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Efficient and Near-Optimal Online Portfolio Selection

, the trader repeatedly distributes her capital over d assets in each of T > 1 rounds, with the goal of maximizing the total return. Cover proposed an algorithm, termed Universal Portfolios, that performs nearly as well as the best (in hindsight) static assignment of a portfolio, with an O(d log(T )) logarithmic regret. Without imposing any restrictions on the market this guarantee is known to be worst-case optimal, and no other algorithm attaining it has been discovered so far. Unfortunately, Cover's algorithm crucially relies on computing certain d-dimensional integral, which must be approximated in any implementation; this results in a prohibitive Õ(d 4 (T + d) 14 ) per-round runtime for the fastest known implementation due to Kalai and Vempala (2002) [22]. We propose an algorithm for online portfolio selection that admits essentially the same regret guarantee as Universal Portfolios-up to a constant factor and replacement of log(T ) with log(T + d)-yet has a drastically reduced runtime of Õ(d 2 (T + d)) per round. The selected portfolio minimizes the observed logarithmic loss regularized with the log-determinant of its Hessian-equivalently, the hybrid logarithmic-volumetric barrier of the polytope specified by the asset return vectors. As such, our work reveals surprising connections of online portfolio selection with two classical topics in optimization theory: cutting-plane and interior-point algorithms.

Introduction

In the problem of portfolio selection in its most general form, the goal is to allocate capital over a set of assets in such a way as to maximize the aggregate return; see e.g. [START_REF] Harry | Foundations of portfolio theory[END_REF][START_REF] Rubinstein | Markowitz's "portfolio selection:" a fifty-year retrospective[END_REF] and references therein. At a high level, one can distinguish two rather different approaches to this general problem.

(a) Markowitz's mean-variance theory [START_REF] Harry | Portfolio selection[END_REF] in which the tradeoff between the expected return and its variance allows to account for the market uncertainty in a one-time investment scenario.

(b) The capital growth theory ascending to [START_REF] Kelly | A new interpretation of information rate[END_REF]-see [START_REF] Maclean | The Kelly capital growth investment criterion: Theory and practice[END_REF] for a modern treatment-which focuses on the expected log return of a portfolio and naturally addresses multiple-period investment.

We shall focus here on the online portfolio selection framework introduced by T. Cover [START_REF] Thomas | Universal portfolios[END_REF][START_REF] Cover | Universal portfolios with side information[END_REF]. While being close in spirit to the second approach and addressing the case of multi-period investment, Cover's framework allows to avoid making any stochastic assumptions about the market.

By Cover, the performance of a strategy that selected portfolios w 1:T := (w 1 , ..., w T ) for the market given by x 1:T := (x 1 , ..., x T ) is quantified by comparing the final capital Cap T = T t=1 x ⊤ t w t against

Cap o T := max

w∈∆ d T t=1
x ⊤ t w, the "idealized" final capital attained by the best (in hindsight for x 1:T ) "static" strategy constrained to select the same portfolio in all rounds. Due to the multiplicative structure of Cap T and Cap o T , it is natural to define the regret of w 1:T on market x 1:T as the negative logarithm of Cap T /Cap o T , i.e. ℓ t (w t )min

w∈∆ d t∈[T ] ℓ t (w) (1) 
where we let [T ] := {1, 2, ..., T } for T ∈ N with the convention [0] = ∅, and define the instantaneous (logarithmic) loss ℓ t : ∆ d → R by ℓ t (w) :=log(x ⊤ t w).

(

) 2 
Since the instantaneous losses are convex, this formulation falls into the framework of online convex optimization, with (1) matching the standard notion of regret for an online optimization algorithm [START_REF] Hazan | Introduction to online convex optimization[END_REF]Sec. 1.1]; thus, we can benefit from an abundance of techniques developed by the corresponding community [START_REF] Hazan | Introduction to online convex optimization[END_REF]. Despite conveniently putting us into the framework of online convex optimization, comparison against the class of "static" strategies, also called constantly rebalanced portfolios (CRP), might seem restrictive. Yet, there are at least two other arguments in its favor.

• On the one hand, CRP strategies are known to be optimal in the i.i.d. stochastic setup where x t 's, instead of being adversarially chosen in each round, come from a a static distribution unknown to the trader; see [START_REF] Thomas | Elements of information theory[END_REF]Theorem 15.3.1]. Clearly, a uniform upper bound for the regret (1), i.e. one valid for any sequence x 1:T , also applies in the i.i.d. setup. Such models are adequate for practical markets in the case of moderate observation horizons; hence, we may expect good practical performance for a strategy admitting a uniform regret bound against the best CRP. This intuition is verified by extensive real-data experiments reported in [START_REF] Li | Online portfolio selection: A survey[END_REF].

• On the other hand, the regret measured against the best sequence of portfolios can be as large as T log(d), 1 i.e. grow linearly with time horizon T . Meanwhile, the regret measured against the best CRP strategy, cf. [START_REF] Agarwal | Algorithms for portfolio management based on the Newton method[END_REF], is expected to be sublinear in T for any reasonable algorithm; in fact, this is the case for all algorithms we shall discuss from now on.

In addition to introducing the framework, in his seminal work [START_REF] Thomas | Universal portfolios[END_REF] Cover proposed and studied an algorithm for online portfolio selection, termed Universal Portfolios, which consists in selecting

w t = ∆ d wφ t (w)dw (3) 
where φ t (w) is the probability density on ∆ d proportional to the capital the trader would have earned by the current round t by selecting portfolio w in all the previous rounds-in other words,

φ t (w) ∝ exp   - τ ∈[t-1] ℓ τ (w)   . (4) 
The idea here is to give preference to portfolios for which the observed cumulative loss is relatively small without completely discarding portfolios with large losses. In fact, the same procedure under different names (e.g., the method of exponential weights, exponentially weighted averaging forecaster) arises in other contexts: prediction with expert advice [START_REF] Cesa | Prediction, Learning, and Games[END_REF], online learning in metric spaces [START_REF] Paris | Online learning with exponential weights in metric spaces[END_REF], and statistical estimation [START_REF] Leung | Information theory and mixing least-squares regressions[END_REF][START_REF] Dalalyan | Aggregation by exponential weighting, sharp PAC-Bayesian bounds and sparsity[END_REF][START_REF] Dalalyan | Sharp oracle inequalities for aggregation of affine estimators[END_REF][START_REF] Rigollet | Sparse estimation by exponential weighting[END_REF][START_REF] Bellec | Optimal exponential bounds for aggregation of density estimators[END_REF][START_REF] Bellec | Optimal bounds for aggregation of affine estimators[END_REF]. Cover justified his algorithm by showing that for any market realization x 1:T , the regret of portfolio sequence w 1:T produced in (3) satisfies R T (w 1:T |x 1:T ) = (d -1) log(T + 1) [START_REF] Bellec | Optimal exponential bounds for aggregation of density estimators[END_REF] see [START_REF] Thomas | Universal portfolios[END_REF]Thm. 4] and [START_REF] Cesa | Prediction, Learning, and Games[END_REF]Thm. 10.3]. 2 This result justifies the name "Universal Portfolios:" (3) admits a strong-nearly independent of T -regret guarantee for any market. Moreover, this regret bound turns out to be optimal up to a constant factor: it can be shown that the worst-case over x 1:T regret for any algorithm is at least d-1 2 log( πT d ) + ε d (T ) where ε d (T ) → 0 as T → ∞; see [11, p. 282]. Unfortunately, Cover's algorithm has a major drawback: it relies on integration over ∆ d , which cannot be performed explicitly, and thus has to be approximated with sufficient accuracy to obtain a tractable implementation. A natural approach would be to sample from φ t -a log-concave distribution-using some Markov Chain Monte Carlo techniques. This approach was carried out by Kalai and Vempala in [START_REF] Kalai | Efficient algorithms for universal portfolios[END_REF], resulting in a O(T 5 (T + d) 9 d 4 ) per-round runtime. 3 (Hereinafter O(•) hides a polylogarithmic factor.) Albeit polynomial in d and T , this runtime essentially rules out any practical application scenario. Even though this can be improved via the recent advances in logconcave sampling (see e.g. [START_REF] Brosse | Sampling from a logconcave distribution with compact support with proximal Langevin Monte Carlo[END_REF][START_REF] Narayanan | Efficient sampling from time-varying logconcave distributions[END_REF][START_REF] Dwivedi | Log-concave sampling: Metropolis-Hastings algorithms are fast![END_REF][START_REF] Bubeck | Sampling from a log-concave distribution with projected Langevin Monte Carlo[END_REF][START_REF] Wu | Minimax mixing time of the Metropolis-adjusted Langevin algorithm for log-concave sampling[END_REF]), the dependency on T is likely to remain prohibitive. Meanwhile, none of the algorithms proposed since Cover's original work is known to admit a regret bound matching [START_REF] Bellec | Optimal exponential bounds for aggregation of density estimators[END_REF] up to a constant factor. In other words, the following problem stands:

Propose a computationally feasible and near-optimal online portfolio selection algorithm.

We shall address this problem by presenting such an algorithm, proving that its regret admits a bound matching [START_REF] Bellec | Optimal exponential bounds for aggregation of density estimators[END_REF] up to a constant factor and replacement of log(T ) with log(T +d), and proposing an efficient implementation for it. In the remaining part of this section, we shall informally stating our main result, briefly summarize our contributions, discuss the related work, and give an outline of the subsequent sections of the paper. Let us now give an abridged formulation of our main result. We see that the improvement of runtime compared to the algorithm of Kalai and Vempala [START_REF] Kalai | Efficient algorithms for universal portfolios[END_REF]the only one known so far with a regret guarantee of the same order-is drastic; in particular, our proposed algorithm can be run on a personal computer for d and T in the range of thousands. Moreover, in addition to favorable computational guarantees the algorithm is conceptually easy to implement: in each round one has to minimize a convex potential function with a readily available second-order oracle, so one can simply use Newton's method. In fact, the potential we use belongs to the class of self-concordant functions-"canonical" objectives for Newton's method [START_REF] Nesterov | Introductory lectures on convex optimization: A basic course[END_REF]; this allows us to implement the algorithm while performing only O(log(T )) Newton steps in each round.

We shall now briefly summarize the contributions of our paper and outline its organization.

Contributions and outline of further sections. In Section 2 we present our key contributions.

• We introduce a new algorithm for online portfolio selection, called VB-FTRL-the acronym stands for Volumetric-Barrier enhanced Follow-The-Regularized-Leader,-and state Theorem 2.1 showing that the regret of VB-FTRL admits an O(d log(T + d)) upper bound.

• We then investigate an intriguing question of how VB-FTRL is related to Cover's Universal Portfolios algorithm. To this end, we first pass to a variational formulation of Cover's update by finding a functional over distributions supported on ∆ d which is minimized by φ t (•), cf. (4).

We then show that the update of VB-FTRL corresponds to solving this minimization problem approximately, by passing to the class of appropriately truncated Gaussian distributions with unknown expectation and covariance, and solving for covariance with a given expectation. Moreover, we quantify the accuracy of this approximation (Propositions 2.2 and 2.3); this result might be of independent interest and find use beyond the context of portfolio selection.

Section 3 is devoted to analyzing the regret of VB-FTRL and proving Theorem 2.1. Finally, in Section 4 we present a procedure implementing VB-FTRL, and quantify its time and memory costs.

Overview of related work

Since Cover's work [START_REF] Thomas | Universal portfolios[END_REF], the online portfolio selection framework has been studied extensively due to its practical usefulness and theoretical challenges. Here we focus on the line of research done in the online convex optimization community and concerned with designing efficient methods with provable regret guarantees; for reader's convenience we recap these results in Table 1. For a more application-centered perspective and experimental comparison of algorithms one may refer to [START_REF] Li | Online portfolio selection: Principles and algorithms[END_REF].

To the best of our knowledge, the authors of [START_REF] Helmbold | On-line portfolio selection using multiplicative updates[END_REF] were the first to realize that Cover's problem of competing with the best CRP can be reformulated as online convex optimization on the simplex ∆ d with logarithmic instantaneous loss ℓ t (w) =log(x ⊤ t w), cf. [START_REF] Agarwal | Algorithms for portfolio management based on the Newton method[END_REF]. They advocated the exponentiated gradient (EG) method [START_REF] Kivinen | Exponentiated gradient versus gradient descent for linear predictors[END_REF] over the basic online gradient descent [START_REF] Zinkevich | Online convex programming and generalized infinitesimal gradient ascent[END_REF], due to EG being better adapted to the simplex type geometry. Unfortunately, both methods require the loss gradients to

Algorithm

Regret

Runtime (per round) Sources Universal Portfolios d log(T ) d4 T 14 [START_REF] Thomas | Universal portfolios[END_REF][START_REF] Kalai | Efficient algorithms for universal portfolios[END_REF] Online Gradient Descent

G 2 √ T d [50] Exponentiated Gradient G ∞ T log(d) d [25, 21] Online Newton Step (ONS) G ∞ d log(T ) d 2 + generalized projection on ∆ d 4 [1, 20] Soft-Bayes dT log(d) d [39] Ada-BARRONS d 2 log 4 (T ) d 2.5 T [29] BISONS d 2 log 2 (T ) poly(d) [49] AdaMix+DONS d 2 log 5 (T ) d 3 [34] VB-FTRL d log(T ) d 2 T our paper
Table 1: Regret guarantees and per-round runtime for various online portfolio selection algorithms. G p is an upper bound on max 1 t T ∇ℓ t (w) p whenever such a bound is assumed. For brevity we omit a constant factor for the regret and a polylogarithmic factor for the runtime, and assume T d.

be bounded, which is a restrictive assumption. Indeed, letting • p be ℓ p -norm on R d we have that

∇ℓ t (w) p = x t p x ⊤ t w . (6) 
For EG, the assumption is that ∇ℓ t (w) ∞ G ∞ for some G ∞ < ∞; by [START_REF] Bellec | Optimal bounds for aggregation of affine estimators[END_REF] this can be enforced in either of two ways: (a) by restricting the set of portfolios to {w ∈ ∆ d : min

i w[i] 1/G ∞ }, or (b)
by bounding the dynamic range of asset returns, i.e. requiring that max i xt[i]

min i xt[i]
G ∞ for all 1 t T .

Another issue with these methods is that the regret is suboptimal in T , growing as √ T , cf. Table 1. The two issues afflicting the previous methods were addressed-in isolation-in [START_REF] Orseau | Soft-Bayes: Prod for mixtures of experts with log-loss[END_REF] and [START_REF] Agarwal | Algorithms for portfolio management based on the Newton method[END_REF][START_REF] Hazan | Logarithmic regret algorithms for online convex optimization[END_REF]. Namely, the Soft-Bayes algorithm from [START_REF] Orseau | Soft-Bayes: Prod for mixtures of experts with log-loss[END_REF] achieves an O( dT log(d)) regret without assuming boundedness of the loss gradients. Meanwhile, Online Newton Step (ONS), an algorithm proposed in [START_REF] Agarwal | Algorithms for portfolio management based on the Newton method[END_REF][START_REF] Hazan | Logarithmic regret algorithms for online convex optimization[END_REF], has an O(G ∞ d log(T )) regret under the same assumption of ℓ ∞ -bounded loss gradients as for EG, which matches the guarantee [START_REF] Bellec | Optimal exponential bounds for aggregation of density estimators[END_REF] for Universal Portfolios in the regime of a constant G ∞ . All these algorithms can be implemented in a fully incremental fashion, with per-round runtime depending only on d, namely O(d) for the first-order methods (EG, Soft-Bayes) and O(d 2 ) for ONS.

The next improvement was achieved in [START_REF] Luo | Efficient online portfolio with logarithmic regret[END_REF]. In their algorithm called Ada-BARRONS, the authors managed to reach a polylogarithmic in T regret without a gradient boundedness assumption. This was done by combining ONS with a logarithmic barrier regularizer, a clever strategy of adaptive stepsize selection, and the use of self-concordance in the analysis. However, the regret remained suboptimal, scaling as O(d 2 log 4 (T )). In addition, the per-round runtime deteriorated to O(d 2.5 T ), thus becoming T -dependent. Very recently, two competing works [START_REF] Zimmert | Pushing the efficiency-regret Pareto frontier for online learning of portfolios and quantum states[END_REF][START_REF] Mhammedi | Damped online Newton step for portfolio selection[END_REF] achieved a T -independent per-round runtime while preserving the O(d 2 ) regret guarantee of Ada-BARRONS. In both cases, the crucial step was to combine Ada-BARRONS with an appropriate scheme of adaptive restarts.

Despite all these efforts and a plethora of computationally feasible algorithms resulting from them, Universal Portfolios has remained the only algorithm so far with an optimal O(d log(T )) regret. The challenge of providing a practical algorithm with a similar regret guarantee is well known. The interest to it was reignited in [START_REF] Van Erven | Open problem: Fast and optimal online portfolio selection[END_REF], where it was conjectured that Follow-The-Leader regularized with a logarithmic barrier (LB-FTRL)-an algorithm coninciding with VB-FTRL without a volumetric regularizer, i.e. with µ = 0-is regret-optimal. Since such an algorithm could be implemented with O(d 2 T ) per-round runtime via Newton's method, this would result in a regretoptimal and computationally feasible procedure. Yet, [START_REF] Zimmert | Pushing the efficiency-regret Pareto frontier for online learning of portfolios and quantum states[END_REF] recently disproved this conjecture: as it turns out, the regret of LB-FTRL can be of order 2 d log(T ) log(log(T )) whenever T > poly (2 d ).

In addition to the arguments we give in Section 2, this negative result demonstrates that adding a volumetric-barrier regularization term is crucial for obtaining a regret-optimal FTRL-type strategy.

Connections with cutting-plane and interior point methods. An interesting byproduct of our work is shedding new light on the volumetric barrier of a polytope, an object first studied by P. Vaidya in his seminal work [START_REF] Pravin | A new algorithm for minimizing convex functions over convex sets[END_REF] in the context of cutting-plane methods for convex optimization. Vaidya's goal was to supercede the ellipsoid method [START_REF] Naum | A minimization method using the operation of extension of the space in the direction of the difference of two successive gradients[END_REF][START_REF] Khachiyan | A polynomial algorithm in programming[END_REF][START_REF] Arkadii | Problem complexity and method efficiency in optimization[END_REF] as the state-of-the-art cutting plane method, and he used the volumetric barrier as the key component of his algorithm. Once the general theory of interior-point methods (IPM) had been developed by Nesterov and Nemirovskii [START_REF] Nesterov | Interior-point polynomial algorithms in convex programming[END_REF], the volumetric barrier was used by K. Anstreicher [START_REF] Anstreicher | Volumetric path following algorithms for linear programming[END_REF] as a self-concordant barrier for a polytope, replacing the logarithmic barrier in this role; this resulted in a faster-converging IPM for linear programming. Remarkably, in both these scenarios further improvements were obtained using the "hybrid" volumetric-logarithmic barrier (see [START_REF] Pravin | A new algorithm for minimizing convex functions over convex sets[END_REF][START_REF] Anstreicher | Volumetric path following algorithms for linear programming[END_REF]), which mimics the potential used in VB-FTRL (see Section 3) except for a different choice of regularization parameter µ (namely, [START_REF] Anstreicher | Volumetric path following algorithms for linear programming[END_REF] prescribes µ = T +d-1 d-1 ). To our best knowledge, the volumetric and hybrid barriers have never been used in online learning. Their emergence in this context-and in such a vital role-came as a suprise to us, and then challenged us to derive VB-FTRL as an approximation of Universal Portfolios (see Section 2.2).

Proposed algorithm and its connection with Universal Portfolios

In this section, we present VB-FTRL and derive it as an approximation of Universal Portfolios [START_REF] Thomas | Universal portfolios[END_REF].

First of all, let us establish the notation and briefly recap the setup of online portfolio selection.

Notation. We let R := R ∪ {+∞}. Assuming d > 1, we denote by R d + the nonnegative orthant in R d , by ∆ d the standard simplex in R d , and by ri(∆ d ) the relative interior of ∆ d . We let e i be the i th canonical basis vector in R d , and x[i] be the i th entry of x. 1 d be the vector of all ones in R d , and I d is the d×d identity matrix; we also write I when the dimension is clear from the context. [n] be the set of the first n positive integers; [0] is the empty set. We use standard asymptotic notation: given two functions f, g > 0 of the same argument a > 1, notation g = O(f ) tells that g(a) cf (a) for some generic constant c > 0 and all a in the common domain of f and g; g = O(f ) means that g(a)

cf (a) log c (ea). We let • p , p 1, be the ℓ p -norm on R n . We let S n , S n + , S n ++ be the sets of n × n symmetric, positive-semidefinite, and positive-definite matrices, and we use boldfaced capital letters for such matrices. For M ∈ S n + and u, v ∈ R n , we let u M := √ u ⊤ M u and u, v M := u ⊤ M v. We let M the operator norm of a matrix M . We use the "Matlab" matrix notation: [A 1 , A 2 ] (resp. [A 1 ; A 2 ]) is the horizontal (resp. vertical) concatenation of two matrices A 1 , A 2 with compatible dimensions.

Affine reparametrization. Assuming that d > 1,5 simplex ∆ d ⊂ R d has empty interior, which prevents us from using the machinery of self-concordant functions. To circumvent this issue, define

∆ d-1 := {v ∈ R d-1 + : 1 ⊤ d-1 v 1}, (7) 
a "solid" simplex in R d-1 , and note that the affine mapping v → Av + e d with a d × (d -1) matrix

A := I d-1 -1 ⊤ d-1 (8) 
bijectively maps ∆ d-1 onto ∆ d , and R d-1 onto the affine span of ∆ d , i.e. onto the hyperplane

A d := {w ∈ R d : w ⊤ 1 d = 1}. ( 9 
)
As such, restricting a function f : R d → R to A d and reparametrizing results in

f 1 : R d-1 → R, f 1 (v) := f (Av + e d ), (10) 
with the gradient and Hessian as follows:

∇f 1 (v) = A ⊤ ∇f (Av + e d ) and ∇ 2 f 1 (v) = A ⊤ ∇ 2 f (Av + e d )A. ( 11 
)
Since A has full column rank, f 1 is strictly convex (on R d-1 ) whenever f is strictly convex on A d . Finally, one can easily check that the mapping v → Av + e d of R d-1 to A d has the inverse given by

w → A + (w -e d ) (12) 
where

A + = (A ⊤ A) -1 A ⊤ , A + ∈ R (d-1
)×d , is the left pseudoinverse of A, i.e. such that

A + A = I d-1 .
Summary of the setup. Online portfolio selection is a game between the learner (i.e. the trader) and her adversary (the market) played over T 1 rounds according to the following protocol:

In each round t ∈ [T ]:

1. The learner selects a new portfolio, i.e. a distribution w t ∈ ∆ d .

2. The adversary observes w t and selects a new vector of asset returns x t ∈ R d + .

3. The learner observes x t and suffers the loss ℓ t (w t ) where ℓ t (w) :=log(x ⊤ t w) for w ∈ ∆ d .

Formally, an online portfolio selection algorithm or strategy is a sequence of mappings (S 0 , S 1 , ...S T -1 ) where S t-1 maps the history (w τ , x τ ) τ ∈[t-1] on ∆ d , that is w t = S t-1 (w 1 , x 1 , ..., w t-1 , x t-1 ) for t > 1 and w 1 = S 0 (∅). Pitting it against an adversary, as per the above protocol, results in two sequences

w 1:T := (w 1 , ..., w T ), x 1:T := (x 1 , ..., x T ). ( 13 
)
As previously discussed, we quantify the performance of an algorithm that produced a sequence of portfolios w 1:T for the market realization x 1:T , in terms of its regret against the best CRP for x 1:T :

R T (w 1:T |x 1:T ) := t∈[T ] ℓ t (w t ) -min w∈∆ d t∈[T ]
ℓ t (w).

Following [START_REF] Thomas | Universal portfolios[END_REF] and subsequent works, we aim at constructing an algorithm for which R T (w 1:T |x 1:T ) admits an upper bound of the form [START_REF] Bellec | Optimal exponential bounds for aggregation of density estimators[END_REF] uniformly over all choices of x 1 , ..., x T ∈ R d + . Note that such a bound would imply that at any round t ∈ [T ] the adversary is allowed to know the learner's algorithm-i.e. the whole sequence (S 0 , ..., S T -1 ) rather than just the portfolios w 1:t selected so far.

We are now ready to present our proposed algorithm and a regret guarantee that it admits.

Algorithm and main result

Our algorithm relies on some auxiliary functions. Let λ, µ > 0 be two regularization parameters whose values will be specified a bit later. The logarithmic barrier R :

R d → R of R d + is defined by R(w) :=      - i∈[d] log(w[i]) if w ∈ R d ++ , + ∞ otherwise. ( 14 
)
Note that, R(w) is proper, lower semicontinuous, and strictly convex. Moreover, R 1 (v), cf. ( 7)- [START_REF] Bubeck | Sampling from a log-concave distribution with projected Langevin Monte Carlo[END_REF], is a barrier on ∆ d-1 -in other words, dom(R 1 ) = int(∆ d-1 ), and R 1 (v) diverges as v approaches the boundary of ∆ d-1 . Now, let L t (w) be the observed cumulative loss regularized by R(w), namely

L t (w) := τ ∈[t] ℓ τ (w) + λR(w) (15) 
for λ > 0 to be specified later; note that L 0 (w) = λR(w). Define the volumetric barrier V t : R d → R:

V t (w) := 1 2 log det(A ⊤ ∇ 2 L t (w)A) if w ∈ R d ++ , + ∞ otherwise. (16) 
Finally, for µ > 0 that shall also be speficied later, define the potential function P t : R d → R by

P t (w) := L t (w) + µV t (w). ( 17 
)
Our proposed algorithm, called VB-FTRL, amounts to iteratively minimizing this potential, that is:

w t = argmin w∈∆ d P t-1 (w). (VB-FTRL)
Correctness of this update-i.e. that w t defined above exists and is unique-follows from the strict convexity of V t for all t ∈ [T ] and λ, µ > 0. For λ = µ = 1 this is well known [START_REF] Pravin | A new algorithm for minimizing convex functions over convex sets[END_REF][START_REF] Anstreicher | Volumetric path following algorithms for linear programming[END_REF], and the general case is analogous (see Appendix C). In fact, direct differentiation allows to obtain explicit formulae for the gradient and Hessian of P t (w); following [START_REF] Anstreicher | Volumetric path following algorithms for linear programming[END_REF], one can then show that P 1 t (v) is a self-concordant function on ∆ d-1 . (We provide these conceptually straightforward, but tedious calculations in Appendix C, and give some background on self-concordant functions in Appendix A.3.) Such functions are known as the "natural" class of objectives for Newton's method, on which this method admits affine-invariant global convergence guarantees (see [START_REF] Nesterov | Introductory lectures on convex optimization: A basic course[END_REF]Chapter 4]). This naturally leads to an algorithmic implementation of VB-FTRL via Newton's method; we shall present this implementation and discuss its tractability in Section 4. Postponing further discussion of the computational matters to Section 4, let us now state and discuss a regret guarantee for VB-FTRL. and λ 2e. In particular, with λ = 16 and µ = 7 we guarantee that R T (w 1:T |x 1:T ) 30(d -1) log(T + 16d).

On the one hand, the regret bound for VB-FTRL matches the bound for Universal Portfolios, albeit with a worse constant factor (cf. ( 5)), and also matches the worst-case lower bound from [START_REF] Cesa | Prediction, Learning, and Games[END_REF]. In other words, the regret optimality of Universal Portfolios is preserved in the proposed algorithm.

On the other hand, the update in VB-FTRL reduces to solving a convex optimization problem, and thus can be efficiently implemented; as such, we address the challenge put forward in Section 1. This is in stark contrast with Universal Portfolios where one has to compute a multivariate integral in each round. In fact, the update in Universal Portfolios can be seen as minimizing a certain convex functional on the space of probability measures supported on ∆ d , which is way more challenging, from an algorithmic standpoint, than convex optimization on ∆ d . In Section 2.2 we discuss this point in more detail, and shed light on the connection between VB-FTRL and Universal Portfolios.

Finally, putting µ = 0 in (VB-FTRL) we recover Follow-The-Leader regularized with a logarithmic barrier (LB-FTRL), the algorithm conjectured to have an O(d log(T )) regret in [START_REF] Van Erven | Open problem: Fast and optimal online portfolio selection[END_REF]. As we have already observed in Section 1.1, the recent refutation of this conjecture in [START_REF] Zimmert | Pushing the efficiency-regret Pareto frontier for online learning of portfolios and quantum states[END_REF] indicates that timedependent regularization is instrumental in achieving regret of the right order with an FTRL-type strategy. The regret analysis of VB-FTRL in Section 3 demonstrates this on a technical level.

VB-FTRL as an approximation of Universal Portfolios

In this section, our goal is to show that (VB-FTRL) naturally arises as an approximation of the Universal Portfolios update (3); moreover: informally speaking, the accuracy of this approximation can be controlled in natural terms. Although arguably quite natural, the argument about to be presented is a rather delicate one, and the corresponding accuracy bound depends on some auxiliary objects that have to be introduced first. For the sake of exposition, we shall split this argument into three logical steps that are briefly outlined below, and defer some technical details to Appendix B.

1 o . We first incorporate two parameters (λ, µ) into (3), so that "vanilla" Cover's update corresponds to λ = 1, µ = 0. We then establish Proposition 2.1 stating that the generalized strategy is optimal for any (constant) λ and µ. Besides, we observe that the corresponding distribution φ t admits a variational formulation as a minimizer of the Gibbs' potential

F t-1 [•], φ t ∈ argmin φ∈Supp(∆ d ) F t-1 [φ]; (18) 
here Supp(∆ d ) is the set of distributions supported on ∆ d , and F t-1 [•] shall be defined in [START_REF] Kelly | A new interpretation of information rate[END_REF].

2 o . Next we focus on minimization problem [START_REF] Golub | Matrix computations[END_REF]. Using self-concordance [START_REF] Nesterov | Introductory lectures on convex optimization: A basic course[END_REF], we show that

c tr(∇ 2 L t-1 ( ŵ) Cov[φ]) -µEnt[φ] F t-1 [φ] -L t-1 ( ŵ) C tr(∇ 2 L t-1 ( ŵ) Cov[φ]) -µEnt[φ] (19) for any distribution φ with expectation ŵ ∈ ∆ d , covariance Cov[φ], differential entropy Ent[φ],
and supported on rescaled Dikin ellipsoid [START_REF] Nesterov | Introductory lectures on convex optimization: A basic course[END_REF]; as such, a natural idea is to approximate φ t by minimizing the upper bound for F t-1 [φ], as per [START_REF] Hazan | Introduction to online convex optimization[END_REF], over such distributions. This relaxation is indeed reasonable: the corresponding minimizer φt satisfies

E t-1,1/2 ( ŵ) := {w ∈ A d : w -ŵ ∇ 2 L t-1 ( ŵ) 1/2}. It is well known that E t-1,1 (w) is contained in ∆ d for any w ∈ ∆ d
F t-1 [φ t ] min φ ∈ Supp(∆ d ) F t-1 [φ] + O(µd log(T + λd)). (20) 
That is, F t-1 [•] is minimized up to an error of the order of the desired regret. This result, rigorously formulated as Proposition 2.2, is proved via self-concordance machinery and some volume estimates, the proof being rather technical; we believe it to be of independent interest.

3 o . We then focus on the relaxation of ( 18) described in step 2 o , i.e. replacing F t-1 [φ] with its upper bound from [START_REF] Hazan | Introduction to online convex optimization[END_REF], and imposing the constraint φ ∈ Supp(E t-1,c ( ŵ)) for some c 1/2. We relax this "hard" support constraint into a "soft" covariance constraint, namely

φ ∈ Supp(A d ), Cov[φ] c 2 L t-1 ( ŵ) -1 .
As it happens, the minimum is attained on the A d -marginal of the Gaussian distribution with covariance ∇ 2 L t-1 ( ŵ) -1 and expectation w t -precisely as in (VB-FTRL). The correspondence between (VB-FTRL) and (generalized) Cover's update is thus specified. Moreover, we show (see Proposition 2.3) that the truncation of this Gaussian distribution to the appropriate Dikin ellipsoid around w t is an approximate minimizer of F t-1 [•] with accuracy O(µd log(ed))-in other words, the Gaussian relaxation does not lead to a further loss of accuracy beyond [START_REF] Hazan | Logarithmic regret algorithms for online convex optimization[END_REF].

In our view, this result-just as (20)-may find uses beyond the context of portfolio selection.

We are now about to implement these steps. Before doing so, let us make one remark. One might expect that the above approximation result-the one representing (VB-FTRL) update as an approximation of generalized Universal Portfolios with the "right" accuracy of order O(d log(T ))-would directly lead to a shorter and/or simpler proof of Theorem 2.1 than the one to be presented in Section 3, via some formal reduction to the regret bound for (λ, µ)-Universal Portfolios in Proposition 2.1. However, we were unable to find such an alternative proof. In fact, the actual proof of Theorem 2.1 in Section 3 has very little to do-if anything at all-with the proofs of Propositions 2.2-2.3-in particular, it is non-probabilistic and does not use the variational formulation [START_REF] Golub | Matrix computations[END_REF].

Step 1 o : (λ, µ)-generalized Universal Portfolios update and its variational formulation.

Recall that Cover's original method (3)-( 4) amounts to playing the expectation over the density proportional to expτ ∈[t-1] ℓ τ (w) , w ∈ ∆ d , at round t. Now, consider the generalized strategy

w t = E w∼φt [w] where φ t (w) ∝ exp - 1 µ L t-1 (w) , w ∈ ∆ d , (21) 
where we introduced two parameters λ 0 and µ 1, so that (4) corresponds to λ = 0, µ = 1. Here, parameter µ plays the role of temperature: the larger it is, the closer φ t is to the uniform distribution on ∆ d . Meanwhile, λ biases φ t towards the Dirac measure on 1 d 1 d , the uniform portfolio. We first observe that the regret optimality of Cover's algorithm extends to the whole range of λ, µ. Proposition 2.1. For any T ∈ N and any market realization x 1:T , the sequence of portfolios w 1:T constructed by (λ, µ)-generalized Universal Portfolios [START_REF] Helmbold | On-line portfolio selection using multiplicative updates[END_REF] with parameters λ 0, µ 1 satisfies:

R T (w 1:T |x 1:T ) µ(d -1) log(T + 1) + λ(d -1) log 4e T + λd λd + µ -λ log(d).
The argument, given in Appendix B, extends the proof of [START_REF] Hazan | Logarithmic regret algorithms for online convex optimization[END_REF]Theorem 7] to allow for λ > 0. The key observation is that exp(-1 µ ℓ t (w)) = (x ⊤ t w) 1/µ is a concave function whenever µ 1. By Jensen's inequality, this leads, through a telescoping argument, to the bound as follows:

t∈[T ] ℓ t (w) -µ log ∆ d exp - 1 µ L T (w) dw + µ log ∆ d exp - λ µ R(w) dw . (22) 
The right-hand side is then related to min w∈∆ d t∈[T ] ℓ t (w) through the rescaling technique from [START_REF] Blum | Universal portfolios with and without transaction costs[END_REF].

For what is to follow, it is crucial to make a couple of observations. First, φ t , as defined in ( 21), is the unique optimal solution to the following optimization problem (see e.g. [START_REF] Van Handel | Probability in High Dimension: Lecture Notes[END_REF]Lemma 4.10]):

min φ ∈ Supp(∆ d ) F t-1 [φ] := E w∼φ [L t-1 (w)] -µEnt[φ] (23) 
where Supp(∆ d ) is the set of probability densities supported on ∆ d , and Ent

[φ] := E w∼φ [-log φ(w)] is the differential entropy of φ. Moreover, F t-1 [φ t ]
is the (rescaled) negative log-partition function:

F t-1 [φ t ] = -µ log ∆ d exp - 1 µ L t-1 (w) dw.
In particular, we recognize the first term in the right-hand side of ( 22) as nothing else but

F T [φ T +1 ].
Step 2 o : restriction to the Dikin ellipsoid. Fix ŵ ∈ ri(∆ d ), and for r 0 and t ∈ [T ] define

E t-1,r ( ŵ) := w ∈ A d : w -ŵ ∇ 2 L t-1 ( ŵ) < r , (24) 
the r-Dikin ellipsoid [START_REF] Nesterov | Introductory lectures on convex optimization: A basic course[END_REF] of L t-1 (•) at ŵ restricted to hyperplane A d , cf. [START_REF] Brosse | Sampling from a logconcave distribution with compact support with proximal Langevin Monte Carlo[END_REF]. It can be routinely checked (see Appendix A.3) that when λ 1, the function

L 1 t-1 (v) = L t-1 (Av+e d ) on R d-1 , cf. (10), is self-concordant with domain int(∆ d-1 ). By [37, Theorems 4.1.5], the "unit" ellipse E t-1, 1 ( ŵ) is contained in ri(∆ d ).
Moreover, on smaller ellipses one can control the remainder of the quadratic expansion of L t : from [37, Theorems 4.1.6-4.1.8] it follows (see Lemma A.8) that

1 5 w -ŵ 2 ∇ 2 L t-1 ( ŵ) L t-1 (w) -L t-1 ( ŵ) -∇L t-1 ( ŵ) ⊤ (w -ŵ) 4 5 w -ŵ 2 ∇ 2 L t-1 ( ŵ) for all w ∈ E t-1, 1/2 ( ŵ). (25) 
Hence, any distribution φ with mean

E φ [w] = ŵ ∈ ri(∆ d ) and supported in E t-1, 1/2 ( ŵ), satisfies 1 5 tr ∇ 2 L t-1 ( ŵ) Cov[φ] -µEnt[φ] F t-1 [φ] -L t-1 ( ŵ) 4 5 tr ∇ 2 L t-1 ( ŵ) Cov[φ] -µEnt[φ] (26) 
where Cov[φ] is the covariance matrix of φ. The upper bound suggests us to approximate [START_REF] Kelly | A new interpretation of information rate[END_REF] with

min ŵ ∈ ∆ d , E φ [w] = ŵ, φ ∈ Supp(E t-1, 1/4 ( ŵ)) L t-1 ( ŵ) + 4 5 tr ∇ 2 L t-1 ( ŵ) Cov[φ] -µEnt[φ] := F t-1 [φ] (27) 
-in other words, to focus on distributions supported in a small Dikin ellipsoid around the expectation. Now: since E t-1, 1/4 ( ŵ) ⊂ ∆ d , any optimal solution φ t to ( 27) is feasible in [START_REF] Kelly | A new interpretation of information rate[END_REF]; hence [START_REF] Li | Online portfolio selection: A survey[END_REF] overestimates [START_REF] Kelly | A new interpretation of information rate[END_REF]. Moreover, the following result gives the accuracy of this upper approximation:

Proposition 2.2. When λ 1, any optimal solution φ t to (27) satisfies the following inequalities:

F t-1 [φ t ] F t-1 [φ t ] min φ ∈ Supp(∆ d ) F t-1 [φ] + 1.5µ(d -1) log(T + λd) + 3.9µ(d + 1) + 0.1.
The proof of this result is relegated to Appendix B and proceeds in two steps. First, we show that

F t-1 [φ t ] F t-1 [φ t ] min ŵ ∈ ∆ d , E φ [w] = ŵ, φ ∈ Supp(E t-1, 1/2 ( ŵ)) F t-1 [φ] + µ(d -1) log(2).
Here the first inequality is trivial, and the second one follows by comparing the covariance and entropy for the random variables w ∼ φ and ŵ + 1 2 (wŵ). The second step consists in showing that (λ, µ)-generalized Universal Portfolios distribution φ t , as defined in [START_REF] Helmbold | On-line portfolio selection using multiplicative updates[END_REF], can be truncated to the Dikin ellipsoid around its mode at the expense of an O(µ(d -1) log(T + λd)) increase in F t-1 . This is done by expressing F t-1 [φ t ] as the log-partition function, controlling the integrand via selfconcordance, and lower-bounding the volume of the Dikin ellipsoid by arguing that the mode of φ t cannot be too close to the relative boundary of ∆ d thanks to the logarithmic-barrier regularizer.

Step 3 o : reduction to the Gaussian distribution. Departing from [START_REF] Li | Online portfolio selection: A survey[END_REF], we note that its objective F t-1 [φ] depends on φ only through the mean, covariance, and differential entropy of φ. However, the support constraint, namely φ ∈ Supp(E t-1, 1/4 ( ŵ)), interferes with higher moments. A natural idea is then to replace the "hard" support constraint with a "soft" covariance one, namely

φ ∈ Supp(A d ), Cov[φ] 1 16 ∇ 2 L t-1 ( ŵ) -1 . (28) 
This results in a relaxation of [START_REF] Li | Online portfolio selection: A survey[END_REF]. Indeed,

E w∼φ [w] = ŵ ∈ ∆ d and φ ∈ Supp(E t-1, 1/4 ( ŵ)) together imply that 1 ⊤ d (w -ŵ) = 0 (φ-a.s.), that is φ ∈ Supp(A d )
; on the other hand, by Jensen's inequality

∇ 2 L t-1 ( ŵ) 1/2 Cov[φ] ∇ 2 L t-1 ( ŵ) 1/2 E w∼φ w -ŵ 2 ∇ 2 L t-1 ( ŵ) 1 16 
.

We can now satisfy the support constraint in (28) "automatically" by reformulating it as follows:

w ∼ φ is such that w = Av + e d for v ∼ φ 1 ∈ Supp(R d-1 ) (30) 
where the mean v ∈ ∆ d-1 , covariance, and entropy of φ 1 are related to those of φ according to

ŵ = Av + e d , Cov[φ] = ACov[φ 1 ]A ⊤ , Ent[φ] = Ent[φ 1 ] -1 2 log det(A ⊤ A)
where det(A ⊤ A) = d. The matrix constraint in [START_REF] Li | Online portfolio selection: Principles and algorithms[END_REF] translates to Cov[φ 1 ] 1 16 (A ⊤ ∇ 2 L t-1 ( ŵ)A) -1 by simple linear algebra. As such, in terms of ŵ, Cov[φ 1 ], and Ent[φ 1 ], the objective in [START_REF] Li | Online portfolio selection: A survey[END_REF] becomes 

F t-1 [φ] = L t-1 ( ŵ) + 4 5 tr Cov[φ 1 ] A ⊤ ∇ 2 L t-1 ( ŵ)A -µEnt[φ 1 ]. (31) Clearly, N (v, Σ) maximizes Ent[φ 1 ] given the constraints E φ 1 [v] = v
min ŵ ∈ ∆ d , 0 Σ 1 16 (A ⊤ ∇ 2 L t-1 ( ŵ)A) -1 L t-1 ( ŵ) + 4 5 tr ΣA ⊤ ∇ 2 L t-1 ( ŵ)A - µ 2 log det(Σ), (32) 
that depends on φ only through the mean and covariance. Finally, in Appendix B.4 we show that, when µ > 0.1, the minimum over

Σ is attained at Σ = 1 16 (A ⊤ ∇ 2 L t-1 ( ŵ)A) -1
, and (32) reduces to min

ŵ∈∆ d L t-1 ( ŵ) + µ 2 log det(A ⊤ ∇ 2 L t-1 ( ŵ)A). ( 33 
)
This is nothing else but (VB-FTRL). To summarize, (VB-FTRL) appears after relaxing the "hard" support constraint in [START_REF] Li | Online portfolio selection: A survey[END_REF], so that the optimum is attained on a Gaussian distribution. Moreover: the result below shows that, essentially, this relaxation comes at no extra cost (cf. Proposition 2.2).

Proposition 2.3. Assume that µ > 0.1. Let φ t be optimal in (27), w t be as in (VB-FTRL),

Σ t = 1 16 (A ⊤ ∇ 2 L t-1 (w t )A) -1
, and let g trc t be the truncation of

N (w t , AΣ t A ⊤ ) to E t-1, 1/2 (w t ). Then F t-1 [g trc t ] F t-1 [φ t ] + 0.5µ(d -1
) log(350d) + 0.01µ. The proof of this result relies on the feasibility of φ t in [START_REF] Harry | Foundations of portfolio theory[END_REF] and an estimate of the decrease of entropy when truncating a Gaussian distribution to its covariance ellipsoid (see Lemma B.2).

Finally, by combining Propositions 2.2 and 2.3 we establish a quantitative correspondence between (VB-FTRL) and generalized Cover's update in its variational form [START_REF] Golub | Matrix computations[END_REF]. Namely, portfolio w t computed in (VB-FTRL) generates a distribution-precisely, N (w t , 1 16 A(A ⊤ ∇ 2 L t-1 (w t ) -1 A) -1 A ⊤ ) truncated to the Dikin ellipsoid E t-1, 1/2 (w t )-that solves [START_REF] Golub | Matrix computations[END_REF] up to the accuracy of O(µd log(T )).

Regret analysis

In this section, we start by giving an outline of the proof of Theorem 2.1 and discussing the role of volumetric regularization. After that, we are going to present the full proof of the theorem.

Overview of the proof and the role of volumetric regularization

Key decomposition. We shall specify the values of λ, µ in the later stages of the proof; for now we consider general λ, µ > 0. Let us decompose the regret of the sequence generated in (VB-FTRL) through telescoping:

R T (w 1:T |x 1:T ) t∈[T ] ℓ t (w t ) + min w∈∆ d P t-1 (w) -min w∈∆ d P t (w) -min w∈∆ d t∈[T ] ℓ t (w) + min w∈∆ d P T (w) = t∈[T ] P t (w t ) + µV t-1 (w t ) -µV t (w t ) -P t (w t+1 ) -min w∈∆ d t∈[T ] ℓ t (w) + min w∈∆ d P T (w). ( 34 
)
Here the inequality holds since P 0 (w) = λR(w) 0 on ∆ d , cf. [START_REF] Cover | Universal portfolios with side information[END_REF]. In other words, we have that

R T (w 1:T |x 1:T ) Bias T + t∈[T ] [Miss t + Gain t ] (35) 
where the three kinds of differences Bias T , Miss t , Gain t are defined as follows:

Miss t := P t (w t )-P t (w t+1 ), Gain t := µ[V t-1 (w t )-V t (w t )],
Bias T := min

w∈∆ d P T (w)-min w∈∆ d t∈[T ] ℓ t (w).
Here, Bias T is the "bias" term arising since (VB-FTRL) minimizes P t-1 (w) instead of τ ∈[t-1] ℓ τ (w), the observed sum of losses-in other words, due to our use of regularization "per se." Miss t is the "lagged" term that arises since we only "follow" the (regularized) leader, i.e. minimize P t-1 instead of P t . Finally, Gain t appears due to our use of a time-varying volumetric regularizer. Since P t-1 in (VB-FTRL) includes V t-1 rather than V t , we expect Gain t to be negative and decrease the regret.

Big picture. Our proof proceed as follows. On the one hand, we shall bound the "bias" term as

Bias T (λ + 2µ) (d -1) log(T + λd) (36) 
under the assumption that λ 2e. This is not too involved, and can be done via a combination of standard techniques. Way more interesting is another step, in which we show that the inequalities

Miss t + Gain t 0, ∀t ∈ [T ], (37) 
hold when λ, µ are as in the premise of the theorem. The result then follows by combining ( 35)- [START_REF] Nesterov | Introductory lectures on convex optimization: A basic course[END_REF].

Volumetric regularization mechanism. First, convexity of log det(•) on S n + implies that

Gain t - µ 2 π t (w t ) with π t (w) := A ⊤ ∇ℓ τ (w) 2 (A ⊤ ∇ 2 Lt(w)A) -1 , (38) 
see Lemma A.4. Under the affine reparametrization in [START_REF] Bubeck | Sampling from a log-concave distribution with projected Langevin Monte Carlo[END_REF], π t (w t ) becomes the leverage score of x t at w t , cf. [START_REF] Cesa | Prediction, Learning, and Games[END_REF]. On the other hand, Miss t is the suboptimality gap of w t in terms of P t or P 1 t :

Miss t = P t (w t ) -min w∈∆ d P t (w) = P 1 t (v t ) -min w∈∆ d P 1 t (v).
Now, self-concordance of P 1 t allows to bound Miss t in terms of the squared Newton decrement:

Miss t CDecr 2 t with Decr t = A ⊤ ∇P t (w t ) (A ⊤ ∇ 2 Pt(wt)A) -1 , (39) 
for some C > 0, once we have shown that Decr 2 t c < 1 (see Lemma A.7 or [37, Theorem 4.1.13]). Finally, the optimality condition for w t implies that

A ⊤ ∇P t (w t ) = A ⊤ ∇ℓ t (w t ) + µA ⊤ [∇V t (w t ) -∇V t-1 (w t )].
Departing from this identity and exploting the algebraic structure of leverage scores, we manage to control the contribution of the term µA ⊤ [∇V t (w t ) -∇V t-1 (w t )] to Decr 2 t , as µ increases, by simultaneously increasing λ. More precisely, we show that Decr 2

t 1+λ λ 1+ 2µ λ 2 π t (w t ), while π t (w t ) 1 1+λ
by Lemma C.1. Thus, selecting λ appropriately we can enforce Decr 2 t c < 1 for any µ > 0. But then, combining the bound on Decr 2 t with ( 38)-( 39) and selecting µ appropriately, we enforce [START_REF] Nesterov | Introductory lectures on convex optimization: A basic course[END_REF].

Remark 3.1. In the actual proof, instead of Decr t we focus on the Newton decrement Decr t of

P 1 t (v) = L 1 t (v) + µ V 1 t (v t ) + ∇V 1 t (v t ) ⊤ (v -v t ) ,
a lower bound for P 1 t (v) tight at v = v t . As it turns out, while Decr t is somewhat larger than Decr t , focusing on Decr t allows to avoid explicit use of the self-concordance of P 1 t , using self-concordance of L 1 t instead. (Of course, we use the differential properties of V t , in particular the algebraic structure of its derivatives, when bounding Decr t .) The point is that P 1 t is only 21-self-concordant (see Lemma C.1), rather than 1-self-concordant as L 1 t , so working with Decr t , P 1 t instead of Decr t , P 1 t allows to reduce the constants. Meanwhile, in the proof of Theorem 4.1 on the regret of (VB-FTRL-qN), a procedure implementing (VB-FTRL), we have to use self-concordance of P 1 t directly because of a quasi-Newton method applied to P 1 t ; the resulting constant factor is an order of magnitude larger.

3.2 Proof of Theorem 2.1

1 o . Our goal in this step is to establish [START_REF] Arkadii | Problem complexity and method efficiency in optimization[END_REF]. Let us further decompose the "bias" term as

Bias T = VolBias T + LogBias T ( 40 
)
where the two terms correspond to the two regularizers V T (w) and R(w) respectively:

VolBias T := min

w∈∆ d P T (w) -min w∈∆ d L T (w), LogBias T := min w∈∆ d L T (w) -min w∈∆ d t∈[T ] ℓ t (w).
Defining w ⋆ T := argmin w∈∆ d L T (w) we then observe that

VolBias T P T (w ⋆ T ) -L T (w ⋆ T ) = µV T (w ⋆ T ) µ 2 (d -1) log( A ⊤ ∇ 2 L T (w ⋆ T )A ) µ 2 (d -1) log(d ∇ 2 L T (w ⋆ T ) ) (41) 
where in the last step we used that A = √ d. On the other hand, we can estimate ∇ 2 L T (w ⋆ T ) using that the entries of w ⋆ T cannot be too small. Indeed, according to Lemma A.1 we have that

w ⋆ T [i] λ T + λd , ∀i ∈ [d] (42) 
-a variation of the well-known result for the logaritmic-barrier regularizer (see e.g. [START_REF] Luo | Efficient online portfolio with logarithmic regret[END_REF]). But then

∇ 2 L T (w ⋆ T ) = t∈[T ] x t x ⊤ t (x ⊤ t w ⋆ T ) 2 + i∈[d] λe i e ⊤ i w ⋆ T [i] 2 (T + λd) 2 λ 2 t∈[T ] x t x ⊤ t x t 2 1 + λ i∈[d] e i e ⊤ i (T + λd) 3 λ 2 I d , that is ∇ 2 L T (w ⋆ T ) (T + λd) 3 λ 2 . ( 43 
)
Returning to [START_REF] Paris | Online learning with exponential weights in metric spaces[END_REF] and using that λ 1 to simplify the argument of the logarithm, we find that

VolBias T 2µ(d -1) log(T + λd). (44) 
Now, in order to bound LogBias take any w o T ∈ Argmin w∈∆ d t∈[T ] ℓ t (w) and define w o T,α ∈ ∆ d by

w o T,α = (1 -α)w o T + α d 1 d with α = λ(d -1) T + λ(d -1)
.

On the one hand, we have that

R(w o T,α ) max w∈∆ d R (1 -α)w + α d 1 d = (d -1) log d α (d -1) log 2 T + λd λ
where we used that a convex function with a compact domain is maximized at an extremal points, and also that d d-1

2. On the other hand, by Lemma A.2 proved in appendix, for any

w ∈ ∆ d t∈[T ] ℓ t (1 -α)w + α d 1 d -ℓ t (w) α 1 -α T = λ(d -1), whence t∈[T ] ℓ t (w o T,α ) -ℓ t (w o T ) λ(d -1)
. Combining these two results, we conclude that

LogBias T L T (w o T,α )- t∈[T ] ℓ t (w o T ) λR(w o T,α )+ t∈[T ] ℓ t (w o T,α )-ℓ t (w o T ) λ(d-1) log 2e
T + λd λ .

(45) We arrive at the desired estimate, cf. [START_REF] Arkadii | Problem complexity and method efficiency in optimization[END_REF], by plugging ( 44) and ( 45) into [START_REF] Dmitrii | Finite-sample analysis of m-estimators using selfconcordance[END_REF] and using that λ 2e.

2 o . Next we turn to proving [START_REF] Nesterov | Introductory lectures on convex optimization: A basic course[END_REF]. To streamline the exposition, we define x -i = e i for i ∈ [d], let τ vary over the extended index set [t] + := [t] ∪ {-1, . . . , -d}, and define the abridged notation:

H t (w) := A ⊤ ∇ 2 L t (w)A, ∇ τ (w) := A ⊤ ∇ℓ τ (w), Ĥt := H t (w t ), ∇τ := ∇ τ (w t ). ( 46 
)
Moreover, with a slight abuse of notation we let

λ τ := λ 1{τ <0} , τ ∈ [t] + , (47) 
so that L t (w) = τ ∈[t] + λ τ ℓ τ (w) and, as a consequence,

H t (w) = τ ∈[t] + λ τ ∇ τ (w)∇ ⊤ τ (w), Ĥt = τ ∈[t] + λ τ ∇τ ∇⊤ τ . (48) 
Finally, we define the Gram matrix Π(w) ∈ S t+d + of the extended dataset, with entries given by

π τ,ν (w) := λ τ λ ν ∇ τ (w), ∇ ν (w) Ht(w) -1 , ∀τ, ν ∈ [t] + , (49) 
rows/columns indexed on [t] + , and dependence on t omitted for brevity. Also, let Π := Π(w t ), i.e.

πτ,ν :

= λ τ λ ν ∇τ , ∇ν Ĥ-1 t , ∀τ, ν ∈ [t] + . ( 50 
)
For brevity, we refer to the diagonal entries with a single index: π τ (w) := π τ,τ (w) and πτ := πτ,τ . When w ∈ ∆ d , π τ (w) is the squared leverage score for the reparametrized and √ λ τ -rescaled losses:

π τ (Av + e d ) = λ τ ∇ℓ 1 τ (v) 2 ∇ 2 L 1 t (v) -1 .
In fact, Π(w) is a projection matrix, i.e. Π(w) = Π(w) 2 ; see [START_REF] Pravin | A new algorithm for minimizing convex functions over convex sets[END_REF]. We will use a weaker property:

π τ (w) = ν∈[t] + π τ,ν (w) 2 , ∀τ ∈ [t] + . (51) 
For the paper to be self-contained, this and other properties of Π(w) are proved in Appendix C.

3 o . Now, in terms of the notation we have just introduced, for each term Gain t we have:

Gain t = µ 2 log   det Ĥt -∇t ∇⊤ t det Ĥt   - µ 2 tr ∇t ∇⊤ t Ĥ-1 t = - µ 2 πt . ( 52 
)
Here the inequality relies on the fact that log det(•) is a convex function on S n + (see Lemma A.4). As such, to verify (37) it suffices to show that, for the values of λ, µ as in the premise of the theorem,

Miss t µ 2 πt . ( 53 
)
To that end, let us define P t : R d ++ → R as follows:

P t (w) = L t (w) + µ V t (w t ) + ∇V t (w t ) ⊤ (w -w t ) . (54) 
From [START_REF] Pravin | A new algorithm for minimizing convex functions over convex sets[END_REF] it is known that V t is convex. (For the paper to be self-contained, we reprove this result in Lemma C.4.) As such, P t (w) P t (w) for all w. Since P t (w t ) = P t (w t ), we obtain the estimates Miss t P t (w t ) -P t (w t+1 ) P t (w t )min

w∈∆ d P t (w). (55) 
Next, let P 1 t : R d-1 → R be the affine reparametrization (cf. ( 10)) of P t restricted to A d , namely:

P 1 t (v) := P t (Av + e d ). (56) 
Clearly, P 1 t has int(∆ d-1 ), cf. [START_REF] Blum | Universal portfolios with and without transaction costs[END_REF], as its domain, and v → Av + e d is a bijection from ∆ d to ∆ d-1 . As a result, min w∈∆ d P t (w) = min v∈∆ d-1 P 1 t (v); recalling (55), this results in 

Miss t P 1 t (v t ) -min v∈∆ d-1 P 1 t (v). ( 57 
) Function P 1 t (•) is standard self-concordant
Decr t := ∇P 1 t (v t ) ∇ 2 P 1 t (vt) -1 (58) 
with some c < 1 would suffice for showing that

P 1 t (v t ) -min v∈∆ d-1 P 1 t (v) CDecr 2 t
, where C depends only on c; in particular, Lemma A.7 shows that c = 0.5 allows for C = 0.8. Therefore, it remains to prove that Decr t 0.5, while lower-bounding the right-hand side of (53) with 0.8 Decr 2 t . 4 o . Since ∇ 2 P 1 t (v) = A ⊤ ∇ 2 P t (Av + e d )A, cf. [START_REF] Cesa | Prediction, Learning, and Games[END_REF], and ∇ 2 P t (w t ) = ∇ 2 L t (w t ), cf. (54), one has

∇ 2 P 1 t (v t ) = Ĥt . (59) 
Meanwhile, since v t = argmin v∈∆ d-1 P 1 t-1 (v) belongs to int(∆ d-1 ), we get

∇P 1 t-1 (v t ) = 0. Defining D t (w) := V t (w) -V t-1 (w) (60) 
we thence arrive at

∇P 1 t (v t ) (54) = ∇P 1 t (v t ) = ∇P 1 t (v t ) -∇P 1 t-1 (v t ) = A ⊤ [∇P t (w t ) -∇P t-1 (w t )] = A ⊤ [∇L t (w t ) -∇L t-1 (w t ) + µ∇D t (w t )] = ∇t + µA ⊤ ∇D t (w t ). (61) 
Plugging ( 59) and ( 61) into (58) we conclude that

Decr 2 t = ∇t + µA ⊤ ∇D t (w t ) 2 Ĥ-1 t . ( 62 
)
Let us now focus on ∇D t (w t ). Observe that, for any w ∈ R d ++ ,

-D t (w) = 1 2 log det I d-1 -∇ t (w)∇ t (w) ⊤ H t (w) -1 = 1 2 log (1 -π t (w)) ( 63 
)
where we used that ∇ t (w)∇ t (w) ⊤ is rank-one. Whence by the composition formula:

∇D t (w) = 1 2(1 -π t (w)) ∇π t (w). (64) 
Finally, a rather tedious computation allows to differentiate π t (w) explicitly (see Lemma C.3):

1 2 ∇π t (w) = π t (w)∇ℓ t (w) - τ ∈[t] + π t,τ (w) 2 ∇ℓ τ (w). ( 65 
)
Collecting ( 62)-( 65) we arrive at the following estimate:

Decr 2 t 1 (1 -πt ) 2 [1 + (µ -1)π t ] ∇t -µ   τ ∈[t] + π2 t,τ ∇τ   2 Ĥ-1 t . ( 66 
)
5 o . Let αt := 1 + (µ -1)π t , then developing the square in the right-hand side of (66) results in

Decr 2 t α2 t πt + 2µ αt | Ê1 | + µ 2 Ê2 (1 -πt ) 2 (67) 
with Ê1 and Ê2 as follows (cf. ( 47)-( 50)):

Ê1   := τ ∈[t] + ∇t , ∇τ Ĥ-1 t π2 t,τ   = τ ∈[t] + 1 √ λ τ π3 t,τ , (68) Ê2  
 := τ,ν∈[t] + ∇τ , ∇ν Ĥ-1 t π2 t,τ π2 t,ν   = τ,ν∈[t] + πτ,ν √ λ τ λ ν π2 t,τ π2 t,ν . (69) 
Now, by Lemma C.1 proved in the appendix, we have the following bounds for the entries of Π:

|π t,τ | 1 1 + λ ∀τ ∈ [t]; |π t,τ | 1 √ 1 + λ ∀τ < 0; |π τ,ν | √ λ τ λ ν 1 λ ∀τ, ν ∈ [t] + . (70) 
The first bound implies that αt λ+µ 1+λ . Combining the first two bounds in (70) with (51) we get

| Ê1 | 1 λ τ ∈[t] + π2 t,τ (51) 
= πt λ . (71) 
Finally, applying the third and then the first bound in (70), we have that

Ê2 1 λ   τ ∈[t] + π2 t,τ   2 (51) = π2 t λ πt λ(1 + λ) . (72) 
Plugging ( 71)-( 72) and the bound for αt back into (67) leads to

Decr 2 t 1 + λ λ 2 λ + µ 1 + λ 2 + 2µ(λ + µ) λ(1 + λ) + µ 2 λ(1 + λ) πt (1 + λ)(λ + 2µ) 2 λ 3 πt . ( 73 
)
From the first bound in (70) we get Decr 2 [START_REF] Nesterov | Introductory lectures on convex optimization: A basic course[END_REF]. The theorem is proved.

t 1 λ 1 + 2µ λ 2 ,

Efficient implementation

We are now about to present an implementation of (VB-FTRL) based on a quasi-Newton method run from the previous portfolio. Let us first explain why this choice is natural in our context.

First, as we verify in Appendix C, function P 1 t , to be minimized in each round of VB-FTRL after the reparametrization [START_REF] Bubeck | Sampling from a log-concave distribution with projected Langevin Monte Carlo[END_REF], is self-concordant. Such functions were initially proposed in [START_REF] Nesterov | Interior-point polynomial algorithms in convex programming[END_REF] as the ones for which Newton's method has a global convergence guarantee. Moreover, it converges quadratically when initialized at a point with a small Newton decrement. On the other hand, when proving Theorem 2.1 we have shown (when bounding Decr t ) that portfolio w t gives a small Newton decrement in terms of P 1 t-1 . As such, Newton's method run from w t ≈ w t [= argmin w∈∆ d P t-1 (w)] will produce an accurate approximation w t+1 of w t+1 in just a few steps, enforcing that w t+1 ≈ w t+1 .

Furthermore, the convergence guarantees for Newton's method, when run on a self-concordant function, are affine-invariant-just as the regret bound established in Theorem 2.1. This would not be so if we used, instead, a first-order method such as gradient descent. Given a substantial research effort that had been spent in obtaining affine-invariant regret guarantees for various algorithms, 6 it would be quite unsatisfactory if such a regret bound-even an optimal one-came only at the price of a computational guarantee that lacks affine-invariance. (We stress this point, as it seems to be rather poorly understood in the theoretical machine learning and online optimization communities.) Finally, we have at our disposal a computationally cheap approximate second-order oracle for P t (and thus for P 1 t as well). Namely, it can be verified (see Lemma C.4) that the gradient of V t (w) is

∇V t (w) = τ ∈[t] + π τ (w) ∇ℓ τ (w), (74) 
and the Hessian of V t satisfies the bounds Q t (w) ∇ 2 V t (w) 3Q t (w) with Q t (w) as follows:

Q t (w) = τ ∈[t] + π τ (w) ∇ 2 ℓ τ (w). (75) 
Now, the point here is that Q t (w) can be computed in O(d 2 (T + d)) arithmetic operations (a.o.'s), whereas computing ∇ 2 V t (w) exactly would take O(d 2 (T + d) 2 ) a.o.'s. (The latter can be seen from the explicit representation of ∇ 2 V t as the sum of (T + d) 2 outer-product terms, cf. (121) in Appendix C.) On the other hand, it can be shown that a quasi-Newton method in which the exact Hessian of a self-concordant objective is replaced with such an approximation-i.e., the one with a constant relative error as is the case for ∇ 2 V t (w) and Q t (w)-admits strong convergence guarantees-namely, local linear convergence in a Dikin ellipsoid of the optimum; see Lemma A.10.

Conceptual procedure. The above discussion suggests to replace (VB-FTRL) with the update shown in Fig. 4, and referred to as (VB-FTRL-qN) later on. In (VB-FTRL-qN), the next portfolio w t is obtained by running S steps of a quasi-Newton method for the minimization problem in (VB-FTRL), under the affine reparametrization of ∆ d onto ∆ d-1 , cf. ( 10)-( 12), starting from the previously chosen portfolio w t-1 , and approximating the Hessian ∇ 2 P t (w) with ∇ 2 L t (w)+3µQ t (w).

Input: w t-1 ∈ ∆ d .

1. Initialize w (0) t = w t-1 . 2. For s = 0, 1, ..., S -1 do:

(VB-FTRL-qN)

M (s) t-1 = A ⊤ ∇ 2 L t w (s) t + 3µQ t w (s) t A, w (s+1) t = w (s) t -A M (s) t-1 -1 A ⊤ ∇P t w (s) t . Output: w t = w (S) t .
Figure 1: Conceptual implementation of (VB-FTRL) via a quasi-Newton method. 

Computational guarantees

∇ 2 P 1 t-1 v (s) t M (s) t-1 , (76) 
and perform a matrix-vector multiplication (line 16). This takes O(td 2 + d 3 ) time and O(d 2 ) space.

Regret guarantee for VB-FTRL-qN

As we are about to see, performing a logarithmic in T + d number of quasi-Newton steps, instead of full minimization as per (VB-FTRL), suffices to match the regret bound of Theorem 2.1. More precisely, we have the following result for the regret of VB-FTRL-qN (a.k.a. Algorithm 1). Proof. As previously noted, Algorithm 1 precisely corresponds to the updates in (VB-FTRL-qN). Let w 1:T and w 1:T be two sequences produced by (VB-FTRL-qN) and (VB-FTRL) correspondingly on the same x 1:T . Let also w 0 = 1 d 1 d , and observe that w 0 = w 0 = w 1 is the exact minimizer of P 0 . The following technical result claims, in a nutshell, that w t remains very close to w t for all t ∈ [T ]. 

w t -w t ∇ 2 Lt(wt) min 1 (T + d + 1) 2 , 10 -4 (1 + 3µ) -1/2 . ( 78 
)
Algorithm 1 VB-FTRL-qN : Efficient implementation of VB-FTRL via a quasi-Newton method Input: λ > 0, µ > 0, S ∈ N 1:

w 0 := 1 d 1 d ⊲ w 0 = argmin w∈∆ d P 0 (w) 2: for t ∈ [T ] do 3: v (s) t := A + ( w t-1 -e d ) ⊲ map w t-1 ∈ ∆ d to ∆ d-1 , cf. (12) 4: 
for s ∈ {0, ..., S -1} do 5:

for τ ∈ [t -1] + do ⊲ [t -1] + = [t -1] ∪ {-1, ..., -d} 6:
λ τ := λ 1{τ <0} ⊲ recall that x -j = e j for j ∈ [d]

7:

∇ (s) τ := - 1 x ⊤ τ Av (s) t +e d A ⊤ x τ ⊲ ∇ (s) τ = ∇ℓ 1 τ v (s) t 8:
end for 9:

H (s) t-1 := τ ∈[t-1] + λ τ ∇ (s) τ ∇ (s) τ ⊤ ⊲ H (s) t-1 = ∇ 2 L 1 t-1 v (s) t 10: Σ (s) t-1 := H (s) t-1 -1 11: for τ ∈ [t -1] + do 12: π (s) τ := λ τ ∇ (s) τ 2 Σ (s) t-1 13:
end for 14:

g (s) t-1 := τ ∈[t-1] + λ τ + µπ (s) τ ∇ (s) τ ⊲ g (s) t-1 = ∇P 1 t-1 v (s) t 15: M (s) t-1 := H (s) t-1 + 3µ τ ∈[t-1] + π (s) τ ∇ (s) τ ∇ (s) τ ⊤ 16: v (s+1) t := v (s) t -M (s) t-1 -1 g (s) t-1
⊲ quasi-Newton step for P 

Bias T + t∈[T ]
ℓ t ( w t ) + P t-1 ( w t ) -P t (w t+1 )

Bias T + t∈[T ] [ Miss t + Gain t ] ( 79 
)
where the term Bias T is the same as in the proof of Theorem 2.1, and the terms summed over t are

Miss t := P t ( w t ) -P t (w t+1 ), Gain t := µ[V t-1 ( w t ) -V t ( w t )]. (80) 
Since λ 2e, Bias T admits the same bound (36) as before. Moreover, for Miss t = P t (w t ) -P t (w t+1 ) and Gain t = µ[V t-1 (w t ) -V t (w t )] we still have that Miss t + Gain t 0 for all t ∈ [T ],

simply because these terms, just like [START_REF] Arkadii | Problem complexity and method efficiency in optimization[END_REF], depend only on w 1:T (and not w 1:T ), and the constraint on λ, µ imposed in (77) is stronger than its counterpart in Theorem 2.1. Thus, it remains to show that t∈[T ] Error t λ+2µ for the sum of approximation errors Error t := Miss t -Miss t + Gain t -Gain t .

2 o . Clearly,

Error t = L t ( w t ) -L t (w t ) + µ[V t-1 ( w t ) -V t-1 (w t )].
By Lemma 4.1, Lemma A.9, and since L 1 t (•) and

L 1 t-1 (•) are 1-self-concordant, cf. Corollary A.1, (1 -ε) 2 H t (w t ) H t ( w t ) 1 (1 -ε) 2 H t (w t ), (1 -ε) 2 H t-1 (w t ) H t-1 ( w t ) 1 (1 -ε) 2 H t-1 (w t )
where ε is the right-hand side of (78), and the second line is due to w tw t ∇ 2 L t-1 (wt) ε. Thus,

µ[V t-1 ( w t ) -V t-1 (w t )] = µ 2 log det H t-1 (w t ) -1/2 H t-1 ( w t )H t-1 (w t ) -1/2 µ(d -1) log 1 1 -ε 2µ(d -1)ε.
where in the end we used that 1 1-u 1 + 2u for u ∈ [0, 1 2 ]. On the other hand, applying Lemma A.8 to L 1 t (•) and noting that ∇L t (w) ∇ 2 Lt(w) -1 t + d by triangle inequality, we get

L t ( w t ) -L t (w t ) ∇L t (w t ) ⊤ ( w t -w t ) + 0.8 w t -w t 2 ∇ 2 Lt(wt) (T + d)ε + 0.8ε 2 (T + d + 1)ε.
As such, we have a (very conservative) bound t∈[T ] Error t (λ + 2µ) (T + d + 1) 2 ε λ + 2µ.
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A Auxiliary results

A.1 Logarithmic barrier and smoothed portfolios

Lemma A.1. Let w ⋆ T = argmin w∈∆ d L T (w), then

w ⋆ T [i] λ T + λd , ∀i ∈ [d]. ( 81 
)
Proof. Let 1/w be the vector with entries w

[i] = 1/w[i].
The first-order optimality conditions read

(w -w ⋆ T ) ⊤ λ w ⋆ T + t∈[T ] x t x ⊤ t w ⋆ T 0, ∀w ∈ ∆ d .
Rearranging, we conclude that

λ i∈[d] w[i] w ⋆ T [i] + t∈[T ] x ⊤ t w x ⊤ t w ⋆ T λd + T.
The second sum is nonnegative; choosing w = e i for i ∈ [d] violating (81) gives a contradiction.

Lemma A.2. For all w ∈ ∆ d , the smoothed portfolio

[w] α := (1 -α)w + α d 1 d , α ∈ [0, 1), satisfies t∈[T ] ℓ t ([w] α ) -ℓ t (w) α 1 -α T.
In particular, for α = λ(d-1) T +λ(d-1) we have that

t∈[T ] ℓ t ([w] α ) -ℓ t (w) λ(d -1). Proof. Observe that w -[w] α = α 1-α ([w] α -1 d 1 d ).
Whence by convexity we get

t∈[T ] ℓ t ([w] α ) -ℓ t (w) t∈[T ] x ⊤ t (w -[w] α ) x ⊤ t [w] α = α 1 -α t∈[T ] 1 - 1 d • 1 ⊤ d x t x ⊤ t [w] α α 1 -α T. Lemma A.3. For all w ∈ R d ++ and x ∈ R d + , function R(•) in (14) satisfies ∇ 2 R(w) 1 (x ⊤ w) 2 xx ⊤ .
Proof. Equivalently, we must prove that, for w, x as in the premise of the lemma, and for any

u ∈ R d , (x ⊤ w) 2 i∈[d] u[i] 2 w[i] 2 (x ⊤ u) 2 .
Clearly, it suffices to consider

u ∈ R d + . Let r ∈ R d + have entries r[i] = u[i] w[i] , then we have that i∈[d] u[i] 2 w[i] 2 x ⊤ w = r 2 x ⊤ w r ∞ x ⊤ w i∈[d] r[i] x[i] w[i] = x ⊤ u.

A.2 Facts from linear algebra

Lemma A.4 ([20, Lemma 12]). For any H ≻ H ′ 0, it holds that log

det(H) det(H-H ′ ) tr(H -1 H ′ ).
In particular, if H ′ is rank-one, i.e. H = uu ⊤ for some vector u, then log

det(H) det(H-uu ⊤ ) u 2 H -1 .
Proof. The result follows by using that log det(•) is concave on the positive-semidefinite cone (see [START_REF] Boyd | Convex optimization[END_REF]):

log det(H) det(H -H ′ ) = log det(H(H -H ′ ) -1 ) tr(I -(H -H ′ )H -1 ) = tr(H -1 H ′ ). Lemma A.5. Let H ∈ S n ++ and u, v ∈ R n . Then ∇ H ( u, v H -1 ) = -1 2 H -1 (uv ⊤ + vu ⊤ )H -1 . In particular, ∇ H ( u 2 H -1 ) = -H -1 uu ⊤ H -1 .
Proof. Fix an arbitrary symmetric matrix M ∈ R n×n , and consider t ∈ R for which H -tM ≻ 0. In terms of the Cholesky factorization H = RR ⊤ we have that, as t → 0,

(H + tM ) -1 = R -⊤ (I -tR -1 M R -⊤ )R -1 + o(t) = H -1 -tH -1 M H -1 + o(t). Whence u ⊤ H -1 u-u ⊤ (H+tM ) -1 u = t tr(M H -1 uu ⊤ H -1
)+o(t), and the formula for ∇ H ( u 2 H -1 ) is verified. More generally,

u ⊤ H -1 v -u ⊤ (H + tM ) -1 v = ttr(M H -1 vu ⊤ H -1 ) + o(t) = t 2 tr(M H -1 (uv ⊤ + vu ⊤ )H -1 ) + o(t).
Since H -1 (uv ⊤ + vu ⊤ )H -1 is a symmetric matrix, this verifies the formula for ∇ H ( u, v H -1 ).

A.3 Self-concordant functions

In this section, we recall the notion of self-concordant functions and the key properties of such functions. This class of functions was thoroughly studied in the seminal work of Nesterov and Nemirovski [START_REF] Nesterov | Interior-point polynomial algorithms in convex programming[END_REF] in connection with interior-point methods; earlier, Vaidya used similar tools in the context of cutting-plane methods [START_REF] Pravin | A new algorithm for minimizing convex functions over convex sets[END_REF]. The results presented next are well known; their proofs can be found in [37, Section 4], see also [START_REF] Dmitrii | Finite-sample analysis of m-estimators using selfconcordance[END_REF]Proposition B.2] for a more concise proof of Lemma A.9.

Definition 1. Let f : R n → R be convex, proper, and three times differentiable on its domain dom(f ) := {z : f (z) < ∞} which is open, has nonempty interior, and does not contain straight lines. Then f is called M-self-concordant if it is a barrier on its domain-i.e. f (z) → z→z 0 ∞ for any z 0 in the boundary of dom(f )-and the following inequality holds for all z ∈ domf and u ∈ R n :

∇ 3 f (z)[u, u, u] 2M ∇ 2 f (z)[u, u] 3/2 . ( 82 
)
The following property of self-concordant functions is well-known, see e.g. [37, Section 4.1].

Lemma A.6 ([37, Theorem 4.1.1]). Let f 1 and f 2 be M 1 -and M 2 -self-concordant, respectively. For λ 1 , λ 2 > 0, the function

λ 1 f 1 + λ 2 f 2 has domain dom(f 1 ) ∩ dom(f 2 ) and is M-self-concordant, M = max M 1 √ λ 1 , M 2 √ λ 2 .
Lemma A.6 implies self-concordance of the reparametrized logarithmic-barrier function

L 1 t (•). Corollary A.1. Assume λ 1, then the restriction L 1 t : R d-1 → R of L t to A d as in (9), namely L 1 t (v) = L t (Av + e d )
with A defined in [START_REF] Boyd | Convex optimization[END_REF], is 1-self-concordant according to Definition 1 with domain int(∆ d-1 ), cf. [START_REF] Blum | Universal portfolios with and without transaction costs[END_REF].

Proof. It is evident that dom(L 1 t ) = int(∆ d-1
) where ∆ d-1 is the "solid" simplex in R d-1 , cf. [START_REF] Blum | Universal portfolios with and without transaction costs[END_REF]. In particular, dom(L 

) with M = 1 for L 1 t (•). That is, L 1 t (•) is 1-self-concordant.
Following [START_REF] Nesterov | Introductory lectures on convex optimization: A basic course[END_REF]Section 4.1] we now define a pair of mutually conjugate functions ω, ψ on R + by

ω(r) := r -log(1 + r), ψ(r) := -r -log(1 -r). ( 83 
)
Note that ω and ψ are increasing, ω(r) 1 2 r 2 ψ(r), and these bounds are tight at r = 0. In fact, ω(r) is a Huber-type function, so ω(r) = (1-o(1))r as r → ∞; meanwhile, ψ(r)→+∞ as r ↑ 1. More specifically, it can be verified that ω(r) 0.3r 2 for r 1, and ψ(r) 0.8r 2 for r 0.5.

Lemma A.7 [START_REF] Nesterov | Introductory lectures on convex optimization: A basic course[END_REF]4.1.13]). Let f be 1-self-concordant, and some ẑ ∈ dom(f ) satisfies ∇f (ẑ) ∇ 2 f (ẑ) -1 < 1. Then f has a unique minimizer z ⋆ , and

ω ∇f (z) ∇ 2 f (z) -1 f (z) -f (z ⋆ ) ψ ∇f (z) ∇ 2 f (z) -1
where the lower bound holds for all z ∈ dom(f ), and the upper bound requires ∇f (z)

∇ 2 f (z) -1 < 1.
In particular, 0.3 ∇f (z) 2 

∇ 2 f (z) -1 f (z) -f (z ⋆ ) 0.8 ∇f (z) 2 ∇ 2 f (z) -1 if ∇f (z) ∇ 2 f (z) -1 0.5.
]). Let f be 1-self-concordant, z ∈ dom(f ), then ω z ′ -z ∇ 2 f (z) f (z ′ ) -f (z) -∇f (z) ⊤ (z ′ -z) ψ z ′ -z ∇ 2 f (z) .
Here, the lower bound holds ∀z ′ ∈ dom(f ) and the upper bound on 1-Dikin ellipsoid E f,1 (z) where

E f,r (z) := {z ′ ∈ R n : z ′ -z ∇ 2 f (z) < r}. ( 84 
)
In particular,

E f,1 (z) is contained in dom(f ). Moreover, for z ′ ∈ E f, 1 2 
(z) we have the following:

0.3 z ′ -z 2 ∇ 2 f (z) f (z ′ ) -f (z) -∇f (z) ⊤ (z ′ -z) 0.8 z ′ -z 2 ∇ 2 f (z) .
Lemma A.9 ([37, Theorem 4.1.6]). Let f be 1-self-concordant and z ∈ dom(f ), then we have

1 -z ′ -z ∇ 2 f (z) 2 ∇ 2 f (z) ∇ 2 f (z ′ ) 1 1 -z ′ -z ∇ 2 f (z) 2 ∇ 2 f (z) for all z ′ ∈ E f,1 (z). In particular, for z ′ ∈ E f, 1 2 (z) we have that 0.25∇ 2 f (z) ∇ 2 f (z ′ ) 4∇ 2 f (z).

A.4 Quasi-Newton method

Next we focus on a quasi-Newton method in which the actual Hessian is replaced with an approximation with a constant relative accuracy. Such a method converges linearly if initialized in a constant-radius Dikin ellipsoid of the minimizer of a self-concordant function. Analogous results were obtained in [33, Lemma 11], for a modified notion of self-concordance.

Lemma A.10 (Linear convergence for a quasi-Newton method). Let f be 1-self-concordant, z ∈ dom(f ) be such that ∇f (z) ∇ 2 f (z) -1 c 3 for some c 1, and consider z

+ := z - ∼ H -1 ∇f (z) with c ∼ H ∇ 2 f (z) ∼ H.
Then z + ∈ dom(f ), and we have that ∇f (z

+ ) ∇ 2 f (z + ) -1 (1 -c 3 ) ∇f (z) ∇ 2 f (z) -1 .
Proof. Define H(z ′ ) := ∇ 2 f (z ′ ) for any z ′ ∈ dom(f ), and

J := H(z) 1/2 ∼ H -1 H(z) 1/2 . Then, by the premise of the lemma, cH(z) -1 ∼ H -1 H(z) -1 , which implies cI J I and 0 I -J (1 -c)I. As a result, defining δ(z ′ ) := ∇f (z ′ ) ∇ 2 f (z ′ ) -1 for brevity, we get z + -z 2 H(z) = ∼ H -1 ∇f (z) 2 H(z) = ∇f (z) ⊤ H(z) -1/2 J 2 H(z) -1/2 ∇f (z) δ(z) 2 ,
whence (by Lemma A.9) z + ∈ dom(f ) and

(1 -δ(z)) 2 H(z) -1 H(z + ) -1 1 (1 -δ(z)) 2 H(z) -1 . (85) 
Now, define H(z) := ∇ 2 f (z) and z s :

= sz + + (1 -s)z for s ∈ [0, 1]. Since ∇f (z) + ∼ H(z + -z) = 0, ∇f (z + ) H(z) -1 = ∇f (z + ) -∇f (z) - ∼ H(z + -z) H(z) -1 = 1 0 H(z s )- ∼ H (z + -z) ds H(z) -1 1 0 H(z s ) - ∼ H (z + -z) H(z) -1 ds 1 0 H(z s ) -H(z) (z + -z) H(z) -1 ds + ∼ H -H(z) (z + -z) H(z) -1 .
(86) For the last term in the right-hand side, we get

∼ H -H(z) (z + -z) 2 H(z) -1 = I -H(z) ∼ H -1 ∇f (z) 2 H(z) -1 = ∇f (z) ⊤ H(z) -1/2 (I -J ) 2 H(z) -1/2 ∇f (z) (1 -c) 2 δ(z) 2 .
(87) On the other hand, since z sz = s(z +z), similarly to (85), we have that

(1 -sδ(z)) 2 H(z) -1 H(z s ) -1 1 (1 -sδ(z)) 2 H(z) -1 , and since (1 -u) 2 1 (1-u) 2 for u ∈ (0, 1), we get H(z) 1/2 H(z s ) -1 H(z) 1/2 -I 1 (1-sδ(z)) 2 -1. As a result, since H(z s ) -H(z) (z + -z) 2 H(z) -1 = (z + -z) ⊤ H(z) 1 2 H(z) 1 2 H(z s ) -1 H(z) 1 2 -I 2 H(z) 1 2 (z + -z),
we get

H(z s ) -H(z) (z + -z) H(z) -1 1 (1 -sδ(z)) 2 -1 z + -z H(z) 1 (1 -sδ(z)) 2 -1 δ(z)
and estimate the integral term:

1 0 H(z s ) -H(z) (z + -z) H(z) -1 ds δ(z) 1 0 1 (1 -sδ(z)) 2 -1 ds = δ(z) 2 1 -δ(z) . (88) 
Finally, combining (85)-(88), and using that δ(z) c 3 , we conclude that

δ(z + ) (1 -c) δ(z) 1 -δ(z) + δ(z) 2 (1 -δ(z)) 2 1 - 2c 3 δ(z) 1 -δ(z) 3 -2c 3 -c δ(z) 1 - c 3 δ(z).
Corollary A.2. Let f be 1-self-concordant and minimized at z ⋆ , and assume that

z 0 ∈ dom(f ) is such that ∇f (z 0 ) ∇ 2 f (z 0 ) -1 c
3 for some c 1. Consider the following sequence for s ∈ {0} ∪ [S -1]:

z s+1 := z s - ∼ H -1 s ∇f (z s ) where c ∼ H s ∇ 2 f (z s ) ∼ H s .
Then, for any ε 1 4 , we have the following inequalities if S 3 c log 1 ε :

max 1 4 z S -z ⋆ 2 ∇ 2 f (z ⋆ ) , f (z S ) -f (z ⋆ ), ∇f (z S ) 2 ∇ 2 f (z S ) -1 ε 2 , (1 -2ε) 2 ∇ 2 f (z ⋆ ) ∇ 2 f (z S ) 1 (1 -2ε) 2 ∇ 2 f (z ⋆ ). ∆ d exp - λ µ R(w) dw . (89) 
Now, let

w ⋆ T = argmin w∈∆ d L T (w). Define the set ∆ ⋆ d,T := T T +1 w ⋆ T + 1 T +1 w, ∀w ∈ ∆ d , i.
e. a copy of ∆ d shrinked by the factor of 1 T +1 and shifted by w ⋆ T . Since h t (•) is concave and positive, we have:

h t (w) T T + 1 h t (w ⋆ T ) ∀w ∈ ∆ ⋆ d,T .
As such, for all w ∈ ∆ ⋆ d,T we have that exp -

1 µ L T (w) exp - λ µ R(w) • T T + 1 T t∈[T ] h t (w ⋆ T ) 1 e exp - λ µ R(w) t∈[T ] h t (w ⋆ T ).
After taking the logarithm and noting that ∆ ⋆ d,T ⊆ ∆ d , this results in

-µ log ∆ d exp - 1 µ L T (w) dw -µ log 1 e ∆ ⋆ d,T exp - λ µ R(w) dw + t∈[T ] ℓ t (w ⋆ T ).
Returning to (89), this results in

R T (w 1:T |x 1:T ) t∈[T ] ℓ t (w ⋆ T ) -min w∈∆ d t∈[T ] ℓ t (w) + µ log ∆ d exp - λ µ R(w) dw -µ log 1 e ∆ ⋆ d,T exp - λ µ R(w) dw . (90) 
Observing that R(w) R( 

µ log ∆ d exp - λ µ R(w) dw µ log[Area(∆ d )] -λd log d. (91) 
Meanwhile, R(w), as a convex function, is maximized on a vertex of ∆ ⋆ d,T , whence for any w ∈ ∆ * d,T :

R(w) max k∈[d] R T T + 1 w ⋆ T + 1 T + 1 e k = max k∈[d]    log T + 1 T w ⋆ T [k] + 1 + i∈[d]\{k} log T + 1 T w ⋆ T [i]    R(w ⋆ T ) + (d -1) log T + 1 T .
This allows to estimate the last term in (90):

-µ log 1 e ∆ ⋆ d,T exp - λ µ R(w) dw λR(w ⋆ T ) + λ(d -1) log T + 1 T + µ -µ log[Area(∆ ⋆ d,T )] λR(w ⋆ T ) + λ(d -1) log (2) + µ -µ log[Area(∆ d )] + µ(d -1) log(T + 1). (92) Here we used that Area(∆ ⋆ d,T ) = 1 (T +1) d-1 Area(∆ d ).
Finally, proceeding as in step 1 o of the proof of Theorem 2.1 we get

L T (w ⋆ T ) -min w∈∆ d t∈[T ] ℓ t (w) λ (d -1) log 2e T + λd λ . (93) 
Combining ( 90)-( 93) yields the result.

B.2 Proof of Proposition 2.2

On the one hand, the mere feasibility of φ t in surrogate problem [START_REF] Li | Online portfolio selection: A survey[END_REF] implies, through [START_REF] Leung | Information theory and mixing least-squares regressions[END_REF], that

F t-1 [φ t ] F t-1 [φ t ]. (94) 
Now, let us define (w, φ t ) as the optimal solution to the following minimization problem:

min ŵ ∈ ∆ d , E φ [w] = ŵ, φ ∈ Supp(E t-1, 1/2 ( ŵ)) L t-1 ( ŵ) + 1 5 tr ∇ 2 L t-1 ( ŵ) Cov[φ] -µEnt[φ] := F t-1 [φ] . (95) 
Moreover, let φ t (•) := 2φ t (w + 2(•w)), i.e. φ t is the distribution of w + 1 2 (ww) with w ∼ φ t . Then E w∼ φt [w] = w and also φ t ∈ Supp(E t-1, 1/4 (w))-in other words, (w, φ t ) is feasible in [START_REF] Li | Online portfolio selection: A survey[END_REF], so

F t-1 [φ t ] F t-1 [ φ t ]. ( 96 
) Now: observe that Cov[ φ t ] = 1 4 Cov[φ t ] and Ent[ φ t ] = Ent[φ t ] -(d -1) log(2), whence (26) 
gives

F t-1 [ φ t ] F t-1 [φ t ] + µ(d -1) log(2). (97) 
Finally, let (w o , φ o t ) be the optimal solution to the optimization problem min

ŵ ∈ ∆ d , E φ [w] = ŵ, φ ∈ Supp(E t-1, 1/2 ( ŵ)) F t-1 [φ]. (98) 
Since (w o , φ o t ) is also a feasible solution to (95), we have that

F t-1 [φ t ] F t-1 [φ o t ] F t-1 [φ o t ].
In combination with (94) and ( 96)-(98) this results in

F t-1 [φ t ] min ŵ ∈ ∆ d , E φ [w] = ŵ, φ ∈ Supp(E t-1, 1/2 ( ŵ)) F t-1 [φ] + µ(d -1) log(2). (99) 
Thus, to prove the proposition it suffices to bound the minimum in (98) from above in terms of the minimum in [START_REF] Kelly | A new interpretation of information rate[END_REF]. To this end, recall that φ t , as defined in [START_REF] Helmbold | On-line portfolio selection using multiplicative updates[END_REF], is the optimal solution to (23); let w ⋆ = argmin w∈∆ d L t-1 (w), and let φ trc t be the truncation of φ t to E t-1, 1/8 (w ⋆ )-in other words,

φ trc t (w) = exp -1 µ L t-1 (w) E t-1, 1/8 (w ⋆ ) exp -1 µ L t-1 (w ′ ) dw ′ , w ∈ E t-1, 1/8 (w ⋆ ). (100) 
Clearly, φ trc t is supported on E t-1, 1/2 ( ŵtrc ) where ŵtrc = E φ trc t [w] is its expectation-in other words, the pair ( ŵtrc , φ trc t ) is feasible in (98). Indeed, for any w ∈ E t-1, 1/8 (w ⋆ ) we have that

w -ŵtrc ∇ 2 L t-1 ( ŵtrc ) 2 w -ŵtrc ∇ 2 L t-1 (w ⋆ ) 2 w -w ⋆ ∇ 2 L t-1 (w ⋆ ) + 2 ŵtrc -w ⋆ ∇ 2 L t-1 (w ⋆ ) 1/2,
where we used that function [START_REF] Anstreicher | Volumetric path following algorithms for linear programming[END_REF] for the proof of this result-and applied Lemma A.9. By (99), this implies that

L 1 t-1 (v) is 1-self-concordant whenever λ 1-see Corollary A.1 in Appendix A.
F t-1 [φ t ] F t-1 [φ trc t ] + µ(d -1) log(2). (101) 
As such, it remains to show that replacing φ t with φ trc t does not lead to a dramatic increase of F t-1 .

Lemma B.1. For φ t , F t-1 , φ trc t as in (21)-( 23) and (100), the following holds as long as λ 1:

F t-1 [φ trc t ] F t-1 [φ t ] + 1.5µ(d -1) log (T + λd) + 3.2µ(d + 1) + 0.1.
This lemma, proved in the next section, gives the desired result via (101), since log(2) < 0.7.

B.3 Proof of Lemma B.1

For the sake of generality we shall consider truncation to E t-1,r (w ⋆ ) with arbitrary r 1/2, and put r = 1/8 post-hoc. By duality between the negative entropy and log-partition function (cf. ( 23)),

F t-1 [φ t ] = -µ log ∆ d exp - 1 µ L t-1 (w) dw, F t-1 [φ trc t ] = -µ log E t-1,r (w ⋆ ) exp - 1 µ L t-1 (w) dw.
Here the second integral is smaller: E t-1,r (w ⋆ ) ⊆ ∆ d by Lemma A.8 and Corollary A.1. Our goal is to show the reverse inequality up to the appropriate error term. To this end, we first note that

exp 1 µ F t-1 [φ trc t ] -F t-1 [φ t ] = ∆ d exp -1 µ [L t-1 (w) -L t-1 (w ⋆ )] dw E t-1,r (w ⋆ ) exp -1 µ [L t-1 (w) -L t-1 (w ⋆ )] dw . (102) 
Since L t-1 (w) L t-1 (w ⋆ ), the numerator can be upper-bounded by the surface area of ∆ d :

∆ d exp - 1 µ [L t-1 (w) -L t-1 (w ⋆ )] dw Area(∆ d ) = √ dVol(∆ d-1 ) = √ d Γ(d)
.

By the first-order optimality conditions ∇L t-1 (w ⋆ ), ww ⋆ = 0 for w ∈ ∆ d , whence by Lemma A.8

L t-1 (w) -L t-1 (w ⋆ ) 4 5 w -w ⋆ 2 ∇ 2 L t-1 (w ⋆ ) ∀w ∈ E t-1,r (w ⋆ ),
where we used that r 1/2. As such, we can lower-bound the denominator in (102) as follows:

E t-1,r (w ⋆ ) exp - 1 µ [L t-1 (w) -L t-1 (w ⋆ )] dw exp - 4r 2 5µ r d-1 Area(E t-1,1 (w ⋆ )).

Now, as in Corollary

A.1 let L 1 t-1 : R d-1 → R be the reparametrized restriction of L t-1 to A d . Since det(A ⊤ A) = d, we have that Area(E t-1,1 (w ⋆ )) = √ dVol(E 1 t-1,1 (v ⋆ ))
where v ⋆ is such that Av ⋆ + e d = w ⋆ , and ellipsoid E 1 t-1,r (v ⋆ ) similarly corresponds to E t-1,r (w ⋆ ):

E 1 t-1,r (v ⋆ ) := {v ∈ R d-1 : v -v ⋆ ∇ 2 L 1 t-1 (v ⋆ ) r} ⊂ R d-1 .
Using the expression for the volume of an ellipsoid in R d-1 , we have that

Vol(E 1 t-1,1 (v ⋆ )) = π d-1 2 Γ( d+1 2 ) det(∇ 2 L 1 t-1 (v))
.

Moreover, since ∇ 2 L 1 t-1 (v ⋆ ) = A ⊤ ∇ 2 L t-1 (w ⋆ )A and A ⊤ A = I d-1 + 1 d-1 1 ⊤ d-1 , so that A = √ d, det(∇ 2 L 1 t-1 (v ⋆ )) ∇ 2 L 1 t-1 (v ⋆ ) d-1 (d ∇ 2 L t-1 (w ⋆ ) ) d-1 d(t -1 + λd) 3 λ 2 d-1 d(t -1 + λd) 3 d-1 ;
here we bounded ∇ 2 L t-1 (w ⋆ ) by using that min i∈ 

[d] w ⋆ [i]
F t-1 [φ trc t ] -F t-1 [φ t ] 3 2 µ(d -1) log T + λd r 2/3 π 1/3 + µ log Γ( d+1 2 )d d-1 2 Γ(d) + 4 5 r 2 3 2 µ(d -1) log T + λd r + µ(d + 1) + 4 5 r 2 .
Here in the last step we did a series of simple estimates to bound the term depending solely on d.

The result follows by plugging in r = 1/8.

B.4 Transition from (32) to (33)

Recall that A ⊤ ∇ 2 L t-1 ( ŵ)A = ∇ 2 L 1 t-1 (v), cf. [START_REF] Cesa | Prediction, Learning, and Games[END_REF], and note that the Σ component of the objective gradient in (32) is 4 5

∇ 2 L 1 t-1 (v) -µ 2 Σ -1 .
The corresponding first-order optimality condition reads:

tr (Σ -Σ) ∇ 2 L 1 t-1 (v) - 5µ 8 Σ-1 0 for all 0 Σ 1 16 ∇ 2 L 1 t-1 (v) -1 .
Plugging in Σ = 1 16 ∇ 2 L 1 t-1 (v) -1 and dividing over 1 -10µ < 0, the above condition translates into tr Σ∇ 2 L 1 t-1 (v) -

1 16 I d-1 0 for all 0 Σ 1 16 ∇ 2 L 1 t-1 (v) -1 .
From the monotonicity of trace with respect to ordering, it follows that this condition is indeed satisfied. Plugging Σ into [START_REF] Harry | Foundations of portfolio theory[END_REF] and neglecting the constant terms, we finally arrive at [START_REF] Marteau-Ferey | Globally convergent newton methods for ill-conditioned generalized self-concordant losses[END_REF].

B.5 Proof of Proposition 2.3

1 o . Recall that the optimization problem min ŵ ∈ ∆ d , 0 Σ 1 16 (A ⊤ ∇ 2 L t-1 ( ŵ)A) -1 , φ 1 : AE v∼φ 1 [v] + e d = ŵ, Cov[φ 1 ] = Σ L t-1 ( ŵ) + 4 5 tr Σ A ⊤ ∇ 2 L t-1 ( ŵ)A -µEnt[φ 1 ] = F t-1 [φ]+ µ 2 log(d) (103) 
is equivalent to [START_REF] Harry | Foundations of portfolio theory[END_REF] in the natural sense:

(w t , Σ t ) ∈ ∆ d ×S d-1
+ is optimal in (32) whenever N (v t , Σ t ), with v t ∈ ∆ d-1 such that Av t + e d = w t , is optimal in (103). Now, let (w, φ t ) and (w t , Σ t ) be optimal in [START_REF] Li | Online portfolio selection: A survey[END_REF] and (32) correspondingly, so that N (v t , Σ t ), with v t ∈ ∆ d-1 as above, is optimal in (103). Observe that (w, φ t ) is feasible in (103) due to [START_REF] Luo | Efficient online portfolio with logarithmic regret[END_REF]. Since the objective in (103) amounts to F t-1 [φ] + µ 2 log(d) with φ ∈ Supp(A d ) associated with φ 1 via (30), we have, for the distribution

g t := N (w t , AΣ t A ⊤ ), that F t-1 [g t ] F t-1 [φ t ]. ( 104 
)
2 o . Next, let us bound F t-1 [g t ] from below. From our derivation in Appendix B.4 it follows that

Σ -1 t = 16A ⊤ ∇ 2 L t-1 (w t )A, (105) 
therefore the level sets of g t are precisely the Dikin ellipses E t-1,r (w t ) with various r 0, cf [START_REF] Khachiyan | A polynomial algorithm in programming[END_REF]. Now, define g trc t as the truncation of g t to the specific Dikin ellipse E t-1, 1/2 (w t )-in other words,

g trc t (w) = g t (w) E t-1, 1/2 (wt) g t (w ′ )dw ′ , w ∈ E t-1, 1/2 (w t ). ( 106 
)
Since E g trc t [w] = w t and g trc t ∈ Supp(E t-1, 1/2 (w t )), the bounds in [START_REF] Leung | Information theory and mixing least-squares regressions[END_REF] are valid for φ = g trc t , and so 

F t-1 [g trc t ] F t-1 [g trc t ]. (107 
Indeed: truncating g t can also be seen as transporting the mass from each ellipse E t-1,s (w t ), s > 1/2, to E t-1,r (w t ) for some r = r(s) 1/2. As such, it only remains to control the change of entropy because of truncation. The following lemma, proved in the next section, allows us to do so.

Lemma B.2. Given v ∈ R n , Σ ∈ S n ++ , let g(v)
be the density of N (v, Σ). Consider the density

g (r) (v) = g(v) v ′ -v Σ -1 r g(v ′ )dv ′ , ∀v ∈ R n : v -v Σ -1 r, i.e. the truncation of g to the covariance ellipsoid {v ∈ R n : v -v Σ -1 r} of radius r > 0. Then Ent[g] -Ent[g (r) ] n 2 log 2e(n + 1) r 2 + r 2 2 .
While this bound becomes vacuous when r → ∞, for our purposes it suffices, as in our case r < 1. Namely, we apply the lemma to N (v t , Σ t ) in the role of g, so that its truncation to E 

F t-1 [g trc t ] F t-1 [g t ] + µ(d -1) 2 log (128ed) + µ 128 .
The desired result follows by combining this with (107), (104), and Proposition 2.2.

B.6 Proof of Lemma B.2

Recall that Ent[g] = 1 2 log det(Σ) + n 2 log(2π) + n 2 . On the other hand, by rewriting g (r) in the form

g (r) (v) = 1 (2π) n C r (Σ) exp - 1 2 v -v 2 Σ -1
where C r (Σ) does not depend on v, we estimate Ent[g (r) ] 1 2 log[C r (Σ)] + n 2 log(2π) and arrive at

Ent[g (r) ] -Ent[g] 1 2 log[C r (Σ)] - 1 2 log det(Σ) - n 2 . (109) 
Now, observe that, putting v = 0 w.l.o.g.,

C r (Σ) 1/2 = 1 (2π) n/2 v Σ -1 r exp - 1 2 v 2 Σ -1 dv e -r 2 /2 (2π) n/2 det(Σ 1/2 ) π n/2 r n Γ( n 2 + 1)
where we used the expression π n/2 Γ( n 2 +1) for the volume of the unit ℓ 2 -ball in R n . Whence we arrive at

1 2 log C r (Σ) - 1 2 log det(Σ) - r 2 2 - n 2 log(2) + n log(r) -log Γ n 2 + 1 - r 2 2 - n 2 log(2) + n log(r) - n 2 log(n + 1),
and the desired result follows via (109).

C Differential properties of leverage scores and barrier functions

In this section, we recall some differential properties of the Gram matrix Π(w), and barrier functions V t (w), P t (w) used in VB-FTRL and in its analysis. These results are adaptations or easy corollaries of those in [START_REF] Pravin | A new algorithm for minimizing convex functions over convex sets[END_REF][START_REF] Anstreicher | Volumetric path following algorithms for linear programming[END_REF]; however, the existing results in these works can only be applied in the special case λ = µ = 1, where V 1 t (•) and P 1 t (•) become, respectively, the volumetric and "hybrid" barriers (in the terminology of [START_REF] Anstreicher | Volumetric path following algorithms for linear programming[END_REF]) for the set of linear constraints corresponding to the set of vectors {A ⊤ x τ , τ ∈ [t] + } in the notation defined in ( 46)-( 50). 8 Formal reduction to this special case from λ 1, µ > 0 proved to be elusive. For this reason, and to make the paper self-contained, here we reprove these results assuming only λ, µ > 0, and in some cases that λ 1.

Preliminaries and notation. To streamline the exposition, in this section we fix t ∈ [T ] and use the notation defined in ( 46)-( 50), which we are now repeating here for convenience. For any τ ∈ [t] + :

H t (w) := A ⊤ ∇ 2 L t (w)A, ∇ τ (w) := A ⊤ ∇ℓ τ (w), Ĥt := H t (w t ), ∇τ := ∇ τ , (110) 
where [t]∪{-1, . . . , -d} is the extended index set (with τ < 0 corresponding to x τ := e -τ ). Besides,

λ τ := λ 1{τ <0} , so that H t (w) = τ ∈[t] + λ τ ∇ τ (w)∇ ⊤ τ (w) and Ĥt = τ ∈[t] + λ τ ∇τ ∇⊤ τ . (111) 
We let Π(w) ∈ S t+d + be the Gram matrix with rows and columns indexed over [t] + , and with entries

π τ,ν (w) := λ τ λ ν ∇ τ (w), ∇ ν (w) Ht(w) -1 . (112) 
We also define Π := Π(w t ), whose entries are thus πτ,ν := λ τ λ ν ∇τ , ∇ν Ĥ-1 t .

For brevity, we refer to the diagonal entries of both these matrices with a single index. Note that

π τ (w) = λ τ (x ⊤ τ w) 2 A ⊤ x τ 2 Ht(w) -1 . (114) 
C. λ∇ 2 ℓ -i (w), whence π τ (w) 1 for τ < 0. Similarly, but also using Lemma A.3,

∇ 2 L t (w) ∇ 2 ℓ τ (w) + λ∇ 2 R(w) (1 + λ)∇ 2 ℓ τ (w), ∀τ ∈ [t].
As a result, π τ 

π τ 1 ,τ 2 (w) = ν∈[t] + π τ 1 ,ν (w) π ν,τ 2 (w). ( 116 
)
In other words, Π(w) is a projection matrix. In particular,

π τ (w) = ν∈[t] + π τ,ν (w) 2 τ ∈ [t] + .
Proof. Using the abridged notation defined in (110), and omitting the dependency on w for brevity,

π τ 1 ,τ 2 (112) = λ τ 1 λ τ 2 ∇ ⊤ τ 1 H -1 t ∇ τ 2 = λ τ 1 λ τ 2 ∇ ⊤ τ 1 H -1 t H t H -1 t ∇ τ 2 (111) = λ τ 1 λ τ 2 ∇ ⊤ τ 1 H -1 t   ν∈[t] + λ ν ∇ ν ∇ ⊤ ν   H -1 t ∇ τ 2 (112) = ν∈[t] + π τ 1 ,ν π ν,τ 2 .
Lemma C.3 (Gradient of a leverage score). For t ∈ [T ], τ ∈ [t] + , and w ∈ R d ++ , it holds that

1 2 ∇π τ (w) = π τ (w) ∇ℓ τ (w) - ν∈[t] + π τ,ν (w) 2 ∇ℓ ν (w). ( 117 
)
Proof. This is a byproduct of an explicit formula for ∇ 2 V t (w) in the proof of Lemma C.4.

C.2 Gradient and Hessian of the volumetric barrier

Following [START_REF] Pravin | A new algorithm for minimizing convex functions over convex sets[END_REF] and [START_REF] Anstreicher | Volumetric path following algorithms for linear programming[END_REF], we shall now derive an explicit formula for the gradient of function V t (•) on ∆ d , cf. ( 16), estimate its Hessian, and verify the expression for ∇π τ (w) in Lemma C.3, cf. ( 123)-( 124). The lower bound on ∇ 2 V t (w) in (119) shows, in particular, that V t (•) is strictly convex.

Lemma C.4 ([45, Lemmas 1-3]). For t ∈ [T ] and w ∈ R d ++ , the gradient of V t (w), cf. (16), is ∇V t (w) = τ ∈[t] + π τ (w) ∇ℓ τ (w), (118) 
and its Hessian satisfies

Q t (w) ∇ 2 V t (w) 3Q t (w) where Q t (w) = τ ∈[t] + π τ (w) ∇ 2 ℓ τ (w). ( 119 
)
Remark C.1. A weaker form of the upper bound in (119), namely ∇ 2 V t (w) 5Q t (w), was first obtained by Vaidya in [START_REF] Pravin | A new algorithm for minimizing convex functions over convex sets[END_REF]; later on, [START_REF] Anstreicher | Large step volumetric potential reduction algorithms for linear programming[END_REF] improved it to ∇ 2 V t (w) 3Q t (w). (In both cases, it was also assumed that λ = 1.) For the sake of clarity, here we prove the bound with factor 5. The improved bound follows by applying Schur's product theorem (see e.g. [START_REF] Ravindra | Nonnegative matrices and applications[END_REF]) to the Hadamard-product representation of the matrix S t (w) = 3 2 Q t (w) -1 2 ∇ 2 V t (w), see (131) in the proof of Lemma C.5.

Proof. 1 o . Note that the entries of

H t (w) = A ⊤ ∇ 2 L t (w)A, for i, j ∈ [d -1], are given by [H t (w)] ij = τ ∈[t] + λ τ (x ⊤ τ w) 2 A ⊤ x τ i A ⊤ x τ j .
As such,

∇ ([H t (w)] ij ) = - τ ∈[t] + 2λ τ (x ⊤ τ w) 3 A ⊤ x τ i A ⊤ x τ j x τ . (120) 
Using this formula, the composition rule now allows us to verify (118) by computing ∇V t (w) directly:

∇V t (w) = 1 2 i,j∈[d-1] H t (w) -1 ij ∇ ([H t (w)] ij ) (120) = - τ ∈[t] + λ τ (x ⊤ τ w) 3 i,j∈[d-1] A ⊤ x τ i H t (w) -1 ij A ⊤ x τ j x τ = - τ ∈[t] + λ τ A ⊤ x τ 2 Ht(w) -1 (x ⊤ τ w) 3 x τ = τ ∈[t] + π τ (w) ∇ℓ τ (w).
2 o . Our next goal is to derive the following explicit formula: 

∇ 2 V t (w) = 3Q t (w) -2S t (
∇ 2 V t (w) -Q t (w) = 2Q t (w) -2S t (w) = τ,ν∈[t] + π τ,ν (w) 2 2∇ 2 ℓ τ (w) -2∇ℓ τ (w) ∇ℓ ν (w) ⊤ = τ,ν∈[t] + π τ,ν (w) 2 ∇ℓ τ (w) -∇ℓ ν (w) ∇ℓ τ (w) -∇ℓ ν (w) ⊤ 0,
the lower bound in (119). We obtain the upper bound ∇ 2 V t (w) 5Q t (w) in a similar fashion:

5Q t (w) -∇ 2 V t (w) = 2Q t (w) + 2S t (w) = τ,ν∈[t] + π τ,ν (w) 2 ∇ℓ τ (w) + ∇ℓ ν (w) ∇ℓ τ (w) + ∇ℓ ν (w) ⊤ 0.
3 o . It remains to verify (121). First, direct differentiation of (118) shows that

∇ 2 V t (w) = Q t (w) + R t (w) where R t (w) := τ ∈[t] + ∇π τ (w)∇ℓ τ (w) ⊤ , (122) 
granted that R t (w) is symmetric. Thus, to get (121) we must show that R t (w) = 2Q t (w) -2S t (w).

To this end, observe that, by (110), (114), and the product rule,

∇π τ (w) = λ τ (x ⊤ τ w) 2 ∇ A ⊤ x τ 2 Ht(w) -1 - 2λ τ A ⊤ x τ 2 Ht(w) -1 (x ⊤ τ w) 3 x τ = λ τ (x ⊤ τ w) 2 ∇ A ⊤ x τ 2 Ht(w) -1 + 2π τ (w)∇ℓ τ (w). (123) 
Furthermore, by Lemma A.5 and the composition rule,

∇ A ⊤ x τ 2 Ht(w) -1 = - i,j∈[d-1] H t (w) -1 A ⊤ x τ x ⊤ τ AH t (w) -1 ij ∇ [H t (w)] ij (120) = ν∈[t] + 2λ ν (x ⊤ ν w) 3 i,j∈[d-1] A ⊤ x ν i H t (w) -1 A ⊤ x τ x ⊤ τ AH t (w) -1 ij A ⊤ x ν j x ν = ν∈[t] + 2λ ν (x ⊤ ν w) 3 A ⊤ x ν , A ⊤ x τ 2 Ht(w) -1 x ν = - ν∈[t] + 2λ ν (x ⊤ ν w) 2 A ⊤ x ν , A ⊤ x τ 2 Ht(w) -1 ∇ℓ ν (w), whence λ τ (x ⊤ τ w) 2 ∇ A ⊤ x τ 2 
Ht(w) -1 = -2 ν∈[t] + λ τ λ ν A ⊤ ∇ℓ τ (w), A ⊤ ∇ℓ ν (w) 2 
Ht(w) -1 ∇ℓ ν (w) = -2 ν∈[t] + π τ,ν (w) 2 ∇ℓ ν (w). (124) 
Combining ( 122)-(124), we verify the identity R t (w) = 2Q t (w) -2S t (w), and hence also (121).

C.3 Self-concordance of the hybrid barrier

The following result can be understood as an extension of Corollary A.1 from L t (•) to P t with µ > 0.

Proposition C.1. Assume λ 1 and µ > 0, then the restriction P 1 t : R d-1 → R of P t to A d , i.e.

P 1 t (v) = P t (Av + e d ),
cf. ( 17) and ( 8)- [START_REF] Bubeck | Sampling from a log-concave distribution with projected Langevin Monte Carlo[END_REF], is 21-self-concordant according to Definition 1 with domain int(∆ d-1 ), cf. [START_REF] Blum | Universal portfolios with and without transaction costs[END_REF].

Proof. The requirements on the domain are verified in the same way as in the proof of Corollary A.1. Thus, it remains to show that when λ, µ are as in the premise, for any u ∈ R d and w ∈ ∆ d one has

|∇ 3 P t (w)[u, u, u]| 42 ∇ 2 P t (w)[u, u] 3/2 . (125) 
Indeed, this implies that

∇ 3 P 1 t (v)[u 1 , u 1 , u 1 ] 42(∇ 2 P 1 t (v)[u 1 , u 1 ]) 3/2 for v ∈ ∆ d-1 , u 1 ∈ R d-1
by affine invariance, i.e. since for w = Av+e d and u = Au 1 one has ∇

2 P 1 t (v)[u 1 , u 1 ] = ∇ 2 P t (w)[u, u] and ∇ 3 P 1 t (v)[u 1 , u 1 , u 1 ] = ∇ 3 P t (w)[u, u, u].
In turn, (125) can be derived from the following result. Lemma C.5 (Adaptation of [START_REF] Anstreicher | Volumetric path following algorithms for linear programming[END_REF]Thm. 4.1]). Let w, w ∈ R d ++ be such that δ t (w, w) 0.1, where

δ t (w, w) = max τ ∈[t] + x ⊤ τ (w -w) x ⊤ τ w .
Then for ε t (w, w) = 42δt(w,w) [1-δt(w,w)] 4 one has that

-ε t (w, w)∇ 2 V t (w) ∇ 2 V t (w) -∇ 2 V t (w) ε t (w, w)∇ 2 V t (w), -ε t (w, w)∇ 2 P t (w) ∇ 2 P t (w) -∇ 2 P t (w) ε t (w, w)∇ 2 P t (w). Now, fix u ∈ R d and note that ∇ 3 P t (w)[u, u, u] = lim α→0 1 α ∇ 2 P t (w + αu)[u, u] -∇ 2 P t (w)[u, u] .
On the other hand, when |α| is small enough we can apply Lemma C.5 to w = w + αu. Indeed:

δ t (w, w + αu) = |α| M t (u, w) where M t (u, w) := max τ ∈[t] + x ⊤ τ u x ⊤ τ w
, therefore δ t (w, w + αu) → 0 when |α| → 0 with fixed u, w. By Lemma C.5 we then conclude that

|∇ 3 P t (w)[u, u, u]| lim α→0 42 δ t (w, w + αu) |α| [1 -δ t (w, w + αu)] 4 ∇ 2 P t (w)[u, u] = 42M t (u, w) ∇ 2 P t (w)[u, u]. Finally, note that ∇ 2 P t (w)[u, u] ∇ 2 L t (w)[u, u] M t (u, w) 2 min{λ, 1} = M t (u, w) 2 as λ 1.
Proof of Lemma C.5. Our proof closely follows the one [START_REF] Anstreicher | Volumetric path following algorithms for linear programming[END_REF] while allowing for λ 1 and µ > 0. In the remainder of this section, we let δ := δ t (w, w) and also introduce some abbreviated notation:

η τ := x ⊤ τ w, η τ := x ⊤ τ w, π τ := π τ (w), π τ := π τ (w), ∇ τ := ∇ τ (w), ∇ τ := ∇ τ (w), H := H t (w), H := H t (w), Q := Q t (w), Q := Q t (w), S := S t (w), S := S t (w).
Lemma C.6. Assuming that δ < 1, for any τ ∈ [t] + the following bounds hold:

1 -δ η τ η τ 1 + δ, 1 (1 + δ) 2 H H 1 (1 -δ) 2 H, (126) 1 
-δ 1 + δ 2 π τ π τ 1 + δ 1 -δ 2 , (1 -δ) 2 (1 + δ) 4 Q Q (1 + δ) 2 (1 -δ) 4 Q. ( 127 
)
Proof. The bounds for η are obvious from the definition of δ, and immediately imply those for H:

H = τ ∈[t] + λ τ η 2 τ A ⊤ x τ x ⊤ τ A 1 (1 -δ) 2 τ ∈[t] + λ τ η 2 τ A ⊤ x τ x ⊤ τ A = 1 (1 -δ) 2 H,
and similarly for the corresponding lower bound. Furthermore, (126) implies

π τ π τ = λ τ ∇ τ 2 H -1 λ τ ∇ τ 2 H -1 = ∇ τ 2 H -1 ∇ τ 2 H -1 (1 + δ) 2 ∇ τ 2 H -1 ∇ τ 2 H -1 = (1 + δ) 2 η 2 τ η 2 τ 1 + δ 1 -δ 2 ,
and similarly for the corresponding lower bound. Finally, from the above results we conclude that

Q = τ ∈[t] + π τ η 2 τ x τ x ⊤ τ (1 + δ) 2 (1 -δ) 4 τ ∈[t] + π τ η 2 τ x τ x ⊤ τ = (1 + δ) 2 (1 -δ) 4 Q,
and similarly for the corresponding lower bound.

1 o . Returning to the proof of Lemma C.5, recall that ∇ 2 P t (w) -∇ 2 P t (w) = ∇ 2 L t (w) -∇ 2 L t (w) + µ ∇ 2 V t (w) -∇ 2 V t (w) , and let us consider the two differences in the right-hand side separately. For the first difference we observe that ∇ 2 L t (w) and ∇ 2 L t (w) satisfy the same relative bounds as H and H in (126), so

∇ 2 L t (w) -∇ 2 L t (w) 1 (1 -δ) 2 -1 ∇ 2 L t (w) 2δ (1 -δ) 4 ∇ 2 L t (w)
where we used that 0 δ 1. Similarly,

∇ 2 L t (w) -∇ 2 L t (w) 1 - 1 (1 + δ) 2 ∇ 2 L t (w) 3δ (1 -δ) 4 ∇ 2 L t (w).
Thus, to prove the lemma it suffices to show the first of the claimed inequalities, that is

- 42δ (1 -δ) 4 ∇ 2 V t (w) ∇ 2 V t (w) -∇ 2 V t (w) 42δ (1 -δ) 4 ∇ 2 V t (w). ( 128 
)
2 o . To this end, we first observe that ∇ 2 V t (w) -∇ 2 V t (w) 

Q -Q (127) (1 + δ) 2 (1 -δ) 4 -1 Q = (3δ -δ 2 )(2 -δ + δ 2 ) (1 -δ) 4 Q (a) 6δ (1 -δ) 4 Q, Q -Q (127) 1 - (1 -δ) 2 (1 + δ) 4 Q (b) (1 + δ) 2 (1 -δ) 4 -1 Q 6δ (1 -δ) 4 Q. (129)
Here in (a) we used that 0 δ < 1, and (b) holds since the function (1+δ) 2 (1-δ) 4 + (1-δ) 2 (1+δ) 4 on [0, 1) is minimized at δ = 0. Let us now study the difference S -S.

3 o . For brevity, we define Π := Π t (w) and Π := Π t (w). We also define some auxiliary matrices:

• matrix X ∈ R d×(t+d) with x τ in its τ th column;

• diagonal matrices Λ, D,D, Z ∈ S t+d ++ with λ τ , η τ , η τ , η τ η τ at τ th diagonal position, respectively.

As earlier for Π t (w), we use the convention that indexing is over [t] + in each dimension where the size of a matrix is t+d. Finally, let A•B be the Hadamard (i.e. entrywise) product of two matrices with the same dimensions, and let M (2) = M • M . In terms of this matrix notation, we have that

Q = XD -1 Ψ D -1 X ⊤ , (130) 
S = XD -1 Π (2) D -1 X ⊤ , (131) 
where Ψ = Diag(Π) is the diagonal matrix with π τ at τ th diagonal position. On the other hand,

S = X D -1 Π (2) D -1 X ⊤ = XD -1 Z Π (2) ZD -1 X ⊤ . ( 132 
)
where in the last step we used that Z =D -1

D. In a similar way,

Π = D -1 Λ 1/2 X ⊤ H -1 XΛ 1/2 D -1 and Π = D -1 Λ 1/2 X ⊤ H -1 X Λ 1/2 D -1 = ZD -1 Λ 1/2 X ⊤ H -1 XΛ 1/2 D -1
Z, whence by (126) we get

(1 -δ) 2 ZΠZ Π (1 + δ) 2 ZΠZ. ( 133 
)
Since Z is diagonal, (ZΠZ) (2) = Z 2 Π (2) Z 2 . Moreover, recall that for two symmetric matrices A, B such that A B 0, it holds that A (2) B (2) . 9 In combination with (133), these two facts imply

(1 -δ) 4 Z 2 Π (2) Z 2 Π
(2)

(1 + δ) 4 Z 2 Π (2) Z 2 .
Whence by (132) we conclude that

(1 -δ) 4 XD -1 Z 3 Π (2) Z 3 D -1 X ⊤ S (1 + δ) 4 XD -1 Z 3 Π (2) Z 3 D -1 X ⊤ . (134) 
We are now going to use identities ( 130)-(131) and inequality (134) to bound S -S in terms of Q.

4 o . Defining J := Ψ -1/2 Π (2) Ψ -1/2 and U := XD -1 Ψ 1/2 we rewrite (130), (131), (134):

Q = U U ⊤ , S = U J U ⊤ , (1 -δ) 4 U Z 3 J Z 3 U ⊤ S (1 + δ) 4 U Z 3 JZ 3 U ⊤ . ( 135 
)
We are now going to bound M 1 := (1 + δ) 4 Z 3 JZ 3 -J and M 2 := J -(1δ) 4 Z 3 J Z 3 from above. Since Ψ, Z commute as diagonal matrices, and by similarity, M 1 has the same eigenvalues as 2) .

Ψ -1/2 M 1 Ψ 1/2 = Ψ -1 (1 + δ) 4 Z 3 Π (2) Z 3 -Π ( 
The entries of the latter matrix are given by

[Ψ -1/2 M 1 Ψ 1/2 ] τ,ν = π 2 τ,ν π τ (1 + δ) 4 z 3 τ z 3 ν -1 ( 136 
)
where z τ = η τ η τ is the τ th diagonal entry of Z. By the Gershgorin circle theorem [START_REF] Golub | Matrix computations[END_REF], each eigenvalue of the matrix Ψ -1/2 M 1 Ψ 1/2 -and hence also of M 1 -belongs to at least one of the segments [Ψ -1/2 M 1 Ψ 1/2 ] τ,τr τ , [Ψ -1/2 M 1 Ψ 1/2 ] τ,τ + r τ with r τ :=

ν =τ [Ψ -1/2 M 1 Ψ 1/2 ] τ,ν , τ ∈ [t] + .
Whence by ( 136), (126):

M 1 max τ ∈[t] +    1 π τ ν∈[t] + π 2 τ,ν    (1 + δ) 4 (1 -δ) 6 -1 I (116) 
(1 + δ) 4 (1δ) 6 -1 I.

Proceeding with M 2 in a similar fashion as we did with M 1 , we get

M 2 1 - (1 -δ) 4
(1 + δ) 6 I

(1 + δ) 4 (1δ) 6 -1 I.

(The second step uses that the function (1+δ) 4 (1-δ) 6 + (1-δ) 4 (1+δ) 6 increases on [0, 1).) Finally, observe that

(1 + δ) 4 (1 -δ) 6 -1 = 4δ(1 + δ) 2 (1 -δ) 6 + (1 + δ) 2 (1 -δ) 4 -1 δ (1 -δ) 4 4 1 + δ 1 -δ 2 + 6 12δ (1 -δ) 4
where the first estimate repeats (129.a), and the second uses that ( 1+δ 1-δ ) 2 < 1.5 for 0 δ 0.1. Plugging this estimate into (135) results in

- 12δ (1 -δ) 4 Q S -S 12δ (1 -δ) 4 Q.
Joining this with (128), (129), and the bound Q ∇ 2 V t (w), cf. (119), we get (128), as required.

Remark C.2. The constant factor 42 in Lemma C.5 can be improved to 30, exactly recovering the result in [START_REF] Anstreicher | Volumetric path following algorithms for linear programming[END_REF], through a somewhat more delicate argument following [START_REF] Anstreicher | Volumetric path following algorithms for linear programming[END_REF], where one separately bounds Q t (w) -Q t (w) and R t (w) -R t (w) for R(w) = ∇ 2 V t (w) -Q t (w) = 2Q t (w) -2S t (w). Here we avoided this, as it would burden the proof with linear algebra and obscure the high-level picture.

D Stability lemma for Algorithm 1

We are now about to prove Lemma 4.1 about the stability of approximation of the updates according to (VB-FTRL) by those corresponding to (VB-FTRL-qN). For convenience, let us repeat it here. 

(1 + 1 2e ) < 21 -1/4 .

R T (w 1 :

 1 T |x 1:T ) := t∈[T ]

Theorem 1 . 1

 11 (cf. Theorem 4.1). There is an algorithm for online portfolio selection which has an O(d log(T + d)) regret, runs in O(d 2 T + d 3 ) per round, and utilizes O(dT + d 2 ) memory.

Theorem 2 . 1 ( 1

 211 Regret of VB-FTRL). For any T ∈ N and market realization x 1:T , one has that R T (w 1:T |x 1:T ) (λ + 2µ)(d -1) log(T + λd) for the sequence w 1:T produced by (VB-FTRL) with λ, µ satisfying 1 λ

  and Cov[φ 1 ] = Σ, with the value Ent[N (v, Σ)] = 1 2 log det(Σ) + c d where c d depends only on d. This gives a relaxation of (27),

  in the sense of[START_REF] Nesterov | Introductory lectures on convex optimization: A basic course[END_REF] Section 4.1], or 1-self-concordant in terms of our Definition 1 in Appendix A.3. (The reader may consult Appendix A.3 for the essential results on self-concordance.) As such, upper-bounding its Newton decrement

Theorem 4 . 1 .

 41 For any T ∈ N and market realization x 1:T , Algorithm 1 produces w 1:T such that R T ( w 1:T |x 1:T ) (λ + 2µ) [(d -1) log(T + λd) + 1] if we choose λ, µ, S satifying the following conditions: λ 2e, λ) , S 9 log 2 max (T + d + 1) 2 , 10 4 1 + 3µ . (77) In particular, choosing λ = 560, µ = 2, and S = 18⌈log(T + d + 164)⌉ + 7 allows to guarantee that R T ( w 1:T |x 1:T ) 564d log(T + 560d).

Lemma 4 . 1 .

 41 Let λ, µ, S be as in the premise of Theorem 4.1. Then for all t ∈ {0} ∪ [T ], one has

Lemma A. 8 ([ 37 ,

 837 Theorems 4.1.5, 4.1.7-4.1.8

  (cf. Lemma A.1) and invoking estimate (43) used in step 1 o of the proof of Theorem 2.1. Returning to (102) we arrive at

1 1+λ

 1 for τ ∈ [t]. The result follows. Lemma C.2 (Generalization of [45, Claim 3]). For t ∈ [T ], τ 1 , τ 2 ∈ [t] + , and w ∈ R d ++ , one has:

= 3 (

 3 Q -Q) + 2(S -S), and Lemmas C.6-C.4 already allow us to control the difference Q -Q, namely:

Lemma D. 1 .

 1 Let λ, µ, S be as in the premise of Theorem 4.1. Then for all t ∈ {0} ∪ [T ], one hasw tw t ∇ 2 Lt(wt) min 1 (T + d + 1) 2 , 10 -4 (1 + 3µ) -1/2 . (137) Proof. Let v t := A + (w t -e d ), v t := A + ( w t -e d ),and v(s)t := A + (w(s)t -e d ) for all t ∈ [T ] and s ∈ [S]. We proceed by induction over t ∈ [T ]. The base is obvious: w 0 = w 0 . For the induction step, assume that (78) holds for some 0 t T -1. By Proposition C.1 and Lemma A.6, √ 21P

  thus Decr 2

	premise of the theorem. By Lemma A.7 and (57), this gives Miss t leading to	t	min 1 4 , 5µ 8 πt under the 0.8 Decr 2 t µ 2 πt , cf. (53),

  . Algorithm 1 is a concrete implementation of the update rule in (VB-FTRL-qN), with O(dT + d 2 ) overall memory use, and O(d 2 T + d 3 ) runtime per one Newton step. As we are about to see next (in Theorem 4.1), it suffices to perform O(log(T + d))Newton steps to match the regret guarantee of Theorem 2.1 up to a constant factor; thus, the overall runtime is O(d 2 T + d 3 ) per round.7 The runtime and memory use estimates we have just announced can be verified by a line-by-line inspection of Algorithm 1. Indeed, in each round t we start by translating w t-1 into v t-1 = v as per[START_REF] Thomas | Universal portfolios[END_REF] to translate the problem on ∆ d-1 a set with nonempty interior; clearly, this can be done in O(d). Next, when given the previous iterate v + (including the "fictional" datapoints {e 1 , ..., e d } corresponding to the logarithmic-barrier term); this takes O(dt + d 2 ) a.o.'s in total, and requires O(dt + d 2 ) of storage space. These data are then used to compute the Hessian H

				(0)
	t-1 (s) t , we compute the individual loss gradients ∇ τ = ∇ℓ 1 τ (v (s)
	the form λ 1{τ <0} ∇ (s) τ ∇	(s) τ	(s) t-1 = ∇ 2 L 1 t-1 v t (s) ⊤ , in O(td 2 + d 3 ) a.o.'s and O(d 2 ) additional storage. After that, we as the sum of O(t + d) one-rank matrices of
	compute the inverse of H to compute O(t + d) leverage scores π (s) t-1 with O(d 3 ) runtime and O(d 2 ) additional storage, and use [H (s) τ , cf. line 11 of the algorithm, in O(d 2 ) a.o.'s per each π (s) t-1 ] -1 (s) τ .
	Using these, we then compute ∇P 1 t-1 v t (s)	, compute and invert M	(s) t-1 (cf. line 15) that satisfies
			1 3	M	(s) t-1

t ) for each datapoint τ ∈ [t -1]

  1 t ) is open and does not contain straight lines, and L 1 t → +∞ on its boundary. Thus, the requirements on the domain are verified. On the other hand, inequality (82) holds with M = 1 for each of the functions ℓ τ (Av + e d ), τ ∈ [d], and with M = 1/

	√	λ	1 for the
	functions -λ log(e ⊤		

i (Av + e d )), i ∈ [d]. Applying Jensen's inequality as in the proof of Lemma A.6 (cf. [37, Theorem 4.1.1]) we verify (82

  1 d 1 d ) = d log(d) on ∆ d allows to estimate the penultimate term in (90):

  ) 3 o . Let us now bound F t-1 [g trc t ] from above in terms of F t-1 [g t ]. To this end, we first observe that Cov[g trc t ] Cov[g t ].

  1 Gram matrix Π(w) and leverage scores Lemma C.1. For any t ∈ [T ], τ, ν ∈ [t] + , and w ∈ R d ++ , one has the following estimate for π τ,ν : Proof. By (112) and Cauchy-Schwarz, |π τ,ν (w)| π τ (w)π ν (w) for all τ, ν ∈ [t] + . Clearly, for i ∈ [d] one has ∇ 2 L t (w)

	|π τ,ν (w)|	1 (1 + λ) 1{τ >0}+1{ν>0}	.	(115)

  1 t (•) is a 1-selfconcordant function minimized at v t+1 . On the other hand, since function P 1 t (•) defined in (54) satisfies ∇P 1 t (v t ) = ∇P 1 t (v t ) and ∇ 2 P 1 t (v t ) ∇ 2 P 1 t (v t ), we estimate Decr t := ∇P 1 t (v t ) ∇ 2 P 1 in the same way in the proof of Theorem 2.1, except for using a stronger condition on λ, µ in (77): at v t , by Lemmas A.7-A.8 we get ω 21 1/4 w tw t+1 ∇ 2 Pt(w t+1 ) (11)= ω 21 1/4 v tv t+1 ∇ 2 P 1 t (v t+1 )ψ 21 1/4 Decr t in terms of ω, ψ defined in (83). By monotonicity of these two functions, using (138) we arrive at21 1/4 w tw t+1 ∇ 2 Pt(w t+1 ) ω -1 ψ 1 ∇ 2 P t (w t+1 ) 4∇ 2 P t (w t ). Now, observe that ∇ 2 P t (w) ∇ 2 L t (w) + 3µQ t (w) (1 + 3µ)∇ 2 L t (w), the last step being due to λ 1 and π τ (w τ ) 1 by Lemma C.1. Combining this with the previous two inequalities gives 21 1/4 w tw t+1 ∇ 2 Pt(w t+1 ) 21 1/4 w tw t+1 ∇ 2 Pt(w t+1 ) + 2 w tw t ∇ 2 Pt(wt) < 0.097 + 4.3 1 + 3µ w tw t ∇ 2 Lt(wt) In the last step we used the induction hypothesis.) Now, let Decr t := ∇P 1 t ( v t ) ∇ 2 P 1 t ( vt) -1 , so that 21 1/4 Decr t is the Newton decrement of √ 21P 1 t at v t . By Lemmas A.7-A.8 and (11) we get 21 1/4 Decr t ω -1 ψ 21 1/4 w tw t+1 ∇ 2 Pt(w t+1 ) ω -1 (ψ(0.098)) < We are now in the situation of Corollary A.2 with f ≡ √ 21P 1 t , z ⋆ = v t+1 , z 0 = v t , z S = v t+1 , and c = 1 3 , cf. (76); in particular, ∇f (z 0 ) ∇ 2 f (z 0 ) -1 < c 3 holds by (139). Whence by Corollary A.2: 21 1/4 w t+1w t+1 ∇ 2 Pt(w t+1 ) + 1) 2 , 10 -4 (1 + 3µ) -1/2 . It remains to combine this result with the observation that, due to Lemma A.3, for any w ∈ ∆ d ∇ 2 L t+1 (w) ∇ 2 L t (w) + ∇ 2 R(w)

	Since	√	21Decr 2 t is the squared Newton decrement of	√ 21P 1 t 11	< 0.097,
	and then by Lemma A.9 (very concervatively):						
															(78) < 0.098.
															1 9	.	(139)
							(77)	min	1 (T + d 1 + 1 λ L t (w)	1 + 1 λ ∇ 2 P t (w),
	and use that (1 + 1 λ )											
											t (vt)	-1	
			√	21Decr 2 t	√	21Decr 2 t	(73)	√ λ 21		1 +	2µ λ	2 (77)	√ 21 556	<	1 121	.	(138)

(

Indeed: given any wt ∈ ∆ d , let xt = e i(t) with i(t) ∈ Argmin 1 i d wt[i] where {e1, ..., e d } is the canonical basis of R d . Then log(ΠT ) = log( t T wt[i(t)]) log[( 1 d ) T ] = -T log d, but at the same time ℓt(w) vanishes on e i(t) ∈ ∆ d .

See also[START_REF] Hazan | Logarithmic regret algorithms for online convex optimization[END_REF] Theorem 7] for a short self-contanted proof of this upper bound with an additional constant term.

In[START_REF] Van Erven | Open problem: Fast and optimal online portfolio selection[END_REF] this result is miscited as O(T 3 (T +d)d 2 ), seemingly due to neglecting that 1δ 2 0 = T (T +d) 2 d in [22, Thm. 2].

Namely, finding argmin w∈∆ d w -ŵ 2 H for a given ŵ ∈ R d , where H ≻ 0. Choletsky's decomposition translates this to a second-order cone program which can be solved in O(d 3 ) via interior-point methods; see[START_REF] Nesterov | Introductory lectures on convex optimization: A basic course[END_REF] Section 4.3.6].

The case d = 1 is trivial: wt ≡ 1 is a unique possible strategy. As such, from now on we tacitly assume that d > 1.

Specifically, getting rid of the gradient norm parameters G2, G∞; cf. Table1and the accompanying discussion.

More precisely, round t takes O(d 2 t + d 3 ) a.o.'s, but this gives O(d 2 T + d 3 ) per round on average over T rounds.

The polyhedron defined by this set of constraints is ∆ d-1 , same as without xτ 's for τ ∈ [t]. But functions Lt, Vt, Pt do depend on these xτ 's, so their names adopted in[START_REF] Anstreicher | Large step volumetric potential reduction algorithms for linear programming[END_REF]-e.g. "volumetric barrier" for Vt-should be used with caution.

This can be seen by writing A (2) -B[START_REF] Anstreicher | Large step volumetric potential reduction algorithms for linear programming[END_REF] = A• (A-B) + (A-B) • B and applying the Schur product theorem[START_REF] Ravindra | Nonnegative matrices and applications[END_REF].

Proof. Using Lemma A.10 sequentially S times, ∇f (z S ) 1 3 }. Then Lemma A.7 gives f (z S )f (z ⋆ ) 0.8ε 2 . Now, one can verify that ω(r) 0.1r for r 0.5, whence by Lemma A.8 first z Sz ⋆ ∇ 2 f (z ⋆ ) max{0.5, 8ε 2 } 0.5, and then z Sz ⋆ 2 8 3 ε 2 .

B Proofs deferred from Section 2.2

B.1 Proof of Proposition 2.1

] is concave on ∆ d when µ 1; thus, by Jensen's inequality,

Whence via telescoping and (15):

ℓ t (w t ) -µ log