z)‖2
H(z) = ∇f(z)⊤H(z)−1/2J2H(z)−1/2∇f(z) 6 δ(z)2,

whence (by Lemma A.9) z+ ∈ dom(f) and

(1 − δ(z))2H(z)−1
4 H(z+)−1

4
1

(1 − δ(z))2
H(z)−1. (85)
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Now, define H(z) := ∇2f(z) and zs := sz+ + (1 − s)z for s ∈ [0, 1]. Since ∇f(z) +
∼
H(z+ − z) = 0,

∥∥∇f(z+)
∥∥
H(z)−1 =

∥∥∥∇f(z+) −∇f(z) − ∼
H(z+ − z)

∥∥∥
H(z)−1

=

∥∥∥∥
∫ 1

0

(
H(zs)−

∼
H
)
(z+ − z) ds

∥∥∥∥
H(z)−1

6

∫ 1

0

∥∥∥
(
H(zs) −

∼
H
)
(z+ − z)

∥∥∥
H(z)−1

ds

6

∫ 1

0

∥∥(H(zs) −H(z)
)
(z+−z)

∥∥
H(z)−1 ds+

∥∥( ∼
H − H(z)

)
(z+ − z)

∥∥
H(z)−1 .

(86)
For the last term in the right-hand side, we get
∥∥∥
( ∼
H − H(z)

)
(z+− z)

∥∥∥
2

H(z)−1
=
∥∥∥
(
I −H(z)

∼
H −1

)
∇f(z)

∥∥∥
2

H(z)−1

= ∇f(z)⊤H(z)−1/2(I − J)2H(z)−1/2∇f(z) 6 (1 − c)2δ(z)2.

(87)

On the other hand, since zs − z = s(z+ − z), similarly to (85), we have that

(1 − sδ(z))2H(z)−1
4 H(zs)

−1
4

1

(1 − sδ(z))2
H(z)−1,

and since (1 − u)2 6
1

(1−u)2
for u ∈ (0, 1), we get

∥∥H(z)1/2H(zs)
−1H(z)1/2 − I

∥∥ 6
1

(1−sδ(z))2
− 1.

As a result, since
∥∥(H(zs) −H(z)

)
(z+−z)

∥∥2
H(z)−1 = (z+ − z)⊤H(z)

1
2
(
H(z)

1
2H(zs)

−1H(z)
1
2 − I

)2
H(z)

1
2 (z+ − z),

we get

∥∥(H(zs) −H(z)
)
(z+−z)

∥∥
H(z)−1 6

(
1

(1 − sδ(z))2
− 1

)∥∥z+ − z
∥∥
H(z)

6

(
1

(1 − sδ(z))2
− 1

)
δ(z)

and estimate the integral term:
∫ 1

0

∥∥(H(zs) −H(z)
)
(z+−z)

∥∥
H(z)−1 ds 6 δ(z)

∫ 1

0

(
1

(1 − sδ(z))2
− 1

)
ds =

δ(z)2

1 − δ(z)
. (88)

Finally, combining (85)–(88), and using that δ(z) 6 c
3 , we conclude that

δ(z+) 6 (1 − c)
δ(z)

1 − δ(z)
+

δ(z)2

(1 − δ(z))2
6

(
1 − 2c

3

)
δ(z)

1 − δ(z)
6

3 − 2c

3 − c
δ(z) 6

(
1 − c

3

)
δ(z).

Corollary A.2. Let f be 1-self-concordant and minimized at z⋆, and assume that z0 ∈ dom(f)
is such that ‖∇f(z0)‖∇2f(z0)−1 6

c
3 for some c 6 1. Consider the following sequence for s ∈

{0} ∪ [S − 1]:

zs+1 := zs−
∼
H −1

s ∇f(zs) where c
∼
Hs4 ∇2f(zs) 4

∼
Hs .

Then, for any ε 6 1
4 , we have the following inequalities if S >

⌈
3
c

log
(
1
ε

)⌉
:

max
{

1
4‖zS − z⋆‖2∇2f(z⋆), f(zS) − f(z⋆), ‖∇f(zS)‖2∇2f(zS)−1

}
6 ε2,

(1 − 2ε)2∇2f(z⋆) 4 ∇2f(zS) 4
1

(1 − 2ε)2
∇2f(z⋆).
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Proof. Using Lemma A.10 sequentially S times, ‖∇f(zS)‖∇2f(zS)−1 6 c
3

(
1 − c

3

)S
6 min{ε, 13}.

Then Lemma A.7 gives f(zS) − f(z⋆) 6 0.8ε2. Now, one can verify that ω(r) > 0.1r for r > 0.5,
whence by Lemma A.8 first ‖zS −z⋆‖∇2f(z⋆) 6 max{0.5, 8ε2} 6 0.5, and then ‖zS−z⋆‖2 6 8

3ε
2.

B Proofs deferred from Section 2.2

B.1 Proof of Proposition 2.1

Function ht(w) = e−
1
µ
ℓt(w) [= (x⊤t w)1/µ] is concave on ∆d when µ > 1; thus, by Jensen’s inequality,

ℓt(wt) 6 −µ logEw∼φt

[
exp

(
− 1

µ
ℓt(w)

)]

6 −µ log

[∫

∆d

exp

(
− 1

µ
Lt(w)

)
dw

]
+ µ log

[∫

∆d

exp

(
− 1

µ
Lt−1(w)

)
dw

]
.

Whence via telescoping and (15):

∑

t∈[T ]

ℓt(wt) 6 −µ log

[∫

∆d

exp

(
− 1

µ
LT (w)

)
dw

]
+ µ log

[∫

∆d

exp

(
−λ
µ
R(w)

)
dw

]
. (89)

Now, let w⋆
T = argminw∈∆d

LT (w). Define the set ∆⋆
d,T :=

{
T

T+1w
⋆
T + 1

T+1w, ∀w ∈ ∆d

}
, i.e. a copy

of ∆d shrinked by the factor of 1
T+1 and shifted by w⋆

T . Since ht(·) is concave and positive, we have:

ht(w) >
T

T + 1
ht(w

⋆
T ) ∀w ∈ ∆⋆

d,T .

As such, for all w ∈ ∆⋆
d,T we have that

exp

(
− 1

µ
LT (w)

)
> exp

(
−λ
µ
R(w)

)
·
(

T

T + 1

)T ∏

t∈[T ]

ht(w
⋆
T ) >

1

e
exp

(
−λ
µ
R(w)

) ∏

t∈[T ]

ht(w
⋆
T ).

After taking the logarithm and noting that ∆⋆
d,T ⊆ ∆d, this results in

−µ log

[∫

∆d

exp

(
− 1

µ
LT (w)

)
dw

]
6 −µ log

[
1

e

∫

∆⋆
d,T

exp

(
−λ
µ
R(w)

)
dw

]
+
∑

t∈[T ]

ℓt(w
⋆
T ).

Returning to (89), this results in

RT (w1:T |x1:T ) 6
∑

t∈[T ]

ℓt(w
⋆
T ) − min

w∈∆d

∑

t∈[T ]

ℓt(w)

+ µ log

[∫

∆d

exp

(
−λ
µ
R(w)

)
dw

]
− µ log

[
1

e

∫

∆⋆
d,T

exp

(
−λ
µ
R(w)

)
dw

]
.

(90)

Observing that R(w) > R(1d1d) = d log(d) on ∆d allows to estimate the penultimate term in (90):

µ log

[∫

∆d

exp

(
−λ
µ
R(w)

)
dw

]
6 µ log[Area(∆d)] − λd log d. (91)
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Meanwhile, R(w), as a convex function, is maximized on a vertex of ∆⋆
d,T , whence for any w ∈ ∆∗

d,T :

R(w) 6 max
k∈[d]

R

(
T

T + 1
w⋆
T +

1

T + 1
ek

)
= max

k∈[d]



log

(
T + 1

Tw⋆
T [k] + 1

)
+

∑

i∈[d]\{k}

log

(
T + 1

Tw⋆
T [i]

)


6 R(w⋆
T ) + (d− 1) log

(
T + 1

T

)
.

This allows to estimate the last term in (90):

−µ log

[
1

e

∫

∆⋆
d,T

exp

(
−λ
µ
R(w)

)
dw

]
6 λR(w⋆

T ) + λ(d− 1) log

(
T + 1

T

)
+ µ− µ log[Area(∆⋆

d,T )]

6 λR(w⋆
T ) + λ(d− 1) log (2) + µ− µ log[Area(∆d)]

+ µ(d− 1) log(T + 1).
(92)

Here we used that Area(∆⋆
d,T ) = 1

(T+1)d−1 Area(∆d). Finally, proceeding as in step 1o of the proof

of Theorem 2.1 we get

LT (w⋆
T ) − min

w∈∆d

∑

t∈[T ]

ℓt(w) 6 λ (d− 1) log

(
2e
T + λd

λ

)
. (93)

Combining (90)–(93) yields the result.

B.2 Proof of Proposition 2.2

On the one hand, the mere feasibility of φt in surrogate problem (27) implies, through (26), that

Ft−1[φt] 6 F t−1[φt]. (94)

Now, let us define (w,φ
t
) as the optimal solution to the following minimization problem:

min
ŵ ∈ ∆d, Eφ[w] = ŵ,

φ ∈ Supp(Et−1, 1/2(ŵ))

Lt−1(ŵ) +
1

5
tr
(
∇2Lt−1(ŵ) Cov[φ]

)
− µEnt[φ]

︸ ︷︷ ︸
:= F t−1[φ]

. (95)

Moreover, let φ̃t(·) := 2φ
t
(w + 2(· − w)), i.e. φ̃t is the distribution of w + 1

2 (w − w) with w ∼ φ
t
.

Then E
w∼φ̃t

[w] = w and also φ̃t ∈ Supp(Et−1, 1/4(w))—in other words, (w, φ̃t) is feasible in (27), so

F t−1[φt] 6 F t−1[φ̃t]. (96)

Now: observe that Cov[φ̃t] = 1
4Cov[φ

t
] and Ent[φ̃t] = Ent[φ

t
] − (d− 1) log(2), whence (26) gives

F t−1[φ̃t] 6 F t−1[φ
t
] + µ(d− 1) log(2). (97)

Finally, let (wo, φot ) be the optimal solution to the optimization problem

min
ŵ ∈ ∆d, Eφ[w] = ŵ,

φ ∈ Supp(Et−1, 1/2(ŵ))

Ft−1[φ]. (98)
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Since (wo, φot ) is also a feasible solution to (95), we have that F t−1[φ
t
] 6 F t−1[φot ] 6 Ft−1[φot ]. In

combination with (94) and (96)–(98) this results in

Ft−1[φt] 6 min
ŵ ∈ ∆d, Eφ[w] = ŵ,

φ ∈ Supp(Et−1, 1/2(ŵ))

Ft−1[φ] + µ(d− 1) log(2). (99)

Thus, to prove the proposition it suffices to bound the minimum in (98) from above in terms of
the minimum in (23). To this end, recall that φt, as defined in (21), is the optimal solution to (23);
let w⋆ = argminw∈∆d

Lt−1(w), and let φtrct be the truncation of φt to Et−1, 1/8(w⋆)—in other words,

φtrct (w) =
exp

(
− 1

µLt−1(w)
)

∫
Et−1, 1/8(w⋆) exp

(
− 1

µLt−1(w′)
)
dw′

, w ∈ Et−1, 1/8(w⋆). (100)

Clearly, φtrct is supported on Et−1, 1/2(ŵtrc) where ŵtrc = Eφtrc
t

[w] is its expectation—in other words,
the pair (ŵtrc, φtrct ) is feasible in (98). Indeed, for any w ∈ Et−1, 1/8(w⋆) we have that

‖w − ŵtrc‖∇2Lt−1(ŵtrc) 6 2‖w − ŵtrc‖∇2Lt−1(w⋆)

6 2‖w − w⋆‖∇2Lt−1(w⋆) + 2‖ŵtrc − w⋆‖∇2Lt−1(w⋆) 6 1/2,

where we used that function L1
t−1(v) is 1-self-concordant whenever λ > 1—see Corollary A.1 in

Appendix A.3 for the proof of this result—and applied Lemma A.9. By (99), this implies that

Ft−1[φt] 6 Ft−1[φtrct ] + µ(d− 1) log(2). (101)

As such, it remains to show that replacing φt with φtrct does not lead to a dramatic increase of Ft−1.

Lemma B.1. For φt, Ft−1, φ
trc
t as in (21)–(23) and (100), the following holds as long as λ > 1:

Ft−1[φtrct ] 6 Ft−1[φt] + 1.5µ(d − 1) log (T + λd) + 3.2µ(d + 1) + 0.1.

This lemma, proved in the next section, gives the desired result via (101), since log(2) < 0.7.

B.3 Proof of Lemma B.1

For the sake of generality we shall consider truncation to Et−1,r(w
⋆) with arbitrary r 6 1/2, and

put r = 1/8 post-hoc. By duality between the negative entropy and log-partition function (cf. (23)),

Ft−1[φt] = −µ log

∫

∆d

exp

(
− 1

µ
Lt−1(w)

)
dw,

Ft−1[φtrct ] = −µ log

∫

Et−1,r(w⋆)
exp

(
− 1

µ
Lt−1(w)

)
dw.

Here the second integral is smaller: Et−1,r(w
⋆) ⊆ ∆d by Lemma A.8 and Corollary A.1. Our goal

is to show the reverse inequality up to the appropriate error term. To this end, we first note that

exp

(
1

µ

(
Ft−1[φtrct ] − Ft−1[φt]

))
=

∫
∆d

exp
(
− 1

µ [Lt−1(w) − Lt−1(w⋆)]
)
dw

∫
Et−1,r(w⋆) exp

(
− 1

µ [Lt−1(w) − Lt−1(w⋆)]
)
dw

. (102)
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Since Lt−1(w) > Lt−1(w⋆), the numerator can be upper-bounded by the surface area of ∆d:

∫

∆d

exp

(
− 1

µ
[Lt−1(w) − Lt−1(w⋆)]

)
dw 6 Area(∆d) =

√
dVol(∆d−1) =

√
d

Γ(d)
.

By the first-order optimality conditions 〈∇Lt−1(w
⋆), w − w⋆〉 = 0 for w ∈ ∆d, whence by Lemma A.8

Lt−1(w) − Lt−1(w
⋆) 6

4

5
‖w − w⋆‖2∇2Lt−1(w⋆) ∀w ∈ Et−1,r(w

⋆),

where we used that r 6 1/2. As such, we can lower-bound the denominator in (102) as follows:

∫

Et−1,r(w⋆)
exp

(
− 1

µ
[Lt−1(w) − Lt−1(w⋆)]

)
dw > exp

(
−4r2

5µ

)
rd−1Area(Et−1,1(w⋆)).

Now, as in Corollary A.1 let L1
t−1 : Rd−1 → R be the reparametrized restriction of Lt−1 to Ad.

Since det(A⊤A) = d, we have that

Area(Et−1,1(w⋆)) =
√
dVol(E1

t−1,1(v⋆))

where v⋆ is such that Av⋆ + ed = w⋆, and ellipsoid E1
t−1,r(v

⋆) similarly corresponds to Et−1,r(w
⋆):

E1

t−1,r(v
⋆) := {v ∈ R

d−1 : ‖v − v⋆‖∇2L1

t−1(v
⋆) 6 r} ⊂ R

d−1.

Using the expression for the volume of an ellipsoid in Rd−1, we have that

Vol(E1

t−1,1(v⋆)) =
π

d−1
2

Γ(d+1
2 )
√

det(∇2L1
t−1(v))

.

Moreover, since ∇2L1
t−1(v

⋆) = A⊤∇2Lt−1(w⋆)A and A⊤A = Id−1 + 1d−11
⊤
d−1, so that ‖A‖ =

√
d,

det(∇2L1

t−1(v⋆)) 6 ‖∇2L1

t−1(v
⋆)‖d−1

6 (d ‖∇2Lt−1(w
⋆)‖)d−1

6

(
d(t− 1 + λd)3

λ2

)d−1

6
(
d(t− 1 + λd)3

)d−1
;

here we bounded ‖∇2Lt−1(w⋆)‖ by using that mini∈[d]w
⋆[i] > λ

t−1+λd (cf. Lemma A.1) and invoking
estimate (43) used in step 1o of the proof of Theorem 2.1. Returning to (102) we arrive at

Ft−1[φtrct ] − Ft−1[φt] 6
3

2
µ(d− 1) log

(
T + λd

r2/3π1/3

)
+ µ log

(
Γ(d+1

2 )d
d−1
2

Γ(d)

)
+

4

5
r2

6
3

2
µ(d− 1) log

(
T + λd

r

)
+ µ(d+ 1) +

4

5
r2.

Here in the last step we did a series of simple estimates to bound the term depending solely on d.
The result follows by plugging in r = 1/8.
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B.4 Transition from (32) to (33)

Recall that A⊤∇2Lt−1(ŵ)A = ∇2L1
t−1(v̂), cf. (11), and note that the Σ component of the objective

gradient in (32) is 4
5∇2L1

t−1(v̂) − µ
2Σ

−1. The corresponding first-order optimality condition reads:

tr

[
(Σ− Σ̂)

(
∇2L1

t−1(v̂) − 5µ

8
Σ̂

−1
)]

> 0 for all 0 4 Σ 4
1

16
∇2L1

t−1(v̂)−1.

Plugging in Σ̂ = 1
16∇2L1

t−1(v̂)−1 and dividing over 1− 10µ < 0, the above condition translates into

tr

[
Σ∇2L1

t−1(v̂) − 1

16
Id−1

]
6 0 for all 0 4 Σ 4

1

16
∇2L1

t−1(v̂)−1.

From the monotonicity of trace with respect to 4 ordering, it follows that this condition is indeed
satisfied. Plugging Σ̂ into (32) and neglecting the constant terms, we finally arrive at (33).

B.5 Proof of Proposition 2.3

1o. Recall that the optimization problem

min

ŵ ∈ ∆d, 0 4 Σ 4
1

16
(A⊤∇2Lt−1(ŵ)A)−1,

φ1 : AEv∼φ1 [v] + ed = ŵ, Cov[φ1] = Σ

Lt−1(ŵ) +
4

5
tr
[
ΣA⊤∇2Lt−1(ŵ)A

]
− µEnt[φ1]

︸ ︷︷ ︸
=F t−1[φ]+

µ
2
log(d)

(103)

is equivalent to (32) in the natural sense: (wt,Σt) ∈ ∆d×S
d−1
+ is optimal in (32) whenever N (vt,Σt),

with vt ∈ ∆d−1 such that Avt + ed = wt, is optimal in (103). Now, let (w,φt) and (wt,Σt) be
optimal in (27) and (32) correspondingly, so that N (vt,Σt), with vt ∈ ∆d−1 as above, is optimal
in (103). Observe that (w,φt) is feasible in (103) due to (29). Since the objective in (103) amounts
to F t−1[φ] + µ

2 log(d) with φ ∈ Supp(Ad) associated with φ1 via (30), we have, for the distribution

gt := N (wt, AΣtA
⊤),

that
F t−1[gt] 6 F t−1[φt]. (104)

2o. Next, let us bound F t−1[gt] from below. From our derivation in Appendix B.4 it follows that

Σ−1
t = 16A⊤∇2Lt−1(wt)A, (105)

therefore the level sets of gt are precisely the Dikin ellipses Et−1,r(wt) with various r > 0, cf (24).
Now, define gtrct as the truncation of gt to the specific Dikin ellipse Et−1, 1/2(wt)—in other words,

gtrct (w) =
gt(w)∫

Et−1, 1/2(wt)
gt(w′)dw′

, w ∈ Et−1, 1/2(wt). (106)

Since Egtrct
[w] = wt and gtrct ∈ Supp(Et−1, 1/2(wt)), the bounds in (26) are valid for φ = gtrct , and so

Ft−1[gtrct ] 6 F t−1[gtrct ]. (107)
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3o. Let us now bound F t−1[gtrct ] from above in terms of F t−1[gt]. To this end, we first observe that

Cov[gtrct ] 4 Cov[gt]. (108)

Indeed: truncating gt can also be seen as transporting the mass from each ellipse Et−1,s(wt), s > 1/2,
to Et−1,r(wt) for some r = r(s) 6 1/2. As such, it only remains to control the change of entropy
because of truncation. The following lemma, proved in the next section, allows us to do so.

Lemma B.2. Given v̂ ∈ Rn, Σ ∈ Sn++, let g(v) be the density of N (v̂,Σ). Consider the density

g
(r)(v) =

g(v)∫
‖v′−v̂‖

Σ−16r g(v′)dv′
, ∀v ∈ R

n : ‖v − v̂‖
Σ

−1 6 r,

i.e. the truncation of g to the covariance ellipsoid {v ∈ Rn : ‖v− v̂‖
Σ

−1 6 r} of radius r > 0. Then

Ent[g] − Ent[g(r)] 6
n

2
log

(
2e(n + 1)

r2

)
+
r2

2
.

While this bound becomes vacuous when r → ∞, for our purposes it suffices, as in our case r < 1.
Namely, we apply the lemma to N (vt,Σt) in the role of g, so that its truncation to E1

t−1, 1/2(vt),

cf. (106), corresponds to g
(1/8), cf. (105). This results in

Ent[gt] − Ent[gtrct ] 6
d− 1

2
log (128ed) +

1

128
,

where we applied the identity Ent[φ1] = Ent[φ] + 1
2 log(d) to φ ∈ {gt, gtrct }. In view of (108) we get

F t−1[gtrct ] 6 F t−1[gt] +
µ(d− 1)

2
log (128ed) +

µ

128
.

The desired result follows by combining this with (107), (104), and Proposition 2.2.

B.6 Proof of Lemma B.2

Recall that Ent[g] = 1
2 log det(Σ) + n

2 log(2π) + n
2 . On the other hand, by rewriting g

(r) in the form

g
(r)(v) =

1√
(2π)nCr(Σ)

exp

(
−1

2
‖v − v̂‖2

Σ
−1

)

where Cr(Σ) does not depend on v̂, we estimate Ent[g(r)] > 1
2 log[Cr(Σ)] + n

2 log(2π) and arrive at

Ent[g(r)] − Ent[g] >
1

2
log[Cr(Σ)] − 1

2
log det(Σ) − n

2
. (109)

Now, observe that, putting v̂ = 0 w.l.o.g.,

Cr(Σ)1/2 =
1

(2π)n/2

∫

‖v‖
Σ−16r

exp

(
−1

2
‖v‖2

Σ
−1

)
dv >

e−r2/2

(2π)n/2
det(Σ1/2)

πn/2rn

Γ(n2 + 1)

where we used the expression πn/2

Γ(n
2
+1) for the volume of the unit ℓ2-ball in Rn. Whence we arrive at

1

2
logCr(Σ) − 1

2
log det(Σ) > −r

2

2
− n

2
log(2) + n log(r) − log

[
Γ
(n

2
+ 1
)]

> −r
2

2
− n

2
log(2) + n log(r) − n

2
log(n+ 1),

and the desired result follows via (109).
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C Differential properties of leverage scores and barrier functions

In this section, we recall some differential properties of the Gram matrix Π(w), and barrier func-
tions Vt(w), Pt(w) used in VB-FTRL and in its analysis. These results are adaptations or easy
corollaries of those in [45, 3]; however, the existing results in these works can only be applied in the
special case λ = µ = 1, where V 1

t (·) and P1
t (·) become, respectively, the volumetric and “hybrid”

barriers (in the terminology of [3]) for the set of linear constraints corresponding to the set of
vectors {A⊤xτ , τ ∈ [t]+} in the notation defined in (46)–(50).8 Formal reduction to this special
case from λ > 1, µ > 0 proved to be elusive. For this reason, and to make the paper self-contained,
here we reprove these results assuming only that λ, µ > 0, and in some cases that λ > 1.

Preliminaries and notation. To streamline the exposition, in this section we fix t ∈ [T ] and use
the notation defined in (46)–(50), which we are now repeating here for convenience. For any τ ∈ [t]+:

H t(w) := A⊤∇2Lt(w)A, ∇τ (w) := A⊤∇ℓτ (w),

Ĥt := Ht(wt), ∇̂τ := ∇τ ,
(110)

where [t]∪{−1, . . . ,−d} is the extended index set (with τ < 0 corresponding to xτ := e−τ ). Besides,

λτ := λ1{τ<0},

so that Ht(w) =
∑

τ∈[t]+

λτ∇τ (w)∇⊤
τ (w) and Ĥ t =

∑

τ∈[t]+

λτ∇̂τ∇̂
⊤
τ . (111)

We let Π(w) ∈ S
t+d
+ be the Gram matrix with rows and columns indexed over [t]+, and with entries

πτ,ν(w) :=
√
λτλν

〈
∇τ (w),∇ν(w)

〉
Ht(w)−1 . (112)

We also define Π̂ := Π(wt), whose entries are thus

π̂τ,ν :=
√
λτλν

〈
∇̂τ , ∇̂ν

〉
Ĥ

−1
t
. (113)

For brevity, we refer to the diagonal entries of both these matrices with a single index. Note that

πτ (w) =
λτ

(x⊤τ w)2
‖A⊤xτ‖2Ht(w)−1 . (114)

C.1 Gram matrix Π(w) and leverage scores

Lemma C.1. For any t ∈ [T ], τ, ν ∈ [t]+, and w ∈ Rd
++, one has the following estimate for πτ,ν:

|πτ,ν(w)| 6
√

1

(1 + λ)1{τ>0}+1{ν>0}
. (115)

8The polyhedron defined by this set of constraints is ∆d−1, same as without xτ ’s for τ ∈ [t]. But functions Lt, Vt, Pt

do depend on these xτ ’s, so their names adopted in [2]—e.g. “volumetric barrier” for Vt—should be used with caution.
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Proof. By (112) and Cauchy-Schwarz, |πτ,ν(w)| 6
√
πτ (w)πν(w) for all τ, ν ∈ [t]+. Clearly,

for i ∈ [d] one has ∇2Lt(w) < λ∇2ℓ−i(w), whence πτ (w) 6 1 for τ < 0. Similarly, but also
using Lemma A.3,

∇2Lt(w) < ∇2ℓτ (w) + λ∇2R(w) < (1 + λ)∇2ℓτ (w), ∀τ ∈ [t].

As a result, πτ 6
1

1+λ for τ ∈ [t]. The result follows.

Lemma C.2 (Generalization of [45, Claim 3]). For t ∈ [T ], τ1, τ2 ∈ [t]+, and w ∈ Rd
++, one has:

πτ1,τ2(w) =
∑

ν∈[t]+

πτ1,ν(w)πν,τ2(w). (116)

In other words, Π(w) is a projection matrix. In particular, πτ (w) =
∑

ν∈[t]+ πτ,ν(w)2 for τ ∈ [t]+.

Proof. Using the abridged notation defined in (110), and omitting the dependency on w for brevity,

πτ1,τ2
(112)
=
√
λτ1λτ2∇

⊤
τ1H

−1
t ∇τ2 =

√
λτ1λτ2∇

⊤
τ1H

−1
t HtH

−1
t ∇τ2

(111)
=
√
λτ1λτ2∇

⊤
τ1H

−1
t


 ∑

ν∈[t]+

λν∇ν∇
⊤
ν


H−1

t ∇τ2

(112)
=

∑

ν∈[t]+

πτ1,ν πν,τ2 .

Lemma C.3 (Gradient of a leverage score). For t ∈ [T ], τ ∈ [t]+, and w ∈ Rd
++, it holds that

1

2
∇πτ (w) = πτ (w)∇ℓτ (w) −

∑

ν∈[t]+

πτ,ν(w)2 ∇ℓν(w). (117)

Proof. This is a byproduct of an explicit formula for ∇2Vt(w) in the proof of Lemma C.4.

C.2 Gradient and Hessian of the volumetric barrier

Following [45] and [3], we shall now derive an explicit formula for the gradient of function Vt(·) on ∆d,
cf. (16), estimate its Hessian, and verify the expression for ∇πτ (w) in Lemma C.3, cf. (123)–(124).
The lower bound on ∇2Vt(w) in (119) shows, in particular, that Vt(·) is strictly convex.

Lemma C.4 ([45, Lemmas 1–3]). For t ∈ [T ] and w ∈ Rd
++, the gradient of Vt(w), cf. (16), is

∇Vt(w) =
∑

τ∈[t]+

πτ (w)∇ℓτ (w), (118)

and its Hessian satisfies

Qt(w) 4 ∇2Vt(w) 4 3Qt(w) where Qt(w) =
∑

τ∈[t]+

πτ (w)∇2ℓτ (w). (119)
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Remark C.1. A weaker form of the upper bound in (119), namely ∇2Vt(w) 4 5Qt(w), was first
obtained by Vaidya in [45]; later on, [2] improved it to ∇2Vt(w) 4 3Qt(w). (In both cases, it was
also assumed that λ = 1.) For the sake of clarity, here we prove the bound with factor 5. The
improved bound follows by applying Schur’s product theorem (see e.g. [4]) to the Hadamard-product
representation of the matrix St(w) = 3

2Qt(w) − 1
2∇2Vt(w), see (131) in the proof of Lemma C.5.

Proof. 1o. Note that the entries of H t(w) = A⊤∇2Lt(w)A, for i, j ∈ [d− 1], are given by

[H t(w)]ij =
∑

τ∈[t]+

λτ
(x⊤τ w)2

[
A⊤xτ

]
i

[
A⊤xτ

]
j
.

As such,

∇ ([H t(w)]ij) = −
∑

τ∈[t]+

2λτ
(x⊤τ w)3

[
A⊤xτ

]
i

[
A⊤xτ

]
j
xτ . (120)

Using this formula, the composition rule now allows us to verify (118) by computing ∇Vt(w) directly:

∇Vt(w) =
1

2

∑

i,j∈[d−1]

[
H t(w)−1

]
ij

∇ ([H t(w)]ij)

(120)
= −

∑

τ∈[t]+

λτ
(x⊤τ w)3

(
∑

i,j∈[d−1]

[
A⊤xτ

]
i

[
H t(w)−1

]
ij

[
A⊤xτ

]
j

)
xτ

= −
∑

τ∈[t]+

λτ‖A⊤xτ‖2Ht(w)−1

(x⊤τ w)3
xτ =

∑

τ∈[t]+

πτ (w)∇ℓτ (w).

2o. Our next goal is to derive the following explicit formula:

∇2Vt(w) = 3Qt(w) − 2St(w) where St(w) :=
∑

τ,ν∈[t]+

πτ,ν(w)2 ∇ℓτ (w)∇ℓν(w)⊤. (121)

But before, let us show how (119) follows from it. Indeed, recall that πτ (w) =
∑

ν∈[t]+ πτ,ν(w)2,
cf. Lemma C.2. Whence from (121) and the definition of Qt(w), cf. (119), we obtain

∇2Vt(w) −Qt(w) = 2Qt(w) − 2St(w)

=
∑

τ,ν∈[t]+

πτ,ν(w)2
(

2∇2ℓτ (w) − 2∇ℓτ (w)∇ℓν(w)⊤
)

=
∑

τ,ν∈[t]+

πτ,ν(w)2
(
∇ℓτ (w) −∇ℓν(w)

) (
∇ℓτ (w) −∇ℓν(w)

)⊤
< 0,

the lower bound in (119). We obtain the upper bound ∇2Vt(w) 4 5Qt(w) in a similar fashion:

5Qt(w) −∇2Vt(w) = 2Qt(w) + 2St(w)

=
∑

τ,ν∈[t]+

πτ,ν(w)2
(
∇ℓτ (w) + ∇ℓν(w)

)(
∇ℓτ (w) + ∇ℓν(w)

)⊤
< 0.
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3o. It remains to verify (121). First, direct differentiation of (118) shows that

∇2Vt(w) = Qt(w) + Rt(w) where Rt(w) :=
∑

τ∈[t]+

∇πτ (w)∇ℓτ (w)⊤, (122)

granted that Rt(w) is symmetric. Thus, to get (121) we must show that Rt(w) = 2Qt(w)−2St(w).
To this end, observe that, by (110), (114), and the product rule,

∇πτ (w) =
λτ

(x⊤τ w)2
∇
(
‖A⊤xτ‖2Ht(w)−1

)
−

2λτ‖A⊤xτ‖2Ht(w)−1

(x⊤τ w)3
xτ

=
λτ

(x⊤τ w)2
∇
(
‖A⊤xτ‖2Ht(w)−1

)
+ 2πτ (w)∇ℓτ (w). (123)

Furthermore, by Lemma A.5 and the composition rule,

∇
(
‖A⊤xτ‖2Ht(w)−1

)
= −

∑

i,j∈[d−1]

[
H t(w)−1A⊤xτx

⊤
τ AH t(w)−1

]
ij
∇
(
[H t(w)]ij

)

(120)
=

∑

ν∈[t]+

2λν
(x⊤ν w)3

(
∑

i,j∈[d−1]

[
A⊤xν

]
i

[
H t(w)−1A⊤xτx

⊤
τ AH t(w)−1

]
ij

[
A⊤xν

]
j

)
xν

=
∑

ν∈[t]+

2λν
(x⊤ν w)3

〈
A⊤xν , A

⊤xτ

〉2
Ht(w)−1

xν

= −
∑

ν∈[t]+

2λν
(x⊤ν w)2

〈
A⊤xν , A

⊤xτ

〉2
Ht(w)−1

∇ℓν(w),

whence

λτ
(x⊤τ w)2

∇
(
‖A⊤xτ‖2Ht(w)−1

)
= −2

∑

ν∈[t]+

λτλν

〈
A⊤∇ℓτ (w), A⊤∇ℓν(w)

〉2
Ht(w)−1

∇ℓν(w)

= −2
∑

ν∈[t]+

πτ,ν(w)2∇ℓν(w). (124)

Combining (122)–(124), we verify the identity Rt(w) = 2Qt(w)−2St(w), and hence also (121).

C.3 Self-concordance of the hybrid barrier

The following result can be understood as an extension of Corollary A.1 from Lt(·) to Pt with µ > 0.

Proposition C.1. Assume λ > 1 and µ > 0, then the restriction P1
t : Rd−1 →R of Pt to Ad, i.e.

P1

t (v) = Pt(Av + ed),

cf. (17) and (8)–(10), is 21-self-concordant according to Definition 1 with domain int(∆d−1), cf. (7).

Proof. The requirements on the domain are verified in the same way as in the proof of Corollary A.1.
Thus, it remains to show that when λ, µ are as in the premise, for any u ∈ Rd and w ∈ ∆d one has

|∇3Pt(w)[u, u, u]| 6 42
(
∇2Pt(w)[u, u]

)3/2
. (125)
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Indeed, this implies that
∣∣∇3P1

t (v)[u1, u1, u1]
∣∣ 6 42(∇2P1

t (v)[u1, u1])3/2 for v ∈ ∆d−1, u
1 ∈ Rd−1

by affine invariance, i.e. since for w = Av+ed and u = Au1 one has ∇2P1
t (v)[u1, u1] = ∇2Pt(w)[u, u]

and ∇3P1
t (v)[u1, u1, u1] = ∇3Pt(w)[u, u, u]. In turn, (125) can be derived from the following result.

Lemma C.5 (Adaptation of [3, Thm. 4.1]). Let w,w ∈ Rd
++ be such that δt(w,w) 6 0.1, where

δt(w,w) = max
τ∈[t]+

∣∣∣∣
x⊤τ (w− w)

x⊤τ w

∣∣∣∣ .

Then for εt(w,w) = 42δt(w,w)
[1−δt(w,w)]4

one has that

−εt(w,w)∇2Vt(w)4∇2Vt(w) −∇2Vt(w)4 εt(w,w)∇2Vt(w),

−εt(w,w)∇2Pt(w)4∇2Pt(w) −∇2Pt(w)4 εt(w,w)∇2Pt(w).

Now, fix u ∈ Rd and note that ∇3Pt(w)[u, u, u] = limα→0
1
α

(
∇2Pt(w + αu)[u, u] −∇2Pt(w)[u, u]

)
.

On the other hand, when |α| is small enough we can apply Lemma C.5 to w = w + αu. Indeed:

δt(w,w + αu) = |α|Mt(u,w) where Mt(u,w) := max
τ∈[t]+

∣∣∣∣
x⊤τ u

x⊤τ w

∣∣∣∣ ,

therefore δt(w,w + αu) → 0 when |α| → 0 with fixed u,w. By Lemma C.5 we then conclude that

|∇3Pt(w)[u, u, u]| 6 lim
α→0

42 δt(w,w + αu)

|α| [1 − δt(w,w + αu)]4
∇2Pt(w)[u, u] = 42Mt(u,w)∇2Pt(w)[u, u].

Finally, note that ∇2Pt(w)[u, u] > ∇2Lt(w)[u, u] >Mt(u,w)2 min{λ, 1} = Mt(u,w)2 as λ > 1.

Proof of Lemma C.5. Our proof closely follows the one [3] while allowing for λ > 1 and µ > 0.
In the remainder of this section, we let δ := δt(w,w) and also introduce some abbreviated notation:

ητ := x⊤τ w, ητ := x⊤τ w, πτ := πτ (w), πτ := πτ (w), ∇τ := ∇τ (w), ∇τ := ∇τ (w),

H := H t(w), H := H t(w), Q := Qt(w), Q := Qt(w), S := St(w), S := St(w).

Lemma C.6. Assuming that δ < 1, for any τ ∈ [t]+ the following bounds hold:

1 − δ 6
ητ
ητ

6 1 + δ,
1

(1 + δ)2
H 4H 4

1

(1 − δ)2
H, (126)

(
1 − δ

1 + δ

)2

6
πτ
πτ

6

(
1 + δ

1 − δ

)2

,
(1 − δ)2

(1 + δ)4
Q 4Q4

(1 + δ)2

(1 − δ)4
Q. (127)

Proof. The bounds for η are obvious from the definition of δ, and immediately imply those forH:

H =
∑

τ∈[t]+

λτ
η2τ
A⊤xτx

⊤
τ A 4

1

(1 − δ)2

∑

τ∈[t]+

λτ
η2τ
A⊤xτx

⊤
τ A =

1

(1 − δ)2
H ,

and similarly for the corresponding lower bound. Furthermore, (126) implies

πτ
πτ

=
λτ‖∇τ‖2

H
−1

λτ‖∇τ‖2
H

−1

=
‖∇τ‖2

H
−1

‖∇τ‖2
H

−1

6 (1 + δ)2
‖∇τ‖2

H
−1

‖∇τ‖2
H

−1

= (1 + δ)2
η2τ
η2τ

6

(
1 + δ

1 − δ

)2

,
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and similarly for the corresponding lower bound. Finally, from the above results we conclude that

Q=
∑

τ∈[t]+

πτ
η2τ
xτx

⊤
τ 4

(1 + δ)2

(1 − δ)4

∑

τ∈[t]+

πτ
η2τ
xτx

⊤
τ =

(1 + δ)2

(1 − δ)4
Q,

and similarly for the corresponding lower bound.

1o. Returning to the proof of Lemma C.5, recall that

∇2Pt(w) −∇2Pt(w) = ∇2Lt(w) −∇2Lt(w) + µ
[
∇2Vt(w) −∇2Vt(w)

]
,

and let us consider the two differences in the right-hand side separately. For the first difference we
observe that ∇2Lt(w) and ∇2Lt(w) satisfy the same relative bounds as H and H in (126), so

∇2Lt(w) −∇2Lt(w) 4

(
1

(1 − δ)2
− 1

)
∇2Lt(w) 4

2δ

(1 − δ)4
∇2Lt(w)

where we used that 0 6 δ 6 1. Similarly,

∇2Lt(w) −∇2Lt(w) 4

(
1 − 1

(1 + δ)2

)
∇2Lt(w) 4

3δ

(1 − δ)4
∇2Lt(w).

Thus, to prove the lemma it suffices to show the first of the claimed inequalities, that is

− 42δ

(1 − δ)4
∇2Vt(w) 4 ∇2Vt(w) −∇2Vt(w) 4

42δ

(1 − δ)4
∇2Vt(w). (128)

2o. To this end, we first observe that

∇2Vt(w) −∇2Vt(w)
(121)
= 3(Q−Q) + 2(S −S),

and Lemmas C.6–C.4 already allow us to control the difference Q−Q, namely:

Q−Q
(127)

4

(
(1 + δ)2

(1 − δ)4
− 1

)
Q =

(3δ − δ2)(2 − δ + δ2)

(1 − δ)4
Q

(a)

4
6δ

(1 − δ)4
Q,

Q−Q
(127)

4

(
1 − (1 − δ)2

(1 + δ)4

)
Q

(b)

4

(
(1 + δ)2

(1 − δ)4
− 1

)
Q 4

6δ

(1 − δ)4
Q.

(129)

Here in (a) we used that 0 6 δ < 1, and (b) holds since the function (1+δ)2

(1−δ)4
+ (1−δ)2

(1+δ)4
on [0, 1) is

minimized at δ = 0. Let us now study the difference S− S.

3o. For brevity, we define Π := Πt(w) and Π := Πt(w). We also define some auxiliary matrices:

• matrix X ∈ Rd×(t+d) with xτ in its τ th column;

• diagonal matrices Λ,D,D,Z ∈ S
t+d
++ with λτ , ητ ,ητ ,

ητ
ητ

at τ th diagonal position, respectively.
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As earlier for Πt(w), we use the convention that indexing is over [t]+ in each dimension where the
size of a matrix is t+d. Finally, let A◦B be the Hadamard (i.e. entrywise) product of two matrices
with the same dimensions, and let M (2) = M ◦M . In terms of this matrix notation, we have that

Q = XD−1 Ψ D−1X⊤, (130)

S = XD−1Π(2)D−1X⊤, (131)

where Ψ = Diag(Π) is the diagonal matrix with πτ at τ th diagonal position. On the other hand,

S = XD
−1
Π

(2)
D

−1
X⊤

= XD−1Z Π
(2)
ZD−1X⊤. (132)

where in the last step we used that Z =D
−1
D. In a similar way, Π = D−1Λ1/2X⊤H−1XΛ1/2D−1

and Π = D
−1
Λ1/2X⊤H

−1
X Λ1/2D

−1
= ZD−1Λ1/2X⊤H

−1
XΛ1/2D−1Z, whence by (126) we get

(1 − δ)2ZΠZ 4Π4 (1 + δ)2ZΠZ. (133)

Since Z is diagonal, (ZΠZ)(2) = Z2Π(2)Z2. Moreover, recall that for two symmetric matrices A,B
such that A < B < 0, it holds that A(2)

< B(2).9 In combination with (133), these two facts imply

(1 − δ)4Z2Π(2)Z2
4Π

(2)
4 (1 + δ)4Z2Π(2)Z2.

Whence by (132) we conclude that

(1 − δ)4XD−1Z3Π(2)Z3D−1X⊤
4 S 4 (1 + δ)4XD−1Z3Π(2)Z3D−1X⊤. (134)

We are now going to use identities (130)–(131) and inequality (134) to boundS−S in terms of Q.

4o. Defining J := Ψ−1/2Π(2)Ψ−1/2 and U := XD−1Ψ1/2 we rewrite (130), (131), (134):

Q = UU⊤, S = UJU⊤,

(1 − δ)4UZ3JZ3U⊤
4 S 4 (1 + δ)4UZ3JZ3U⊤.

(135)

We are now going to bound M1 := (1+ δ)4Z3JZ3−J and M2 := J − (1− δ)4Z3JZ3 from above.
Since Ψ,Z commute as diagonal matrices, and by similarity, M1 has the same eigenvalues as

Ψ−1/2M1Ψ
1/2 = Ψ−1

(
(1 + δ)4Z3Π(2)Z3 −Π(2)

)
.

The entries of the latter matrix are given by

[Ψ−1/2M1Ψ
1/2]τ,ν =

π2τ,ν
πτ

(
(1 + δ)4z3τ z

3
ν − 1

)
(136)

where zτ = ητ
ητ

is the τ th diagonal entry of Z. By the Gershgorin circle theorem [18], each eigenvalue

of the matrix Ψ−1/2M1Ψ
1/2—and hence also of M1—belongs to at least one of the segments

[
[Ψ−1/2M 1Ψ

1/2]τ,τ − rτ , [Ψ−1/2M1Ψ
1/2]τ,τ + rτ

]
with rτ :=

∑

ν 6=τ

∣∣[Ψ−1/2M1Ψ
1/2]τ,ν

∣∣, τ ∈ [t]+.

9This can be seen by writing A
(2)−B

(2) = A◦(A−B)+(A−B)◦B and applying the Schur product theorem [4].
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Whence by (136), (126):

M1 4 max
τ∈[t]+





1

πτ

∑

ν∈[t]+

π2τ,ν





(
(1 + δ)4

(1 − δ)6
− 1

)
I

(116)

4

(
(1 + δ)4

(1 − δ)6
− 1

)
I.

Proceeding with M2 in a similar fashion as we did with M 1, we get

M2 4

(
1 − (1 − δ)4

(1 + δ)6

)
I 4

(
(1 + δ)4

(1 − δ)6
− 1

)
I.

(The second step uses that the function (1+δ)4

(1−δ)6 + (1−δ)4

(1+δ)6 increases on [0, 1).) Finally, observe that

(1 + δ)4

(1 − δ)6
− 1 =

4δ(1 + δ)2

(1 − δ)6
+

(1 + δ)2

(1 − δ)4
− 1 6

δ

(1 − δ)4

(
4

(
1 + δ

1 − δ

)2

+ 6

)
6

12δ

(1 − δ)4

where the first estimate repeats (129.a), and the second uses that (1+δ
1−δ )2 < 1.5 for 0 6 δ 6 0.1.

Plugging this estimate into (135) results in

− 12δ

(1 − δ)4
Q 4 S −S4

12δ

(1 − δ)4
Q.

Joining this with (128), (129), and the bound Q 4 ∇2Vt(w), cf. (119), we get (128), as required.

Remark C.2. The constant factor 42 in Lemma C.5 can be improved to 30, exactly recovering
the result in [3], through a somewhat more delicate argument following [3], where one separately
bounds Qt(w)−Qt(w) and Rt(w)−Rt(w) for R(w) = ∇2Vt(w)−Qt(w) = 2Qt(w)− 2St(w). Here
we avoided this, as it would burden the proof with linear algebra and obscure the high-level picture.

D Stability lemma for Algorithm 1

We are now about to prove Lemma 4.1 about the stability of approximation of the updates according
to (VB-FTRL) by those corresponding to (VB-FTRL-qN). For convenience, let us repeat it here.

Lemma D.1. Let λ, µ, S be as in the premise of Theorem 4.1. Then for all t ∈ {0} ∪ [T ], one has

‖w̃t − wt‖∇2Lt(wt) 6 min

{
1

(T + d+ 1)2
, 10−4(1 + 3µ)−1/2

}
. (137)

Proof. Let vt := A+(wt−ed), ṽt := A+(w̃t−ed), and v
(s)
t := A+(w

(s)
t −ed) for all t ∈ [T ] and s ∈ [S].

We proceed by induction over t ∈ [T ]. The base is obvious: w̃0 = w0. For the induction step, assume
that (78) holds for some 0 6 t 6 T − 1. By Proposition C.1 and Lemma A.6,

√
21P1

t (·) is a 1-self-
concordant function minimized at vt+1. On the other hand, since function P1

t (·) defined in (54)
satisfies ∇P1

t (vt) = ∇P1
t (vt) and ∇2P1

t (vt) 4 ∇2P1
t (vt), we estimate

Decrt :=
∥∥∇P1

t (vt)
∥∥
∇2P 1

t (vt)
−1

in the same way in the proof of Theorem 2.1, except for using a stronger condition on λ, µ in (77):

√
21Decr2t 6

√
21Decr2t

(73)

6

√
21

λ

(
1 +

2µ

λ

)2 (77)

6

√
21

556
<

1

121
. (138)
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Since
√

21Decr2t is the squared Newton decrement of
√

21P1
t at vt, by Lemmas A.7–A.8 we get

ω
(

211/4‖wt − wt+1‖∇2Pt(wt+1)

)
(11)
= ω

(
211/4‖vt − vt+1‖∇2P 1

t (vt+1)

)
6 ψ

(
211/4Decrt

)

in terms of ω,ψ defined in (83). By monotonicity of these two functions, using (138) we arrive at

211/4‖wt − wt+1‖∇2Pt(wt+1) 6 ω−1
(
ψ
(

1
11

))
< 0.097,

and then by Lemma A.9 (very concervatively):

∇2Pt(wt+1) 4 4∇2Pt(wt).

Now, observe that ∇2Pt(w) 4 ∇2Lt(w) + 3µQt(w) 4 (1 + 3µ)∇2Lt(w), the last step being due
to λ > 1 and πτ (wτ ) 6 1 by Lemma C.1. Combining this with the previous two inequalities gives

211/4‖w̃t − wt+1‖∇2Pt(wt+1) 6 211/4
(
‖wt − wt+1‖∇2Pt(wt+1) + 2‖w̃t − wt‖∇2Pt(wt)

)

< 0.097 + 4.3
√

1 + 3µ ‖w̃t − wt‖∇2Lt(wt)

(78)
< 0.098.

(In the last step we used the induction hypothesis.) Now, let D̃ecrt :=
∥∥∇P1

t (ṽt)
∥∥
∇2P 1

t (ṽt)
−1 , so

that 211/4D̃ecrt is the Newton decrement of
√

21P1
t at ṽt. By Lemmas A.7–A.8 and (11) we get

211/4D̃ecrt 6 ω−1
(
ψ
(

211/4‖w̃t − wt+1‖∇2Pt(wt+1)

))
6 ω−1(ψ(0.098)) <

1

9
. (139)

We are now in the situation of Corollary A.2 with f ≡
√

21P1
t , z⋆ = vt+1, z0 = ṽt, zS = ṽt+1,

and c = 1
3 , cf. (76); in particular, ‖∇f(z0)‖∇2f(z0)−1 < c

3 holds by (139). Whence by Corollary A.2:

211/4‖w̃t+1 − wt+1‖∇2Pt(wt+1)

(77)

6 min

{
1

(T + d+ 1)2
, 10−4(1 + 3µ)−1/2

}
.

It remains to combine this result with the observation that, due to Lemma A.3, for any w ∈ ∆d

∇2Lt+1(w) 4 ∇2Lt(w) + ∇2R(w) 4
(
1 + 1

λ

)
Lt(w) 4

(
1 + 1

λ

)
∇2Pt(w),

and use that (1 + 1
λ)

(77)

6 (1 + 1
2e) < 21−1/4.
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