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INHOMOGENEOUS INCOMPRESSIBLE HALL-MHD SYSTEM

WITH BOUNDED DENSITY

JIN TAN AND LAN ZHANG

ABSTRACT. In this paper, we are dedicated to the global-in-time existence and
uniqueness issues of solutions for the inhomogeneous incompressible Hall-MHD
system with merely bounded density. In three-dimensional case, assuming that
the initial density is a small perturbation of a positive constant in the L
norm, we prove global well-posedness for small initial velocity and magnetic
fields in critical Besov spaces. Next, we consider the so-called Z%D flows for the
inhomogeneous Hall-MHD system (that is 3D flows independent of the vertical
variable), and establish the global existence of strong solutions by assuming
only that the initial magnetic field is small in critical spaces and the initial
density is bounded and bounded away from zero. Our proofs work for general
physical parameters and strongly rely on a new formulation of the system with
its Lagrangian formulation. Moreover, some new maximal regularity estimates
for parabolic system with just bounded coefficients are developed.

1. INTRODUCTION

In this paper, we consider the following inhomogeneous incompressible Hall-
magnetohydrodynamics system in the whole spaces R? :

op+u-Vp=0,
p(Ou+u-Vu) + VP =vAu+ (V x B) x B,
divu = 0,

((VxB)xB>

OB + hV x =puAB+V x (u x B),

divB = 0.

The unknowns are:

(1.5)

the scalar function p(t,z) : Ry x R® — R, that represents the density of

the fluid;

the vector-field u(t, z) : Ry x R® — R3, that represents the velocity of the

fluid;

the vector-field B(t,z) : R, x R3 — R3, that represents the magnetic field

interacting with the fluid;

the scalar function P(t,z) : Ry x R® — R, that represents the pressure.

The positive parameters v and p are the kinematic viscosity and the magnetic
diffusivity, while the number A > 0 measures the magnitude of the inhomogeneous
Hall effect compared to the typical length scale of the fluid.

2010 Mathematics Subject Classification. 35D30; 35Q35; 76D05; 76WO05.
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ularity, maximal regularity.
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The above system is used to model the evolution of electrically conducting fluids
such as plasmas or electrolytes (then, u represents the ion velocity), and takes into
account the fact that in a moving conductive fluid, the magnetic field can induce
currents which, in turn, polarize the fluid and change the magnetic field. That
phenomenon which is neglected in the inhomogeneous incompressible magnetohy-
drodynamics system (corresponding to h = 0), is represented by the inhomogeneous
Hall electric field Ep := h(J x B)/p, where the current J is defined by J := V x B.
Hall term plays an important role in magnetic reconnection [32], as observed in e.g.
plasmas [9], star formation [41], solar flares [27].

In the mathematical work of M. Acheritogaray, P. Degond, A. Frouvelle and
J.-G. Liu [7], they formally derived the following generalized Ohm’s law from the
two-fluids Navier-Stokes-Maxwell system under suitable scaling hypotheses

E+uxB=-V(lnp)+h(JxB)/p+J,

where E is the electric field. Later, J. Jang and N. Masmoudi in [34] gave a formal
derivation of the Hall effect from the kinetic equations. It is easy to find that
generalized Ohm’s law combines with the celebrated Maxwell-Faraday equations
then gives rise to magnetic equation . Since the inhomogeneous Hall term is
quasilinear and degenerate in vacuum, it makes the mathematical analysis of the
inhomogeneous Hall-MHD system much more complicated than the inhomogeneous
MHD system, while the later one has been well-studied in e.g. [4, [6] T3] BT], 43} [44]
and the references therein.

To our knowledge, there are few results about the system —. One can
find some regularity criteria in [26]. Very recently, the global existence of weak
solutions for the Dirichlet problem was established by the first author of the present
paper in [40] by an analogy with the classical result due to P.-L. Lions [35] on the
inhomogeneous Navier-Stokes equations and later J.-F. Gerbeau and C. Le Bris [28§]
on the inhomogeneous MHD system. Following the same way as in [40], it is easy
to show that system — formally enjoys the following energy equality

t
IV PO u(®)l|72gs) + 1Bz @s) + 2 fo IVl 72 @s) + ul VBT L2 s ) dr
= [V p(0)u(0)|[72 (s + | B(0)|[72(s)-  (1.6)

The primary goal of our paper is to establish the global well-posedness result
for the Cauchy problem of the system ([1.1)-(1.5) in critical spaces, especially with
only bounded initial density. In contrast with the inhomogeneous incompressible
Navier—Stokes equations (that corresponds to B = 0), however, the system under
consideration does not have any scaling invariance owing to the coexistence of the
Hall term in (1.4) and of the Lorentz force in (1.2). Recently, R. Danchin and
the first author [23] have transformed the incompressible Hall- MHD system (that
corresponds to p = 1) into an extended Hall-MHD system

du+u-Vu+ VP =vAu+ (V x B) x B,
0B -V x ((u—hJ) x B) =uAB,

Ohd =V x (Vx ((u—hJ)xcurl "'J)) = pAJ,
divu =divB =divd =0,

(1.7)

which has some scaling invariance (see also [22] [36]). They considered the current
function J as an auxiliary vector and found that if (u(t,x), B(t,x), J(t,x)) is a
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solution of (1.7) on R, x R? subject to the initial data (uo(z), Bo(z), Jo(z)), then
for all A > 0, the rescaling

(ux, Py, By, J») := (Au(\?, \x), 2 P(\2, Ax), A\B(\?, A\x), A\J (\t?, \x))

is a solution of with rescaled initial data (Aug(A-), ABg(A-), AJo(A-)). Such
a scaling invariance is the same as for the incompressible Navier—Stokes equations
and thus motivated the definition of critical regularity for in [23].

At the moment, let us recall some recent developments on the solvabilities of
inhomogeneous incompressible Navier-Stokes equations in the critical regularity
framework, i.e. the spaces which have the same invariance with respect to time and
space dilation as the system itself, namely

(po(x), uo(x)) ~ (po(Az), Auo(Az)),
(p(t,z),u(t,x), P(t,z)) ~ (p(N%t, Ax), Mu(N\?t, Ax), A2 P(\*t, \x)).

In the critical regularity setting, the local and global existence results were obtained
by R. Danchin in [I4] for the case of constant viscosity by taking the initial data

. d .d_
po—1eL®NB;, and wuge By '

with r € [1,+00] and assuming that py — 1 is sufficiently small in the space

LN BS,. After that, H. Abidi in [I] and H. Abidi and M. Paicu in [5] extended
these results to the case with variable viscosity for critical Besov spaces of type
B;’l with p > 1. Then, many efforts focus on removing the smallness assump-
tions on the density, see for example R. Danchin [I5], H. Abidi, G. Gui, P. Zhang
[3] and C. Burtea [11]. Very recently, H. Abidi and G. Gui [2] proved the global
well-posedness result at the critical level of regularity, that does not require any
smallness condition for two dimensional case. Based on different techniques, H. Xu
[42] obtained the global existence and maximal L' regularity of solutions provided
1

the initial velocity is small in the Besov space B; 1

Concerning rougher density, R. Danchin and P.B. Mucha [I7] proved global well-
posedness includes discontinuous initial density by a Lagrangian approach, then
they proved local well-posedness with pg € L> bounded from below and vy € H?
in [I8]. Later, M. Paicu, P. Zhang and Z. Zhang [39] established global unique
solvability with only bounded initial density and bounded from below. Recently,
the lower bound assumption was removed by R. Danchin and P.B. Mucha in [19]
in the case where the fluid domain is either bounded or the torus.

Considering initial velocity in critical spaces and initial density only bounded,
J. Huang, M. Paicu and P. Zhang [33] proved the global existence of solutions with
small variation of density. Recently, P. Zhang [45] removed the smallness assump-

1

tion of variation of density for ug in BQE, 1, but lack of uniqueness. A breakthrough
on the uniqueness of global solutions obtained in [45] was made by R. Danchin and
S. Wang very recently in [24].

Motivated by recent improvements on the inhomogeneous incompressible flows,
we are concerned with the global well-posedness of the system — with only
bounded density. Because of the degeneracy of the system in vacuum, we shall only
consider the nonvacuum case throughout the paper.

Our results and ideas read as follows:
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e In 3D case, to obtain global unique solvability we require that the initial
density is a small perturbation of a positive constant (say 1) in the L™
norm, and the irllitial velocity and magnetic fields are small in the critical
Besov spaces Bf’l(]l@) X (B4_1i (R3) N Bil)(Rg’). Due to the appearance
of the inhomogeneous Hall term V x ((V x B) x (B/p)) in (L.3), it seems
unavoidable to assume more regularity on the initial density. To overcome
this difficulty, we introduce an auxiliary unknown associated with the mag-
netic field and then use it to reformulate . More details are presented
in the Section [[.1l

e Inthe Q%D case, we only ask that the initial density is bounded and bounded
away from zero and the initial velocity lies in H'(R?), while the initial mag-

netic field is small in the critical Besov spaces Bg_l% (R%H)N 33%1 (R2%). We use
the same strategy as for the 3D case, to enable us consider only bounded
density. Meanwhile, one still notice that: the two-dimensional system sat-
isfied by the first two components of the flow is coupled with the equation
satisfied by the third component, through the non-linear terms in , thus
hindering any attempt to prove the global well-posedness for large data by
means of classical arguments. We thus further introduce a weighted func-
tion associated with the previous auxiliary unknown and take advantage
of and some new maximal estimates for the parabolic system with
rough coefficients (see Proposition , to avoid any smallness assumption
on the initial velocity field. To our knowledge, our result partially answers
an open problem proposed by D. Chae and J. Lee in the Remark 3 of [12],
and improves the result [22] of R. Danchin and the first author to the case
v # .

To make our presentation clear, we divide the rest of this section into several

parts.

1.1. New formulation. In order to prove existence and uniqueness results with
only bounded density, our idea is to cancel that first-order derivative on the density
in the inhomogeneous Hall term Vx ((V x B) x (B/p)) in (L.4). Thus we introduce
a new unknown named vector potential of magnetic field, that is A := curl "' B,
where curl 7! := —A71Vx is the so-called Biot-Savart operator. Note that P =
curl 7'V x, where P is the Leray projector over solenoidal vector fields.

To derive the equation of vector A, one first find from the following vector
identity

A + curleurl = Vdiv (1.8)

and divergence free condition that

divA=0 and V x A=B.
Applying the operator curl ! to the equation (1.4) and using identity (1.8) again,
the equation of A reads

atAquAJrVQ:ux(VxA)Jr%AAx(VxA), (1.9)

where AQ will be determined thanks to div A = 0.

Notice that the linear part of equation is the classical Stokes system that
have been widely investigated (see e.g. [16, [I8] [29] [38] and the references therein).
We will take advantage of the maximal regularity estimates for the heat equation
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that was established recently by R. Danchin, P.B. Mucha and P. Tolksdorf in [20],
where the time regularity is measured in the Lorentz space. Moreover, to overcome
the new difficulties created by the Hall term, we have develop some useful maximal
regularity estimates for the heat equation with time-weighted damping (see Propo-
sition and the Stokes system with only bounded coefficients (see Proposition
2.0).

In the sequel of the paper, we take v = = h = 1 for simplicity (our results are
valid for general cases). Now, together with the equations of velocity and density,
we shall consider the global existence and uniqueness of solutions for the following
Cauchy problem:

Op+u-Vp=0,
p(Oru+u-Vu) + VP = Au—AA x (V x A),

divu =0, 10
HA+u-VA+VQ=AA+ (VA Tu+AA X (V x A)/p, (1.10)
divA =0,

(p,u, A)li=0 = (po, uo, Ao).

1.2. Functional spaces. We briefly recall the definition of the Littlewood—Paley
decomposition and define Besov spaces. More details may be found in e.g. [§]. The
Littlewood-Paley decomposition is a dyadic localization procedure in the frequency
space for tempered distributions over R?. To define it, fix some nonincreasing
smooth radial function x on R¢, supported in (say) B(0,4/3) and with value 1 on
B(0,3/4), and set p(§) := x(&/2) — x(&€). Then, we have

VEERY, x()+ ) @(27¢) =1 and VEeR'\{0}, Y o(277¢) =1

7>0 JEZ

The homogeneous dyadic blocks Aj and low-frequency cut-off operator Sj are de-
fined for all j € Z by

Aju = (27 D)u =2 fRd 2 y)u(z —y)dy with h:=F ',
Sju =x(27Dyu=2" [ h@yju(r—y)dy with h:=F 'y,

The Littlewood-Paley decomposition of u: u =3 jez Aju holds true modulo poly-
nomials for any tempered distribution . In order to have an equality in the sense
of tempered distributions, we consider only elements of the set S,;(]Rd) of tempered
distributions u such that lim ||S;ul/z= = 0.

j——o0

We now recall the definition of homogeneous Besov spaces.
Definition 1.1. Let s be a real number and (p,r) be in [1,00]%, we set
||2jsl|AjuHLp(]Rd)||£7*(Z) for 1 <r < oo,

||UHB;7T(R(£) = sup 2]g||AJu||Lp for r = oo.
JEL

The homogeneous Besov space is the set of distributions such that ||ul| g, < oo.
P,

Lorentz spaces can be defined on any measure space (X, ) via real interpolation
between the classical Lebesgue spaces, as follows:

LP"(X,p) = (L°°,L1)1/p,r for p € (1,00) and r € [1,00].
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Lorentz spaces may be endowed with the following (quasi)-norm

1 o] 1 dS %
w( (ﬂﬂﬂ>ﬂhy> if < oo,
[fllzer = jo s

sups|{|f\>s}|% if r = oo.
s>0

The reason for the pre-factor p+ is to have || f]| s = || f|| -
For all 1 <m < o0, d = 2,3, we define

W2l (R, xRY) = {v € Cy(Ry; B (RY) : dpv, Vv € L™ (R; LP(RY))}.

p,(m,r)

1.3. Main results. Our first result establish global well-posedness for the 3D in-
homogeneous incompressible Hall-MHD system in the critical spaces that allows
discontinuous density. For simplicity, in the following, we fix the choice of solution
spaces. Other choices might possible, compared to the recent work of R. Danchin
and S. Wang [24] for the inhomogeneous incompressible Navier-Stokes equations.

S1 .3 .7
Theorem 1.2. Let py € L®(R?), ug € B3, (R®),Ag € (B}, N B{)(R?) and
divug = div Ag = 0. There exists a positive constant €1 > 0 such that if

Hp0_1||L°C(R3)+HuO”B )+||Ao||( s 1 <er,

1 .3 .7
5 (R? Bi1NBi1)([R?)

then the system (1.10) has a unique global-in-time solution (p,u, A) satisfying

llp = Uleory xr3) <llpo — 1| Lo (m3),

||u||W;}v(1%,1)(R+ xR3) T ||A||Wjﬁv(1%,l)(m+ «re) T ALz | (w, xre)

<C(luoll 3 . +l4oll 5+l Aol

s B . ) (1.11)
B2, (89) B, (®) Bi, ()

Next, we consider the 23D flows for the System (L.I)-(L.F)), that is, 3D flows
depending only on the horizontal space variables . This issue is well-known for the
incompressible Navier-Stokes equations (see e.g. the book by Bertozzi and Majda
[37). In our case, the corresponding system reads:

dp+u-Vp=0,
pdu + pu-Vu+ VP =j x B+ Au,
(/i\i;uzo7

jx B

@B+€x( ):5B+6xmxBL

div B =0,

where the unknowns w and B are functions from R, x R? to R3, V= (01, 02,0),

div : =V A:=924 092 and j :=V x B = (8,B*, -0, B3 8, B2 — 8,B")T.
Still, in order to prove results with only bounded density, we need to consider

the corresponding reformulation of above system in terms of (p,u, A), with A :=



(=A)~1V x B. It reads as follows:

Op+u- %p =0,

pdiu+ pu - Vu+ VP = Au— AA x (V x A),
divu = 0,

1 (1.12)
o

HA—AA+VQ=ux (VxA)+=(AA) x (Vx A),
divA =0,

(pau; A)‘tZO = (PO»UOa AO)

The global existence and uniqueness result in the 2% dimensional case reads:
Theorem 1.3. Let py satisfy
co < po < Co, (1.13)
for some positive constants cg, Co. Let (ug, Ap) be divergence free vector-fields with
up € HY(R%;R3), Ag € (B?)%1 N Bil)(RZ;RP’). There exists a positive constant €;
depending only on co, Co, ||\/poto, V X Agl[r2 such that, if

||A0H(B§mB§1)(R2) €2,
then the system has a unique global-in-time solution (p,w, A) satisfying
co < p(t,x) < Cy (1.14)
and
V] e 12y + [ (v/POrw, V2, VP) | 22y < M(1+ loll 3 p3)  (119)
140 g3 ab ) NOA T AT g o gy < Oz s (110

where M depending on ||ug|| g1, ||V X Aoll12, co, Co-

Several comments concerning our Theorem [I.2]and Theorem [I.3are listed below:

(i) To our knowledge, Theorem|[I.2]and Theorem|[I.3are the first results of well-
posedness for the inhomogeneous Hall-MHD system (partially) in critical
spaces that allow discontinuous density. Meanwhile, Theorem is the
first to show that the 2%D Hall-MHD system is globally well-posed for any
large regular initial velocity and general Magnetic Prandtl number v/ p.

(ii) Similar to Theorem for the 2%D case one may also obtain a small
data global well-posedness result in critical spaces, but removing the small
variation assumption on the initial density like in Theorem is hard.
The main problem lies on obtaining L'-Lip estimate for the velocity when
density has large variation and is only bounded. To our understanding,
because of the existence of Hall term, the time-weighted methods developed
in [19, [24] are not likely available for the (quasilinear) system . Indeed,
our idea of proving uniqueness part for the Theorem is new, they are
different from the recent work [24] of R. Danchin and S. Wang.

(iii) Our proofs of the theorems also work for the inhomogeneous incompressible
MHD system without Hall term (that corresponds to h = 0), thus improve
previous results [4, [6] T3] BT, [43] [44].
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Structure of the paper. In section 2, we introduce the Lagrangian transform
and its properties, and list some useful linear estimates for the heat equation and
Stokes system. The next two sections are devoted to the proof of Theorem
and Theorem [I.3] Finally, for reader’s convenience, in the appendix we recall a few
properties of Besov and Lorentz spaces and present proofs of some new propositions.

Notation. We end this introductory part presenting a few notations. As usual, we
denote by C harmless positive constants that may change from line to line, and A <
B means that A < CB. For X a Banach space, p € [1,00] and T > 0, the notation
LP(0,T; X) or LY.(X) designates the set of measurable functions f : [0,7] — X
with ¢ = || f(¢)[ x in LP(0,T), endowed with the norm |- ||z (x) == ||| - [[x || zr (0.7)-
We agree that C(][0,7T]; X) denotes the set of continuous functions from [0,7] to
X. Sometimes, we use the notation LP(X) to designate the space LP(Ry; X) and
|l - llz»(x) for the associated norm. We will keep the same notations for multi-
component functions, namely for f:[0,7] — X™ with m € N.

2. PRELIMINARY

2.1. The Lagrangian coordinates. Since the density is rough, a crucial point
in our proofs of uniqueness is the use of Lagrangian coordinates. The following
presentation and propositions are borrowed from [17] [18].

Let X be the flow associated to the velocity v, that is, the solution to

d
%X'v(t,y) =v(t,X,(t,y)), Xo(0,y9) =y, VyeR™ (2.1)

Equation ([2.1)) describes the relation between the Eulerian coordinates x := X, (t, y)
and the Lagrangian coordinates y.
Let us now list a few basic properties for the Lagrangian change of variables.

Proposition 2.1. Denote D := V7T, v(t,y) := v(t, X,(t,y)). Suppose that D,v €
LY0,T; L (RY)). Then the solution to the system (2.1) exists on the time interval
[0, 7], and Dy X, € L>°(0,T; L>°(R%)) with, in addition
¢
1Dy X (1) = ety < exp( [, 11D20 ]l ey ).
Furthermore,
t
Xo(ty) =y + | B(r,y)dr,
and
¢
D, X (t.y) =1d+ [ Dyv(t,y)dr.
Let Yy (t,-) be the inverse diffeomorphism of X, (t,-). Then
D,Yy(t,x) = (Dva(tay))71
and, if
t _ 1
Jo 128 e ey dr < 3.
then

My := (Dy Xy (t,9)) " = (Id + (Dy Xy, —1d)) " = i(_l)j (



and the following inequalities hold true:
t
[Mo(ty) ~1d| £ | 1DB(r.y)dr,

t o

D, Ms(ty)| S | 1D}o(r,y)] dr,

|0: M (t,y)| S [Dyo(t, y)l-

Let us now derive the system (|1.10)) in the Lagrangian coordinates. We set
p(t,y) = p(t, Xu(t,y), P(t.y) = P(t, Xu(t,y)),

a(t,y) = u(t, Xu(t,y)), Blty) = B(t, Xu(t.y)), (2:2)
A(t,y) = A(t, Xu(t,y), Qty) = Qt, Xu(t,y)).
Using the chain rule, we find that 5 = po and that (@, P, A, Q) satisfies

0008 — Agt + Vg P + AgA x (Vg x A) =

divgu = 0,
_ _ _ _ 1 _

0 — A+ VaQ = (Vad) T+ —Agd x (Vax A). (23

0
leUz = 0,
(Hv Z)|t:0 - (U(), A(])a

where operators Az , Vg and divg correspond to the original operators A, V and
div , respectively, after performing the change to the Lagrangian coordinates. Index
w underlines the dependency on w. Moreover,

Va=MgV,, divg=Mg:V,=div,(Mg-), Ag=div,(MzMLV,). (2.4)

We point out the equivalence between system (2.3)) and system (|1.10]), whenever,
say,

t o 1
Jy 1D, @) ey dr < 5. (2.5)
Of course, if that condition is fulfilled, then one may write that
__ i S v (D)
Mg = (Id + (Dy X, — 1d)) " = z;)( 1) (fo D, dT) . (2.6)
iz

In Lagrangian coordinates, we will use repeatedly the fact that
SMI(t) := Mg (t) — Mgz (£) = (f (D" — D, ) : (Z S Diphi- J)
k>10<j<k

with D;( fODude0r1—12
Then we have the proposition below.

Pr0p051t10n 2.2. Let w' and w® be two vector fields satisfying ([2.5) and define
ou :=u' —u’. Then

oM (1)| 5 [[ D, du(r,y)] dr,
< ("1p2s ¢ — 2t 2.2
[DSM(1)| £ | IDjsu(r.y)ldr + | |D,6u(r,y)|dr | (ID}a" (r.y)| + D} (r,y)]) dr,

t
|0:0M(2)| S| Dydu(t, y)| + fo |Dy0u(7, y)| dr (|Dya" (1, )| + |Dya(7, y)).
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We still use the same notations as in (2.2) for the 21D case without confusion.
The Lagrangian formulation for system (1.12)) reads:

P00 — Agti + VgP + AgA x (Vg x A) =0,

div g = 0,

A — AgA+VaQ = (VaA)"u + pioﬁﬁz x (Vg x A), (2.7)
divgA =0,

(@, A)|i=0 = (uo, Ao),

with (similar to (2.4)
Va=MLV,, divg=ML:V,=div,(Mg:), Ag=div,(MzMLV,")
and Mz is now defined by replacing D to D:=VTin (12.6]).

2.2. Some linear estimates. In order to prove existence of solutions in critical
spaces that allow discontinuous density for the system (1.10]), we need to borrow
the following maximal regularity result from [20].

Proposition 2.3. Let T,k > 0, 1 <p,m < o0 and 1 < r < co. Then, for any
vg € BIQ,;E(IRd) and f € L™7(0,T; LP(R?)), the heat equation

ov—KkAv=f in (0,7) x RY, (2.8)
’l)|t:0 = Vo in Rd .

. Lo 21
has a unique solution in the space Wp’

(mm ((0,T) x R?) and the following inequality
holds true:

1
k1w

U||L°°(0,T;B§;,2/m) + H’Ut, K Vzv”Lm,T(O,T;LP)
_1
<C(k'mm HUOHBa—% + I lLmro,rizey)-  (2:9)
b

Furthermore, if % + % > 2, then for allm < s < oo and p < ¢ such that 1 + %(% —
%) > 0, interrelated by

411, d

20 s m  2p ’
it holds that

R ol

1
Ler 0751 S Clso ”U”Loo(o T;Bi_,%) * v, KVQU”LW”(O,T;L”))'
(2.10)

In order to prove Theorem we introduce a A—modified equation for A (that
is (4.11))), and we need the following proposition to control Ay.

Proposition 2.4. Let T,k > 0, 1 < ppm < o0 and 1 < r < oco. Assume
o2
further that g € L'(0,T) with g(t) > 0. Then, for any vy € B;yr"‘ (R?) and
f € L™ (0,T; LP(R?)), the heat equation with time-weighted damping
{atv—mAv—&—gv:f in (0,7) x RY,

2.11
U‘t:() = Vo in Rd ( )
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has a unique solution in the space W;’(lm r)((O, T) x R%) and the following inequality
holds true:

_ 1
KT o]l + [lot, HV2U79U”LW"(O,T;LP)

.2— 2
L (0,T;Bp,»™)

1
< C(’il " ”UOHBQT% + Hf”Lm‘T(O,T;LP))- (2.12)

Furthermore, if % + % > 2, then for allm < s < oo and p < ¢ such that 1 + g(% -
%) > 0, interrelated by
i + 1 — l + i —1
20 s m 2
it holds that
m1+%_%||v||Ls,r(0’T;Lz) < C(Hl_ﬁHUHLM(O,T;Bi;%) + Jve, & V20| e (0,7:10) ) -
(2.13)

Since the linearization of the system (2.3)) is the Stokes system, we need maximal
regularity estimates for the Stokes problem. The following one can be found in [I8].

Proposition 2.5. Let T,k > 0,1 < p,m < co. Assume that uy € B;?,{’% (RY), f €
L™(0,T; LP(R?)), R € W, (0, T; LP(R?)) with div R € L™(0,T; W} (R?)). Suppose
that divug = div R|;—¢. Then there exists a unique solution (u, VP) to
otu — kAu+ VP =f in (0,T) x RY,
divu = divR in (0,7) x RY, (2.14)
u|t:0 = Ug in Rd
such that u € Wiﬁl((O,T) x RY), VP € L™(0,T; LP(R?)), and the following esti-
mate is valid:

1
k1T

ul

) + ||, & V2, VP| 0,130y

Lo
Lee (07T§Bp,mm

< C’(/@lf%

woll ooz + I, Rellzm oz + 15 div Bll oz )-

p,m

where C' is independent of k and T.

In order to prove Theorem [I.3] we develop the following maximal regularity
estimates for the Stokes system with only bounded coefficient.

o2
Proposition 2.6. Let T,k > 0,1 < p < oo. Assume that ug € B;p”(Rd),f €
LP((0,T) x RY), R € W, (0,T; LP(R?)) with div R € LP(0,T; Wpl(Rd)). Suppose
that divug = div R|;—¢ and that

0 < ps < p(t,z) < p* for (t,z) € [0,T] x R%

Then there exist positive constants 2* and 2, depending only on p. and p*, with
2, <2< 2%, such that for all p € (24,2%) the unique solution (u, VP) of system

pou — kAu+ VP =Ff  in (0,T) x RY,
divu =divR in (0,T) x RY, (2.15)

u|t:0 = U in Rd,
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satisfies

_1
K | 2-2 +Huta"ivzuaVPHLp((o,T)de)
L=(0,T;B, ,7)

< C(p, p*,p*)<||uo||32_% +IF, Rell e 0,7y xrey + HndivR||L,,(07T;W;)).

p,p

The proof of the above proposition is given in the appendix.

3. PROOF OF 3D CASE

In this section, our aim is to prove Theorem for system (|1.10). The details
of the proof are divided into four steps. In particular, in the last step, we handle
the uniqueness in the subsection which is the most difficult part.

Step 1: An iterative scheme. Define a = p — 1, we rewrite ([L.10) to

a4+ u-Va=0,

ou — Au = fi(u, A),

KA — AA = fr(u, A),

(p,u, A)t=o = (po, uo, Ao),
where

fi= —P(a@tu +(1+a)u-Vu+AA x (V x A)),

L
1+a

The idea is to construct iteratively a sequence (a™,u™, A™),en of smooth approxi-
mate global solutions by solving only linear transport and heat equations. To this
end, we smooth out the initial data: a? := S,a0, uf = S,ue and A := S, Ay,
and define the first term (a”, u®, A°) of our sequence to be

f2=73(u><(V><A)—|— AAx(VxA)).

a®:=al, u®=cluf, A" =R AQ.

Next, assuming that (a,u", A™) has been globally defined on R, x R?® and
smooth, we take for (a"*!, u"T! A"*1) the solution to the following linear transport-
heat equations:

a4 u™ - Va"tt =0,
D — A =
DA™~ AAT = £,

(anJrl,unJrl7 An+1)|t:0 _ (ag,qu,ungl7 Angl),

(3.2)

where
fir = =P (@ 0u" + (14 a")u" - Va' + AA" x (V x A7),

1
1+ an

Let us emphasize that as the initial data, transport field and source term are smooth
and globally defined, it is also the case for (a"+!, u™*!, An+1).

3 =P(w x (Vx A"+ AA" X (V x A™)).
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Step 2: Uniform Estimates. We are going to show by induction that there exist
two generic constants C and Cy such that for all n € N|

la™ || oo (ry xr3) < Cillaol| Lo (rs), (3.3)

oz, gy + 14 s amny + 147 iz | m,
3 s

Scz(

. (3.4)

In the following, we omit the notation R® for simplicity. Noticing that, for initial
data we have: Vn € N, ||af| r~ S |lao|lz~ and

o I1AGl s r S (Aol s

7 .
1 ABA 51 ~pA
B4,lmB4,1 B4,lmB4,l

)+ Aol . 3 + | Aol

ol 3 " 1)
B3 B, (R?) B (R?)

n
H%IIBE1 < ||uO||B§1
And using classical estimates of heart kernel (or Proposition , we see that (3.4))
is fulfilled for n = 0 if Cy is taken large enough.

Let us now assume that (3.3)) and (3.4)) are satisfied at rank n, we are going to
prove them at rank n + 1. From (3.2);, we see that

0™ oo (e xis) < llai ™ [ poe msy < Callaoll pos (ms). (3.5)

.1
Regarding u™+!, we apply Proposition to estimate it in By, by taking p =
2,m= %,r =1,s =8, =4. We get

[ O 1 /R s T [
L

uﬂ+1 ,
PR e e

(L2)
<O(Ig™ g +1F 010 ) (30)
2,1

Similarly, bounding A"*! also relies on Proposition by taking p = 4,m =
%m =1and p=4,m = 8,r = 1, respectively, we get

ATy A VR AT

(Bif1) (L*)

n+1 n
<0 (1A5 L + 150 6D
and

A+ AT TR s
4,1

<o (145705 +1f ). G
4,1

Next, we estimate f{* and f3' term by term.

Bounds for f{'. Using Holder's inequality, we have
T O e I B

and
L I P L[ P\ PR

SA +lla"l[pee o)) llu” s [V g o

I3 2 4
S+ Cillaollzee) [l | Fs.1 oy IV unllz%(m),
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where in the last inequality we used (3.3)) and the Gagliardo-Nirenberg type in-
equality

V™| S [l

2 u”
L5 (L) ~ ”

1
ool V7l

For the last term in f{*, as a consequence of Holder’s inequality and

IVA" e S | Il4lE=IV2ANL

1
o Sl a0t

we obtain

|AA" 5 (VAN 0 oy SIVA 220 IV2AM g0
4
n||s 2 AN
SN Ny 1924712
n|s 2 AN
slati? s, IIVA E LRV
.3

where in the last step, we used the embedding Bf  (R?) < L>(R?).

Bounds for fJ'. We first estimate f7 in L5 (

inequality, we have

Ry ; L*(R?)). Applying Holder’s

1

pray "1 = llat |z (rey

1
< A" 2An .
N1—01||a’0||Loo || ||L (B4 ||v || 71([/4)

Using the following Gagliardo-Nirenberg type inequality

AA" x (V x A™)

n 2 AN
14 am HVA ||L°°(L°")Hv A ||L%’1(L4)

IVA" | r2z) S [lA” 1211247

S
t

anf IRy
(B L5L)

4,1

we get

[ x (7 x AN 50y Sl VA™ | s

(L*)
Sllu"{|sa ey [VA™ || L2(zee)

1 4
gy , A™||5 . VQA” 5 . 3.9
Sllu™ s o | ||L00(B§1)|| I7sapey B9

Similarly, we estimate f3 in L%(Ry; L*(R3)). We have
1
L81(L4) ~1 - Han||L°°(L°°)

1
— A" V2ZA"
ST A e VA s

AA™ x (V X An) ||VAn||LOC(LOO)||V2An||L8,1(L4)

Hl—ka"

and

[ x (V x A")[| s ze) S lu"(zsa sy VA" g
L>(Bg )

Gathering together all the above bounds for f{* and f3 with (3.6)-(3.8)), we
obtain that

s, <Ol g + ol o e,

(3, 2,1 (35
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+ 1+ Cillaoll ) [w™[F2 -+ [1A™ [ )
2,(3,1

4.(3.1)
and
n+1y . . . n .
1A e e S C (1ol g pr iz, | 1A ez
1

- A : )

+ 1_ ClH(lO”LN || ||W42 (18 1)an,’(18,1)

Define € := Hu0||1_32%1 + || Aol . 4%1 si, and using (3.4), then we get by combing

above two inequalities that

la s,y <C (2 +CiC & flaglli + (1 + Cillaollz=)(Cz ©)?)

2(4 1)

and
1

2
T T Crlagll= (2 ©) )
If the initial data are so small as to satisfy the following smallness condition:
C1Csllag| L + (1 + Cillaol =)C3 e < 1,
C3e
1= Cillag||p=
then are fulfilled by u"*! and A"*! with Cy being chosen such that Cy > 4C.

||An+1Hw2,1 AW 2L S C<€ + (Cg 6)2

4 (%,1) 4,(8,1)

C%e + <1,

Step 3: Convergence and checking that the limit is a solution. The bounds
(3.3) and (3.4) and Proposition imply that
n n 2, n n
o ooy 7t 0 T2 gy ATy
2 An

+ || A7, VA H(L 8 \L8)(L4) < oo, (3.10)
it combined with classical functional analysis arguments already ensure that there
exists a subsequence of (a”,u™, A™), which we still denote by (a”,u™, A™) and
some (a,u, A) with

a€L>®Ry xR%), we W2, | (Ry xR?), Ae(W21 nwe

1) 4,(8, 1))(R+ X RB)

2,(3» 1)(
such that
e a" —a in L®(R; x R3) weak x;
.1
e u" —~u in L®(B3,) weak %, (uf’, V2u") = (u;, V>u) weakly in L3 (L?);
.3 .3
e A" =~ A in L>(Bj, N B{,) weak * and
(A}, V2A™) — (A, V?A) weakly in (L3 N L¥)(L*).
This implies convergence in the distribution meaning, and one can thus pass to the
limit in all the linear terms of (3.2]). However, we need to exhibit strong convergence
properties to pass to the limit in the non-linear terms.
Notice from (3.10) that (u}),en is bounded in L3 (L2) and (A),en is bounded
in (L N L8)(L*), from which (3.10), and the Aubin-Lions Theorem, we infer that
forall0<d<1l,4<p<oo

e u” —u strongly in L (L3-9), Vu" — Vu  strongly in LlOC(L6 %),

loc\loc loc

e VA" - VA strongly in LS (LY ).

loc
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Meanwhile, by Gagliardo-Nirenberg’s inequality in (A.1]), one has Vu € L*(L?),
then the Di Perna-Lions theory [25] for mass equation ensures that a is the unique

solution for (3.1); and

a" — a strongly in Cjoc(Ry; L,

(R*)), V1< q< oo
Finally, one can pass to the limit in all the terms of f{*, f3' in the equations (3.2)),
and (3.2),. To give an example, we only focus on the most complicated one, that

is, the inhomogeneous Hall term. We decompose
AA" x (Vx A") AAx(VxA)
1+an 14+a
a—a” AA" x (V x (A" — A))
=——— " (AA" x (Vx A")) +
(1+a)(1+an)< ( ) l+a
(AA™ — AA) x (V x A)
+
14+a
Thanks to the bounds (3.10]) and previous convergence properties we know that the
first and second term strongly tends to 0 in L}OC(LZQOC), while the third term weakly
tends to 0 in L8(L*). -
Moreover, it is obvious that a? = S,ag converges almost everywhere to ag in R3

.1 .3 .7
and ugy — wuo in B3, and Af — Ap in Bj; N Bj,, respectively. In conclusion,
we have prove that (a,u, A) is a distributional solution of system (3.1)), and thus
complete the proof of the existence part of Theorems (1.2

3.1. Step 4: Uniqueness.

Time-weighted estimates. To prove the uniqueness, the key point is bounding
Vu in L'(0,T; L°°). We have the following time-weighted estimates for u.

Lemma 3.1. For all T > 0, the estimate below holds:

(| tu| + || (tw)s, V2 (tu), tV P s 0,7,

L7
L>(0,T;B] )
<C1+T A . (311
<o) (lually +14ol g g ) (31

Moreover,

Julzoram + Vel < CO+) (luolly +1dollg 1 ) G12)
4,

1 3
2 a
2, 41N B

Proof. Multiplying 2 by time ¢ yields
By (tu) — Atu) = 79((1 +a)u— ady(tu) — (1 + a)tu - Vu — tAA x (V x A)).

Applying Proposition to the above equation by choosing p = 4,m = 8,;r = 1,
we get

|

t 2(¢ Ry
sy I VW oy

S+ a)'u,HLsT,l(M) + Ha@t(tu)HLsT,l(M) + 111+ a)tw- vUHL8T>1(L4)
-+ ||tAA X (V X A)HL;J(LAI). (313)
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Then Holder’s inequality and Proposition [A-2] imply that

[tw - Vaullzsao,rine) S llwllosaomey [EVullieor=) S lullesioroo ltull P
4,1

and

[tAA x (V x A)|zsa(o,rn4) S T AA[ psa(o TL4)HVA|| oBd )
4,1

Hence, combining above two estimates with the bounds ([1.11)), we find from (3.13))

that

bl 7+ (), VA (tu) | psa oz < C(L+T) <I|UOIIB + [ Aol

> (0,T:B}) Bmefl) '

Next, with (3.11) in hand, we bound Vu by using the Holder inequality, (A.1))
and Proposition as follows:

1
2
2,1

T T _s 7 w2 g
Jo VUl sydt <C [ 7 Vull 7 V2 () | ot

1 6
<C|IVulla| ... \VQ(tu)||z4 LEa IR g
Ly Ly
5 ioe ik 3
<Clllullz. IV U||Zz ||V (tU)HLm ()
57 5 2
<C|lllwllza]|, 0.4 U||L2 SV (tu)||le (4)
T
<Cllull . 19205, Hv2<tu>||
= L3N (L4) L3 (L2 L3N (L4)
<C A .
<C (Iwally +14oll5 1 )
The proof for |[u| 20,1,y can be performed in a similar way. |

Lagrangian approach. Thanks to in Lemma we can taking time T
small enough so that ( is satisfied. The uniqueness will be shown in low regu-
larity spaces in the Lagranglan coordinates, for which the Proposition [2.5] plays a
crucial role in the proof.

Now, we consider two solutions (p',u!, AL, P1 Q1) and (p?, u?, A%, P2, Q?) of
(L.10), emanating from the same initial data and denoting by (p*, @', Zl P @1)
and (p%,u?, A", P @ ) the correspondmg ones in Lagrangian coordinates. Note

that we have p' = p*> = po, and (p°, @', A", P',Q") (i = 1,2) have the regularity
stated in Theorem L,
Denoting éw = @' — uw?, 6P = PP ,0A = A _A° , 00 =0Q —Q, and
M (t) := Mg: (t). From the Lagranglan formulatlon ([2:3), it is easy to find that
;6w — ASu + VOP = 5f1 — 0 fo,
divéu = divo Ry,
0 0A — AGA+V6Q = 0f2/po + 0 f3 + 6 fa, (3.14)
divéA = div iRy,
6= = 6Ali=0 = 0,
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with
51 =(1 = po)dsdu + [(Ag — Ag2)u' — (A — Agz)6]
— [(Vagt — Vag2)P' — (V — Vig2)6 P,
52 =[(Ags — Agz)A' X (Ve x A')] + [Ag204 x (Vi x A1)
F[Ag A X (Vg — Vagz) x A)] + [Age A~ x (Vg2 x 64)],

5fs =[(Ag — Ag2)A — (A — Ag2)6A] — [(Var — Va2)@' — (V — Vig2)6Q),
5f1=((Var — Vg2) A ) 0" + (Vo0 A) @' + (Ve &) " 53,
OR; =

(Id — M)u — (Id — M?*)@?,
=(Id — M)A — (Id — M2)A"

Applying Propositio to equations of 6w and JA with p = 2,m = r = %,
respectively. One has

Héﬁ”m(o,:r;gjé(w» + ||0@;, V3o, V6P|| 3 0.1 ®))
< (181,682 RN 3 g 1oy IV ORI 4 g g ayy) (315)
and
”‘ﬁ”Lm(o,T;BE%(Rs)) + 154:, V254, V5Q 5 g e
< C(16£2/p0:6.f3,0F2, OB 4 7.2 )+ ||dw6R2||L3 OTWRS))) (3.16)

In the following, we estimate the right-hand-sides of and - ) term by
term.

Estimates of (0R;):, (0 R2):, divoR; and div dRs. Firstly, we consider the terms
(0R;); and (R3)s, and write them as follows:

< — 2 4
[(ORy )| b 10:[(1d — M?) 5| L + [0 (6M @ )HLS(m
., < Id - M*JA]| «+ + MA'
||(6R2)t||L§(L ||8t[( d )6 ]HL% (LQ) ||8t(6 )||L3(L2)

For the term 9;[(Id — M?)da], Proposition [2.1] and Proposition [2.2] ensure that

— M?)ém 4 < 25wl 4 — M? u 4
jol0a gl g <oty 00100l s

2

<H|Du

+ Hj |Du2|d7|8t6u|’

LS(L2

2 2
SlDw ||L2T(L3)||5U||L (Le) + | Dw ||L1 Loo)||3t uHL3(L2)

Thanks to the Gagliardo-Nirenberg inequality in (A.1]), and the embedding B 2% 4 (R3) —
'3
L3(R?), we see that

103 15,0y 5 |18 N0 |,

2H D 2H541

A2 N o E
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and
__ 2 z 2 3
T L A 1A B P L T
'3
Therefore, according to Lemma one gets
Jodia 1ol g .S e 10wz oy (317)

Similarly with (3.17)), one has

10:[(Td — M2)5AHIL3( ) SID@|| 13, (1) 10A] L (o) + 1 DT || L (1) 105 All 4 L0

S €1 [0Aliza (- (3.18)
'3

Next, we consider the term 9;(§Mw'). By Proposition and Minkowski’ inequal-
ity, we see that

—1 —1 —1
Joonamt)) g, <loaME| g o g

<H\D6u| i +Hj \Déa] dr |0,@ |]
3(L?) L3(L2
+Hj Dol dT(|Dﬁl|+\Dﬁ2\)|ﬁ1\H .
0 L3(L2)
1
SIpsal g 1@l + 100l g o]y
1 - . —
Dol g (D@ + DTy
According to the embeddings from Proposition we have
O T L A
T 2,1
And (A.1)) and |A.3| E and Lemma imply that
1 —13 —1)3 ,—=3
R N [ A e A [
1 2 _ 5
S [ PR (R T B L
and
1 2-1)|3 213 ,—3
LR P [ A U
1 2
sliozain.| L, [iep2atid] g i e . s e

We combine above estimates to obtain that

Mu' Ser |D?% 1
O T (319)
Similarly, we have
—1
M A D?§ 2
oA 5, < e D%y (3.20)
Thus, gathering (3.17)-(3.20) together, we readily obtain
||(6R1) ||L3(OTL2 + H(éRQ)t||L%(07T;L2)
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S &1 (12N oy + 1z ). (3:21)
3 '3

To estimate ||divoR:|| 4 $ 0.1Wd) and [|divoRy|| 4 $ 0.rawp) O notice that
[divoRy |, 4 $ 0.TW) <||Déu : (Id — MQ)HL:.(OTwl + || Dut - 6MHLJ(OTW1)
Hle(SRQHLS(OTwl <HD(SZ:(Id_MQ)HL%(O,T;WI + DA DoM| s $ 0.W)
For the term Déw : (Id — M?), applying Proposition m we easily have
S . 2
D5 (14 =Ml 4 i
¢ 22
5H\D2<m\ [ pwdr| 4+ H|D5u| j D% \dT’ .
0 L3(L?) L3(L2)
S|D*sal| Lhw 2)||Du2||L1 (L) T HD5U|| Lh 6)||DQU L1z
< e |D*5u| 4 (3.22)

L3 L2y’

where in the last inequality we used the Gagliardo-Nirenberg inequality of the type:

1078 1y 1y S |17 D%

5

1.

2—-213 2—-2
IOy D ) S

In a similar way, we can bound the rest terms in divdR; and div d R, as follows:

|Da’ : $OMI s o o)
1 t 2
,§H|D2ﬁ1|f poalar| 4+ |ip@ [ |D%aldr]|
0 L} (L) 0 Li(r2)
+||ipa [qp*a'| + D% dr f |Doaldr|
0 L3 (L?)

slpeal 4 | ||t%D2al|| s+ | D% ||t% at| 4
L%(L3 3 L3(Loo)
1 2—1 —2
+|[tT Da ||L3 oy I8 g (1) + [ID*@ Hu @) D5l g
< e ||D26UH
LS(LQ)
| DEA = (1d =M 4 o i

SIID*5A|| 302 D@ || 3, (o) + | DSA] s ||D*T?| 1y (2
L3 L3 (LS)

<e HDQ&AHL%(LZ
and

IDA" M o o

s|iowa'| [ ipsutar| y o+ | IDA [ 105 ar]

4

L?(Lz) L3(L?)

=1t 21 2.2 - ’
+|IpA'| [ (D% + |D*@) dr | |Dowldr

4
3

L3 (L?)
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<||D5u||L1 " ||D2A H 3( " + ||D2c$ﬁ||L ||t4DA || 3 (L)
21 2u?
+ ¢t DA’ I8 (o) IP"F Ny o) + D72 HLlT(LS I ID3El 4 )
< &1 | D%5a| s
L3(2)

Therefore, we conclude that

|div R || 4 +ldivoRs| 4 o 1.ps)

< o (ID%0A) g+ ID%0T] g ). (323)

Estimates of §f1, df2, 0f3,df4. For the term 6 f;, we see that
1=pollie 05y |, +I(Age =A@ (A=Ag2)5a] g

L3(0,T;L2)

||6'f1||L%(O,T;L2) S H 3(L2)

—1

a2 — Va1 )P — P

(Ve = V)P (T = TPy

The first term at the right-hand side can be easily absorbed by the left-hand-side
of (3.15)), while we write by analogy with (3.22))

— Az )oul|| a = ||di — MM T wl|| 4
I8 - gy, = i (1d a0Vl g

SID@ |y 1?03 g+ 1D*T]| Ly ooy DI g

3( 2 3(L6)

< £1 ||D 6uHL3(L2)

and

Vs — Vo V — Vg2)dP
I PV = V)Pl g

< HaMVP ‘

. Hj |Dw?| dr| VP
L (L L3 (L)

||Du2HL1 Loy |[VOP]| 4

VP‘

<|D%su| . \ﬂ
L3(L?) L3(L2

4

L3 (L3)

€1 <||D25u||L§(L2) + HV(SPHLg(Lz)) )
T T

where we used that

< -3 -1, 2 5
AP g L S IVP IR

4
3
Ly

—1, % —1,2
<[w g L e ~

3 Ht 12” 121 < 1.
b -

Noticing that
(Ag> — Ag)a! = div [(M2(M?)T — MY (MY T)va').
Then, one can apply the same trick as previous computations to obtain

1 2
(8 — Ag a4 (2)<el 10?5l g

To bound 6§ f,, according to Proposition [A.2] we find that
Vet x A | =|(M —I))T - Vx A +V xA'|
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t P N
gjo D@ |dr |V x A'|+|V x A'|
—1
<||A l)i1 1 (700 1
AN, i (10 g o+ 1)
and
A A | = |div [(M2(M2)T — I))VA’] + AA|
t I I
< fo \D*w?| dr |DA’| + |D*A°).
So that we are able to get
(Agt — Ag2) A’ % (Vg x A 4

LS(L?)
2
<|(Agi — Ag2)A' ||L3( 2)IIV i x A zse (=) S €1 |[D7ow|| i
and
— —1
1Ag20A x (Va1 x A )||L§(L2)
A 2
< DwdAl g Ve x A izm S < IDAN
and
—2 —1
A A w— Viz) X 4
8" x (Ve = V) < Ay
B —2 T —1
S COR A ST
—1 t 29 —9 272 t o
5H|V x A'|(] |D*@? dr|DA’| + |D*A)) | \D5u|d7" s
2 2
IV Ay 1D g ) | DB i umy 10Oy
1 274" — 2
S GAET N P Loy PO B I o P
and
1AzA” X (Ve x §A)| 4
i)
=||A2A° §A
[AZA” x (M?)T -V x M4 i
<H|v x 64| f \D*@?|dr |DA”| + |D*A |)]
200
2—2 A A 24
SIV ANy 10 g )| DA )+ 9 64 5 ID* A7) s

S el ||5Z||W22%(T)‘
Next, the term § f3 may be handled along the same lines. Indeed we have

—1 J—
[(Ags — Ag2) A", (A — Agz)0 Al é(LQ)

I + ||div [Ml(dM)TVA I«
L3(L2) L3(L2)
FADARN g | I + DI g 1D 0

<||div [(M(M?)TVA']
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S (ID%A| y , + D%y )
T

L3 (L?)
and
—1
[(Var — Vag2)Q , (V — Va2 )5Q||L3(L2)
s|omava’| —I—Hft|Du .
pn) o rh

2 c—
(il L+ 1950 g )
Finally, we handle J f; as

A <||5MVZlﬁ1|| i, T IMeVeAT + |M2VA ST
L P2 L (12) L3 (12)
<V 1 1) VA 15 (1) Ilullluw

_ . .
+ ||V5A”L§(L6)||u HL°T°(L3) + ||VA ||L§(L5)||5u||L§'E’(L3)

Seu (1025 o+ oaliz )
T 5

In the end, putting the above estimates of § f1 to 0 f4 together with (3.21)), (3.23)),
one gets that

ow ouy, V3iou, Vo P
L T L A T,
'3

A Ay, V3A
+ 16 \\Lm<o,T;B§4<Rs) + o4, Vioa V5Q||L3(OTL2(R3))
'3
S e <5“ 5A||W21(T)+”V6P V6Q||L3(OTL2(]R3)))

Thus uniqueness fellows on the time interval [0,7], then on the whole interval,
thanks to a standard connectivity argument. It completes the proof of Theorem

O
4. PROOF OF 21D casE

This section is devoted to the global well-posedness of the Q%D flows of the inho-
mogeneous Hall-MHD system with large velocity. To this, we use the reformulation
for convenience. At first, we mention that a small modification of the energy
equality allows to establish that for any smooth solution (p, w, B) with initial
data (po,ug, Bo) satisfies

IV p(E)w(t)l[72 2y + 1 BE72 g2y + 2];(”6'“'”%2(]1%2) + H%B”ZL%W)) dr
= IVpouollZage) + 1 BollZ(gey-  (4:1)
Moreover, thanks to the definition B = V x A, thus
IV x Allz. = IVAllg. = 1Bl Vs€R,

one can further rewrite (4.1f) to
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~ t ~ ~
IV p(Out)172r2y + IVAD) 172 g2y + ZIO (IVull2mey + |AA[72g2y) dr
= [lv/Pouol2zme) + IV x Aoll2a(ge), t>0. (4.2)

In order to prove Theorem having in hand is not enough, since it is wide
open in [35] about the uniqueness of global weak solutions for the 2D inhomogeneous
Navier-Stokes equations. Indeed, our proof of Theorem [I.3] essentially relies on the
following proposition and Proposition [2.6]

4.1. The a priori estimates. We have the following H' estimate. Note that we
do not assume the smallness of the density.

Proposition 4.1. Let (p,u, A) be a smooth solution of the system (1.12)) on the
time interval [0, T*). Under the assumptions that

0<ey<pp<Co upcH'(R?), Age (B nB )R (4.3)

There exists a constant €3 depending on My := ||\/powo 12 (r2) + IV x Aol 2 ®2)
and cg, Cy such that, if

A <
| OHBB,%,me,I < e,

then we have for all T < T*, (1.14)) is satisfied and

Vu? ’ opu, Viu, VP 2 dr < M (1+ C2|l A2
IVl oin2) + | 1(VPOkw, Viu, VP)(T)||72 d < My (1 + G5 oHBz

2 .
3Y1ﬂB

|A] + (8,4, VA, VQ)|

L=(0,T;B5 NB3,) |L2

3. < C3HA0||B

NLS1(0,T;L3) —

wlot

%
3.1NB

w

,1

(4.5)
with My = ([ Va2, + 1| (0, ¥ x A0)[32) exp (Ceo, Co)l[(uo, ¥ x Ag)l142)

Proof. Obviously, (1.14]) is fulfilled. We then divide the proof into two parts: The
first part is concerned with the estimates of the velocity.
Estimate for u. Taking L?(R?) inner product of (1.12) with d,u gives

1d, =~

S IVu()3: + /ol

=— fw (pu - Vu) - dyuds — IW (AA X (V x A)) - Qyudx

- 1 ~ -
<IVaulas Fullaslvporals + | 54 x (T xa) ol
N p
- 4~ - 1
<ACO Il [Tl + VA DA + 5Bl (16)

Noticing that, the equation (1.12)3 can be reformulated as
—Au+ VP =—pou—pu-Vu— AA x (% x A),

from which, one has

IVl 2 +IV P 2 < v/Collv/pdsul| 2 +Collull s | Vull s+ [ A A 2| VA .
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Inserting the above inequality into (4.6)) and using the Gagliardo—Nirenberg in-
equality (A.1)) yields

d ~ 0~
£IIVU(t)H%2 +|lvpoeu, Vu, VP2

<C(co, Co) (Il IVullfs + 1A ANV A3 )

<Clev, C0) <||u||Lz||%|%2|62u||Lz +lBAlENAlR )

1 ~
<C(co, Co) <||u||L2||vu|L2 + ”AAHL?HA”Q.E ) +5IVule (4T)

In view of (4.2]) and , we get, by applying Gronwall’s lemma, that
~ t ~ ~
IVu@l: + [ 1B, V2u, VP)(7)|3: dr
<(|Fuol2: + [ IAAIZ[AJ? ¢ dr) exp(Cleo, Co) [| lu(r) 3 Fu(r) |3 dr )
- 0 BEI 0
<(IVuoll3= + (o, ¥ x Ag) 3417 _ & ) exp(Cleo, Co)ll (w0, ¥ x Aol )

Loo(ovt§333:1)

<M (1+[|AJP 4.8
(1141t ) (48)

Estimate for A. Let us first rewrite 4 to

= 1, respectively) to above

A — AA = P(ux(VxA ( )>,
=3.6,r

then apply Proposition (take p = 3,m =
equation to get

||AHL°°(O,T;B:3%,1HB§ )" 4 v Al 1(0,T5L3)

<0 (Mol 3 s + 10X (F X A3 o
1

2
1AL i A s ) - 49

Due to the coupling u x (% X A)7 we can not directly close the estimate (4.9) with
the help of energy equality (4.2] . Since, similar to (3.9), we only have
<C Iz IV Al | 54

2
T

lu x (V x )], 3

L0,1;03) =

1 3
<C [[lulze Al 192 ]

31
3,
L

1 ~ 3
< 1 2 1
<Olulsgen 417 5 IV Al

1 ~ 3
< ) All* 2A a1
<Cllullgos sl IILw(BEI)IIV IIL?I :



26 JIN TAN AND LAN ZHANG

and the boundness of ||ul| .03 thanks to ([4.2). Here, it also explains the impor-
tance of considering initial data in critical Besov spaces with the third exponent to
be 1.

One may take the advantage of sub-critical controls of velocity in , how-
ever, in this case, inequalities and are coupled, it seems unavoidable
to make smallness assumptions on both uy and Ag. Hence, we use the following
time-weighted strategy.

For A > 0 (to be determined), let us define an unknown associated with A by

t
Ay(t,z) = e TOAt2), with f(t) = )\fo w3 sdr, (4.10)

which satisfies the following A—modified equation

X = AA, x (Vx A
OAN+ f'(t) AN — AAN =P (u x (V x AA)) +P ( A X (pV X ,\)> oS @)
(4.11)
Thanks to (4.2) and the Gagliardo-Nirenberg inequality in (A.1]), one has

1 2
1f @)l < C)‘Hquoo(o T-LZ)HV'L”?} (0,T)xR2) = CAMy, VT >0. (4.12)

Applying Proposition [2.4] to (| -, for some positive constant C3 independent of
A, we have

2
||AA||LOO(07T;B§1HB§1) H110:Ax, VAN PO AN L3010 0.7

<G (Mol 3 s 410 (7 5 AN, 3

B31mB3,1

+€\|f(t)|\L5°9||A)\|| (4.13)

w2
Lm(o,T;B§1)||V AA”Lg'lﬂL“(o,T;m)) '
Applying Hélder’s inequality and (A.1)), Proposition we obtain
o (V% AN, 310 gy <C Il 1A 2o

(0,73L2) L3
1 ~ 2
<C |z AN E 92 A0 5 | 5.
T
<C|fleze I Ax 15 | 5.0 197 AN ] 1.4
C 1 ~ 2
<SIF®A®, VA,
Lz (L?) Lz (L®)
and
= s 2
lux (V x Ao 0r:15) <C |lnalls| A1 192 A0 |
1
<C Iz Al o v2A||L3
T
c )
<SS OAN o oy + 1924l o -

For all T" € [0, T, denote

EX(T') = [[AX(T)] . B ni, +10:AN, V2 AN F (AN 3006 10,77 18)’
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we obtain from (4.13)) and (4.12) that
C
E ( ) < Cg < ( )+ )\E)\(T/) + eXp(C)\Moo) E)\(T/)Q) .
Choosing A = 2C5C, one find that as long as

1603 eXp(20302M00)HA0|| g § < 1,

31 31)

then E)\(T") < C5]|A¢l| .2 .5 and thus
B3 NB3

3,1 3,1

&2
”AA”L°°(0,T;B§mf3§1)+”atA’\’V An SO 3, tnperorizey < O3 HAO||B331 B3

Recall the facts that A(t, ) = /() Ay (t,z) and 9, A = /O (f/(t) Ay + 9, A)), we

get (4.4) and (4.5)) from the above inequality and (4.12).
O

4.2. Existence. At this stage, apply similar approximation scheme to the one that
we used for handling the 3D case allows to conclude to the existence part of Theorem
We omit details here. We just remind that, since the variation of density is no
longer small, and in order to take use of energy inequality and , one may
need to slightly change the corresponding approximate system to

A"t +u -Vt =0,

PO 4 pru” - Vet — At 4 VPP = —AA” x (% x A™),

divu =0, (4.14)
O A" — AA™T = g,

n+1 n+1 n+1 n+1 +1 n+1
, U 9 A ) ) AO )7

(p lt=0 = (po

where
- 1 ~ -
g" = P(u" x (Vx A") + i BAT(V x an).

4.3. Uniqueness. Arguing as in the previous section, it is necessary to establish
bounds for Vu in L*(0,T; L>°(R?)). Due to the large variation of the density, that
argument in Lemma is invalid here. We need the following lemma.

Lemma 4.2. Let q > 2 such that ¢ — 2. Define a := % — %. For some suitably

small T > 0, there exists ¢(T') going to 0 when T tends to 0 such that the estimate
below holds:

el oz (), V2 w) OV Pl Loy xrn) < D). (4.15)
LOO(O,T;Bqu a )

Moreover,
[ 15l eyt < (D). (4.16)
Proof. Multiplying (|1.12))2 by the weight ¢t yields
pdy(t°u) — A(tu) + V(t°P) = at® L pu — t° (pu Vu+ AA x (V x A)).
Applying the maximal regularity in the Proposition (take p = q), we have

||t"u||L o +[(tw)e, V2(t“u), V(£ P) | Lo (0,1 xk2)
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S C(Qap*ap*)||ta71u7tau . 6“’725&814 X (6 X A)||L‘1((07T)><R2)' (417)
Since ¢ is close to 2, we use Holder’s inequality to get
(87 o « o
[t%u - Vu Lago,mxr2) S It u|| 175 o.ri0 2% )”vu”Lﬁ(o,T;Lquq)
and

[t“AA x (V x A)l|ao,m)xr2) S TQHEA”LQ((O,T)XR?)”AHLOC(B% ;
3,1

We can control u and AA by applying (A.1) and the bounds (T.15)-(L.16) in the
following way:

_ 2 = 1-2 1_1
[[t* 1'U'HL‘J(O,T;L‘J) < ||u||zoo(07T;L2)Hvu||Looq((o7T;L2) 279 < c(T),

—2 ~ 2
[#%ell e T(0TLT2) < *”u” o) IVl Lo (0.7:22) < (D),
IVull v < Il Ty o T2 gy < 00
T2 (0,T;LTa) L>(0,T;L?) L2(0,T;L?)

and (use that 3 < 3‘12—_3 <6)

—3

3
1B Al eqomyieny SIAIE 0.1y 1341 S S 4ol

2 .5
(07T1L ) 331 B??,l

Hence, inserting the above inequalities into (4.17)) yields (4.15)).
Finally, we can bound Vwu by using the Gagliardo-Nirenberg inequality and

Holder’s inequality as below

TS L T e
Jo IVullpe@edt S [ 252 [Vl 357 [V w)| 75 dt

S 2||w||za£m) GO
< T wwwnzazz 1926w |17 ) < e(T).

(]

Now, we are ready to use Lemma [4.2) m and the bounds - to prove
uniqueness part in Theorem [I.3] by applying the Lagranglan approach similar to
the one in section for 3D case. The key ingredient is the proposition

Let us assume that (2.5) is satisﬁed for small enough T, and consider two

solutions (p,u!, A, P1.Q') and (p?,u?, A2, P2 Q2 of -7 emanatmg from
the same initial data and denoting by (p*, u' A P Ql) and (p2, u> A P Q )
the corresponding ones in Lagrangian formulatlon . Denote 6u = ul —u?,

P=P -P A=A -A,60=0 —Q and Mi(t) = My (t),i = 1,2. We



29

see that p' = p? = po and (0w, 6V P, A, 0V Q) satisfying
000:6U — AST + VOP = 6 f) — 6 fa,
divom = divoRy,
0,04 — ASA +V6Q =0F2/po + 0f3 + 6 fu, (4.18)
div6A = div SRy,
S|4—g = 6 Al4—¢ = 0,

with
5f1 i=[(Agt — A2 )T — (A — Ap2)0] — [(Vagt — Vig2) P — (V — Vig2)0P),

5fs =[(Ags — Agz)A x (Ve x A)] + [Ag20A x (Vg1 x A1)
+[AgA x((ﬁﬂ—l?) AN+ A A x(vﬂ x 0A)],
0fs =(Aq — Ag2)A" — (A — Ag2)0A| — [(Va — V)@ — (V = V),
6f1=((Vagr = Ve2)A') '@ + (V20 A) 0! + ( *2A) o,
SRy :=(Id — MYHa' — (1d — M?r2

SRy :=(Id — MY)A — (1d — M2)A".
Applying Proposition to equations of du and 0A with p € (1,2) such that
p — 2, one has

o] 22 + 0.6, V258, VP 1o ((0,7) x2)
LOO(O7T§BP,;DP (R2))

< C(||5f1, 6 f2, (OR1)e|| Lo ((0,1)xr2)) + [|div 6R1||LP(O,T;WP1(R2))> (4.19)

and

I5A] o2+ 064, V2 5A,VQl Lo ((0,1)xr2)
Le=(0,T;Bp " (R?))

< C(||5f2/00,5f375f4, (0Rs2)¢l| e ((0,1)xR2) + ||div5R2||Lp(0’T;W;(R2))). (4.20)

Define the functional space

W2L(T) := {v € L®(0,T; Bay” (RQ));vt,V% € LP((0,T) x R?)}.

pop (
We still denote by c( ) harmless positive functions such that ¢(T") going to 0 when
T tends to 0, that may change from line to line. We estimate the right-hand-side

terms of (4.19) and (4.20) in the following steps.

Estimates of (0R;):, (0R2);, diviR,,diviRy. Firstly, we consider the terms
(0R;); and (6 Rs); which contain four terms as follows:

[0:[(Id — Mz)(sﬁ]”y’ ©0.1)xr2), |10 (OM ! Nz o) xr2)
10:[(1d — M®)6 A]|| L (0,7 xR2) |0, (SM A MLz (0,7)xR2)-
According to Proposition 2.I] and [2:2] we have
10:[(Td — M*)6@) || 2. (0,7 x R2)
<|Dw?||

L?(Lﬁ)HéiHLW(Lf + ||D“2||L1 () ll0al| o ((0,7) xm2)-



30 JIN TAN AND LAN ZHANG

Thanks to the Gagliardo-Nirenberg inequality (A.l)) and Besov’s embedding in
Proposition and the bounds (1.15]), we have

P2 =g B oo P
L (o
2-p
ST oy | D%, ) S (D)
and (use that 32 > p)
lowll, ., 22 S lloull 22
Ly (L2=p) L>=(0,T;B, ")
Therefore, one finds that
[[0:[(1d — M2)5ﬁ]”LP((0,T)xR2) S C(T)H(;ﬁuwg;;(m (4.21)
and similarly,
1041(1d = M2)3A o 0.1y x52) S (T [6A 28 (4.22)

Next, due to Proposition [2.2] and Hélder’s inequality,
[|0:(SM")|| Lo ((0,7) x R2)

~ t ~ ~ ~
<N Dse T _ 1 —2 a2l o
SIDowl g, @ ooy + | [ 1Dowlar (B Da| g

LA(LT=7)
1, 1D5a] dr 0y 15 1)
suﬁrnmmsp [ lngecusy + 1D8| o ae 167 Ol u)
+ sl , e 65 (1D + \Du2\>||Lp<L4 [y P (4.23)

According to Sobolev s embedding and Gagliardo-Nirenberg inequality, we can ob-
tain that for some p € (1,2),

1D, g < [0 1D \L,%
Slowll® ., , |\D25u\| e S D)0 o)
L (W, 7) Ly ¢ (LP)

||D5“|| ZPP) S ||D 5UHLP((0 T)xR2),

and
[ D D | |0 1), < e(T)
Then, we find that
10 (EMT") | o 0.1w2) S DNz (4:24)

Similarly,
—1
0. (6MLA ) || Lo ((0,7) xR2)
~ 1 -~
5||D5UHLP((0,T)xR2)||A HLoo((o,T)xR?) + ||D5U||Lp Ht P atA HL”(L3)
T
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+lDsull , 2 15 (1D | + | D%2))| g 1) 1A e (0.7 xB2))
Sc(M0wllyz1 7y (4.25)
Gathering (4.21)-(4.25)), we get

[(0R)e, (6R2)¢ll Lo ((0,1)xr2) S c(T) (|00l yip2.1 () + H‘SZ||W§;;(T))-

In the next, we estimate ||5§5R1||Lp(0 T (r2y) and ||ai\x75R2||Lp(0 T (R2))
T3 T3
which can be bounded by the sum of the following four terms:

[Déw : (Id — MQ)HLP(O,T;W;)a | D' : 5M||LP(O,T;WZ})7
~ ~—1
IDSA : (Id — MQ)HLP(O,T;Wg)v DA : 5M”LF(O,T;WZ})'
Similar with (4.23)), applying Holder’s inequality, Proposition and we have
156 : (1d — M) o i
25— 2 s a2
SID6%|| Lo 0,7y xr2) |1 DB 1 £y + HDMIIL%(LZ%)HDU Ly
Se(T) || D26 Lo ((0,7) xR2) (4.26)
and
| D' P OMI| Lo 0,1
~ =l ~__ ~o =1~
N5l e 187 D ) + 100 o oimyce 177 DTy )
=1~ ~o ~
+ 1t Du | g (1) (ID*B | 1y 12y + 1 D 13, (12)) |1Doal|_, 2
T
<e(T)|| D208 1o ((0,7) x22) - (4.27)
In the last step of (| m, we used Gagliardo-Nirenberg’s inequality to write

)| D 722 e D

07 Du|ume>N'
LZ’

T
<||7fB|| pza=2) ||Du1||2‘io2p [t* D> 1||2q 70y S (D),
where 3 = p; 2q°‘2 satisfied 52’1 2 > —1 whenever p satlsfylng 4-8 <p<a

The rest two terms can be estlmated in a similar way as i One has
Hﬁdz s (Id - MQ)HLP(O,T;W}}) N C(T)”EQCSZ”LP((&T)X]R?)
and
Hﬁz?:ﬁmeOTWU
<||Dow|| 12 ||t DA’ 2z wy) + | D? 0| Lo ((0,1)xR2) [ "DA’' 2 (o)

+|t"7 DA’ ||LP (L°°)(||B2H1HL1 (22 + 1D @1 (12)) HE&H”LP(L%)
T
< all.s
Se(T) |6l 2 -
Therefore, we obtain that

[div Ry, divORs || Lo o rviryy S (T (102 yi2.8 (1) + ||5Z||W§;;(T))~
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Estimates of f1, df2, 0f3,df4. For the term 6 f;, we see that
1611|007y xr2) <I|(Agz — Aga )@, (A — Ag2)@|| 1o ((0,7)xR2)
~ ~ 71 ~ ~ —
+ [(Vagz = Va1 )P, (V = Vaz)d Pl Lo ((0,1) xR?) -

The first two terms on the righthand side can be bounded similar to (4.26]) and
(4.27), we have

1(Age — Agn )@, (A — Age)d8l| Lo(o,7)xr2) S(T)| D20 Lo (0.7)xR2)-
For other terms in § f;, we have
~ ~ 71 ~ ~ J—
H(Vi? - Vﬁl)P ) (V - Vi2>6P||L”((O,T)><R2)

<o o

2p

2 + Hﬁﬁ?‘
LE(L2-P) L%(L?)

LL(L>) H ‘ L?((0,T)xR2)

e(T) (|525U|LP((0,T)x1R2) + H%éﬁ’

Lp((o,T)xRQ)) '
Next, we can treat the terms in 0 fo in the same way as d f1, by using (4.5)),

~ ~ =1 = —1
[(Agr — Ag2)A" x (Vg x A )HLP((O,T)X]R2)
~ o t ~
<||\p*a" [ 1Dowtar|
0

. [z jot |D?5u] dr]

L7 ((0,T)xR2 L?((0,T)xR?)

St S 7522 . ‘
+ H|DA | [ (D' + |D*a?))dr | |Déwldr

L?((0,T)xR2)
<e(T)|| D*6|| 1o (0,1 xr2)

~ = = —1 ~ ~ —1
[Ag20A X (Vg X A )| zo(0,7)xr2) <[[Am20 A Lo(0,7)xr2) [[Var X A [ L3e (1)
Sea | D*6A]| Lo ((0,1)xr2)

~ 9 ~ —1
[Ag2 A" x (Vg1 = Vag2) X A)||Lr(0,7)xR2)

p=l~  —1 ~o_ ~—2 ~
St Vx A ||L§(Loc)||D2U2HL1T(L2)||DA ||L;f>(Loo)||D5UHLp(L 2p
T

2-p)

3p

ol ol D2 A> Déu
+ 7V x A | e (1) | D*A |\L9(Ls)IID5uHL§(L3 5
Se(D)||D*6| o 0,7y xr2)
and
~ 9 ~ —
[Ag2 A" x (Va2 x §A)| Lo ((0,1)xR2)

= ~9_ ~ 2
SIV x (SA”L%(L;’_—PP)HDQU‘QHL,}(LQ)”DA | Loe (L)

~ ~o—2
FIV < 0A o 1D Nagas)
T

(L77)
Se(DI0Alyz.1 (-
Next, the term § f3 may be handled along the same lines. Indeed we have

~ 1 ~ ~ PR—
[(Agt — Ag2) A, (A — Ag2)d Al Le((0,1) xR2)
— ~ 1 — ~1
SIdiv [BM(M?) 'V A | Lo 0,1y xr2) + [[div M (M) "V A || Lo (0,1 xR2)
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+ ||525Z||LP((07T)xR2)Hf)ﬂ2\|L1T(Loo) + ||552||L,%(L2{7Pp)HBQ@QHUT(L?)
<Se(T) (| D*6A] 1o 0,1y xk2) + |1 D26 1o (0.7 xR2))
and
~ ~ 71 ~ ~ P—
H(vil - Vﬁ2)Q ’ (V - VEQ)(SQ”LP((O,T)X]RQ)

< Hm%@l\

t ~ 5 —
+ | [, 1Dw| dr|vaQ)

LP((0,T) xR2)

L7 ((0,T)xR2)

Sel) (1520 oz + 5]

Lp((o,T)xR2)) '
Finally, we examine § f4 in the following way

16 fall Lo ([0, 1) x®2)

~ ~ 1 .
§HV5“||L,%(L%)HVA HL;C(Loo)HU ||L°°(L2)

~ 1 ~—2
+ |\V6A||L;(L3%)|lu zse ey + [VA™||

<elT) (15l + 158l 2, ).

In the end, one may conclude that

Lip(Lr=1) L (L2=r)

|| ooz 4 [, V26U, VP o (0,1 xR2)
L°°(0,T;B,,7p" (R2))

+ |54 a2+ |64, VP6A, VOQ Lo (0.1)xr2)
Loe (O,T;prpp (R2))

S oT) (”5@7 5ZHW§;;(T) + “65ﬁa 65@||Lp((o,T)><1R2)) - (428)
Uniqueness follows on a sufficiently small time interval [0,7T], then on the whole

interval, thanks to a standard connectivity argument.
We complete the proof of Theorem [1.3 O

A. SOME PROPERTIES OF BESOV AND LORENTZ SPACES

We first recall some classical inequalities and then some basic facts on Besov
spaces and Lorentz spaces, one may check [8, [30] for more details.

Proposition A.1 ([10]). The following Gagliardo-Nirenberg inequality holds: If
(q,7) € (1,00)% and (0, s) € (0,00)% with o < s, there exists a constant C such that

ety ey < Cllulyc g 1l 52? (A1)

with =4 +6 (1 —5)+12%, 2 <9< 1.

q 0 s =
Proposition A.2 ([8]). Let 1 < p < oco. Then there hold:
o Forany 1 <p < q <00, we have

.d_d
By (RY) — LYRY).

o ForanyseR, 1 <p; <py<ooand 1 <r; <rqe < oo, we have

Ls—d(L 1

. —d(L L
By, o (RY) < By, r," 72 (RY).

p1,71
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o ForanyseR and 1 <r < oo, we have
T ]
1Dl 5y~ ]
e For any 0 € (0,1) and s < §, we have
) 0 1-6
Julopc-on S "

Proposition A.3 ([30]). For 1< p,p1,p2 < oo and 1 < r,ry,re < 00, we have

o The embedding: LP™ — LP"2 if 1 < ry, and LPP = LP,
e The Hélder inequality:
o1 1 1 1 1 1
Ifgllee.r S NF o ligllirere with = = —+ — and - = —+ —.
p P11 D2 r T2

This inequality still holds for couples (1,1) and (0o, 00) with convention
LY =LY and L% = L*°.
e For any a > 0 and non-negative measurable function f, we have

[f* o = [ FlZoera-

e For any o > 0, we have ||t~ 1, || =1

L&

B. PROOF OF PROPOSITION [2.4] AND
Proof of Proposition[2.]} We first derive the following maximal regularity estimates
for the equation (2.11)): let 1 < p,m < oo, one has

[[v]] + |Jve, £ V20, g || o 0,710)

L (0,757 ,)
< O(leoll oz + I lmoirsin)- (B)
p,m

According to Duhamel’s formula, we have

_ SRLA — [ g(s)ds t (t—s)kA _fst g(r)dr d

v=e""e Jo v0+f06 e f(s)ds.

Noticing that g(t) > 0 and g € L'(0,T) which yields
e~ Jo 9(s)ds <1 and e~ Jig(ryar <1, for s <t.

Then, follows from the classical result in [29]. See also the appendix of [I16].

As regards the time regularity in Lorentz space, the proof may achieved by
and interpolations. See for example the appendix of [20]. The details are left to
the reader. O

Proof of Proposition[2.6, The proof is motivated by Theorem 4.1 in [21]. First, we
transform the system (2.15]) into the divergence-free case. Let g = div R, Q = P—kg
and v = u + V(—A)~lg, then v satisfies

pOiv — KAV +VQ = f+ pV(-A) 10,9 := F in (0,T) x RY,
dive =0 in (0,T) x RY, (B.2)

V|0 = ug — VA gy := vy in R?,
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Next, we reduce the problem to the one with null initial data by solving
PO — kAT+VQ =0  in (0,T) x RY,
divo =0 in (0,7) x R%,
=0 = vy in R%.
The LP-estimate of the Stokes system gives us
1

|p* 80, kAT, VQ| 1o ((0,1) xR < Kp(p™) 7 6" 7 || .2_%(Rd ; (B.3)

p,p )
for 1 < p < co and some positive constant K, depends on p.
Next we look for v in the form v = v + v, where v fulfils

PO — kAT +VQ = F + (p* —p)dw:=G  in (0,T) x R%,
dive =0 in (0,7) x RY, (B.4)
Vlt—0 =0 in R?.

Thanks to the bounds of p and , we have

G Lo 0,1y xre) < I F Lo (0,1 xre) + ”UOHB;‘;;%(W)KP('O* - P*)(pi*)lfi (B.5)
Now, setting H := G + (p* — p)d;v, then system reduces to
P00 —kAT+VQ=H in(0,T) x R?,
diveo =0 in (0,7) x RY, (B.6)
V=0 =0 in RY.
We claim that for all p € (1, 00), there exists a positive constant C), such that

10" 00| Lo 0,1y xre) < CpllH || Lo ((0,1) xR
with C, — 1 for p — 2.
Indeed, we can show that Cy < 1, we just take the inner product of with
0,0, which yields
K d
2dt
Then for any fixed pg € (1,00) \ {2}, the standard maximal regularity estimate is

o _ _ 1, 1
p 10072 + 5 =-1IVo|72 = fRd Hovdr < op 10|72 + ﬁllﬂlliz-

1% 00| Lro ((0,1) xr) < Kpo || H | Lo ((0,7) xR)
and the Holder inequality gives us for all 8 € [0, 1],
-0 1 1-6 60

_ /] .
121l L (0.1) xRy < HZ||L2((O,T)><]Rd)||z||LP0((07T)><]Rd) with STy o

Therefore Cp, < Kgo, whence limsupC), <1 for p — 2 (as 6 — 0).

Now, remembering the definition of H, we write for all p € (1, 00),
1p* 00| Lo (0.1 xey <Cp (1G Lo ((0.1yxmey + 10" = P)OD| Lo ((0,7) xR

P\ 1
<CpllGll Lo ((0,1)xray + Cp (1 - p*> 12" 0:0|| Lo ((0,7) x R4 -

Therefore, if

P+ 1 ps
1- 1-2) 2= B.
Cp( p*)_Qp*’ (B.7)
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then we end up with

2p*C.
P PGl Lo 0,1y xRy (B.8)

Let us emphasize that (B.7) is fulfilled for p close enough to 2, due to C, — 1 for
p— 2.
Now, we rewrite system in the form

—kAD+VQ =G —pd®d i (0,T) x RY,
divo =0 in (0,7) x RY, (B.9)
Bly—o =0 in RY.

Applying the standard LP-estimate to Stokes system gives that

"0kl e ((0,7) xrAY <

|xAv, V@HLF‘((O,T)XRd) <K, |G = p00| 1o 0,1y xR
<K, (1Gll e 0.1y xRty + 51060 Lo (0,7) xR2)) -
Then, putting together with (B.8) and assuming that p is close enough to 2 imply

10:v, KAV, VQ|| Lo ((0,1)xr1) SC(D; pis 0G| L ((0,7) xR -
Finally, we combine with estimates (B.5) and (B.3)) to obtain that

1—1
Kk 7P|lv o 2 + |0, KAV, V »
| HLoo(o,T;Bp,pp) [0 QllLr((0,1)xR%)

. _1
< O p= )57 Vol ooz + IF oo, myme))-
p,p
It is now easy to complete the proof by the fact that (—A)~!Vdiv is homogeneous
of degree 0. O
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