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Extensions of Active Flux to arbitrary order of accuracy

Rémi Abgrall1, Wasilij Barsukow2

Abstract

Active Flux is a recently developed numerical method for hyperbolic conservation
laws. Its classical degrees of freedom are cell averages and point values at cell inter-
faces. These latter are shared between adjacent cells, leading to a globally continuous
reconstruction. The update of the point values includes upwinding, but without solv-
ing a Riemann Problem. The update of the cell average requires a flux quadrature at
the cell interface, which can be immediately performed using the point values. This
paper explores different extensions of Active Flux to arbitrarily high order of accu-
racy, while maintaining the idea of global continuity. We propose to either increase
the stencil while keeping the same degrees of freedom, or to increase the number of
point values, or to include higher moments as new degrees of freedom. These exten-
sions have different properties, and reflect different views upon the relation of Active
Flux to the families of Finite Volume, Finite Difference and Finite Element methods.

Keywords: Active Flux, high order methods, conservation laws
Mathematics Subject Classification (2010): 65M06,65M08,65M60,76N99

1 Introduction

Solutions to the initial value problem for hyperbolic m×m systems of conservation laws

∂tq + ∂xf(q) = 0 q : R+
0 × R→ Rm (1)

f : Rm → Rm (2)

generically develop discontinuities in finite time, even if the initial data are smooth. The
natural setting therefore are weak solutions. For convergence to the weak solution of (1),
a numerical method needs to be conservative (Lax-Wendroff theorem).

A popular way to derive numerical methods (due to Godunov) is to introduce disconti-
nuities at every cell interface (reconstruction step), and to evolve piecewise constant data
over a short period of time (Riemann solver). Even if a more complicated reconstruction
is used inside the cell, or if an approximate evolution is used instead of the exact one, the
main idea of Godunov’s approach remains to introduce discontinuities at every cell inter-
face. This approach has also been adapted to Finite Element methods, which has led to the
development of Discontinuous Galerkin (DG) methods. These methods are conservative.

However, convergence to the weak solution is not enough in practice. In view of the
big computational effort associated with grid refinement (particularly in multi-d), there is
ongoing interest in guaranteeing properties of numerical solutions for coarse grids already.
Some of them are essential for the simulation to continue running, e.g. non-negativity of
the density. Other shortcomings might not cause a simulation to crash, but still are a
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big problem in practice, in particular if they require the computational grid to be much
finer than reasonable. For example it might turn out to be necessary to resolve a vortex
with a number of grid cells that depends on how long one intends to run the simulation
for. This can occur in simulations of fluid flow phenomena that are smooth (low Mach
number/incompressible limit, vortices, ...). They are not well approximated by standard
Godunov methods on coarse grids because the effects of numerical diffusion become more
and more pronounced as the simulation runs. Grid refinement increases the time scales on
which diffusion becomes overwhelming, but – besides slowing down the simulation – does
not solve the problem in a fundamental way.

The difficulties of the Godunov method in regions of smooth flow are not surprising, as
it introduces shocks everywhere in the computational domain. For example, the failure of
the Godunov method to resolve the low Mach number limit on coarse grids has been traced
back directly to the acoustic waves introduced at every time step at every cell interface
(in [GM04]). For low Mach number flow, modifications of Godunov methods have been
suggested which restore the correct behaviour, but they are ad hoc and cannot guarantee
adequate treatment of other aspects of smooth multi-dimensional flow (for example vor-
tices). Note at this point that in the quest for a new numerical method we expect it to be
able to work well in presence of shocks as well as when they are absent.

The argumentation of [GM04] assumes that the multi-dimensional numerical method
is constructed using a one-dimensional Riemann solver. The fluxes through each interface
are computed while ignoring the influence of the corners of the cell. Such an approach
shall be called directionally-split. Truly multi-dimensional phenomena, where contribu-
tions from different direction balance each other, tend to be a challenge for dimension-
ally split methods. The low Mach number/incompressible limit is one example of such
a truly multi-dimensional phenomenon, because the divergence-free condition is trivial in
one spatial dimension. One might therefore conjecture that the difficulties do not orig-
inate in the Godunov method per se, but in the fact that quasi-one-dimensional solvers
are applied in a directionally split way, and thus multi-dimensionality is not taken into
account appropriately. One might think that perhaps it would suffice to take into account
all the multi-dimensional interactions in multi-dimensional Riemann problems to obtain
a Godunov-type method that resolves smooth multi-dimensional problems accurately on
coarse grids.

Unfortunately, the situation is not that simple. In [BK22] this line of thought has
been developed completely for the linear acoustic equations, which have interesting multi-
dimensional features that are not captured by standard dimensionally-split Godunov-type
methods on coarse grids (e.g. an analogue of the low Mach number limit, and the involution
of vorticity). The complete solution of the four-quadrant Riemann problem for linear
acoustics has been obtained and a two-dimensional Godunov method on Cartesian grids
constructed in [BK22], whose evolution step was thus exact and fully multi-dimensional.
None of the desirable properties (low Mach number compliance, vorticity preservation) was
found to hold true for this method. Taking into account all multi-dimensional interactions
from multi-dimensional Riemann problems is not enough (and, of course, quite an effort).

Similar observations described in [Roe17] have sparked the development of the Active
Flux method by Roe and collaborators ([ER11], based on [vL77]), a numerical method with
a continuous reconstruction, whose evolution step thus requires a short-time solution of
the IVP for (1) with continuous data.

This does not mean that this method is only applicable in the subsonic regime. Con-
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tinuous data can self-steepen over the course of a time step, and in such cases, the update
needs to be performed carefully, before the discontinuity is projected onto a continuous
reconstruction again. In a typical simulation, however, shocks are located on sets of codi-
mension 1 (e.g. in 1-d on countably many points), and thus in this sense almost everywhere
in the computational domain the assumption of continuity is correct. Compare this to the
approach of a Godunov method solving a rarefaction: instead of maintaining the continu-
ous solution, the rarefaction is cut apart in a staircase shape at every time step, and over
the course of the evolution step every jump of the staircase is evolving again into a small
rarefaction.

Leaving aside conceptual questions, from a practical point of view, the answers to
the following three questions matter most: Is this method stable, possibly even under an
explicit time integration? Does the numerical solution obtained with this method converge
to the weak solution of (1), i.e. is there an analogue of the Lax-Wendroff-Theorem? Does
this method have favorable properties on smooth, multi-dimensional solutions? The answer
to all three questions is yes, which makes it an interesting alternative to Godunov-type
methods.

The degrees of freedom of the traditional Active Flux ([vL77, ER11]) are cell averages
and, additionally, point values located at cell interfaces and shared by adjacent cells. This
allows for a continuous (but not necessarily differentiable) reconstruction, which passes
through the given point values, and whose average agrees with the given one. The evolution
of the point value requires the solution of the IVP for (1) over a short time step for
continuous initial data. This building block replaces the Riemann solver in Godunov-type
methods. The evolution of the average is obtained as usual by integrating the conservation
law over the cell and over a time step, and by applying Gauss’ theorem. The fluxes
at cell interfaces can be immediately evaluated using the available point values. The
evolution of the averages therefore is conservative, and an analogue of a Lax-Wendroff
theorem for Active Flux has been shown in [Abg20]. Active Flux decouples the problem of
average evolution from the computation of interface values, which are declared independent
degrees of freedom, hence the name Active Flux, although it would be more accurate to
say “Active Point Value at Cell Interface”. This allows for more flexibility. The update of
point values is not subject to the constraint of conservation, because conservation applies
only to averages. Therefore it is possible to even switch variables and update the point
values in, say, primitive variables. This has been pointed out in [Abg20]. A more thorough
description to the traditional Active Flux method is given in Section 2, as well as in
[ER11, ER13, BHKR19, HKS19, Bar21].

The development of a high order method requires chiseling out the distinctive features
of the low order method. The aim of the present paper therefore is not only to propose
practical high order extensions of Active Flux. These extensions are tied to possible inter-
pretations of Active Flux that allow to place it amidst other families of numerical methods.
The three extensions that we propose allow to see Active Flux either as a coupled Finite
Volume/Finite Difference method (Section 3), or as an enriched Finite Volume method
(Section 4), or as a coupled Finite Element/Finite Difference method (Section 5). Which
of the three interpretations, or maybe another, will turn out to be the most fruitful one,
only future can tell. Therefore at this stage we content ourselves with developing them
to a level that allows to solve the Euler equations, and with stating their respective ad-
vantages and disadvantages, whereby we cannot single out any of the three extensions as
overperforming the others in all respects.
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This paper focuses on the one-dimensional case and defers the case of multiple di-
mensions to a forthcoming publication in order to keep the size of the paper reasonable.
Additionally, in multiple spatial dimensions there are further aspects that need to be taken
into account, and the numerical discretization also is different for Cartesian grids and un-
structured ones.

Here, the grid is assumed equidistant with cells [xi− 1
2
, xi+ 1

2
] where xi± 1

2
= xi ± ∆x

2
,

i ∈ Z. As customary, indices referring to time are denoted as superscripts, i.e. tn is the
n-th time level. Ck denotes the class of k times continuously differentiable functions, and
P k the set of polynomials of degree less or equal to k.

2 Review: Third order Active Flux

In this section, an overview of the existing Active Flux method(s) in one spatial dimension
shall be given. At the same time we would like to define Active Flux in the largest possible
generality.

Active Flux has two distinctive features. First, the mixed type of degrees of freedom:
a cell average, reminiscent of Finite Volume methods, and point values, of which at least
some are located at cell boundaries. The numerical solution is thus given by the two sets

{q̄ni ∈ Rm}i∈I⊂Z {qn
i+ 1

2
∈ Rm}i∈I⊂Z (3)

with the interpretations

q̄ni '
1

∆x

∫ x
i+ 1

2

x
i− 1

2

dx q(tn, x) qn
i+ 1

2
' q(tn, xi+ 1

2
) (4)

The same formulae are used to initialize the degrees of freedom {q̄0
i }i, {q0

i+ 1
2

}i given initial

data q0 : R → Rm. Traditional degrees of freedom in Active Flux are one cell average per
cell, and one (shared) point value located at every cell interface.

Second, the point values are shared between adjacent cells, contrary to the approach of
e.g. DG methods. The point values at cell interfaces allow to immediately write down a
conservative update of the cell average. Indeed, integrating the conservation law (1) over
a computational cell [xi− 1

2
, xi+ 1

2
] and applying Gauss’ law yields

d

dt

 1

∆x

∫ x
i+ 1

2

x
i− 1

2

q(t, x) dx

+
f(q(t, xi+ 1

2
))− f(q(t, xi− 1

2
))

∆x
= 0 (5)

The evolution of the point values can happen in many ways, such that for the moment
we content ourselves with the following general definition:

Definition 2.1 (Traditional Active Flux). Inside cell i, consider a reconstruction

qrecon,i ∈ C0 ∩ L1
loc qrecon,i : (Rm)3 ×

[
−∆x

2
,
∆x

2

]
→ Rm (6)
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with the properties

qrecon,i

(
qi− 1

2
, q̄i, qi+ 1

2
,±∆x

2

)
= qi± 1

2
(7)

1

∆x

∫ ∆x
2

−∆x
2

dx qrecon,i

(
qi− 1

2
, q̄i, qi+ 1

2
, x
)

= q̄i (8)

Define the global reconstruction

qrecon ∈ C0 ∩ L1
loc qrecon : R→ Rm (9)

qrecon(x) := qrecon,i

(
qi− 1

2
, q̄i, qi+ 1

2
, qi,1, . . . , qi,k, x− xi

)
if x ∈ [xi− 1

2
, xi+ 1

2
] (10)

The traditional Active Flux method is the following semi-discretization
d

dt
q̄i(t) = −

f(qi+ 1
2
(t))− f(qi− 1

2
(t))

∆x

qi+ 1
2
(t) =

(
solution at x = xi+ 1

2
of the IVP (1) with initial data qrecon

)
+O(t3)

(11)

of (1) with the interpretations

q̄i(t) '
1

∆x

∫ x
i+ 1

2

x
i− 1

2

q(t, x)dx qi+ 1
2
(t) ' q(t, xi+ 1

2
) (12)

In the following, we often drop the dependence of qrecon,i on its parameters other than
x. When the time step is important, we denote by qnrecon,i the reconstruction obtained by
using values of time step n.

Usually, qrecon,i ∈ P 2 but limiting might require other choices, discussed in Section 2.2.
An Active Flux method with this choice of reconstruction is at most third order accurate.

In [Abg20], a closely related definition was given, which, however, does not rely on a
reconstruction:

Definition 2.2 (Semidiscrete Active Flux from [Abg20]). The semidiscrete Active Flux
method from [Abg20] is the following semi-discretization

d

dt
q̄i(t) = −

f(qi+ 1
2
(t))− f(qi− 1

2
(t))

∆x

d

dt
qi+ 1

2
(t) = −R

(
qi+ 1

2
−k(t), q̄i−k+1(t), qi+ 1

2
−k+1(t), . . . , q̄i+m(t), qi+ 1

2
+m(t)

) (13)

i ∈ Z, k ≥ 0,m ≥ 0

of (1) with the interpretations (12) and R a consistent approximation of ∂xf(q) at xi+ 1
2
.

Its order of accuracy depends on the approximation order of R (and eventually on the
order of accuracy of the time integration).

Later, (Sections 4 and 5) we discuss extensions of Active Flux to higher order that
include other types of degrees of freedom. In these cases, the definition is modified accord-
ingly in order to include their respective updates. This is discussed in the corresponding
Sections.
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2.1 Time integration

Only third-order methods have been suggested so far in the literature, with two different
time discretizations for the two methods (11) and (13). In [Abg20], system (13) is integrated
with a Runge-Kutta method. The update of the point value is obtained by introducing
a point value qi,midpoint(t) at the center of the cell and expressing the averages as q̄i =
1
6
(qi− 1

2
+4qi,midpoint +qi+ 1

2
). This allows to choose for R a standard finite difference formula

from [Ise82] on a grid of half the spacing:

D3(qi− 1
2
, qi,midpoint, qi+ 1

2
, qi+1,midpoint) :=

1
6
qi− 1

2
− qi,midpoint + 1

2
qi+ 1

2
+ 1

3
qi+1,midpoint

∆x/2
(14)

' ∂xq +O(∆x3) (15)

For linear advection ∂tq + c∂xq = 0, the equation for the point value at cell interface
then reads

d

dt
qi+ 1

2
(t) = −c

1
6
qi− 1

2
(t)− qi,midpoint(t) + 1

2
qi+ 1

2
(t) + 1

3
qi+1,midpoint(t)

∆x/2
(16)

To the same order of accuracy, it can be expressed in the form (13) with k = 1, m = 1 as

R(qi+ 1
2
−kt, q̄i−k+1, qi+ 1

2
−k+1(t), . . . , q̄i+m, qi+ 1

2
+m) = c

5
6
qi− 1

2
− 3q̄i + 4

3
qi+ 1

2
+ q̄i+1 − 1

6
qi+ 3

2

∆x
(17)

The stability bound for this method is λmax = c∆tmax

∆x
= 0.77 (see Section A).

This method has been successfully applied to the Euler equations in [Abg20] by replac-
ing the prefactor c in (16) by the Jacobian J = f ′ and using two finite-difference formulae
(biased in different directions) in order to include upwinding.

The earliest version of Active Flux ([vL77, ER11]) employed a leap-frog-type time
integrator for the traditional Active Flux (11). First, approximations

q
n+ `

2

i+ 1
2

= qi+ 1
2

(
`
∆t

2

)
+O(∆t3) ` = 1, 2 (18)

are computed by solving the IVP (1) as described in Definition 2.1 over half the time step
and over the full time step (from the same initial data qrecon), and then these values are
used to compute fluxes in the update of the average:

q̄n+1
i = q̄ni −∆t

2∑
`=0

ω`
f(q

n+ `
2

i+ 1
2

)− f(q
n+ `

2

i− 1
2

)

∆x
(19)

Here, ω` =
(

1
6
, 2

3
, 1

6

)
are the quadrature weights of Simpson’s rule, which is the adequate

quadrature for a third order method. This is a leap-frog-type of integration, because the
new point values are already used for computing the new value of the average.
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The original publication [vL77] considered Active Flux only for linear advection ∂tq +
c∂xq = 0, in which case one has for positive c

q
n+ `

2

i+ 1
2

= qnrecon,i

(
xi+ 1

2
− c `

2
∆t

)
` = 1, 2 (20)

q̄n+1
i = q̄ni −∆t

2∑
`=0

ω`c
q
n+ `

2

i+ 1
2

− qn+ `
2

i− 1
2

∆x
(21)

Given the unique parabolic reconstruction qnrecon,i which fulfills

qnrecon,i

(
±∆x

2

)
= qn

i± 1
2

1

∆x

∫ ∆x
2

−∆x
2

qnrecon,i(x) dx = q̄ni (22)

Equation (20) reads

q
n+ `

2

i+ 1
2

= qn
i+ 1

2

(
1− 2λ`+

3

4
λ2`2

)
+ qn

i− 1
2

(
−λ`+

3

4
λ2`2

)
− 3

2
λ`q̄ni (λ`− 2) (23)

q̄n+1
i = q̄ni (1 + 2λ)(1− λ)2 + q̄ni−1λ

2(3− 2λ)− qn
i− 3

2
(1− λ)λ2 + qn

i− 1
2
λ(1− λ)− qn

i+ 1
2
(1− λ)2λ

(24)

with ∆t = λ∆x/c.
This method is stable up to λ = 1. It has been extended to nonlinear scalar con-

servation laws and to hyperbolic systems of conservation laws by means of an estimate
of the characteristic directions in [Bar21]. The main difficulty is to obtain a sufficiently
accurate approximate solution of the IVP. In multiple spatial dimensions, the concept
of characteristics (along which some quantity is constant) is generally to be replaced by
that of characteristic cones, which do not allow for simple transformations to character-
istic variables. For linear acoustics, an exact evolution operator has been obtained in
[ER13, BK22]. It has been then applied to Active Flux on Cartesian two-dimensional
grids in [BHKR19], and structure preservation properties of the resulting method have
been demonstrated: The Active Flux method has been found to be vorticity preserving /
low Mach compliant. Despite promising efforts towards approximate evolution operators
for the multi-dimensional Euler equations in e.g. [Fan17], further research is required for
hyperbolic systems in multiple spatial dimensions that is beyond the scope of the present
paper.

2.2 Limiting

Limiting is necessary for Active Flux because it is a high order method, and because it is
linear when applied to linear problems. The usual philosophy of limiting in the context
of finite volume methods is to modify the reconstruction such that its value at the cell
interface satisfies a maximum principle. Examples of such approaches are slope limiters, or
the approach in [ZS10] where the reconstruction polynomial is scaled around its average.
For Active Flux, it is not possible to combine such ways of limiting with continuity of the
reconstruction because the values at cell interfaces are prescribed. Limiting strategies for
Active Flux that give up continuity can be found in e.g. [HKS19, CHK21].
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Figure 1: Different cases of limiting. The two point values remain the same, the diamond in
the cell center indicates the value of the cell average. The green solid line shows the choice
of reconstruction, the dotted line shows the parabolic reconstruction whenever it is not the
one chosen. The dashed horizontal lines indicate the region of the cell average inside which
the parabolic reconstruction is monotone. From left to right : The cell average is larger
than the two point values, there exists is no continuous monotone reconstruction, and the
parabola is accepted. The cell average is between the two point values, but the parabola
is not monotone, we choose one of the power laws. The average is inside the region given
by the dashed lines, we choose the (monotone) parabola. The average is below the region,
we choose the other power law. The average is below both point values, we choose the
parabola again.

Here, we prefer to maintain continuity. The traditional Active Flux method uses a
reconstruction to evolve the point values, and it is a natural approach to limiting to replace
an oscillative reconstruction by a monotone, or less oscillative function. Such limiting
strategies based on piecewise defined functions (e.g. a constant and a parabola) have been
proposed in [RLM15, BB20]. A simple limiting strategy has been introduced in [Bar21]
where the parabolic reconstruction is replaced by a power law. This shall be taken as
inspiration here.

Recall the following result from [Bar21]:

Theorem 2.1. Consider monotone data

qi− 1
2
≤ q̄i ≤ qi+ 1

2
or qi− 1

2
≥ q̄i ≥ qi+ 1

2
(25)

Their unique parabolic interpolant is monotone, iff

r :=
qi+ 1

2
− q̄i

q̄i − qi− 1
2

∈
[

1

2
, 2

]
(26)

Thus, parabolic interpolants can violate the maximum principle if the average q̄i is close
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to one of the point values qi± 1
2
. The power law reconstructions, proposed in [Bar21]

qnrecon,i,power-law,1(x) = qn
i− 1

2
+ (qn

i+ 1
2
− qn

i− 1
2
)

(
x+ ∆x

2

∆x

) qn
i+ 1

2

−q̄ni

q̄n
i
−qn

i− 1
2

(27)

qnrecon,i,power-law,2(x) = qn
i+ 1

2
− (qn

i+ 1
2
− qn

i− 1
2
)

(
∆x
2
− x

∆x

) q̄ni −qn
i− 1

2
qn
i+ 1

2

−q̄n
i

(28)

x ∈
[
−∆x

2
,
∆x

2

]
are interpolating the same data while being monotone whenever the data are, and are
thus a good replacement for the parabolic reconstruction whenever the latter fails to be
monotone. Observe that the expression appearing in (26) is just the power in (27). Thus,
when

r =
qi+ 1

2
− q̄i

q̄i − qi− 1
2

= 2 ⇒ q̄i − qi− 1
2

=
qi+ 1

2
− qi− 1

2

3
(29)

the power law (27) reduces to the parabolic interpolant. The same is true for (28) for

r =
qi+ 1

2
− q̄i

q̄i − qi− 1
2

=
1

2
⇒ q̄i − qi+ 1

2
=
qi− 1

2
− qi+ 1

2

3
(30)

If r = 1
2
, one can switch from the parabola to the power-law (28), and at r = 2 to the the

power law (27):

Theorem 2.2. Consider monotone data fulfilling (25). The reconstruction

qrecon,i(x) =


qnrecon,i,power-law,1(x) |q̄i − qi− 1

2
| <

|q
i+ 1

2
−q

i− 1
2
|

3

qnrecon,i,power-law,2(x) |q̄i − qi+ 1
2
| <

|q
i+ 1

2
−q

i− 1
2
|

3

parabolic else

x ∈
[
−∆x

2
,
∆x

2

]

is continuous as a function of q̄i.

For data that are not monotone (i.e. violating (25)), a parabolic reconstruction is used.
See Figure 1 for an overview.

A rational interpolation (suggested in [HKS19]) is similar in spirit to the power law
reconstruction, but its coefficients cannot be computed analytically because of the condition
on its average, which requires integration of a rational function.

Note that in all suggestions of limiting available in the literature, only the update of
the point values is limited. This provides satisfactory results, but does not exclude the
appearance of oscillations, as the finite volume step

d

dt
q̄i(t) = −

f(qi+ 1
2
(t))− f(qi− 1

2
(t))

∆x
(31)

remains unlimited. A limiting of the finite volume step is subject of future work.
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Figure 2: Setup for the illustration of problems if transonic upwinding is not performed
carefully.

2.3 Transonic upwinding

In [HKS19, Bar21], the following problematic situation has been observed with early ver-
sions of Active Flux. Consider initial data

q0(x) =

{
2 x ≤ 0

−1 x > 0
(32)

for Burgers’ equation, such that the discrete data initially are (see also Figure 2)

. . . = q− 3
2

= q− 1
2

= 2 q 1
2

= q 3
2

= . . . = −1 (33)

. . . = q̄−2 = q̄−1 = 2 q̄1 = q̄2 = . . . = −1 (34)

qrecon,−1 ≡ 2 qrecon,1 ≡ −1 (35)

The value of q̄0 is irrelevant for the discussion.
The exact solution of (32) would be a shock moving at speed 1

2
. In the update of q− 1

2
, if

its value 2 is used to estimate the upwind direction, information would be taken from the
left, where the reconstruction is identically equal to 2. q− 1

2
would thus remain stationary.

The same happens to q 1
2
, whose initial value is negative, and thus information is taken

from the right. In fact, the reconstruction qrecon,0 thus never contributes. The numerical
method keeps all point values stationary, while the average in cell 0 will grow, because the
flux difference is (q 1

2
)2/2− (q− 1

2
)2/2 6= 0.

The error is the wrong estimate of the upwind direction at x 1
2
. An exact time evolution

of the continuous reconstruction qrecon would see it form a shock, and this shock would first
move left, and then right, reaching x 1

2
before the end of the time step. At this moment,

the direction of information flow at x 1
2

would be reversed, and information would no longer

be taken from the right (see Figure 3). Thus, the deficiency of the early versions of Active
Flux is due to an erroneous estimate of the upwind direction in the point value update.
This estimate needs to take into account the fact that a continuous reconstruction might
self-steepen before the end of the time step.

This error is most visible in the transonic case, because the shock has time to form
during the time step. Depending on the CFL condition, setups close to transonic might be
affected as well. In the worst case, the consequence is a shock that is not moving (and thus
violating the Rankine-Hugoniot conditions), with the cell average in its vicinity growing
without bound. In setups that are not strictly transonic, an artificially large average at
the location of the shock is visible in the form of a spike (see examples in [Bar21]).

In [Bar21] it has been suggested to estimate the upwind direction more carefully. In
particular, when solving for the foot point of the characteristic (which, generally, requires

10



Figure 3: The evolution of continuous initial data corresponding to a parabolic reconstruc-
tion of (32) with ∆x = 1 for Burgers’ equation. The time step based on the maximum of
the reconstruction is ∆t ' 0.357, and even larger if based on the point values and averages
alone. At x = 1 one observes initially an information flow from the right, but as the shock
forms, it stalls and starts moving to the right. After t ' 0.25, the information is flowing
from the left at x = 1.

11



to solve a nonlinear algebraic equation), it has been suggested to initialize the iteration with
not only the value at the respective cell interface, but also with values from its neighbours.
If a shock forms over the time step, one would thus obtain several candidate characteristics,
while in a smooth setup the iteration would converge to the unique characteristic. A simple
strategy that works well in practice is then to select from the candidate characteristics the
one whose speed is largest in modulus. In [Bar21, BB20] it has been demonstrated that
this strategy works well even for systems. Some authors (e.g. [CHK21]) suggest to average
to values obtained from the candidate characteristics.

3 High order via larger stencils

3.1 Discretization in space

The first strategy for high order accuracy that we propose involves the traditional degrees
of freedom (cell averages and shared point values at cell interfaces), and uses larger stencils.
The starting point therefore is the semidiscrete Active Flux of Definition 2.2, with a Runge-
Kutta time integration. Observe again that the update of the averages

d

dt
q̄i(t) = −

f(qi+ 1
2
(t))− f(qi− 1

2
(t))

∆x
(36)

is exact, and that the order of accuracy of the method is given by the order of accuracy of
the right-hand side of the point value update in (13) and of the order of accuracy of the
time integration.

Consider linear finite difference p-th order approximations to the derivative of the form

1

∆x

∑̀
j=−`

(b
(0)
j q̄i+j + bj+ 1

2
qi+j+ 1

2
) = q′(xi+ 1

2
) +O(∆xp) (37)

We shall adopt the following tableau notation for such a finite difference formula that
involves point values at cell interfaces and cell averages

Notation 3.1.

1

∆x

∑̀
j=−`

(b
(0)
j q̄i+j + bj+ 1

2
qi+j+ 1

2
) = (38)

b
(0)
−` · · · b

(0)
−1 b

(0)
0 b

(0)
1 · · · b

(0)
`

b−`+ 1
2

b− 3
2

b− 1
2

b 1
2

b 3
2

b`− 1
2

b`+ 1
2

The vertical lines indicate cell interfaces (such that coefficients of cell averages are written
“inside” the cell and coefficients of point values are associated to cell interfaces). The double
vertical line indicates the cell interface at which the finite difference is supposed to provide
an approximation to the derivative (of the corresponding order of accuracy). Coefficients
not marked explicitly in the tableau are assumed zero. The notation will be slightly expanded
in Section 5, where the superscript (0) on the coefficients of the cell averages will become
clear.

Here are some examples (a2, . . . , a7 are free parameters):

12



FD1 =
2− 2a2

−2 + a2 a2
(39)

FD3a =
−2− 3a3

4
2− 3a3

4
2+a3

4
a3

−2+a3

4

(40)

FD5b =
19−22a5

54
−89+76a5

54
50−11a5

27
a5−1

9
a5 a5

a5−4
9

(41)

FD7a =
49
72
− 25a7

96
293
72
− 185a7

96
−31

72
− 185a7

96
436−75a7

288
−8+3a7

48
−7

3
+ a7 −3 + 9a7

4
a7 −1

3
+ a7

16

(42)

Note once more that the double vertical line indicates the cell interface at which the
finite difference is providing the desired approximation of the derivative. E.g. for FD1,

q′(xi+ 1
2
) ' (−2 + a2)qi− 1

2
+ (2− 2a2)q̄i + a2qi+ 1

2
(43)

while for FD3a,

q′(xi+ 1
2
) ' 2 + a3

4
qi− 1

2
+

(
−2− 3a3

4

)
q̄i + a3qi+ 1

2
+

(
2− 3a3

4

)
q̄i+1 +

−2 + a3

4
qi+ 3

2
(44)

The finite difference formulas are involve one degree of freedome more than it would
be necessary to obtain the desired order of accuracy; the remaining free parameter is used
later to optimize stability. These finite difference formulas are different from standard finite
differences because they involve point values and averages. Table 1 summarizes some of
the possible choices. Given a finite difference formula

D =
b

(0)
−` · · · b

(0)
−1 b

(0)
0 b

(0)
1 · · · b

(0)
`

b−`+ 1
2

b− 3
2

b− 1
2

b 1
2

b 3
2

b`− 1
2

b`+ 1
2

(45)

define the flipped formula

D∗ =
−b(0)

` · · · −b(0)
1 −b(0)

0 · · · −b(0)
−`

−b`+ 1
2

−b`− 1
2

−b 3
2

−b 1
2

−b− 1
2

−b−`+ 3
2

−b−`+ 1
2

(46)

It is an approximation of the derivative at the same location and of the same order of
accuracy as D, and arises because the spatial derivative changes sign upon reflection x 7→
−x.

We propose to use these finite differences in the update of the point values by writing

d

dt
qi+ 1

2
(t) = −

(
f ′(q̃i+ 1

2
)+D + f ′(q̃i+ 1

2
)−D∗

)
(47)

13



where D is any of the finite difference formulae (39)–(42). In the scalar case the positive
and negative parts are given by

f ′(q̃i+ 1
2
)+ = max(0, f ′(q̃i+ 1

2
)) f ′(q̃i+ 1

2
)− = min(0, f ′(q̃i+ 1

2
)) (48)

In the case of systems, f ′ is the Jacobian and they are defined via its eigenvalues:

f ′(q̃i+ 1
2
) = Rdiag (λ1, . . . , λm)R−1 f ′(q̃i+ 1

2
)± := Rdiag (λ±1 , . . . , λ

±
m)R−1 (49)

For an Active Flux method of order N , it is sufficient to use a derivative approximation of
order N −1. This offset is due to the offset in the definition of “order”. For example, a 3rd
order Active Flux method is exact on parabolic data, while already a 2nd order derivative
approximation is exact for parabolae.

It remains to define q̃i+ 1
2
. For scalar conservation laws (m = 1), if f ′ does not switch

sign in the computational domain, then the natural choice q̃i+ 1
2

= qn
i+ 1

2

works. Further

details are given in the next section.
The use of finite differences in the point value update is inspired by the approach in

[Abg20], but different in the following crucial aspect. In [Abg20], a point value qi,midpoint

at the cell center is first estimated through Simpson’s rule:

q̄i =:
qi− 1

2
+ 4qi,midpoint + qi+ 1

2

6
(50)

One thus obtains a grid of half spacing, on which standard finite differences can be used.
(This is described in Section 2.1.) While for third order, Simpson’s rule is accurate enough,
for higher orders the natural expression of the cell average in terms of point values would
require solving a linear system, i.e. it would become nonlocal. Indeed, a formula such as

q̄i =:
−4qi−1,midpoint + 34qi− 1

2
+ 144qi,midpoint + 34qi+ 1

2
− qi+1,midpoint

180
=

1

∆x

∫ ∆x
2

−∆x
2

dxq +O(∆x6)

(51)

cannot be as easily solved for the midpoint values as (50). One could use a quadrature
for the average that involves precisely one midpoint value and correspondingly more of the
point values at cell interfaces:

q̄i =:
−4qi− 3

2
+ 189qi− 1

2
+ 704qi,midpoint + 189qi+ 1

2
− qi+ 3

2

1080
=

1

∆x

∫ ∆x
2

−∆x
2

dxq +O(∆x6) (52)

It is clear, however, that the form (37) includes this case, and is more general.

3.2 Time integration and stability conditions

The algorithm consists of the ODE system (36) and (47). We propose to solve it with a
Runge-Kutta time integrator, e.g. a strong stability preserving method of order 3 (SSP-
RK3). For linear problems, of course, higher order Runge-Kutta methods are easily avail-
able. (Compare Figures 11 and 12, where stability of FD5b is shown for RK3 and RK5,
respectively, with the maximum CFL number being only slightly higher for RK5.). For
nonlinear problems, often a lower order time integrator is used with a time step small

14



Figure 4: Stability region (RK3) of (39)
(FD1) (black = stable).

Figure 5: Stability region (RK3) of (40)
(FD3a) (black = stable).

Figure 6: Stability region (RK3) of finite dif-
ference formula FD3b (black = stable).

Figure 7: Stability regions (RK3) of finite dif-
ference formula FD3c (black = stable).

enough, such that the global error is dominated by the spatial accuracy. We thus content
ourselves with results on RK3. The finite difference formulas considered above are typi-
cally one cell larger than it would be necessary to obtain the desired order of accuracy,
such that the free parameter can be used to optimize stability. The results of the linear
stability analysis (see Section A) can thus be depicted in a diagram whose axes show the
CFL number and the value of the free parameter. Some of these diagrams are shown in
Figures 6–15. Table 1, shows the maximum CFL numbers for parameter values optimizing
stability.

3.3 Transonic upwinding

By analogy with the way how transonic upwinding has been proposed to be handled in
[Bar21] (see also Section 2.3), we propose here for the case of a scalar conservation law
(m = 1) the following choice:
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Figure 8: Stability region (RK3) of finite dif-
ference formula FD4a (black = stable).

Figure 9: Stability regions (RK3) of finite dif-
ference formula FD4b (black = stable).

Figure 10: Stability region (RK3) of finite dif-
ference formula FD5a (black = stable).

Figure 11: Stability region (RK3) of (41)
(FD5b) (black = stable).

Figure 12: Stability region of (41) (FD5b) for
RK5 (black = stable).

Figure 13: Stability region (RK3) of finite dif-
ference formula FD6 (black = stable).
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Figure 14: Stability region (RK3) of (42)
(FD7a) (black = stable).

Figure 15: Stability region (RK3) of finite dif-
ference formula FD7c (black = stable).

name FD1 FD3a FD3b FD3c FD4a FD4b
p 1 (2) 3 3 3 4 4

b
(0)
−3

b− 5
2

b
(0)
−2

b− 3
2

a3 − 5 a4−3
3

b
(0)
−1

1
6
(2− a3) 29

2
− 3a3 −a4

18
19
6
− 10a4

9

b− 1
2

−2 + a2
2+a3

4
a3 − 1 4(a3 − 4) 1+a4

2
2(a4 − 2)

b
(0)
0 2− 2a2 −2− 3a3

4
−1

6
− 5a3

3
13
2
− 3a3 −2− 19a4

18
7
6
− 19a4

9

b 1
2

a2 a3 a3 a3 a4 a4

b
(0)
1 2− 3a3

4
1
6
(5− a3) 2− 5a4

9
6−a4

9

b 3
2

−2+a3

4
a4−3

6

CFLmax (RK3) 1 0.7985 1 0.45 0.675 0.855
parameter a2 ∈ [1, 2] a3 ' 1.7723 a3 ∈ [1

2
, 1.1] a3 ' 3.5 a4 ' 1.6 a4 ' 1.5

region Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9

Table 1: Overview of finite difference formulae. The lower part shows the maximum
attainable CFL number together with the corresponding value of the parameter. The
formula marked as first-order accurate becomes a second-order accurate approximation
upon the choice a2 = 4.
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name FD5a FD5b FD5c FD6 FD7a FD7c
p 5 5 5 6 7 7

b
(0)
−3

b− 5
2

−8+3a7

48

b
(0)
−2

4−a5

12
2−a6

48
49
72
− 25a7

96

b− 3
2

a5−1
9

a5 − 11
3

3a6−5
9

−7
3

+ a7
1+a7

36

b
(0)
−1 −1+a5

36
19−22a5

54
302−87a5

36
586−393a6

432
293
72
− 185a7

96
−28+25a7

216

b− 1
2

2+a5

3
a5 3a5 − 8 3a6

2
− 1 −3 + 9a7

4
4
9
(2 + a7)

b
(0)
0 −9

4
− 29a5

36
−89+76a5

54
86−87a5

36
−494−717a6

432
−31

72
− 185a7

96
− 5

216
(108 + 37a7)

b 1
2

a5 a5 a5 a6 a7 a7

b
(0)
1

9
4
− 29a5

36
50−11a5

27
5
9
− a5

12
730−141a6

432
436−75a7

288
5
2
− 185a7

216

b 3
2

a5−2
3

a5−4
9

3a6−14
36

−1
3

+ a7

16
4
9
(a7 − 2)

b
(0)
2

1−a5

36
28−25a7

216

b 5
2

a7−1
36

CFLmax (RK3) 0.7 0.713 0.56 0.73 0.657 0.62
parameter a5 ' 1.88 a5 ' 1

4
a5 ' 2.3 a6 ' 0.68 a7 ' 4

3
a7 ' 1.9

region Fig. 10 Fig. 11 Fig. 13 Fig. 14 Fig. 15

Table 2: Table 1 continued.

q̃i+ 1
2

=



qn
i+ 1

2

if sign f ′(qn
i− 1

2

) = sign f ′(qn
i+ 1

2

) = sign f ′(qn
i+ 3

2

)

qn
i+ 1

2

else and if qn
i− 1

2

< qn
i+ 3

2

transonic rarefaction

qn
i− 1

2

else and if |f ′(qn
i− 1

2

)| ≥ max(|f ′(qn
i+ 1

2

)|, |f ′(qn
i+ 3

2

)|)
qn
i+ 1

2

else and if |f ′(qn
i+ 1

2

)| ≥ max(|f ′(qn
i− 1

2

)|, |f ′(qn
i+ 3

2

)|)
qn
i+ 3

2

else and if |f ′(qn
i+ 3

2

)| ≥ max(|f ′(qn
i− 1

2

)|, |f ′(qn
i+ 1

2

)|)

(53)

While the original modification from [Bar21] leads to a third-order accurate method,
the above suggestion degrades the accuracy at sonic points. We do not find averages such

as q̃i+ 1
2

=
qn
i− 1

2

+2qn
i+ 1

2

+qn
i+ 3

2

4
to work satisfactorily for our high order versions.

For systems, the presence of different waves and thus inherent information transport
from different parts of the initial data seems to make transonic upwinding less important.
We experimentally find that the high-order version of Active Flux via finite differences in
many cases, such as in the numerical examples below, works well with the simple choice
q̃i+ 1

2
= qn

i+ 1
2

.

3.4 Limiting

We propose to gradually reduce the order of the finite difference approximation employed
if a violation of monotonicity is detected. If the values

q̄i−`, qi+ 1
2
−`, . . . , q̄i+`, qi+ 1

2
+` (54)

18



involved in the finite difference formula are monotone, then one would expect the finite
difference approximation to the derivative to have the same sign as, say, qi+ 1

2
− q̄i. If this

is not the case we propose to reduce the order (e.g. as FD7a–FD6–FD5b–FD4b–FD3b–
FD1 with a2 = 4, which is second order), until either monotonicity is obtained, or until
even the finite difference of lowest order is found to be non-monotone. In this case, a fall-
back finite difference is used. We propose to take inspiration from the power-law limiting
suggested in [Bar21]. Its original version amounts to a modification of the reconstruction,
but a finite difference can be obtained by differentiation at the cell interfaces x = ±∆x

2
.

The nonvanishing derivatives of the two power laws (27)–(28) yield two nonlinear finite
difference approximations:

d

dx
qnrecon,i,power-law,1

(
−∆x

2

)
=

1

∆x
(qn
i+ 1

2
− qn

i− 1
2
)
q̄ni − qni− 1

2

qn
i+ 1

2

− q̄ni
(55)

d

dx
qnrecon,i,power-law,2

(
∆x

2

)
=

1

∆x
(qn
i+ 1

2
− qn

i− 1
2
)
qn
i+ 1

2

− q̄ni
q̄ni − qni− 1

2

(56)

These finite differences are first-order accurate, as can be checked explicitly. Up to a shift
by one cell, the one is a finite difference at xi+ 1

2
for positive speed, and the other for

negative, i.e. we define

D1(qi− 1
2
, q̄i, qi+ 1

2
) :=

1

∆x
(qn
i+ 1

2
− qn

i− 1
2
)
qn
i+ 1

2

− q̄ni
q̄ni − qni− 1

2

(57)

D∗1(qi+ 1
2
, q̄i+1, qi+ 3

2
) :=

1

∆x
(qn
i+ 3

2
− qn

i+ 1
2
)
q̄ni+1 − qni+ 1

2

qn
i+ 3

2

− q̄ni+1

(58)

By analogy with the original version from [Bar21], this finite difference is used only
if the values (54) are monotone, all higher order finite differences were found to violate
monotonicity, and if condition (26) is violated. For practical reasons we also refrain from
using it if the exponents of the power laws are outside the interval [ 1

50
, 50].

3.5 Numerical results

3.5.1 Linear advection

Figure 16 shows the experimental order of accuracy for high order versions of Active Flux
using finite differences for linear advection ∂tq + c∂xq = 0 (c = 1). Numerical methods
of orders 3 to 7 are shown. The tests are using a Runge-Kutta integrator of 3rd order
accuracy and a small CFL number of 10−2 in order for the total error to be dominated by
the spatial error. The initial data are

q0(x) = 0.8 + exp

(
−(x− 0.5)2

0.052

)
(59)

on grids covering [0, 1]. The error is shown at time t = 0.1. Limiting is not used. The finite
differences employed are FD6 (a6 = 2.5), FD5b (a5 = 2), FD4b (a4 = 1.55), FD3b (a3 = 1),
FD1 (a4 = 4). We find that it is not always easy in practice to demonstrate experimentally
the desired order of accuracy if the parameters of the finite difference formulas are chosen
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Figure 16: Convergence of the the high order extension of Active Flux via finite differences
for linear advection. Left : L1 error of the point values. Right : L1 error of the averages.

Figure 17: Numerical evolution of Gaussian initial data for Burgers’ equation at time
t = 0.1. Left : Point values. Right : Averages.

too close to the stability limit. We also find that the choice of the stencil among those
of the same order of accuracy can affect the value of the error; a detailed study of this
influence shall, however, remain subject of future work. Generally, we find the theoretical
orders of accuracy reflected in the simulation results, as Figure 16 shows.

3.5.2 Burgers’ equation

Figure 17 shows the numerical time evolution of Gaussian initial data

q0(x) = 2.5 exp

(
−(x− 0.5)2

0.12

)
− 0.2 (60)

on a grid of 100 cells covering [0, 1] subject to Burgers’ equation. This setup is tran-
sonic, but is captured without artifacts due to use of limiting and transonic upwinding as
described above. The CFL number used is 0.4.
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Figure 18: Convergence of the the high order extension of Active Flux via finite differences
for Burgers’ equation. Left : L1 error of the point values. Right : L1 error of the averages.

Figure 18 shows the experimental convergence on different grids covering [0, 1] using
initial datum (59) at time t = 0.01, before the formation of a shock. The CFL number is
chosen to be 10−3, to ensure that the error is dominated by that of spatial discretization.
Here, limiting is not used.

3.5.3 Euler equations

Finally, we assess the performance of the method on the Euler equations

∂tρ+ ∂x(ρv) = 0 ρ : R+
0 × R→ R+ (61)

∂t(ρv) + ∂x(ρv
2 + p) = 0 v : R+

0 × R→ R (62)

∂te+ ∂x(ρv) = 0 e : R+
0 × R→ R+ (63)

with e = p
γ−1

+ 1
2
ρv2. Figure 19 shows the results for the Sod shock tube [Sod78] on a grid

of 100 points; the CFL number is 0.25 and the 6th order method is used.

4 High order via further point values

A different viewpoint is that of Active Flux as an enriched Finite Volume method, which
includes point values additionally to the cell average. Higher order can thus be obtained by
including more point values. In one dimension, the cell interfaces are already “taken” and
any new point values must be located inside the cell. With k such points, the generalization
of the reconstruction (6) in cell i then is a polynomial qrecon,i ∈ P k+2, while the global
regularity remains C0. Therefore, the order of accuracy is expected to be N = k+ 3, while
the average number of degrees of freedom per cell is k + 2. Denote the locations of the
additional points by ∆xξj, ξj ∈ [−1

2
, 1

2
], and their values by qni,j, j = 1, . . . , k.

Such a method is thus a natural extension of the traditional Active Flux method (Def-
inition 2.1) and is endowed with a leap-frog-type time integration: first, all point values
are updated, and then the average is updated with fluxes that already use the new point
values. Again, in order to achieve a high order in time quadrature of the flux, point values
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Figure 19: Numerical evolution of the Sod shock tube at time t = 0.1. Left : Point values.
Right : Averages.

at cell interfaces are computed at intermediate times as well, while the point values inside
the cell are evolved over the full time step directly. The evolution operators, as well as
the limiting strategy and the transonic upwinding as described in [Bar21] require only the
smallest modifications.

4.1 High-order reconstruction

The place of the traditional reconstruction (6) is taken by a reconstruction in cell i

qrecon,i ∈ C0 ∩ L1
loc qrecon,i : (Rm)3+k ×

[
−∆x

2
,
∆x

2

]
→ Rm (64)

satisfying

qrecon,i

(
qi− 1

2
, q̄i, qi+ 1

2
,±∆x

2

)
= qi± 1

2
(65)

qrecon,i

(
qi− 1

2
, q̄i, qi+ 1

2
,∆xξj

)
= qi,j j = 1, . . . , k (66)

1

∆x

∫ ∆x
2

−∆x
2

dx qrecon,i

(
qi− 1

2
, q̄i, qi+ 1

2
, x
)

= q̄i (67)

These are k + 3 conditions. It is natural to seek the reconstruction in the space P 2+k

of polynomials which will yield an Active Flux method of N -th order with k + 2 = N − 1.
In this case, it is useful to rewrite this interpolation problem (which involves interpo-

lating point values and averages) as a standard pointwise interpolation problem, in order
to be able to use standard algorithms.

Theorem 4.1. Let {(xj, yj) ∈ R2}j=1,...,N−1 with (xi = xj)⇒ (i = j)∀i, j and let ȳ ∈ R be
given. Fix an arbitrary x0 6= xj ∀j. Then there exist unique polynomials

p1 ∈ PN−2 with p(xj) = yj ∀j = 1, . . . , N − 1 (68)

p2 ∈ PN−1 with

{
p(xj) = 0 ∀j = 1, . . . , N − 1

p(x0) = 1
(69)
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Moreover, if it exists, then the unique polynomial p ∈ P k+2 fulfilling

p(xj) = yj j = 1, . . . N − 1 and
1

∆x

∫ ∆x
2

−∆x
2

p(x) dx = ȳ (70)

is

p(x) = p1(x) + p2(x) ·
∆xȳ −

∫ ∆x
2

−∆x
2

p1 dx∫ ∆x
2

−∆x
2

p2 dx
(71)

Proof. p1 and p2 are defined as standard interpolating polynomials, they thus exist and
are unique. By construction, for any α ∈ R

p(xj) = p1(xj) + αp2(xj) = yj ∀j = 1, . . . , N − 1 (72)

and upon integration

∆xȳ =

∫ ∆x
2

−∆x
2

precon dx =

∫ ∆x
2

−∆x
2

p1 dx+ α

∫ ∆x
2

−∆x
2

p2 dx (73)

i.e.

α =
∆xȳ −

∫ ∆x
2

−∆x
2

p1 dx∫ ∆x
2

−∆x
2

p2 dx
(74)

if
∫ ∆x

2

−∆x
2

p2 dx 6= 0.

This theorem can be used to define the high-order reconstruction through following
identifications:

qnrecon,i(x) := p(x) (75)

with

x1 := −∆x

2
xj := ∆xξj−1 j = 2, . . . , N − 2 xN−1 :=

∆x

2
(76)

y1 := qn
i− 1

2
yj := qni,j−1 j = 2, . . . , N − 2 yN−1 := qn

i+ 1
2

(77)

Theorem 4.2. Consider the setup of Theorem 4.1 and assume the points {xj}j=1,...,N−1 to

be located symmetrically around 0. If their number N − 1 is odd, then
∫ ∆x

2

−∆x
2

p2 dx = 0, and

there is no polynomial of degree k + 2 fulfilling (68)–(69).

Proof. Observe that, with the Lagrange formula, p2 can be given the explicit form

p2(x) =
N−1∏
j=1

x− xj
x0 − xj

(78)
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Take n to be even, and call ν := N/2. Order the points symmetrically as

x1 < x2 < . . . < xν−1 < xν = 0 < −xν−1 < . . . < −x2 < −x1 (79)

Then, collecting the pairs,

p2(x) =
x

x0 − xν

ν−1∏
j=1

x2 − x2
j

x2
0 − x2

j

(80)

Thus, p2 is antisymmetric, and
∫ ∆x

2

−∆x
2

p2 dx = 0.

This means that we are unable to construct methods of even order with the point values
located symmetrically around the cell center. There exist other numerical methods where
odd orders of accuracy are given preference, e.g. WENO. If one would be interested to
construct an even-order version of Active Flux, one can show that this is possible upon
usage of an asymmetric distribution of points.

Definition 4.1 (Active Flux with additional point values). With the reconstruction qrecon,i
in cell i defined in (64)–(67), define the global reconstruction

qrecon ∈ C0 ∩ L1
loc qrecon : R→ Rm (81)

qrecon(x) := qrecon,i

(
qi− 1

2
, q̄i, qi+ 1

2
, qi,1, . . . , qi,k, x− xi

)
if x ∈ [xi− 1

2
, xi+ 1

2
] (82)

The Active Flux method with additional point values is the following semi-discretization

d

dt
q̄i(t) = −

f(qi+ 1
2
(t))− f(qi− 1

2
(t))

∆x

qi+ 1
2
(t) =

(
solution at x = xi+ 1

2
of the IVP (1) with initial data qrecon

)
+O(t3+k)

qi,j(t) =
(

solution at x = xi + ∆xξj of the IVP (1) with initial data qrecon

)
+O(t3+k)

(83)

of (1) with the interpretations

q̄i(t) '
1

∆x

∫ x
i+ 1

2

x
i− 1

2

q(t, x)dx qi+ 1
2
(t) ' q(t, xi+ 1

2
) (84)

qi,j(t) ' q(t, xi + ∆xξj) j = 1, . . . , k (85)

A solution operator for linear advection ∂tq + c∂xq = 0 is easily given:

qi+ 1
2
(t) = qrecon(xi+ 1

2
− ct) =

{
qrecon,i(∆x/2− ct) c > 0, ct < ∆x

qrecon,i+1(−∆x/2− ct) c < 0, |c|t < ∆x
(86)
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A solution operator for scalar conservation laws based on a fixpoint iteration to find
the characteristic is given in [Bar21] for any order of accuracy. To this end, the equation
for the foot point x0 of the characteristic

x0 + f ′(qrecon(x0))t = xi+ 1
2

(87)

is solved iteratively:

x
(0)
0 := xi+ 1

2
(88)

x
(`)
0 := xi+ 1

2
− f ′(qrecon(x

(`−1)
0 ))t ` = 1, . . . , `max (89)

An approximate solution operator is

qi+ 1
2
(t) ' qrecon(x

(`max)
0 ) = q(t, xi+ 1

2
) +O(t`max+1) (90)

A third order accurate evolution operator for hyperbolic systems of conservation laws
can also be found in [Bar21], and an approximate evolution operator for inhomogeneous
problems has been given in [BBK21],[BB20].

4.2 Time integration and stability conditions

The high-order extension via additional point values allows to use the very successful leap-
frog-type integrator of the traditional Active Flux method.

For linear advection ∂tq+ c∂xq = 0 with c > 0, the algorithm extending (20)–(21) thus
reads

q
n+ `

M−1

i+ 1
2

= qnrecon(xi+ 1
2
− cζ`∆t) ` = 1, . . . ,M − 1 (91)

qn+1
i,j = qnrecon(xi + ∆xξj − c∆t) j = 1, . . . , N − 3 (92)

q̄n+1
i = q̄ni −∆t

M−1∑
`=0

ω`
f(q

n+ `
M−1

i+ 1
2

)− f(q
n+ `

M−1

i− 1
2

)

∆x
(93)

Here, M is the number of points in the time-quadrature approximating the time-step-
averaged flux

1

∆t

∫ ∆t

0

f(qi+ 1
2
(t))dt '

M−1∑
`=0

ω`f(q
n+ `

M−1

i+ 1
2

) (94)

(with ζ0 = 0, ζM−1 = 1), and {ω`}`=0,...,M−1 the corresponding weights. It is natural to

use a Gauss-Lobatto quadrature here. Clearly, q
n+ `

M−1

i+ 1
2

' qi+ 1
2
(∆tζ`). Note that we use

the notation q
n+ `

M−1

i+ 1
2

to denote intermediate values, but we do not actually insist on them

being equidistant in time. See Figure 20 for an example.
Note that according to the definition of qrecon in (82) the foot of the characteristic in

(92) is evaluated in the “correct” cell: if

∆xξj − c∆t > −
∆x

2
(95)
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Figure 20: Two point values located symmetrically ξ2 = −ξ1 (fifth order method) with
M = 5 equidistant quadrature points in time. Lower panel shows stability as a function of
the location of the right internal point value (ξ2) and the CFL number (black = stable).
The noise in the central and right figure has to do with the sampling and with one of
the eigenvalues being exactly one; physical stability regions (i.e. those combinations of
point location and CFL for which the foot of the characteristic is actually in the cell whose
reconstruction is used in the update) are to the left, between and to the right of the red
lines, respectively. One observes that actual stability also occurs outside the region of
physical stability, while certain parameter choices inside the physical stability region turn
out to be actually unstable.

then information is taken from cell i, otherwise, for

∆xξj − c∆t ≤ −
∆x

2
(96)

from cell i− 1, (see Figure 20).
This guarantees optimal stability, as can be seen in Figure 20 for 5th order, which shows

stability analysis associated to different cases: for small CFL numbers, both characteristics
used in the update of the internal point values have their foot points in the same cell; for
intermediate CFL numbers, one of them reaches out into the neighbouring cell, and for
large CFL numbers, the foot points of both are in the neighbouring cell. One observes that
taken together, these yield a stability result valid for all CFL numbers between 0 and 1.
At the same time, one remarks that, surprisingly, the location of the internal point values
is not arbitrary. For stability, the internal point values have to be distributed fairly close
to the cell interfaces, with ξ1 = −ξ2 & 0.4. We are not aware of a simple reason that would
explain this finding. Once inside the stable domain, we do not find the precise location of
the point values to have a visible influence on the simulation results.

At the same time, from Fig. 20 (middle) one deduces that the case of only one of the
characteristics reaching out into the left cell is stable even outside the physical region of
stability.
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4.3 Transonic upwinding

We use the same algorithm as the one described in [Bar21]; the reader is referred to this
work for more details. In short, for scalar conservation laws, the iterative approximation
to the foot point of the characteristic passing through xi+ 1

2
at time t is initialized with two

values (qn
i− 1

2

and qn
i+ 3

2

instead of qn
i+ 1

2

), see Equation (88). Every iteration increases the

order of accuracy of the evolution operator by one. After a sufficient number of iterations,
the speeds of the two estimated characteristics are compared, and the one with the largest
speed in absolute value is selected. This treatment of the transonic case does not affect
the accuracy of the evolution operator. For systems, the approximate evolution operator
is evaluated at different initialization locations. Then, the one with the largest sum of
absolute values of the eigenvalues is chosen; for further details the reader is again referred
to [Bar21].

4.4 Limiting

The limiting strategy is to check whether the reconstruction exceeds the minimum/maxi-
mum of {q̄i, qi± 1

2
} ∪ {qi,j}j=1,...,k, and to use a parabolic/power law reconstruction in that

case. As a consequence, the internal point values are successively ignored until for the
parabolic/power law reconstruction only the point values at cell interfaces contribute. This
latter part is again the limiting strategy from [Bar21], as described in Section 2.2.

As it is too costly to evaluate the presence of local extrema analytically for high order
polynomials, the value of the reconstruction is checked at 10 locations inside the cell.

4.5 Numerical results

4.5.1 Linear advection

For linear advection with speed 1, the initial data (59) are evolved using a CFL number of
0.5 on grids covering [0, 1]. For 5th order accuracy, two additional points values located at
ξ1,2 = −0.415, 0.415 were used, as well as a Gauss-Lobatto quadrature for (94) with M = 4
points in time. For 7th order, 4 additional points were located at {−0.48,−0.41, 0.41, 0.48},
and the Gauss-Lobatto quadrature used M = 5 points in time. The exact evolution
operator (20) is used. The setup is run without limiting. Figure 21 shows the experimental
convergence at time t = 0.01.

4.5.2 Burgers’ equation

For Burgers’ equation we consider again transonic initial data (60) on a grid of 100 cells
covering [0, 1]. Figure 22 shows the numerical solution at time t = 0.1 after shock formation.
A CFL number of 0.5 has been used. For 5th order accuracy, two additional points values
located at ξ1,2 = −0.415, 0.415 were used, as well as a Gauss-Lobatto quadrature for
(94) with M = 4 points in time. For 7th order, 4 additional points were located at
{−0.48,−0.41, 0.41, 0.48}, and the Gauss-Lobatto quadrature used M = 5 points in time.
In both cases, the approximate evolution operator (88)–(89) was used, with an adequate
number of fixpoint iterations according to (90).
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Figure 21: Convergence of the the high order extension of Active Flux via additional point
values for linear advection. Left : L1 error of the point values. Right : L1 error of the
averages.

Figure 22: Numerical evolution of Gaussian initial data for Burgers’ equation at time
t = 0.1. Left : Point values. Right : Averages.
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Figure 23: Convergence of the the high order extension of Active Flux via additional point
values for Burgers’ equation. Left : L1 error of the point values. Right : L1 error of the
averages.

Figure 23 shows convergence results at time t = 0.01 prior to shock formation. Here,
limiting has not been used, but the transonic upwinding was following the procedure de-
scribed in 4.3.

4.5.3 Euler equations

The Sod shock tube is evolved on a grid of 100 points covering [0, 1], using a CFL number
of 0.5. The additional point values are located at ξ1,2 = ±0.415, the flux quadrature
(94) is performed using a Gauss-Lobatto rule involving M = 4 points in time, a setup
corresponding to 5th order accuracy. The approximate evolution operator is described in
[Bar21]. It is formally third order accurate only; however, this can be seen in parallel to the
common usage of low order time integrators (e.g. RK3) for spatially high order methods.
An extension of the approximate evolution operator from [Bar21] to higher order does not
seem generally impossible, but for now remains subject of future work. Numerical results
at t = 0.1 are shown in Figure 24.

5 High order via further moments

Finally, it is possible to interpret Active Flux in a way closer to Finite Element methods,
by declaring higher moments to be new degrees of freedom in a high-order version. It is
thus a complementary view to the previous section.

Define the p-th moment as

q
(p)
i := Ap

∫ ∆x
2

−∆x
2

xpq(t, xi + x) dx (97)

The normalization Ap = (p+1)2p

∆xp+1 is chosen such that q(t, x) ≡ 1 implies q(p) = 1 ∀p ∈ 2N0.
The first values are (Ap)p =

(
1

∆x
, 4

∆x2 ,
12

∆x3 ,
32

∆x4 ,
80

∆x5 , . . .
)

(sequence A001787 in the Online
Encyclopedia of Integer Sequences (OEIS)).
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Figure 24: Numerical evolution of the Sod shock tube at time t = 0.1 using the high order
extension of Active Flux via additional point values. Left : Point values. Right : Averages.

With k moments, every cell has access to k + 2 pieces of information and thus, a
polynomial reconstruction of degree k + 1 can be constructed in every cell. The order of
accuracy of the method is thus expected to be k + 2. As the point values are shared, on
average there are k+ 1 degrees of freedom per cell. The global reconstruction remains C0.

5.1 Update of the moments

Multiplying (1) by xp and integrating yields the evolution equation for the moments:

Ap

∫ ∆x
2

−∆x
2

xp∂tq dx+ Ap

∫ ∆x
2

−∆x
2

xp∂xf(q) dx = 0 (98)

d

dt
q

(p)
i + Ap

((
∆x

2

)p
f(qi+ 1

2
)−

(
−∆x

2

)p
f(qi− 1

2
)

)
− pAp

∫ ∆x
2

−∆x
2

xp−1f(q) dx = 0 (99)

d

dt
q

(p)
i + (p+ 1)

f(qi+ 1
2
)− (−1)pf(qi− 1

2
)

∆x
− pAp

∫ ∆x
2

−∆x
2

xp−1f(q) dx = 0 (100)

For p = 0 one just has the usual equation for the average q̄i ≡ q
(0)
i

d

dt
q

(0)
i +

f(qi+ 1
2
)− f(qi− 1

2
)

∆x
= 0 (101)

For linear flux f(q) = cq, the integral in (100) can be expressed as a moment of one
order less:

d

dt
q

(p)
i + (p+ 1)c

qi+ 1
2
− (−1)pqi− 1

2

∆x
− 2(p+ 1)

∆x

p2p−1

∆xp
c

∫ ∆x
2

−∆x
2

xp−1q dx = 0 (102)

d

dt
q

(p)
i + (p+ 1)c

qi+ 1
2
− (−1)pqi− 1

2

∆x
− 2(p+ 1)

∆x
cq

(p−1)
i = 0 (p ≥ 1) (103)
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such that, for example, the first three moments thus evolve according to

d

dt
q

(0)
i + c

qi+ 1
2
− qi− 1

2

∆x
= 0 (104)

d

dt
q

(1)
i + 2c

qi+ 1
2

+ qi− 1
2

∆x
− 4

∆x
cq

(0)
i = 0 (105)

d

dt
q

(2)
i + 3c

qi+ 1
2
− qi− 1

2

∆x
− 6

∆x
cq

(1)
i = 0 (106)

Observe that the evolution of the moments is exact (up to a possible quadrature error
upon evaluating the integral in (100) in case of a nonlinear f). Apart from quadrature
errors, the accuracy of the method is determined entirely by the choice of the point value
update.

Definition 5.1 (Active Flux with higher moments). The Active Flux method with higher
moments is the following semi-discretization

d

dt
q

(p)
i = −(p+ 1)

f(qi+ 1
2
)− (−1)pf(qi− 1

2
)

∆x
+ pAp

∫ ∆x
2

−∆x
2

xp−1f(q) dx p = 0, . . . , k

d

dt
qi+ 1

2
(t) = −R

(
qi− 1

2
(t), q

(0)
i (t), . . . , q

(k)
i (t), qi+ 1

2
(t), q

(0)
i+1(t), . . . , q

(k)
i+1(t), qi+ 3

2
(t)
)

i ∈ Z, k ≥ 0

(107)

of (1) with Ap = (p+1)2p

∆xp+1 and the interpretations

q
(p)
i (t) ' Ap

∫ x
i+ 1

2

x
i− 1

2

xpq(t, x)dx qi+ 1
2
(t) ' q(t, xi+ 1

2
) (108)

and R a consistent approximation of ∂xf(q) at xi+ 1
2
.

5.2 Update of the point values

We propose to update the point value with a finite difference approximation to the deriva-
tive, obtained as the derivative of the reconstruction. This means that this finite difference
has a compact stencil, and only involves the degrees of freedom of one of the adjacent cells.

For an N -th order accurate method, define the unique polynomial qrecon,i :
[
−∆x

2
, ∆x

2

]
→

Rm of order N − 1 fulfilling

qrecon,i

(
±∆x

2

)
= qi± 1

2
Ap

∫ ∆x
2

−∆x
2

xpqrecon,i(x) dx = q
(p)
i p = 0, . . . , N − 3 (109)

For example, the lowest order polynomial with given values qi± 1
2

and moments 0 through
2 is

1

16
qi+ 1

2
(2ξ + 1)(3− 30ξ − 60ξ2 + 280ξ3) +

1

16
qi− 1

2
(2ξ − 1)(−3− 30ξ + 60ξ2 + 280ξ3)

(110)

+(2ξ − 1)(2ξ + 1)

(
15

16
q(0)(28ξ2 − 3)− 15

2
q(1)ξ − 35

16
q(2)(20ξ2 − 1)

)
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where ξ = x/∆x.
A finite difference approximation to the derivative at x = ∆x

2
is obtained by evaluating

(∂xqrecon,i)
(

∆x
2

)
. It necessarily is a linear function of qi+ 1

2
, qi− 1

2
, q

(0)
i , . . . , q

(N−3)
i and therefore

can be written as

1

∆x

(
b 1

2
qi+ 1

2
+ b− 1

2
qi− 1

2
+

N−3∑
j=0

b
(j)
0 q

(j)
i

)
= q′(xi+ 1

2
) +O(∆xN) (111)

Notation 5.1. A finite difference approximation of the form (111) shall be depicted graph-
ically as follows:

1

∆x

(
b 1

2
qi+ 1

2
+ b− 1

2
qi− 1

2
+

N−3∑
j=0

b
(j)
0 q

(j)
i

)
=

b
(N−3)
0

...

b
(1)
0

b
(0)
0

b− 1
2

b 1
2

(112)

Observe the consistency of the notation with that introduced in (38). Note that, again, the
double vertical line indicates the cell interface at which the finite difference formula is an
approximation of the derivative to the given order.

The finite differences constructed in the way described above are unique for every order
of accuracy; to lowest orders they read3

MD3 =
−6

2 4
MD5 =

−35
−15
15

4 16

MD7 =

−693
4

−315
4

315
2

105
2

−105
4

6 36

(113)

Note that the coefficients of even moments and point values have to add up to 0. For
linear advection ∂tq + c∂xq = 0 for positive c, the update with MD5 amounts to

∂tqi+ 1
2

= −c
4qi− 1

2
+ 15q

(0)
i − 15q

(1)
i − 35q

(2)
i + 16qi+ 1

2

∆x
(114)

For seventh order, the derivative approximation is MD7

3
8qi− 1

2
− 35q

(0)
i + 70q

(1)
i + 210q

(2)
i − 105q

(3)
i − 231q

(4)
i + 48qi+ 1

2

4∆x
(115)

Define again by D∗ the flipped version of the finite difference D as follows:

3MD is supposed to mean moment difference.
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D =

b
(N−3)
0

...

b
(2)
0

b
(1)
0

b
(0)
0

b− 1
2

b 1
2

D∗ =

±b(N−3)
0
...

−b(2)
0

b
(1)
0

−b(0)
0

−b 1
2

−b− 1
2

(116)

Observe that upon a reflection of space x 7→ −x, the sign of the derivative changes, but
also that of odd moments.

These flipped finite differences can of course be obtained by evaluating the derivative
of the polynomial reconstruction at −∆x

2
and by performing an index shift. For example,

the derivative of (110) at ∆x
2

is

4qi− 1
2

+ 15q
(0)
i − 15q

(1)
i − 35q

(2)
i + 16qi+ 1

2

∆x
(117)

while the one at −∆x
2

is

−4qi+ 1
2
− 15q

(0)
i − 15q

(1)
i + 35q

(2)
i − 16qi− 1

2

∆x
(118)

Given these finite differences, the semi-discrete method is Equations (100) and

d

dt
qi+ 1

2
(t) = −

(
f ′(q̃i+ 1

2
)+D + f ′(q̃i+ 1

2
)−D∗

)
(119)

The point value update is thus in close analogy to (47), with D now being one of the
moment differences (113).

5.3 Time integration and stability results

Equations (100) and (119) constitute a system of ODEs that we propose to integrate in
time using e.g. SSP-RK3. For linear advection, MD5 is found to be stable for CFL ≤ 0.13
when using RK3 (see Section A). Experiments also suggest stability CFL < 0.17 for RK5.
For MD7, RK3 yields stability until CFL ≤ 0.066 (experimentally, CFL ≤ 0.1 for RK7).

5.4 Limiting

As in the previous versions, we propose to gradually decrease the order of the method
upon detection of oscillations. The finite differences employed in the point value update
are constructed by differentiating4 a reconstruction. If the reconstruction is found to be
non-monotone, the highest moment is neglected and a reconstruction of lower polynomial
degree considered, until one either arrives at a monotone reconstruction, or at the parabolic
reconstruction that employs the two point values and the average. In case it also is non-
monotone, we propose once more to follow the limiting strategy of [Bar21] by replacing the

4In fact, for the ease of the algorithm we perform the differentiation numerically.
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Figure 25: Convergence of the the high order extension of Active Flux via higher moments
for linear advection. Left : L1 error of the point values. Right : L1 error of the averages.

parabola by a power law (27)–(28), whenever a monotone reconstruction is at all possible.
Their derivatives at cell interfaces are given in (55)–(56). For polynomials of degree higher
than 2, monotonicity is checked approximately upon evaluation of the polynomial at 5
locations inside the cell.

5.5 Transonic upwinding

We employ the same choice of q̃i+ 1
2

as in Section 3.3.

5.6 Numerical results

5.6.1 Linear advection

Convergence results for linear advection with speed 1 are shown in Figure 25. Here, limiting
is not used, and as before a very small CFL number of 10−4 is used with RK3 in order for
the error to be dominated by that of spatial discretization. The initial data are again (59).

5.6.2 Burgers’ equation

Figure 26 shows the numerical evolution of transonic initial data (60) for Burgers’ equation
for high order Active Flux via higher moments at t = 0.1. The grid consists of 100 cells
covering [0, 1] and the CFL number is 0.01. Limiting is used, as is the transonic upwinding
modification. The shock is resolved well and no artefacts at the sonic point are visible.

Figure 27 shows the experimental order of convergence for initial data (59) at time
t = 0.01, before the formation of a shock. No limiting is used, and the CFL number
is again 10−4 (RK3) in order to ensure that the error is dominated by that of spatial
discretization.

5.6.3 Euler equations

Finally, a Sod shock tube is solved on a grid of 100 cells covering [0, 1]. The initial disconti-
nuities are located at x = 1

3
and x = 2

3
, such that it is possible to use periodic boundaries.
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Figure 26: Numerical evolution of Gaussian initial data for Burgers’ equation at time
t = 0.1. Setup as in Section 3.5.2. Left : Point values. Right : Averages.

Figure 27: Convergence of the the high order extension of Active Flux via higher moments
for Burgers’ equation. Left : L1 error of the point values. Right : L1 error of the averages.
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Figure 28: Numerical evolution of the Sod shock tube at time t = 0.1. Left : Point values.
Right : Averages.

The numerical method employed is of 7th order accuracy in space; time integration is
performed using RK3 with a CFL number of 0.01.

6 Higher order via higher derivatives

Yet another high-order extension of Active Flux is presented in [Roe21], where spatial
derivatives are stored at cell interfaces. When in every cell an average is stored, and
at every cell interface a point value and derivatives of order ≤ s, the modified Hermite
interpolation problem gives rise to a polynomial P 2s+2 in every cell, and simultaneously
augments the global regularity of the reconstruction to Cs. The average number of degrees
of freedom per cell is only s + 2 and the order of the scheme is no higher than 2s + 3.
More information is stored at the cell interfaces, which reduces the memory requirements
of the method. Note, though, that the spatial derivatives cannot be used to increase the
order of accuracy for the flux quadrature in time. Also, the evolution of spatial derivatives
may be cumbersome, and the extension of the approach to multiple spatial dimensions at
the moment remains unexplored. The approximate evaluation of the Schur-Miller criterion
(Section A) suggests that, for linear advection, the 5th order version of this method is
stable up to CFL = 1.

7 Conclusions and outlook

Active Flux, as it was presented so far since its first appearance in [vL77], was restricted
to third order accuracy. During this time, the degrees of freedom of Active Flux in one
sptial dimension always have been a cell average and a point value at every cell interface,
which means that a parabola could naturally be used as a reconstruction in each cell.
Third order accuracy has been so natural, that any attempt to go beyond third order must
question the current foundations of the method, the understanding of “what” Active Flux
is. In this paper, we associate three choices of an extension to higher order with three
different interpretations of Active Flux. In all these interpretations we, however, have
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maintained two special properties of Active Flux, that we consider to be its distinctive
features: continuity of the approximation and the presence of point values and cell averages
among the degrees of freedom. The solution is considered globally continuous and, contrary
to Godunov methods, Riemann Problems are never introduced in order to compute a
numerical flux. The presence of point values (whose update includes upwinding) ensures
stability, and allows to use non-conservative formulations of the equations for their update.
At the same time, the presence of an average that is updated conservatively ensures the
correct approximation of weak solutions.

The first view of Active Flux presented in this paper is that of a coupled Finite Vol-
ume/Finite Difference method (A) with a cell average updated according to the Finite
Volume approach and point values, whose update includes finite difference approximations
on a stencil whose size depends on the order of accuracy. The second view is that of an
enriched Finite Volume method (B), with a cell average, and point values not only on cell
interfaces but also inside the cell. The third view is that of a coupled Finite Element/Finite
Difference method (C), with degrees of freedom being moments of the solution (starting
with the average) and point values at cell interfaces that are used to update the moments.

The three high order extensions have very different properties. The characteristics-
based update of the point values inside the cell for the variant B is the one that is most
unorthodox, but also the one with the best stability properties. It is also closest to the
time integration employed in the original Active Flux method. The usage of moments
(variant C) as additional degrees of freedom maintains the elegance of a compact stencil
and is the best candidate for further extensions, but also has the smallest CFL numbers
among the considered variants. Both the variant A and C come at the advantage that their
application to any hyperbolic system is immediate, and not even a solution of a Riemann
Problem is required.

Future work will be devoted to an extension of these methods to multiple spatial di-
mensions. As the Active Flux method is fairly recent (at least for nonlinear problems),
certain questions that might seem settled for Finite Volume methods are still far from being
conclusively answered for Active Flux. This concerns limiting as well as the convergence
to the correct entropy solution. Although this paper presents viable approaches, more
theoretical studies will be necessary, which surely will bring further improvements.
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A Stability analysis

On equidistant Cartesian grids with xi = i∆x, consider inserting a Fourier mode5 q̂ exp(iKx)
with q̂ ∈ Cm, K ∈ R as data at time tn. This means for point values

qn
i+ 1

2
= q̂ exp

(
iK

∆x

2

)
exp(iKi∆x) =: q̂p exp(iKi∆x) (120)

qn
i+ 3

2
= q̂p exp(iK∆x) exp(iKi∆x) (121)

qn
i− 1

2
= q̂p exp(−iK∆x) exp(iKi∆x) (122)

Thus, every shift by one grid cell appears as an algebraic factor of exp(iK∆x) =: tx:

qi+ 3
2

= qi+ 1
2
tx qi− 1

2
= qi+ 1

2
t−1
x etc. (123)

Similarly, for cell averages one finds

q̄i = q̂
1

∆x

∫ xi+
∆x
2

xi−∆x
2

exp(iKx) dx = q̂
1

∆x
exp(iKi∆x)

exp
(
iK∆x

2

)
− exp

(
−iK∆x

2

)
iK

(124)

= q̂ sinc

(
K

∆x

2

)
exp(iKi∆x) =: q̂a exp(iKi∆x) (125)

with sincx := sinx
x

. Therefore, again,

q̄i+1 = q̄itx q̄i−1 = q̄it
−1
x etc. (126)

The very same happens for moments.
Thus, any linear finite difference formula involving point values and moments can be

written as a linear combination of just the point value and moments associated to one cell.
For example, the update

q̄n+1
i = q̄ni −

c∆t

∆x
(qi+ 1

2
− qi− 1

2
) (127)

5i is the maginary unit
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of q̄i for linear advection upon inserting a Fourier mode reads

q̄n+1
i = q̄ni −

c∆t

∆x
qi+ 1

2
(1− t−1

x ) (128)

In general therefore, any of the three high-order versions of Active Flux presented in
this paper can be written as

Qn+1 = AQn (129)

with A ∈ C(2+N1+N2)×(2+N1+N2) a complex-valued matrix that depends on tx, and thus on
K, and

Qn :=
(
qn
i+ 1

2
, q̄ni , q

(1)
i , q

(2)
i , . . . , q

(N1)
i , qi,1, qi,2, . . . , qi,N2

)
N1, N2 ∈ N0 (130)

For the high-order Active Flux via larger stencils, N1 = N2 = 0; for high-order Active Flux
via further point values, N1 = 0 and for high-order via further moments, N2 = 0.

L2, or von Neumann stability, requires the eigenvalues of A to be contained in the
closed unit disk {z ∈ C : |z| ≤ 1} for all values of K ∈ [−π, π]. With the help of the
following theorem, this property can be checked more easily than by actually computing
the eigenvalues:

Definition A.1. Given a polynomial f ∈ C[z], f(z) =
∑n

j=0 ajz
j, aj ∈ C with an 6= 0 and

f(0) 6= 0, define

f ∗(z) :=
n∑
j=0

ān−jz
j f1(z) :=

f ∗(0)f(z)− f(0)f ∗(z)

z
(131)

f ′, as usual, denotes the derivative of f with respect to x, while ā denotes the complex-
conjugate of a ∈ C.

Theorem A.1 (Schur). A polynomial f ∈ C[z] of degree ≥ 1 has all its zeros contained in
the unit disc, iff either

• |f ∗(0)| > |f(0)| and either f1 has all its zeros contained in the unit disc or f1 is a
non-vanishing constant, or

• f1 ≡ 0 and either f ′ has all its zeros contained in the unit disc or f ′ is a non-vanishing
constant.

Note that the recursion is sure to stop, as both f1 and f ′ are of one degree lower than
f . This theorem was proved in [Sch17, Sch18]; its algorithmic form was given in [Coh22],
and then in [Mil71], where its usefulness for stability analysis was emphasized.

Note that still this property needs to be guaranteed for all K. However, the Theorem
A.1 is easily amenable to an implementation which will, for any polynomial, state whether
its zeros are contained in the closed unit disc up to machine error. We then propose
to sample the domain of K, as well as any other parameters on which A might depend
(in particular ∆t). This allows to obtain stability results which we find very reliable in
practice.

For the high-order extension of Active Flux via larger stencils, Figures 6–15 show the
thus obtained stability regions in the plane spanned by the CFL number and the free
parameter.
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