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Hierarchical null controllability of a semilinear degenerate
parabolic equation with a gradient term

Landry Djomegne *  Cyrille Kenne T René Dorville *  Pascal Zongo ®
September 25, 2022

Abstract

In this paper, we apply the hierarchical strategy to a semilinear weakly degenerate parabolic
equation involving a gradient term. We use the Stackelberg-Nash strategy with one leader which
tries to drive the solution to zero and two followers intended to solve a Nash equilibrium corre-
sponding to a bi-objective optimal control problem. Since the system is semilinear, the functionals
are not convex in general. To overcome this difficulty, we first prove the existence and uniqueness
of the Nash quasi-equilibrium, which is a weaker formulation of the Nash equilibrium. Next, with
additional conditions, we establish the equivalence between the Nash quasi-equilibrium and the
Nash equilibrium. We establish a suitable Carleman inequality for the adjoint system and then an
observability inequality. Based on this observability inequality, we prove the null controllability
of the linearized system. Then, due to the Kakutani’s fixed point Theorem, we obtain the null
controllability of the main system.

2010 Mathematics Subject Classification. 35K55; 35K65; 91A65; 93B05; 93C20.
Key-words : Degenerate parabolic system; Carleman inequality; Null controllability; Stackelberg-
Nash strategy.

1 Introduction
Let Q = (0,1) C R. Let w, wy and wy be three nonempty subsets of Q with w; Nw =0, i = 1,2.

For the real number T > 0, we denote Q = (0,T) x Q, wr = (0,T) X w, w17 = (0,T) X wy and
wor = (0,T) x wy. We are interested in the following degenerate semilinear parabolic equation:

v — (a(2)yz), + F(y,yz) hxw + v Xw, +0%Xw, In Q,
y(t,0) =y(t, 1) 0 on (0,7), (1.1)
y(0,) = ° in

where y = y(t, z) denotes the state, v' = v'(¢, ), i = 1,2 and h = h(t, z) are different control functions
whose act on the system through the subsets w; and w respectively. These functions v* and h represent
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respectively the followers and leader controls. Here, x4 denotes the characteristic function of the set
A. The function y° € L?(Q) is the initial data. We denote by y; := % and y, = %, the partial
derivative of y with respect to ¢t and x respectively.

The function a := a(-) represents the dispersion coefficient and we assume that it satisfies the
following hypothesis

a € C([0,1])NC((0,1]), a>0in (0,1] and a(0) = 0, (1.2)
Ir €[0,1) : zd'(z) < 7a(z), x €[0,1]. :
For further need, we consider as in [18] a function 8(x) such that
@ € L>®(Q). (1.3)

Assumption 1.1 The function F : R x R — R satisfies the following:
(Hl) F(0,0) =0,
(Hy) F € C*(R x R),
(Hs) there exists K > 0: |F(s,p) — F(s,p')| < K[|ls—=¢§'|+|p—0]], Vs,s,p,p' € R, i.e. Fisa
globally Lipschitz function,
(Hy) F(s,p) = Fi(s,p)s + Fa(s,p)p, for every (s,p) € R?,
1

Hs) th ists My > 0: |F
(Hs) there exists My > |1(S’p)|+ﬁ(:1:)

|F2(s,p)| < My, V(s,p) € R?,

2 2
(Hg) AMy>0: Y |D;F(s,p)| + Y |D}F(s,p)| < M, ¥(s,p) € R,

i=1 ij=1
where D;F and D%F are respectively the first and second order partial derivatives of F'.

Remark 1
2
(a) From (1.2), it follows that the function x — 2 s non-decreasing on (0, 1].

a(z)

(b) Using the point (a) and the assumption (1.3) on S(x), we observe that
2 2

B%(x) <% < C 7

a(z) = a(z) ~ a(l)

Then, we deduce that for almost every x € (0,1),

|8(z)| < L+/a(z), where L > 0. (1.5)

These results will be useful in order to prove the existence of the solution for the linearized problem

(2.1).

for a.e x € (0,1) where, C > 0. (1.4)

Remark 2

The system (1.1) can models the dispersion of a gene in a given population. In this case, x represents
the gene type and y := y(t,x) is the distribution of individuals at time t and of gene type x of the
population. Genetically speaking, such a property of degeneracy is natural since it means that if each
population is not of gene type, it cannot be transmitted to its offspring [10].



In this paper, we apply the Stackelberg-Nash strategy introduced in [37] to the system (1.1). It
has been applied for the first time in the context of the control of evolution equations by J. L. Lions
in [27, 28]. In the last years, other authors have used hierarchical control in the sense of Lions, see for
instance [30, 31, 36, 21, 2, 38, 32, 35].

In [7], the authors developed the first hierarchical results in the context of exact controllability
framework for a class of parabolic equations (linear and semi-linear). These results were improved
in [6] by imposing some weak conditions on observations domains for the followers. This same idea
were also applied for the wave equation in [5]. The authors in [4] dealt with the Stackelberg-Nash
exact controllability of parabolic equations with distributed and boundary controls. In the context of
hierarchical strategy for coupled systems, Kéré et al. [25], considered a bi-objective control strategy
for a coupled parabolic equations with a finite constraints on one of the states. The authors in [23]
and [22] studied a Stackelberg-Nash strategy for a cascade system of parabolic equations.

More recently in [33], J. Limaco et al. applied the Stackelberg-Nash strategy to a coupled quasi-
linear parabolic system with controls acting in the interior on the domain. N. Carreno and M. C.
Santos in [13] applied the Stackelberg-Nash strategy to the Kuramoto-Sivashinsky equation with a
distributed leader, and two followers. In [34], the author studied the Stackelberg-Nash strategy for a
non linear parabolic equation in an unbounded domain. In [24], D. N. Huaman applied the Stackelberg-
Nash strategy to control a quasi-linear parabolic equations in dimensions 1, 2 or 3. Recently, in [9],
the authors applied the hierarchical control to the anisotropic heat equation with dynamic boundary
conditions and drift terms.

In all the above cited works, the hierarchic strategy were applied to non degenerate systems. To
the best of our knowledge, the only work dealing with hierarchical strategy applied to a degenerate
equation is the one in [3], were the authors studied the Stackelberg-Nash strategy for both linear and
semilinear degenerate parabolic equations. Here, the non linearities involve the first derivative. This
inclusion of a first-order term in the expression of F in (1.1) has not been addressed before to our best
knowledge.

In this paper we are interested in the Stackelberg-Nash null controllability strategy for the degener-
ate problem with a gradient term (1.1). To be more specific, for i = 1,2, we introduce the non-empty
open sets w; ¢ C {1, representing the observation domains of the followers, and the fixed target functions
yia € L2((0,T);w; q). Let us define the following cost functional

. T T _
Ji(h; vt v?) = %/ / ly — yi.al® dedt + Hi / |v'? dadt, i = 1,2, (1.6)
2 0 Wi,d 2 0 wi
where a; and p; are two positive constants.
We aim to choose the controls v* and h in order to achieve two different objectives:

e The main goal is to choose h such that the following null controllability objective holds:
y(T, - h;vt,v?) = 0in Q. (1.7)

e The second goal is the following: given the functions y; 4 and h, we want to choose the control
v® minimizing J; given by (1.6). This means that, throughout the interval (0,T), the control v
will be chosen such that:

the solution y(¢, x; h;v!,v?) of (1.1) remains "not too far” from a desired target y; 4(t, )
in the observability domain w; 4, % =1, 2.
(1.8)



Our goal is to prove that, for any initial data y € L?(€2), there exist a control h € L?(wr) (called
leader) and an associated Nash equilibrium (9',92)" = (91 (h),9%(h))! € H = L*((0,T); L*(wy)) x
L2((0,T); L*(w2)) (called followers) such that the associated state y of system (1.1) satisfies (1.7). To
do this, we follow the Stackelberg-Nash strategy described as follows:

1. For each choice of the leader h, we look for a Nash equilibrium pair for the costs J;, i = 1,2
given by (1.6). That is, find the controls (9%, 9%)" = (d1(h), 9%(h))! € H satisfying

Ti(h;9',6%) < Li(hio',82), Yol € L2((0,T); L (wr)),
J2(h;’017’02) < JQ(h’a f)la 1}2), VU2 € L2((07T)7 LQ(“Q)))
or equivalently
Ji(h; ot 0%) = min 1(h; vt 0%),
o vtEL2((0,T);L2(w1)) R (1.9)
JQ(h;vlvv2): vlav )

min 5
v2€L2((0,T);L?(w2))

2. Once the Nash equilibrium has been identified and fixed for each h, we look for a control i such
that

y(T, - h; 0 (h), 5%(h)) = 0 in Q. (1.10)
Remark 3

a) In the linear case, the functionals J;, i = 1,2 are differentiable and convex and the pair (01, 92) is
( ) 7 3 ) p )

a Nash equilibrium for (J1, J2) if and only if

hyo',9%)(v',0) =0, Vo' e L*((0,T); L*(wy)), o' € L?((0,T); L*(w;)), w1
h;9',9%)(0,0%) =0, Vo € L*((0,T); L*(w2)), ©" € L*((0,T); L*(w;)). '

(b) In the semi-linear framework, the corresponding functionals Ji and Jo are not convex in general.
For this reason, we must consider the following weaker definition of Nash equilibrium.

Definition 1.1
Let the leader control h be given. The pair (v1,9?) is called a Nash quasi-equilibrium of functionals
(J1, J2) if the condition (1.11) is satisfied.

In the case where only a leader control is exerted on w, i.e. v! = v2, the null controllability of the
following degenerate diffusion equation, has been already investigated

Wi — (W), + k(t,2)W = h(t,z)xw, (t,2) € Q, ( )
W(t,0)=0if0 <a<1, (1.13)

(W) (t,0)=0if a« > 1, t € (0,T), (1.14)

W(t,1)=0, te(0,7), ( )

W(0,) = Wy(z), x € Q, ( )

where a > 0 and k € L>°(Q). It was shown that the system (1.12)-(1.16) is null controllableif 0 < o < 2
[11, 12, 1], while not null controllable if o > 2 [10]. Note that if 0 < @ < 1, the degeneracy of (1.12) is



weak, while strong if @ > 1. In [19], Flores and Teresa considered the degenerate convection-diffusion
equation
Y — (2%Ys)w + 2°/2b(t, ) ye + k(t, 2)y = h(t,z)xw, (t,2) € Q, (1.17)

with b € L>°(Q) and proved that the system (1.17) and (1.13)-(1.16) is null controllable for 0 < o < 2.
In (1.17), the gradient term depends on « and we said that the convection term can be controlled by
the diffusion term. In [18], the authors presented a null controllability result for the system (1.1) and
(1.14). The main result has been obtained after the proof of a new Carleman inequality for a degenerate
linear parabolic equation with first order terms. F. Xu et et al. in [41] proved the null controllability
of the semilinear degenerate system (1.1) and (1.14) with a(z) = 2%, 0 < o < 2. The authors in [39)],
studied the degenerate convection-diffusion equation with the convection term independent of «

Yo = (%2 )e + (0(t, 2)y)e + k(t, 2)y = h(t, 2)xw, (t2) €Q, (1.18)

and proved that the system (1.18) and (1.13)-(1.16) is null controllable for 0 < o < 1/2. The authors
in [10] considered the degenerate equation

yr — (2%z)z + 0(t, @)y, + k(t, 2)y = h(t, 2)xw, (t,2) € Q, (1.19)

and showed that the system (1.19) and (1.13)-(1.16) is null controllable for 0 < a < 1 if b, by, byy,
by € L*®(Q), i.e. be WZHQ).

1.1 Main results

The next result establish the equivalence between the Nash quasi-equilibrium and the Nash equilibrium
under some additional conditions. More precisely, we have the following result.

Proposition 1.1

Let us assume that a(-) satisfies (1.2), yiq € L=((0,T);w; q) and Assumption 1.1 are satisfied.
Assume that h € L*(wr) and p;, i = 1,2 are sufficiently large. Then, if (9%,9?) is a Nash quasi-
equilibrium for J;, 1 = 1,2, there exists a constant C' > 0 independent of u;, © = 1,2 such that

D} Ji(h; 01, 0%) - (w', w') > Cllw'(|Z2(0.1): 0200y Y0' € L2((0,T); L (wi)), i = 1,2. (1.20)

In particular, the functionals (J1,J2) are convex in (0%,92) and therefore the pair (0',9?) is a Nash
equilibrium for J;, 1 = 1,2 of the system (1.1).

To state the main result of this paper, we impose the following assumptions:
Wi,d = W2,d '=Wq (1.21)

and
wq Nw # 0. (1.22)
The main result of this paper is the following:
Theorem 1.1
Let T > 0 and yo € L*(S2). Suppose that (1.22)-(1.21) holds and p;, i = 1,2 are large enough, a(-)

satisfies (1.2) and the Assumption 1.1 are satisfied. Then, there exists a positive real weight function
k = k(t) blowing up at t =T such that for any y; 4 € L*((0,T);w;.q) satisfying

T
/ / K72 yial? dedt < 400, i=1,2, (1.23)
0 wqg



there exist a control h € L?(wr) and an associated Nash equilibrium (o', 9%) € H = L2((0,T); L*(wy)) x
L2((0,T); L*(ws2)) such that the corresponding solution to (1.1) satisfies (1.10).

The rest of the paper is organized as follows. In Section 2, we introduce some weighted function
spaces needed to establish some well posedness results. Section 3 deals with the proof of existence
and characterization of Nash-quasi equilibrium. Under some conditions, we prove equivalence between
Nash equilibrium and Nash-quasi equilibrium in Section 4. In Section 5, we prove some suitable
Carleman inequalities and we deduce the null controllability result in Section 6. A conclusion is given
in Section 7.

2 Well-posedness result

Throughout this paper, the usual norm in L>°(Q) will be denoted by || - ||c- In this section, we consider
the following linear problem

ye — (a(@)ya), + a0y + B(@)boYs = hXw +0'Xw, +0°Xw, In Q,
y(t,0)=y(t,1) = 0 on (0,7), (2.1)
y(0,-) = ° in

where ag, by € L>®(Q), y° € L*(Q) and hxw, v Xw,, v3Xw, € L?(Q).
The following assumption will help us to prove the existence result of problem (2.1).

Assumption 2.1
Let the constant L be defined by (1.5). Then there exists a constant o > 0 such that

1
ap(t,x) > a for all (t,z) € Q and o > §L2Hb0|\go.

In order to prove the well-posedness of the degenerate system (2.1), we introduce the following
weighted Hilbert spaces (in the sequel, abs. cont. means absolutely continuous):

HX(Q) = {u e L*(Q) : uis abs. cont. in [0,1] : au, € L*(Q), u(0) = u(1) = 0},
endowed with the norm
HUH%I;(Q) = ||U||2Lz(9) + H\/EUJCH%Q(Q)v u€ Hy(Q)

and

H2(Q)={uec HX(Q) : a(z)u, € H(Q)},
endowed with the norm

||U||§13(Q) = ||U||§1;(Q) + (a(@)uz)all72 (-

Next, we set
H = L2((0,7); HL()) ([0, T]; ().

Let (HX(£2))" be the topological dual space of HL(Q). If we set
Wa(0,T) = {p € L2((0, T); HA(Q): pr € L2 (0, T); (HA))) ). (22)
Then W, (0,T) endowed with the norm

1013, 0.y = Il 20,7y 13 ) + 106 1T 2 (0,753 20y (2.3)



is a Hilbert space. Moreover, we have the continuous embedding
Wa(O,T) C C([OuT]vLQ(Q)) (24)

Remark 4
Under the hypothesis (1.2), HX(Q) is compactly embedded in L*(Q) (see [1]).

Let us recall the following existence result retrieved from [29, Page 37].

Theorem 2.1 Let (F,|| - ||r) be a Hilbert space. Let ® be a subspace of F' endowed with a pre-Hilbert
scalar product (((+,+))) and the corresponding norm |||-|||. Moreover, let E : F x® — C be a sesquilinear
form. Assume that the following hypothesis hold:

1. The embedding ® — F is continuous, that is, there is a constant C7 > 0 such that
lellr < Chlllell] V¢ in . (2.5)
2. For all ¢ € ®, the mapping u — E(u,p) is continuous on F.

3. There is a constant Co > 0 such that

E(p, ) = Colll@ll|>  for all ¢ € ®. (2.6)

If o — L(p) is a semi linear continuous form on ®, then there exists a function u € F verifying
E(u,p) = L(p) for all ¢ € .
The weak solution of problem (2.1) is defined as follows.

Definition 2.1 We shall say that a function y € H is a weak solution to (2.1) if the following equality

_/ yq&td:vdt—i—/Qa(x)yqum dwdt—i—/anyqﬁdxdt—i—/gﬁ(x)boquﬁdxdt

(2.7)
= [ (o + 0 s + 0% Xn) & e+ / Y () (0, 2) de,
Q

Q

holds, for every
peV={pecH: ¢ cL*Q), §(T,-) =0inQ}. (2.8)

Remark 5 We observe the following:
(a) The space V endowed with the norm defined by
1911 == 12120, 7;201 (52)) + 60, |72
is a Hilbert space.

(b) If o €V, then ¢y € L*(Q) — L*((0,T); (HX(Q))'). Consequently, $ € W,(0,T). Therefore, ¢(0,-)
and ¢(T,-) exist and belong to L*().

Using Theorem 2.1, the following proposition shows that the problem (2.1) is well posed.



Proposition 2.1

Assume that a(-) satisfies (1.2) and Assumptions 1.1 are valid. Let y° € L*(Q2), ao,by € L™=(Q),
h € L*(wr) and (v',v?) € H = L*((0,T); L*(w1)) x L?((0,T); L*(w2)). Then, the system (2.1)
admits a unique weak solution y € H in the sense of Definition 2.1. Moreover, there exists a constant
C = C(T,||aollso, [bo]loc) > 0 such that the following estimation holds:

1y(T, M Z 20y + N9l 720,7): 02 () < C (||U1||2L2(w1,T) 02y + 1Ly + ||y0||2L2(Q)) :
(2.9)

The proof of Proposition 2.1 can be found in the Appendix.
Similar to the linear problem (2.1), we give the definition of weak solution to the semilinear system

(1.1).

Definition 2.2 A function y is called the weak solution of the problem (1.1) if y € H and for any
function ¢ € V, the following equality holds

_/ yqﬁtdacdt—i—/ga(x)quﬁw dxdt—f—/QF(y,yde:vdt

:z(hxw+lewl +UQXWZ)qu:Edt—i—/QyO(x)MO,:C) dx.

(2.10)

The following result of existence and uniqueness of solutions to system (1.1) is proved in the Appendix.

Theorem 2.2
For any y° € L?(Q), h € L*(wr) and (v,v?)* € H, the system (1.1) has a unique weak solution
y € H in the sense of Definition 2.2. .

We state the Hardy-Poincaré inequality which is a standard tool in the analysis of degenerate
systems. The following result is proved in [, Propsition 2.1].

Proposition 2.2 (Hardy-Poincaré inequality)
Assume that a : [0;1] — Ry is in C([0;1]), a(0) = 0 and a > 0 on (0;1]. Furthermore, assume

a(z)

0
_ x
neighbourhood of x = 0. Then, there is a constant C > 0 such that for any z, locally absolutely

1

that a is such that there exists 0 € (0;1) such that the function x — 18 mon-increasing in

continuous on (0;1], continuous at 0 and satisfying z(0) = 0 and / a(z)|2'(x)|? dx < +oo, the
0
following inequality holds

1@2202 r<C ICLZCZ/,TQ x
[ 42k as < [ aw)l @) ar )

x
‘ ) a(x) | . ‘
Moreover, under the same hypothesis on z and the fact that the function x — —5= is non-increasing
x

on (0:1], then the inequality (2:11) holds with T = s



3 Characterization of Nash quasi-equilibrium

In this section, we give the following characterization of Nash quasi-equilibrium pair (see Definition
1.1) (9%, ©2) of system (1.1) for functionals J;, i = 1,2 given by (1.6).

Proposition 3.1
Let h € L?(wr) and assume that p;, i = 1,2 are sufficiently large. Let also (9, 9?) € H be the
Nash quasi-equilibrium pair for (J1,J2). Then, there exist p* € H such that the Nash quasi-equilibrium
pair (91,9?) € H is characterized by
. 1
'=——p" in (0,T)xw;, i=1,2, (3.1)
Hi

where (y,p',p?) is the solution of the following optimality systems

1 1 )
ye = (a(@)ya)y + Fy42) = hxw - Zplxwl - Ep2Xw2 in Q,
y(t,0) =y(t1) = 0 on (0.7), (32)
y(0,) = y° in  Q
and
i i i Dy F(y, ya .
—p; — (a(@)p;), + DiF(y, ya)p' — (ﬁ(:v) [2[37] p ) = o (Y= ¥Yid) Xwra ™ Q,
p'(t,0) =p'(t, 1) =0 on (0,T),
(3.3)
Proof
If (9%, 9?) is a Nash quasi-equilibrium in the sense of the Definition 1.1, then we have

/ / — yi.q)2 dr dt + ,uZ/ / p'v' drdt =0, for all v* € L*((0,T); L*(w;)), (3.4)
Wi, d Wi

where 2° is the solution of

] 3 : Dy F ) JT 7 7 :
it (@(@)d), + DiFe)st + 50 [ 2EE L — o @
24(t,0) = (1) = 0 on (0,7), (3.5)
2*(0,-) 0 in Q
Now, let p’ be the solution of the following (adjoint) system
‘ - - DaF(y,ys)] |
—p; — (a(@)py), + D1F (y,y2)p" — (ﬁ(:v) [%] p ) = (Y= Yid) Xy M Q,
p'(t,0) = p?(t, 195 = 0 on (0,7),
p(T,:) = 0 in Q.

If we multiply the first equation of this latter system by z? solution of (3.5) and we integrate by parts

over (), we obtain
O‘i/ / (y — Yia)z" dxdt = / / 0'p* dx dt.
0 Wi,d 0 w;



Combining this latter equality with (3.4), we obtain

/ / (p' + pid*) dxdt =0, for all v* € L*((0,T); L*(w;)),

from which we deduce (3.1)-(3.3). =
Now, let us consider the following linearized systems for (3.2)-(3.3)

1 1 .
yr — (a(2)ys), + ary + B(x)agys = hxw — Eplxwl - Ezﬂxwg in Q,
y(t,0) =yt 1) = 0 on (0,7), (3:6)
y(0,-) = o° in Q
and ) ) ) ) .
—p; — (a(gc)p;)z + blp? - (B(z) .2pl)z = o (Y — Yi,a) Xwiq M Q,
p'(t,0)=p'(t,1) = 0 on (0,7), (3.7)
p'(T,:) = 0 in

where a;,b; € L*°(Q), i =1,2.
Next, we consider the adjoint systems for (3.6)-(3.7).

—pr = (a(2)ps), + arp — (B(z)azp)e = 1P Xwy, + @20 Xwsy I Q,
p(t,0) =p(t,1) = 0 on (0,7), (3.8)
p(T,) = p" in Q
and 1
Vi = (a@)i), + v+ B@bayy = e i Q,
P(t,0) =9, 1) = 0 on (0,7), (3.9)
¢'0,:) = 0 in Q

where pT € L%(Q).
Remark 6

1. Notice that the existence and uniqueness of a solution for (3.2)-(3.3) guaranteed by Proposition
2.1 implies the existence and uniqueness of a Nash quasi-equilibrium in the sense of Definition
1.1.

2. Using some ideas of [7, 5/], we can prove the following estimate

2
I(ﬁl,ﬁz)IIHSC( sl L2((0,7) < Ol L2 ) (3.10)

i=1

where C = C(]la1||oos ||a2]| 0o, Ts 1, x2) s a positive constant.

4 On the convexity of J;, i = 1,2

In this section, we prove Proposition 1.1 establishing the equivalence between Nash quasi-equilibrium
and Nash equilibrium in the semilinear case. We recall that

Q;

T
Ji(h; o', 0?) = 7/ / ly — yi.al® dedt + '[;1 / [0 dadt, i =1,2.
0 Wi,d 0 wij
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Proof of Proposition 1.1.

Let h € L%*(wr) be given and let (91,92) be the associated Nash quasi-equilibrium. For any

w',w? € L*(w1,r) and s € R, we denote by y* = (y5,y3) the solution of the following system

y; — (a(x)ys), + F(°,u5) = hxew+ (' +sw')xw, +0°x0, in Q,
y*(t,0) =y°(t,1) = 0 on (0,7),
y*(0,) = 9° in €

and we set y := y*|5=0.
Then, we have

T
Dy Jy(h; o' + swt, 9?) - w? — Dy Jy(h; o', 0%) - w? = sul/ / wlw? dedt
0

w1
T T
+0‘1/ / (Y° —y1,4)2" dedt — ay / / (y — y1,4)7 dxdt,
0 wi,d 0 w14

(4.1)

(4.2)

where 2° is the derivative of the state y* with respect to o' 4 sw in the direction w?, that is 2° is the

solution to

Dy F(y°, y3)

£ = (@), + D+ 00 | 2 L —
2°(t,0) = 2°(t,1) = 0 on (0,7),
z°(0,-) = 0 in Q.
We will also use the notation z := 2°|s—.
Let us introduce the adjoint of (4.3)
S S S S S D F yS, y; S S
—pi — (a(x)ps), + D1F(y°,y2)p° — (ﬁ(:v) [%))} p ) = o1 (¥~ Y1,d) Xer.a
p°(t,0) =p°(t,1) = 0
ps(Tv ) =0

and let us use the notation p := p®|s—o.
Multiplying the first equation of (4.3) by p® and integrating by parts over @, we obtain

T
041/ / (y° — y1,a)2° dxwdt :/ w2psxw1 dxdt.
0 w1,d Q

From (4.2) and (4.5), we have

T
Dy Jy(h; 0 + swh, 0%) - w? — Dy Jy(hy 01, 0%) - w? sul/ / wlw? dzdt
0

w1
T

+ / /(ps—p)w2 dxdt.
0 wi

Note that, the following limits exist

N N
n=lim~(p° —p) and ¢=lim -(y° — )

s—0 8 s—0 s

11
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and verify the following systems:

61— (a(2)6s), + D1 F(y, 3.)6 + B(a) [7

B
gb(t,()()):(b(t,l) _ 0 on (0,7, (4.7)
$(0,-) = 0 in O
and
—nt—(a(iv)m)erDlF(y,ym)n—(ﬁ(iv) [%] 77) +G(p,¢) = udxw,, in Q,
nt,g):n , 1) = 0 on (0,7),
n(Tv) = 0 n Q,
(4.8)
where

G(p, ) = DL F(y,y2)pd + Do F (Y, y2)pdz — (D31 F (Y, y2)pP)e — (D3 F (Y, Y ) Db )

Thus, from (4.6)-(4.8) for w? = w!, we have

T T
D%Jl(h;@l,@2)-(w1,w1):/ / nw' d:vdt—i—ul/ / lw! | dxdt. (4.9)
0 w1 0 w1

From a similar argument as in the proof of Proposition 1.4 [7], we can prove that there exists a
constant C' > 0 independent of h, 7, ¢, w' such that

T
/ / nw' ddt
0 w1

Using (4.10) together with (4.9), we have

S Olean(wLT)- (4]‘0)

DA, 8%) - (0l w') 2 (=€) [ |l dade, V't € L),

1,T

In a similar way, we show that

DRIl %) - (%, 0?) 2 (ua =€) [ PP dad, Vu? € L(ar),

2, T

for another positive constant C independent of pq and ps. For u; sufficiently large, the functional
Ji, i =1,2 given by (1.6) are convex and thus, the pair (9!, %?) is a Nash equilibrium in the sense of
(1.9). [

5 Carleman estimates

The goal of this section is to establish some Carleman estimates for systems (3.8)-(3.9). Let us begin
by introducing some weight functions.

Since wg Nw # O (recall (1.22)), then there exist a non-empty open set 01 € wygNw and a function
o € C%([0,1]) such that
a(0) =o(1) =0,

]’\007 (5.1)

{0(x)>0 in (([),

1)
ox(x) #0 in 1

)

12



where Oy € O; is an open subset. The existence of such a function o is proved in [20].
Let 7 € [0,1) be as in the assumption (1.2) and r,d € R be such that

andd> —— . (5.2)
a(1)(2 = 7)(ex el — 1) 4(e2rlolle — grliol)

(
da(l)2—-7)—-1 ~ 3d
A€ I. For r, d satistying (5.2), we define the following functions:

o(t,z) == 0t)d(x), nt,z):=0Ot)e ™,

Then, the interval I =

] is non-empty (see [3]). Let

T(z) = (ero@ —eZrloll=) - &(t,z) == O()T(x).
Using the second assumption in (5.2) on d, we observe that
d(z) <0, Vrel0,1].

Moreover, we have that ©(t) — +o0 as ¢ tends to 07 and 7'~. Under assumptions (5.2) and the choice
of the parameter A, the weight functions ¢ and ® defined by (5.3) satisfy the following inequalities
which are needed in the sequel:

4
gq)S(PSq) OHQ,
20 < ¢ on Q.

(5.4)

To prove the forthcoming theorems, we use the following Carleman estimate in the degenerate case
proved in [18].

Proposition 5.1
Consider the following system with Gy, G1 € L*(Q) and 27 € L*(Q2),

—Zt — (a(x)zx)z = Go+ (ﬁ(I)Gl)x in  Q,
z(t,0) = 2(t,1) = 0 on (0,T), (5.5)
z2(T,:) = zr in .

Assume that (1.2) and (1.3) are satisfied and let T > 0 be given. Then, there exist two positive
constants C and so, such that every solution of (5.5) satisfies, for all s > sq, the following inequality:

T 2
I(:) < C (/O /O |2 2e2se d:vdt—i—/@ (|G0|2+52@3i(§’)>|01|2> ¢259 d:vdt), (5.6)

I(z)= /Q <3393%22 + s@a(x)zi) e**¢ dx dt (5.7)

and the functions © and ¢ are given by (5.3).

where
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Using this latter proposition, we prove the following result.

Proposition 5.2
Let us consider

—Zt — (CL({E)ZI)E +apz = Ga+ (ﬁ(I)Gl)m in  Q,
z(t,0) = 2(t,1) = 0 on (0,7), (5.8)
z2(T,:) = zr in £,

where G1,G2 € L*(Q), ap € L>®(Q) and zr € L*().
Assume that (1.2) and (1.3) are satisfied and let T > 0 be given. Then, there exist two positive
constants C' and s1, such that every solution of (5.8) satisfies, for all s > s1, the following inequality:

z)<C (/OT /(91 |z|2e5% da dt—l—/@ (|G 1+ S2®3ﬁ(( )) |G1 |2> 259 dg dt) ) (5.9)

where Z(-) is given by (5.7).

Proof. To prove the inequality (5.9), we apply the relation (5.6) with Gy = G2 — apz. Hence,
there are two positive constants C' and sg, such that for all s > sg, the following inequality holds:

2)<C (/OT /(91 |z|2e25 d:vdt—i—/@ (|G0|2 293ﬁ(( ))|G |2> 289 d:vdt) :

On the other hand, using Young’s inequality, we have

/|G0|262wdxdt§2</ |G2|2625“"d:1:dt+|\a0|\§0/ |z|2625“’dazdt>.
Q Q Q

2
x
Now, applying Hardy-Poincaré inequality (2.11) to the function e®¥z, the fact that  — —— is

a(z)

non-decreasing and thanks to the definition of ¢, it follows that

1
|z[2e®?drdt < — |2 259 d dt
(1) Jg
Q

A
)

C

< — e’

< o5 / 2),)? dudt

< £< SN0 T aspy2 d:z:dt+/ a(w)e®*? 23 dﬂ?dt)-
a(l) () Q

Thus,

/|G0|2625“’d:1:dt < 2/ |Go|2e5% dx dt
Q Q

2
—|—2Ha0||§oi </ $2A202 L g2 2 da:dt—|—/ a(x)e?s¥ 22 dxdt) .
a(1) Q a(r) Q

Using the fact that there exists a positive constant M3 such that

1< M30 and ©2% < M303, (5.10)
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we obtain

T 2
I(z) < C / / |z|2e2s“"dxdt+/ |G2|2+s293ﬂ (x)|G1|2> e**¢ dx dt
0o Jou Q a(x)

2
—|—C’0/ <52®3 T 24 @a(x)zi) e da dt.
Q a(r)

Taking s > s; = max(sg, 2C)), we obtain (5.9). This completes the proof. m
The next result is the classical Carleman estimate in a suitable interval (b1, b2) C [0, 1] proved in

[15, 17].

Proposition 5.3
We consider the following system with H, Hy € L*(Qp) and a € C([b1;bs]) is a strictly positive
Sfunction,

{ —z—(a(r)zz)e = Ho+Hp in Qp:=(0,T) x (b1, b2), (5.11)

2(t,b1) = 2(t,b2) = 0 on (0,T).

Then, there exist two positive constants C' and sa, such that every solution of (5.11) satisfies, for all
s > So, the following inequality holds

T
K(z)<C / / $3n3| 2 |%e**® da dt +/ (|Ho|* + $*n*|H[?) e*** dz dt |, (5.12)
0 01 Qb
where
K(z) = / (83222 + sn22)e*® da dt (5.13)
b
and the functions n and ® are defined as in (5.3).
Now, we state and prove the last result of this section.

Proposition 5.4
We consider the following system

(5.14)

{ -zt — (a(¥)22)z +aoz = Hi+H, in Qp:=(0,T) x (b1, b2),
z(t,b1) = z(t,b2) = 0 on (0,7),

where H, Hy € L*(Qp), ap € L=(Q) and a € C°([b1;ba]) is a strictly positive function.
Then, there exist two positive constants C' and s3, such that every solution of (5.11) satisfies the
following inequality holds for all s > s3

T
K(z)<C (/ / s3n3|2|%e**® da dt —|—/ (|H:|* + s*n°|H|?) e**® da dt) , (5.15)
0 01 Qb

where KC() is defined in (5.13).
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Proof. To prove the relation (5.15), we apply the relation (5.12) with Hy = H; — agz. Therefore,
there are two positive constants C' and sq, such that for all s > so, we have

T
K(z) < C / / s3n3|z|2625<bd17dt+/ (1Ho[? + s2n?|H ) €2 da dt
0 O, Qb
+ ||a0||§OC'/ |z|2e%® dx dt.
Qo

Observing that s > 1 and n=! € L>(Qy), it follows from the latter inequality that, there exists C' > 0
such that

T
K(z) < C / / 53773|Z|262S<Ddxdt+/ (L2 + s2n2|H ) €2 da dt
0 01 Qb
+ ||a0||§OC'/ s |22 du dt.
Qo

Choosing s > s3 = max (s2,2[|ag[|2,C) in this latter inequality, we obtain (5.15). This completes the
proof. m

5.1 An intermediate Carleman estimate

In this section, we establish an observability inequality for the adjoint systems (3.8)-(3.9). This in-
equality will allows us to prove the null controllability of system (3.2)-(3.3).

Since wy g = wa g 1= wq (see (1.21)) and if we set o = a19! + a21)?, then we can simplify (3.8)-(3.9)
as follows

—pt — (a(x)pz), +a1p — (B(x)azp)e = oxw, in Q,
p(t,0) =p(t,1) = 0 on (0,7), (5.16)
p(T,) = p" in Q
and
0t — (a(x)0x), +bio+ B(x)b20r = — (ﬂxwl + %sz) p in Q,
Ha K2 (5.17)
o(t,0) = o(t,1) = 0 on (0,7),

Before going further, we consider the following result useful for the rest of the paper.

Lemma 5.1 (Caccioppoli’s inequality)[20]
Let O be a subset of O1 such that O" € Oy. Let p and o be the solution of (5.16) and (5.17)

respectively. Then, there exists a positive constant C' such that

T T
/ / (P2 + 0%) e dxdt < C/ / s20%(p? + 0%) e**% dx dt, (5.18)
0 ’ o Jo,

where the weight functions ¢ and © are defined by (5.3).

Now, we state and prove one of the important result of this paper which is the intermediate
Carleman inequality for the solutions of systems (5.16)-(5.17).
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Theorem 5.1
Assume that the coefficient a(-) verifies (1.2). Then, there exists a constant C1 > 0 such that

every solution p and o of (5.16) and (5.17) respectively, satisfy, for any s large enough, the following
inequality

T
Z(p)+Z(o) < C4y / s303(p? + 0*)e*? dx dt, (5.19)
Oy
)

where the notation Z(-) is defined by (5.7).
Proof. Let us choose an arbitrary open subset O’ := (a, ) such that O’ € 07 and consider the
smooth cut-off function £ : R — R defined as follows

x € [0,qa], (5.20)

Let p = £p and g = £o where (p, o) is the solution of (5.16)-(5.17). Then, p and g satisfy the following
systems

—pt = (a(@)pa), + 17 — (B2)azp)e = G in Q,
0

p(t,0) =p(t,1) = on (0,7), (5.21)
po(T,-) = ﬁg n Q
and _
ot — (a(x)0z), + 1o+ B(x)b20, = G2 in Q,
5(6,0)=3(t,1) = 0 on (0,7), (5.22)
02(0,) = 0 in
where B
G = §de - (a(m)gm p)z - gaa G@)ﬂm - B(l’)a2§1p
and

Go = — (ﬂxc«n + %Xon) p— (a(‘r)gw Q)x —& a(‘r)gw + B(x)b2§w9'
M1 H2

Applying the Carleman estimate (5.9) to system (5.21) with G; = asp and Gy = G1, we obtain

() < © /Q [18%sl? + | (@(@)s p), + & alw)psl? + |B(@)artapl?] ¢ da dt

T 2
+ O/ / 625*"|ﬁ|2dazdt+0/ 52@3B—@)|a2m2625*"dxdt. (5.23)
o Jo, Q a(z)

From the definition of £, we have

| @)+ a@eepeliet e dndt = [ (@60 20(e)inp) e o

IN

/Q [2((a(x)§m)z)2|/)|2 + 8(a($)§I)2|pm|2} e25% da dt

IN

T
C/ /(|p|2+|pm|2) ¢ dx dt. (5.24)
0 o’
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2

x
In the other hand, using the fact that £ — —— is non-decreasing on (0, 1], thanks to Hardy-Poincaré
a(x

inequality (2.11) applied to the function e*¥g and using the definition of ¢, we get

~ 1 a(z)
o 2e® ¥ drdt < —/ 0%e?%% dx dt
/Q|QX e drdt < o) ), sz e
< i/ )| da dt
1)

IN
/‘\

Using (5.10), we obtain

2
/ |0Xw,|?e**? dzdt < C </ Oa(x)g2e*s? dx dt —I—/ 52@333_@»26254;; dz dt> .
Q Q Q a(z)

Proceeding as for (5.25), one obtains

T 2
/ / ¢ |p|? dw dt < O(/ @a(x)ﬁiezs“"dxdt+/ $20° < Rt dxdt)-
0 O1 Q Q (L((E)

We have

2
/ 2®3ﬁ (@ )|a pl2e?* dx dt < |laz|* / 5263—ﬁ (x)|ﬁ|26259" dx dt.
Q a(x) Q a(z)

Using (1.4), we have

and therefore

a(z)
Using the fact that |S(x)| < Ly/a(z) (see (1.5)) and the definition of £, we obtain

/ |B(z)azépl?e® P drdt < |az|* L2/ a(2)€2|p|?e®% du di
Q

Joal|2, 22 / [ at@less dedr

Due to the fact that a(z) is bounded for all x € O', we deduce

T
/ |B(x)a2§wp|26255" d:bdth(HagHOO)/ / |p|26255"dxdt.
Q 0o Jo

Combining (5.23)-(5.28), we obtain

2
/ 2l %) |agpl2e 25*"dxdt<C(|a2Hoo)/ $203 2 |p|2e2*% du dt.
Q Q a(z)

IN

2

T
Z(p) < C/ / (p? + p2)e?s? dx dt + C’/ (@a(x)@?c + 52032 @'2> e*? dx dt
0 ! Q

a(z)

x

+C/ <@a(a¢)f)§ + 5’03 —Zfz) e da dt.
Q a

7)
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Arguing in the same way as in (5.29) with g solution of (5.22), we get

2

T
(o) < C/ / (0* + 02)e**¢ dx dt + C'/ (@a(x)@i + 5203 2 Z)Q> e*? dx dt
0 ! Q

T

@

{E2

+C/ <@a(a:);)§ + 5263—,3’2) e**? dx dt. (5.30)
Q a(z)

Adding (5.29) and (5.30) and taking s large enough, we obtain

T
1G)+1@ <C [ [ (P40 4+ 2)eP dot
0 o’

Using Caccioppoli’s inequality (5.18), this latter estimate becomes

T
Z(p) +Z(p) < C/ / s20%(p? + 0?)e**? du dt. (5.31)
0 O,

Now let p = ¥p and 0 = Yo where ¥ = 1 — £. Then, the supports of p and 9 are contained in
[0,T] X [e, 1] and satisfy

—py — (a(2)p,), + a1p — (B(x)azp)e = Gi in Qo =(0,T) x (o, 1),
p(t, ) p(t,1) = 0 on (0,7), (5.32)
p17 p( ’ ) - ﬁT in Qa
and _
0y — (CL(.I)EI)m + bl? + ﬂ(.f)bg@m = Gy in QO&?
ot.0)=a(t,1) = 0 on (0.7) (5.33)
30,) = 0 in 9
where B
g = o0X0, — (a(x)ﬁw P)z — Uy a(x)pw - B(x)aﬂ?mp
and

- @ @
g2 = - (_1Xw1 + _2Xw2) ﬁ - (a(x)ﬁw Q)z - 01 a(x)gw + B(x)b2§mg
M1 H2
Since on @, all the above systems are non degenerate, applying the classical Carleman estimate
(5.15) to system (5.32) with H = B(x)asp and H; = Gy, one obtains
K@) < OLUWWF+M@WM»+MMW%F+wm@mmﬂ&@Mﬁ

T
+ C'/ / 53@3625¢|ﬁ|2d$dt+0/ 22 ®|B(x)axp|? dx dt, (5.34)
0 O1 Q

because 7(t, z) := O(t)e"@ < Q(t)e"lo@ =

19



Using the definition of the function ¢}, we have
[ 1@@tzp)e + ala)iaps P dodt = [ (@@)0,)ap + 2a(0)0p 2> dode
Q Q

< / 2((a()92)a)20% + B(a(2).)2p2] €2 da dt

//p—kpm e25® dx dt. (5.35)
2

x
On the other hand, since = — ﬁ is non-decreasing on (0, 1] and thanks to Hardy-Poincaré inequality
a(x

(2.11) to the function e*?g, we get

IN

1 a( )
— 2 2s5® —2 2s®
‘/Q|0de| € dedt < W/ 2 ——0°e dx dt
C
< —/ ), 1 dedt
a(1)
< /( )02 + a(z)s’n’*o?) e*** du dt.

We have p = ¥p and since ¢ is bounded on O;, we deduce that

T T
/ / s303e2*®?|p|% dx dt < / / s303e25% | p|? du dt. (5.36)
0 01 0 01

Due to (5.10), the fact that a € C([a; 1]) and n~! € L>=(Q), we get
/ o2e®®drdt < C/ (22 + s*n*2°) €*** du dt. (5.37)
Q

Using the fact that |8(x)| < Ly/a(z) (see Remark 1) and the definition of ¢, we have

IN

/ B(2)astapl2e® P drdt < [las|2 L2/ a(2)02 |22 da dt
Q

\a2|\2L2// )| de dt.

As the coefficient a(-) is bounded in O, then we deduce

IN

T
/|B(x)a2191p|2625¢d:1cdt§C(Ha2||oo)/ / |22 d dt. (5.38)
Q 0o Jor

Since |3(z)| < Ly/a(x), one obtains

/ s2 0% e**®|B(2)agp|? do dt < Ha2||§OL2/ s*n’a(x)e®?|p|? du dt.
Q Q
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Using the fact that a is bounded in (0,1] and n~! € L>°(Q) we deduce
[ e Bt dede < Cllaall) [ 50 ol da .
Q Q

Combining (5.34)-(5.39), we obtain

T T
K(p) < C/ / (p* + p2)e**® dx dt + C/ / s203p2e®® dx dt
0 4 0 JO:

+C / (o2 + s*n°7?) €**® dadt + C / s235%e25® du dt.
Q Q

Arguing as in (5.40) to g solution of (5.33), we obtain

T T
K(o) < c/ / (0® + 02)e**® dx dt + c/ / 530302 du dt
0 ’ 0 Oq

+C/ (pr + 52n3p2) 25y dt + C'/ no2e?*® dx dt.
Q Q

Combining (5.40)-(5.41), we obtain for s large enough

T T
K@)+ K(2) < C/ / (0° + 0+ ps + 03)e™*® du dt + C/ / s20%(p? + 0?)e?*® dx dt.
0 ’ 01

Using Caccioppoli’s inequality (5.18), this latter estimate becomes

T
K@) + K@) < C / / SO (02 + 0)e*® du di.
0 01

2

(5.39)

(5.40)

(5.41)

(5.42)

Thanks to (5.4), the fact that a € C!([a, 1]) and the function x — i non-decreasing on (0, 1],
alx

one can prove the existence of a constant C' > 0 such that for all (¢,z) € (0,T) X [a, 1

625@ < e2s<I> 625@ < 61625'i>7 a(x)e2sap < CG2S<I).

a(z)

)

Using (5.43), the inequality (5.42) becomes

T
I(p)+Z(o) < C / / 5207 (p? + 0?)e?*® dx dt.
0 01

Combining (5.44) with (5.31), and using the fact that e25% < €25 we obtain

(p+ﬁ)+1(g+~)<c// 5203 (p? + 0%)e**® du dt.
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Using the fact that ¢ = ¢+ @ and p = p + p, then we have
lol* <2 (J2f* + [2*) » 1ol <2 (IP* + 7I)
(5.46)
|0a® <2 (|2a]? +[2:1%) , 1pal® <2 (1Pa]? + [7,]%) -

Combining (5.45) with (5.46), we obtain the existence of a constant C; > 0 such that

T
Z(p)+Z(p) < Ci / / 203 (p? + 0?)e*® dr dt.
0 Jo,
This completes the proof of Theorem 5.1. =

5.2 An observability inequality result

This part is devoted to the observability inequality of systems (5.16)-(5.17). This inequality is obtained
by using the intermediate Carleman estimate (5.19).

Proposition 5.5
Under the assumptions of Theorem 5.1, there exists a constant Cy > 0, such that every solution
(p, 0) to (5.16)-(5.17), satisfies, for s large enough, the following inequality:

T
Z(p)+Z(o) < 0287/0 / |p|? dx dt, (5.47)

where the notation Z(-) is defined by (5.7).

Proof.
We want to eliminate the local term corresponding to ¢ on the right hand side of (5.19). So, let
O3 be a non empty set such that O; € Oy € wyg Nw. We introduce as in [14] the cut off function

& € C§° () such that

0<E<Tin®, E=1in0q, £=01in Q\ Oy, (5.48a)
511 o0 51 o0
e € L¥(02), 575 € L7(0n) (5.48D)

Set u = 5303¢**®. Then u(T) = u(0) = 0 and we have the following estimations:

ug] < s°0%*P¢, |(uf)| < Cs'@%* ¢,
(5.49)
|(u€)z| < Cs'ete®?¢, [(a(z)(u€)s)a] < Cs°0°e*?¢,
where C' is a positive constant.
Multiplying the first equation of (5.16) by up and integrating by parts over @), we obtain
Ji+Jo+ Js+ Ju+ Js + Jg + Jr :/ u€|o|*Xw, dz dt, (5.50)
Q
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where

0
B= =2 [l dode =2 [ gl drdr, 1= [ p0®0) avar,
B Jg H2 JQ Q ot

J3 = — /Q(G(CU)(Uf)m)m peo dxdt, Jy = _2/Qa(x)(u§)wp9w dx dt,
Js = / (a1 — b)uépo dz dt, Js = / Bx)uép(az — ba)o, dudt, Jr = / B(x)az(u€)ape dr dt.
Q Q Q

Let us estimate each J;, ¢ =1,--- ;7. From Young’s inequality, we have

J < (ﬂ + %) C/ 836362S¢§|p|2 dx dt
M1 2 Q

2 2 2 T
< (a_;+a_§)/33®3—x e2s“a|p|2d:1cdt+0/ / 8393@625(2¢7¢)|p|2d$dt,
1y s Q a(a:) 0 O2 x
Jy < C/ 5'0%e**%¢|po| du dt
Q
9 T
<2 / $*0% % |of2du dt + C, / / 01 1) o0 2 g,
2 Jo a(z) 0o Jo, x
for any 6; >0.
Js < C/ s°0°e**®¢| pg| du dt
Q

5 2 T
< 2 83®3x—625¢|g|2d;v dt+052/ / 87@7@628(2¢_¢)|p|2d$dt,
2 Jo a(x) 0o Jo, T

for any d2 >0.

J4

IN

C/ s'0%a(x)e?* €| po,| dx dt
Q

S T
73 50a(x)e*? | g, |*dx dt + 053/ / s707a(x)e®* =) | p|?dzx dt,
Q 0 O3z

IN

for some d3 >0.

Js < C/ (a1 — by)s2©3*%¢|po| da dt
Q

2 T
% Sg@gx—€25¢|g|2d$dt+054(Ha1 _blHoo)/ / 53@3@625(2¢7¢)|p|2d$dt,
2 Jo a(x) o Jo, x?

IN

for some 94 >0.
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Js < C/ B(x)(az — by)s303e?5%¢|po,| dx dt
Q
55 2 2 r 1 P
< 2 [ s0ule)e® NP di+ Coy(Joz—tall) [ [ 505200 R .
2 Q 0 O» a(:z:)

Since |B(z)| < Ly/a(x), we have
S T
Jg < 35/ s0a(x)e*?| g, |2 dx dt + Cs, (||az — b2||°°)/ / 709X =9 |p| dz dt,
Q 0 O3z

for any d5 >0.

Jr < C/ B(x)B(z)azs*0 ¢ | po| da dt
< _6 83®3$—628¢|Q|2dzdt—|—05 (||a || )/T/ 85®5Mﬂ2(x)62s(2¢—¢)|p|2dxdt
— 2 Q a,(x) 6 2 || oco o 02 xz .
Since |B(z)| < Ly/a(x), we have
Jr < _/ o 25“’|g| dx dt + Cs, (|laz — b2|so) / / ) 2 (22=2) | p|2dg dt,

for any dg >0.

1 1
Finally, choosing the constants §; such that §; = do = d4 = dg = o and 03 = 05 = CToR where
1

1
(1 is the constant obtained to Theorem 5.1, it follows from (5.50) and the previous inequalities that

T 1 a? a3 T z?
/ / 8393625<I>|Q|2 de'dt S TI( ) + (_1 + _2> / / 8363_6254,0|p|2 de'dt
01

||CL1 —b1||00 / / 7@13 25(24) ga)| |2 diEdt+O/ / 7@7 ( ) 25(2<I>—ga)|p|2 dr dt
02 02

C(||laz — b2|loo) / / $20°e252®=9) | |12 dx dt + C(||az]|oo) / / —— L2522 =9)) 12y dt.

(5.51)
Combining (5.19) with (5.51) and taking p;, i = 1,2 large enough, we obtain

Z(p) + Z(0) < C(llar — bu|oc) / / 7@13 25C2=0)| 512 o
O2

+C/ / sT07a(x)e?2*—%) |p|2 dz dt + C(|laz — b2||oo)/ / $20°%e252®=9) | p|2 du dt
Os 0 O2

+O(lasll o) / /O OT) 2520-2) 12 gy .
’ (5.52)
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2
Note that &?, ¢ (217)
T x

positive constant Cy such that

and a(z) are bounded on O3. Then, using (5.52), we obtain the existence of a

T
Z(p)+Z(p) < Cg/ / sTO3e2(22=9) | p)2 dy dt. (5.53)
0o Jo,

Thanks to (5.4), we have 2® — ¢ < 0, then O13¢25(20—¢) ¢ L°°(Q). Furthermore, using the fact that,
Oy C w, we deduce the inequality (5.47) and we complete the proof of Proposition 5.5. m

To prove the needed observability inequality, we are going to improve the Carleman inequality
(5.47) in the sense that the weight functions do not vanish at ¢ = 0. To this end, we modify the weight
functions ¢ and O defined in (5.3) as follows:

T T
® <§, a:> if te |0, 7|
P(t,z) = (5.54)

T
p(t,z) if te §’T ,

and T T
B ®(§> if te 0,5 ,
o) = T (5.55)
o) if te 5,T .

Then in view of the definition of ¢ and ©, the functions &(., z) and ©(-) are of class C* on [0, T]. We
have the following result.

Proposition 5.6

Under the assumptions of Proposition 5.5, there exist a positive constant
C = C(C2,||a1]|oos [a2]lcos 1161l cos [[2]|cos 1, 2, T) > 0 and a positive weight function k such that every
solution (p, %) of (3.8)-(3.9), satisfies the following inequality:

2 T
100 Mooy + Y- [ wtviPdzar<c [ ] 12 dvar, (5.50)
i=1 w

where the constant Cy is given by the Proposition 5.5.

Proof.

We proceed in two steps.
Step 1. We prove that there exist a constant C = C(Ca, ||a1]/cos [|a2]/00s [|01]]00s |02]|0cs T) > 0 such
that

T
1000, )12 + To.11 () + Ty () < C / / 1p[? da dt, (5.57)

where Z(-) is defined in the follow by (5.61).
Following the strategy in [7], let us introduce a function ¢ € C1([0,T]) such that

0<¢<1,((t)=1fort€0,T/2], ¢(t) =0 for t € [3T/4,T], |¢'(t)| < C/T. (5.58)
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For any (t,z) € Q, we set
2(t ) = C(t)e " T p(t, z),

where r > 0. Then in view of (5.16), the function z is solution of

—z — (a(2)z2), + a1z — (B(@)azz)s +712 = (e " T Doy, — e T p in Q,
2(t,0) = 2(t,1) = 0 on (0,7),
z(T,) = 0 in

(5.59)
From the classical energy estimate for the system (5.59) and using the definition of § and z, there
exists a positive constant C' = C(||a1]/co, ||a2|loc, T') such that

T/2 T/2
1600, )12 + / / Ip[? dudt + / / a(@)|pa|? dadt
0 Q 0 Q

37/4 37/4
<C / /|Q|2 dxdt—i—/ /|p|2 dzdt | .
0 Q /2 Jo

The functions ¢ and O defined by (5.54) and (5.55), respectively, have lower and upper bounds for
2
(t,x) € [0,T/2] x Q. Furthermore, a(xz) > ¢ > 0 in (0,1] and 2 >¢>0 (0,1], then, we can

a(x)

introduce the corresponding weight functions in the above expression and we get

~ 3T/4 3T/4
160,320+ Ziozr/2(6) < s ol T) ( [ [repasars [ [ jop dwdt>,
0 Q T/2 JQ

(5.60)
where
_ b2 ~ by B
I[mb](l):/ /@3—62S@|l|2 dxdt+/ /@a(az)ezs“’|lx|2 da dt. (5.61)
o Jo  a(z) a JQ
Adding the term f[07T/2](g) on both sides of inequality (5.60), we have
(0, ')H%Q(Q) +f[0,T/2] (p) +f[O,T/2](Q)
3T/4 , 3T/4 ) ~ (5.62)
< Cllarleslasles ) | [ [ 10P dzdt [ 7 [ 1o dwdt) + Topa (o)
0 Q T/2 Ja

In order to eliminate the term f[oyT/Q](g) in the right hand side of (5.62), we use the classical energy
estimates for the system (5.17) and we obtain:

T/2 T/2
/ lof? dxdt—i—/ /a(x)|gw|2 dudt
0 Q 0 Q

o? a2\ (T2,
< C(Ibrlloe. 2]l ) <—2 i _2> [ 1o aca
BT M3 0 Q

where C is independent of p;, ¢ = 1,2. The functions ¢ and O have lower and upper bounds for
2
x

(t,z) € [0,T/2] x Q. Moreover, the function z — @) is non-decreasing on (0; 1] and %x) >c>0
in (0,1]. Then, from the previous inequality, we obtain

7 ot | a3\ [T [ as o

Zory21(0) < Ol ooy [1B2lloes T) (N—% " I%) | [ @Al dar (5.63)
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Replacing (5.63) in (5.62) and taking pu;, ¢ = 1,2 large enough, we obtain

llp(0, ')”%2(9) + f[O,T/z] (p) + f[O,T/z] (o)

3T/4 (5.64)
SO(Ilallloo,||a2||oo,||b1||oo,IIbzlloo,T)/ /(Ipl2+|@|2) dx dt.
T/2 Q

The functions ¢ and © defined in (5.3) have the lower and upper bounds for (¢,x) € [T/2,3T/4] x Q.
2

x
Moreover, the function 2 — —— is non-decreasing on (0, 1]. Using the inequality (5.47), the relation

a(z)
(5.64) becomes

1p(0, )13 20y + Zio.7/21 () + Zpo,r2 ()
< C(llarflocs llazlsos 101]loo, 10210, T') (Z(p)

+1(e)) (5.65)
< C(Cou s ozl 11 el T) [ [ 10
where Z(+) is defined by (5.7) and the constant C5 is defined in the Proposition 5.5.

On the other hand, since © = © and ¢ = @ in [T/2,T] x €2, we use again estimate (5.47) and we
obtain

IN

I(p) + (o) ) (
5.66)
c<02,||a1||oo,||a2||m,||b1||oo,||b2||oo,T>/0 /|p|2dxdt.

i[T/Q,T] (p) + f[T/2,T] (0)

IN

Adding (5.65) and (5.66), we get

T
1000, )26 + To.z1 () + Ty () < C / / 1p[? da dt,

where C' = C(Cy, ||a1]so;, [|a2|loos |01]lcos [|162]|ce, T') and then, we deduce the estimation (5.57).
Step 2. Now, we prove that there exist a constant C' = C(Cla, ||a1]]co, ||@2]|cos [|01]]0os |D2|0, T o1, pi2) >
0 and a positive weight function s such that

2 T
Z/ n2|¢i|2d:cdt§0/ /|p|2d:vdt. (5.67)
i=1"@ 0 Ju

Let us introduce the function

$(t) = min (¢, z). (5.68)

We set the parameter s = 5 to a fixed value sufficiently large and we define the weight function  by:

K(t) = M e L=(0,T). (5.69)

0
Then r is a strictly positive function of class C* on [0,T) blowing up at ¢t = T. Furthermore, a—f is

also a positive function on (0,7). Now, multiplying the first equation of (3.9) by x21* and integrating
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by parts over €2, we obtain that

1d . _ . . .
5ir LA o [ a@puiPde = - [ @nleP do- [ 65k, da
2dt Jq Q Q Q . (5.70)
1 2,1 = 200 i '
—— | kYt dx+35 | KFWY° da
i J o, o Ot
95
Since |8(x)| < Ly/a(z) and using the fact that 8—(5 is a positive function on [0, T'), the inequality (5.70)
becomes
1d , . _ 1
——/ K22 dx —I—/ w2a(x)| i) de < C’/ KW de + = / w2 p|* da (5.71)
2dt Jq Q ) 205 Jo,

1 1
where C' = (||b1]|c0, |[b2]|0o) = (||l71||Oo + 5Hb2||§0 + 5) Using Gronwall’s Lemma and the fact that

Yi(z,0) = 0 for z € , it follows that
[ R ds<c [ o o v e 0.1, (5.72)
Q Q

where C' = (||b1]|oos [|162]lcc, T f41, f2). Using the definition of ¢ and x given by (5.68) and (5.69),
respectively, we have o
K2(t) < X0y e Q. (5.73)

a(z)

Thanks to the fact that ©~' € L>(0,T) and that the function z —> 5
x

we deduce from (5.73) the following inequality

. ~ 2 ~
/ K2H? dx S/ ®3$—(£259"|p|2 dzx dt,
Q o al@)

which combining with (5.72) and (5.57) give

T
[ ar<c [ [ ippava
Q 0 w

where C' = C(Ca, ||a1]lsos [|a2loos 1101100y [|02]lcos Ty 11, 2) > 0. Adding this latter inequality with
(5.57), we deduce (5.56). This ends the proof. =

is non-decreasing on (0, 1],

6 Null controllability of semilinear degenerate system

In this section, we end the proof of Theorem 1.1. More precisely, we prove that the linear systems
(3.6)-(3.7) are null controllable. Thanks to the Proposition 5.6, the following result holds.

Proposition 6.1

Suppose that (1.21) holds, ju;, i = 1,2 are large enough, the coefficient a(-) satisfies (1.2), y° €
L3(Q) and y;.q € L?((0,T) X wa) such that (1.23) holds. Then, there exists a leader control h € L?(wr)
such that the corresponding solutions to (3.6)-(3.7) satisfies (1.10). Furthermore; there exists a constant

C = C(Cy, [larlloos llazllo, 101]locs [1b2lloos 1, 12, T) > O such that

9 1/2
- _ 2
1Al 2y < € (Z oF 5™ Wil a0,y oy + lly°li2<n>> - (61)

i=1
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Proof.
To prove this null controllability result, we proceed in three steps using a penalization method.
Step 1. For any fixed € > 0, we define a functional

1 1
Je(h) = |y( )[? dx + —/ |h|? da dt, (6.2)
2 2 Jor
where y is the solution to problem (3.6)-(3.7). Then we consider the optimal control problem:
inf  J.(h). (6.3)
heL2(wrp)

By standard arguments, we can prove that the functional J. is continuous, coercive and strictly convex.
Then, the optimization problem (6.3) admits a unique solution h. and arguing as in [34], we prove
that

he = pe in wr, (6.4)

with (pe,?) is the solution of the following systems

—Pet — (a’(x)ps,z)m + aipe — (ﬂ(-r)aﬂps)m

(19! + aoy?)xw, in Q,

pe(t,0) =p:(t,1) = 0 on (0,7), (6.5)
1 . '
pS(Tu ) = _gyE(Ta ) m Q
and )
1/’2,15 - (a’(‘r)wé,w)m + bﬂbé + B(x)b2w2,m = _;PEXM m Q7
YL(E0) = (1) = 0 on (0.7), (6.6)
$i0,) = 0 in Q,
where (y.,pL) is solution of
1 1 .
Ye,t — (a(x)ya,m)w + a1ye + B(x)a2y€,z = hexow — ZP;XWI - EP?XW in Q,
ve(t,0) = ye(t,1) = 0 on (0,7), (67
ye(0,-) = 2° in
and _ _ _ '
—pLy — (alx)pl,), + blpa (B@)b2pl)e = i(Ye = Yia) Xws 0 Q,
pL(t,0) = pe(t, 1) =0 on (0,7), (6.8)
pe(T,:) = 0 in Q.

Step 2. Multiplying the first equation of (6.5) and (6.6) by y. and p! respectively and integrating by
parts over @), we obtain from (6.4)

1 7
el wry + g”yi(Ta')H%?(Q) /y pe(0 dﬂH‘Z%/ / Yiatbede dt.

Using the Young inequality, one can get that
) 9 1/2
_ 2
Hhsﬂiz(w) + g||ys(T, ')Hiz(sz) < (Z 0412 ||/f 1yi,dHL2((07T)><wd) + Hyo||%2(sz)
=1 (6.9)

1/2
<Z!W!\L2<Q>+|pa( 2 Q)> .
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Using the observability inequality (5.56), we deduce from (6.9) the existence of a constant C' =
0(027 Ha’lH(XN ||a2Hoo; ||b1||007 Hb2Hoo;,u1;,UQ,T) >0 such that

9 1/2
_ 2
Ihell2wry < C(Zaf“m 1yi,dHL2((07T)de)+|y0|izm)> (6.10)
=1
and
9 1/2
lue(T ey < OVE (3ot 5wl + 19112 (6.11)
Yeld )Lz = i Yid|l L2((0,1) xwa) YollL2(0) : ’
i=1

Using (6.10)-(6.11) and systems (6.7)-(6.8), we can extract subsequences still denoted by h., y. and
pl such that when € — 0, one has

he — h weakly in L*(wr), (6.12a)

ye — 1y weakly in L*((0,T); HX(Q)), (6.12b)

pL — p' weakly in L?((0,T); H:()), i = 1,2, (6.12c)

ye(T,-) — 0 strongly in L*(Q). (6.12d)

Arguing as in [32, 31], using convergences (6.12), we prove that (y, p’) is a solution of (3.6)-(3.7)
corresponding to the control h and also y satisfies (1.10). Furthermore, using the convergence (6.12a),

we have that h satisfies (6.1). m

6.1 Proof of Theorem 1.1

In this subsection, we want to end the proof of Theorem 1.1. We have proved in Proposition 3.1
and Theorem 1.1 that the Nash equilibrium for (Jy,J2) given by (1.6), (01,02) is characterised by
(3.1)-(3.3). In Proposition 6.1, we proved that the linear systems (3.6)-(3.7) is null controllable at time
t = T. We are now going to prove that, there exists a control h € L?(wr) such that the solution of
(3.2)-(3.3) satisfies (1.10).

We define Z = L?((0,T); H}(£2)). We observe that, for any y € Z, we have

F(y,yz) — F(0,0) = F1(y, Yo )y + F2(Y, Y2) Yz,

where ) )
Fil.) = | DiF(ryrus) dr and Fa(ys) = [ DaF(ry.rus) (613)
0 0
For every z € Z, we consider the linearized system for (3.2)-(3.3)
Fg(z,zm)] 1 1 5 )
—(a(®)yz), + F1(z,22)y +B(x) | =" %= = AXo— —D X1 — —DP Xw, IiD ,
i = (a(@)yz), + F1(2, 22)y B()[ﬂ(x) y Xer = TP X = P e Q
y(t,0) =yt 1) = 0 on (0,7),
y(0,) = y° in Q
(6.14)
and _ . . , .
—p; = (a(@)py), +b1p’' = (B(@)b2p")e = @i (y—yia) Xw, I Q,
p'(t,0)=p'(t,1) = 0 on (0,7), (6.15)
p(T,) = 0 in Q.



Observe that systems (6.14)-(6.15) are of the form (3.6)-(3.7) with

Fy(z, 2o
a1 =ai = Fi(z,2,), ax=a3 = M,
B(x) (6.16)
DyF(z, zy) '
Blx)
Thanks to assumptions on F (see (Hs) and (Hg) of Assumption 1.1), there exists a positive constant
M such that

by :=bf = D1F(z,2), by:=0b5=

[af]loos [la3]lcos [17llcc, IB5]loc < M, Vz € Z. (6.17)

From Proposition 6.1, there exits a control h* € L?(wr) such that the solution (y*, p"*) to (6.14)-
(6.15) corresponding to coefficients given by (6.16) and h = h* satisfies (1.10), and furthermore we
have the estimate

2 1/2
1R* || L2y < C (Z 041.2 ||,A$ lyi’dHN((o,T)de) + |3/O||%2(Q)> , V2 e Z, (6.18)

i=1
where C' = C(Ca, [|a1 oo, [lazloo, [|01]lcos [1D2]|os f1, 12, T') > 0.
From Proposition 2.1, we obtain that

y* . € Z,
and using (6.18) and (3.10), we obtain

2 2

z 1,2 — 2

ly*llz + llp"*lz < C (Z [yi.dllz2(0.1)xwn) + D 7 || Widll 2oy xen + ||yO|L2(sz)> , (6.19)
=1 i=1

where C' = C(Cy, [lar[loo; lazloc, [[b1lloc, [1b2l[oc, 11, p2; 01, a2, T) > 0.
For every z € Z, we define

I(z) = {h* € L*(wr), (y*,p"*) solution of (6.14) — (6.15) satisfies (1.10) with h* verifying (6.18)}

(6.20)
and
A(z) = {(y*,p"*) + (y*,p"?) is the state associated to a control h* € I(z) and (y*,p"*) satisfies (6.19)} .
(6.21)

In this way, we introduce a multivalued mapping
z— A(z2).

We want to prove that this mapping has a fixed point y. Of course, this will imply that there exists a
control h € L?(wr) such that the solution of (3.2)-(3.3) satisfies (1.10).

To this end, we will use the Kakutani’s fixed point Theorem that can be applied on A. Proceeding
as in [33, 8], we can prove the following properties for every z € Z.

Proposition 6.2
1. A(z) is a non empty, closed and convex set of Z.
2. A(z) is a bounded and compact set of Z.
3. The application z — A(2) is upper hemi-continuous.

This end the proof of Theorem 1.1 and furthermore the proof of null controllability of system (1.1). W
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7 Conclusion

In this paper, we established the Stackelberg-Nash null controllability of a semilinear degenerate
parabolic equation with a non-linearity involving a gradient term. We proved that we can act on
the system with one leader and two followers. Since the system is semilinear, the functionals are not
convex in general. To overcome this difficulty, we first obtain the existence and uniqueness of the Nash
quasi-equilibrium, which is a weaker formulation of the Nash equilibrium. Next, with additional con-
ditions, we established the equivalence between the Nash quasi-equilibrium and the Nash equilibrium.
Finally, after establishing suitable Carleman estimates, we proved an observability inequality allowing
us to obtain our null controllability result.

8 Appendix

8.1 Proof of Proposition 2.1

Proof.

We proceed in three steps.
Step 1. We show the estimate (2.9). Make the change of variable z(t,z) = e~ "'y(t, z), (t,z) € Q, for
some r > 0 where y is solution to (2.1). We obtain that z is solution to

2t — (a(2)22)e + a0z + B(2)boze + 72 = (hXw + 0 Xw, + 0% Xw,)e "t in Q,
z(t,0) = z(t,1) = 0 on (0,7), (8.1)
2(0,-) = o° in Q.

If we multiply the first equation in (8.1) by z and integrate by parts over @, we obtain

/ z¢z dadt — / (a(x)zy) 2 dadt —i—/ rz? dedt = —/ aoz® dxdt —/ B(x)bozyz dadt
Q Q Q Q Q
—i—/ 2(hXw + v Xw, + V7 Xw,)e " dadt.
Q

This latter equality becomes

1 1
§||Z(T= ')H%Q(Q) - 5”2(07 ')||2L2(Q) + v a(iﬂ)zzH%z(Q) + 7°HZ||2L2(Q)

(8.2)
< / apz? dxdt +/ B(x)bozyz dxdt +/ 2(hxw + 0 X0, F 02 xw,)e ™ dadt.
Q Q Q
We have
/ apz® drdt < Ha0||oo|\z||2L2(Q). (8.3)
Q
Using the fact that |8(x)| < Ly/a(z) (see (1.5)), we have
/ B(x)bozyz dedt < / Ly/a(x)bozyz dxdt

Q Q (8.4)

IN

1 1
§L2H50||§0H2||%2(Q) + 5”\/ a(x)ZIH%Q(Q)'
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Due to the fact that e™™ < 1, Vt € [0,T], we get

IN

z(hxw + ”1Xw1 + vzxw2) dxdt
Q

1 1 1
20172y + §||vll|iz<w1,T> + 5””2”%2@21) + gllhlli%@)-
(8.5)

/ z(hxw + Ulel + vzxw2)6_rt dxdt
Q

w

<

DO |

Combining (8.3)-(8.5) with (8.2), one obtains
1 2 L 2 Loy 2 3 2
ST, M) + 3 I Va2 gy + (7~ laollee — 52100l — 3 ) I3y
1 1 1 1
< §||y0||2L2(Q) + §||U1||2L2(w1,r) + §||U2||2L2(w2,T) + §||h||%2(w)-

1
Taking r such that 7 = |Jag||eo + §L2||bo||gO + 2, we obtain

|2(T, ')H%?(Q) + ||Z||%2((0,T);H;(Q)) < ||y0||%2(sz) + ||Ul||%2(w1,T) + ||U2||%2(w2,T) + ||h||%2(w)-

Since z = e~ "y, we deduce the existence of a constant C' = C(T, ||ao||oo, |[bo]|sc) > 0 such that the
following estimation holds:

Iy(T, ) Z 200y + N9l 720,002 )y < C (||U1||2L2(w1,T) F 1011 2(05.2) + 101 2(0py + ||y0||%2(9))

and we deduce the inequality (2.9).
Step 2. We prove existence by using Theorem 2.1. First of all, it is clear that for any ¢ € V, we have

ol 20,112 (20)) < D]l

This shows that we have the continuous embedding V < L2((0,T); HL(Q)).
Now, let ¢ € V and consider the bilinear form A(-,-) defined on L2((0,T); H(Q)) x V by:

Ay, 9) = —/ngbtdazdt—F/Qa(a:)yngmdxdt—|—/any¢dxdt+/Qﬁ(:zz)boyzqﬁda:dt. (8.6)

Using Cauchy Schwarz inequality, Remark 5 and the fact that |8(z)| < Lv/a(x), we get that

Ay, o)l < [lllzz@lloelz@) + IV a(@)yzl L2 [V a(@) bz | L2(@) + llaollooll¥ll L2(@) 1]l L2(@)
+ [V a(@)yzll2@) [ Lboll< |9l L2 (@) e
< V2 |:||¢t||%2(Q) + [V a@)%”%%@ + (laollZ + L2||b0||go)||¢||%2((;)):| 1yl L2(0,7):H2 (02))-

This means that there is a constant C' = C(¢, ||ao]| o, ||b0l|cc) > 0 such that

|A(y, &) < Cllyllz2(0,1): 12 (90))-

Consequently, for every fixed ¢ € V, the functional y — A(y, ¢) is continuous on L?((0,T); H}(£2)).
Next, we have that for every ¢ € V,

A, ¢) = —/Q¢¢tdxdt+/ga(;v)¢i d;vdt—l—/an¢2d:cdt+/Qﬁ(x)bo%qﬁdxdt. (8.7)
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Due to Assumption 1.1, we get
/ a0¢2 dz dt > CYH¢H%2(Q)
Q

Using (8.4), one have
1 1
| ot deit =~ N6l a0y = 5V o)

Combining the two latter inequalities with (8.7) and using again Assumption 1.1, we obtain

1
Aw) 2 100 Ba + 3IVa0 ) + (a = 3Ll ) 1ol

(1 1
> mln{g, (a — §L2|bo|§o>} 6115

Finally, let us consider the linear functional £(-) : V — R defined by

£() = /Q (WX + ' Xeos + 02 xe0) & d it + / Y (@) $(0,2) de.

Q

Then using Remark 5, we obtain

L) < hxe + 0! Xy + 0 szl\L2<Q>||¢>IIL2 + 157 2 600, )l 22
< (1hxw + 0" Xer + 0 Xwllz2(@) + 1y ||L2(Q )¢l
<

Cllollv,

where C = C(T, h,v*,v?) > 0. Therefore, £(-) is continuous on V. Thus, it follows from Theorem 2.1
that there exists y € L2((0,7); H}(Q)) such that

Ay, ¢) = L(¢), VpeV. (8.8)

We have shown that the system (2.1) has a solution y € L?((0,T); H}(Q2)) in the sense of Defini-
tion 2.1. In addition, using the first equation of (2.1), we deduce that y; € L?((0,T); (HL(2))'). So
y € W,(0,T) and using Remark 4, it follows that y € H.

Step 3. We prove uniqueness. Assume that there exist y; and ys solutions to (2.1) with the same
right hand side h, v!, v? and initial datum y°. Set z := e~ "!(y; — y2). Then z satisfies

2t — (CL({E)ZI)E + aopz + ﬂ(x)b()zm +rz = 0 in @,
z(t,0) = 2(t,1) = 0 on (0,7), (8.9)
2(0,:) = 0 in .

So, if we multiply the first equation in (8.9) by z, and integrate by parts over @), we obtain
1 1 1
§HZ(T7 M2y + 5”\/ a(w)ze||72(q) + (7” = llaollee — §L2||b0|go> 1211 2(q) < 0.

1 1
Choosing r = |lag|eo + §L2||bo||§O t3 in this latter inequality, we deduce that

12122 (0, 7);212.00) < O-

Hence z = 0 in @ and then, y; = y2 in @) and we have shown uniqueness.
This complete the proof. m

34



8.2 Proof of Theorem 2.2

Proof.

We divide the proof into two steps.
Step 1. We prove the existence of the weak solution to the problem (1.1) by using the Schauder fixed
point theorem. We proceed as in Theorem 2.1 [11].

For any z € L?((0,T); HL(£2)), it holds that

1
0
F(z,24) — F(0,0) = / —F(rz,rzy) dr
01 (97‘ L
= / 2D F(rz,rz,) dr—i—/ 2:DaF(rz,rz;) dr.
0 0

Define
di ( / D1 F(rz,rz;) dr and da(z / DyF(rz,rz,) dr.

Then
F(z,z5) — F(0,0) = dy(2)z + B(x)d2(2) 2.

Moreover, using the point (Hy) of Assumption 1.1, one get

ldilloc < Ma, |ld2|loc < Mo. (8.10)
Now, the system (1.1) becomes
ye — (@(@)ye), +di(2)y + B(@)d2(2)ye = hxw +0 X, +0PXw, in Q,
y(t,0)=y(t,1) = 0 on (0,7), (8.11)
y(0,)) = ¢° in Q.

It follows from Proposition 2.1 that the problem (8.11) admits a unique weak solution y € H. Define
the mapping A : L2((0,T); H}(Q)) — L*((0,T); HL(2)) as follows:

Az) =y, z€ L*((0,7); Hy (%)),

where y is the weak solution to problem (8.11). Proceeding as in [41], we can prove that the operator
A is continuous and compact. Moreover the range of A is bounded. The operator A satisfies the hy-
potheses of the Schauder fixed point theorem. Therefore, A admits a fixed point y € L?((0,T); H(£2))
such that y = A(y) € H is a weak solution to the problem (1.1).

Step 2. Now, we want to prove the uniqueness of the weak solution. Assume that § and § are two
weak solutions to the system (1.1) and set

Observe that
F(ﬂa?jx) - F(ﬂv?jz) = el(tv'r)w + 92(taI)Wx7 (tvx) € Qa

where

1
O1(t,x) = /0 DiF(rg+ (1 —=7r)g,r9. + (1 —7)7x) dr,
Os(t, ) = ﬁ/o DyF(rg+ (1 = 1)y, r¥ + (1 —7)7s) dr
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Then W is the solution to the following problem

Wi — (a(x)Wy), + 61(t, 2)W + B(z)b2(t, )W, = 0 in Q,
W(t,0)=W(t,1) = 0 on (0,7),
W(0,) = 0 in Q.

Thanks to (Hs) and (Hg) of Assumption 1.1, there exists a positive constant M such that

It follows from Proposition 2.1 that

W =0in Q.

Then

j=yinQ.

The proof is complete. m
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