
HAL Id: hal-03787491
https://hal.science/hal-03787491

Submitted on 30 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An adaptive music generation architecture for games
based on the deep learning Transformer model

Gustavo Amaral, Augusto Baffa, Jean-Pierre Briot, Bruno Feijó, Antonio
Furtado

To cite this version:
Gustavo Amaral, Augusto Baffa, Jean-Pierre Briot, Bruno Feijó, Antonio Furtado. An adaptive music
generation architecture for games based on the deep learning Transformer model. 21st Brazilian
Symposium on Computer Games and Digital Entertainment (SBGames), Oct 2022, Natal, Brazil.
pp.1-6, �10.1109/SBGAMES56371.2022.9961081�. �hal-03787491�

https://hal.science/hal-03787491
https://hal.archives-ouvertes.fr

An adaptive music generation architecture for games
based on the deep learning Transformer model

Gustavo Amaral
Dept of Informatics

PUC-Rio
Rio de Janeiro, Brazil

gustavoacs99@gmail.com

Augusto Baffa
Dept of Informatics

PUC-Rio
Rio de Janeiro, Brazil
abaffa@inf.puc-rio.br

Jean-Pierre Briot
LIP6 & Dept. of Informatics

CNRS – Sorbonne Université & PUC-Rio
Paris, France & Rio de Janeiro, Brazil

Jean-Pierre.Briot@lip6.fr

Bruno Feijó
Dept of Informatics

PUC-Rio
Rio de Janeiro, Brazil
bfeijo@inf.puc-rio.br

Antonio Furtado
Dept of Informatics

PUC-Rio
Rio de Janeiro, Brazil
furtado@inf.puc-rio.br

Abstract—This paper presents an architecture for generating
music for video games based on the Transformer deep learning
model. Our motivation is to be able to customize the generation
according to the taste of the player, who can select a corpus
of training examples, corresponding to his preferred musical
style. The system generates various musical layers, following the
standard layering strategy currently used by composers designing
video game music. To adapt the music generated to the game
play and to the player(s) situation, we are using an arousal-
valence model of emotions, in order to control the selection of
musical layers. We discuss current limitations and prospects for
the future, such as collaborative and interactive control of the
musical components.

Index Terms—video game music, adaptive music generation,
deep learning, Transformer, layering, emotion model.

I. INTRODUCTION

Music is essential in video games. It provides an embedding
context for the players and complements the scenario [1].
Music can also offer some ways of controlling the player
[2]. Meanwhile, a recent observation is that many players
replace a game’s music by listening to some musical piece
of their choice [3]. We postulate that this is because of the
absence of enough personalization of the music the game
offers. Therefore, we started investigating the possibility of
generating personalized music based on player preferences
(music style, as defined by a corpus of music samples).

Deep learning techniques are effective in learning a music
style from a corpus and generating conformant samples [4].
Various issues still remain on how to customize, control and
orchestrate the generation of music in function of the situation
(game and player). Because such various open questions, and
the fact that generative music for games is still a recent domain
with few prototypes (as surveyed in [5] and Section II-A), we

We thank CNPq (Brazil) for their financial support through Visiting
Researcher (PV) fellowship/grant No 302074/2020-1.

believe in the importance of searching for simple models that
explore fundamental aspects of music generation for games.
More specifically, it becomes essential to look for models that,
more straightforwardly, represent the modes of emotion and
levels of emotional intensity involved in video game music
generation. Also, we must look for deep learning techniques
that are especially adequate to the musical narrative. And,
perhaps even more importantly, we should seek a model to
support instrumental layers used in video game composition
(such as the practice of “striping”, which is to record orchestral
sections separately for future mixing according to the whims
of the composer). As film and game music composer Eı́mear
Noone explains: “we might record the strings separately, for
example, but we’ll compose in a way that the strings on
their own provide a functioning piece of music. Then, if our
character triggers something in the world, perhaps a battle, we
can land the wood winds or brass on top of that to increase
the intensity. Each part must be self-contained yet work with
others – you need to be able to kick in the brass, kick in
the percussion, whenever it’s triggered by gameplay.” [6]. See
also, e.g., [7] for a general introduction to layering.

In this context, instead of looking for alternatives or im-
provements in the few existing complete models for game
music generation (such as the excellent work by Hutchings
and McCormack [8], to be analyzed in Section II-B), we
decided to explore more straightforward and flexible models
for generating and adapting music, based on layering [7]. Also,
we believe that our proposed model can facilitate the control
and orchestration of music for video games in a collaborative
environment.

With the above mentioned principles in mind, after several
experiments, we opted for the Transformer architecture [9],
because it better captures the long-term structure of music
[10].

978-1-6654-6156-6/22/$31.00 ©2022 IEEE

In order to model the psychological state of the player as
respect to the gameplay context, we decided to select the
relatively standard arousal/valence model of emotions [11],
and to map it to the control (adaptation) of the generation of
music. We associate arousal (i.e., intensity) with the number of
active layers (e.g., the system can add a layer with woodwinds
or brass to increase the intensity level if a battle starts in the
game’s world). And the valence corresponds to the emotional
modes of the generated music. We also discuss, in this
article, future extensions that this simplified approach makes
easier to implement. In particular, we want to move towards
collaborative and interactive control of the music components
generated by the Transformer-based architecture.

The following sections introduce the design, implementation
and preliminary experiments with a prototype architecture for
generating personalized and adaptive music for games aligned
with the above mentioned principles.

II. BACKGROUND AND RELATED WORK

A. Adaptive versus Generative

In [5], Plut and Pasquier present a survey about various
approaches and challenges for the generation of music for
video games. They consider two primary techniques:

• adaptive music (also named interactive music), where
music is organized in order to be able to react to a
game’s state [12]. Some musical features (e.g., adding
or removing instrumental layers (such as for striping),
changing the tempo, adding or removing processing,
changing the pitch content. . .) are linked to game play
variables.
An example of adaptive music is the “Luftrausers” game
[13], where the composed music has been split into 3
groupings of instruments, each of which has 5 different
arrangements, which a player may select for his avatar
(see more details in [5, Section 1.2]).

• generative music, where music is not preexisting and dy-
namically adapted, as for adaptive music, but is generated
on the fly. It is created in some systemic way by the
computer and is sometimes called procedural music or
algorithmic music [14]. The musical content is generated
from some model.
The model can be specified by hand. This was for
instance the case for the first piece of music composed
in 1957 by a computer (the “ILLIAC I” computer at
the University of Illinois at Urbana-Champaign (UIUC)
in the United States), and therefore named “the Illiac
Suite” [15]. The human “meta-composers” were Hiller
and Isaacson, both musicians and scientists. It was an
early example of algorithmic composition, making use of
stochastic models (Markov chains) for generation as well
as rules to filter generated material according to desired
properties. The limits are that specifying the model is
difficult and error prone. The progress of machine learn-
ing techniques made it possible to learn models from
examples (in other words, specify a model by extension

rather than by intention). All but one of the generative
music systems surveyed in [5] are using Markov chains
models. Markov models are indeed simpler than deep
learning/neural networks models, but they face the risk
of plagiarism, by recopying too long sequences from the
corpus. Some interesting solution is to consider a variable
order Markov model and to constrain the generation
(through min order and max order constraints) [16].
The only surveyed game music generation system based
on artificial neural networks is Adaptive Music System
(AMS) by Hutchings and McCormack [8] and it will be
summarized in next section (Section II-B).

Generative music is more general and adaptive than pre-
composed composed adaptive music, but is also more difficult
to control and more computing demanding. As, noted by [5]:
“Another reason that generative music may not have received
widespread attention in the games industry is that it is often
unpredictable and can be difficult to control. The audio director
of “No Man’s Sky” game, Paul Weir, notes that generative
music was used in the game with an acknowledgment that it
could produce “worse” music than composed music.” [17]. Ac-
tually, that distinction between adaptive and generative music
is not that clear, as often systems classified as generative are
not completely generative and include adaptation components.
This is for instance the case of the Adaptive Music System.
Note that it is classified as generative in [5], although its very
name claims it as adaptive! In fact we need systems to be
both generative and adaptive. We will now summarize it in
next section (Section II-B) in order to illustrate some issues
and also for its own merits.

B. Architecture of the Adaptive Music System

The architecture of (AMS) [8] is multi-agent and multi-
technique:

• the harmony role agent, which generates a chord pro-
gression, using an RNN (trained on a corpus of symbolic
chord sequences, actually an extension of the harmony
system from the same authors [18]);

• the melody role agents (one for each instrument), which
instantiate characteristics (length, pitch, proportion of
diatonic notes. . .) of pre-existing melodies, using an
evolutionary rule system (XCS, for eXtended learning
Classifier System [19]) and adapting them to the har-
mony;

• the rhythm role agent, which uses another RNN model.
AMS considers a model of 6 emotions: sadness, happiness,

threat, anger, tenderness (the most consistently used labels in
describing music across multiple music listener studies [20])
and excitement (important for scoring video games), whose
selection is triggered by current game state (every 30ms, the
list of messages received by the Open Sound Control (OSC)
is used to update the activation values). Emotions in turn
will modulate the selection among melodies (choosing the
melodic theme assigned to currently highest activated concept
or affect), with the instantiation of their characteristics being

managed by a spreading activation model. It is a graph of
concept nodes, connected by weighted edges representing
the strength of the association between the concepts (and is
inspired from a semantic content organisation in cognitive
science [21]). Activation spreads as a function of the number
of mediating edges and their weights. As explained in [8]:
“Spreading activation models don’t require logical structuring
of concepts into classes or defining features, making it possible
to add content based on context rather than structure. For
example, if a player builds a house out of blocks in Minecraft,
it does not need to be identified as a house. Instead, its position
in the graph could be inferred by time characters spend near it,
activities carried out around it, or known objects stored inside
it.”

As we can see, AMS actually proposes a sophisticated (and
clever) generation model which includes both adaptive and
generative aspects (for instance, harmony is generated and
melodies are adapted). AMS has been tested in two games:
Zelda Mystery of Solarus (MoS) (actually an open-source
clone version) [22] and StarCraft II [23].

The comparison of our proposed model with the much more
complete and robust AMS architecture is twofold. Firstly, we
more straightforwardly represent the emotional intensity in
music generation, and secondly, we better support layering
music. The simplicity of our approach aims to facilitate future
prospecting in collaborative and interactive environments. Fur-
thermore, we use a deep learning architecture (Transformer)
better suited to capture long-term coherence in music.

III. ADAPTABILITY VERSUS CONTINUITY AND OTHER
DESIGN ISSUES

A pure generative approach is some kind of ideal, as it could
in principle combine personalization (learnt styles) with real-
time adaptation (to the game and players situation). Note that
the issue of how to combine various context information, plot,
evolution, player(s) situation, etc., including statistics, e.g.,
average reactivity of a player, into some decision about what is
the objective (adapt to current game context, or the opposite,
trigger a player to engage more) and how to accordingly adapt
the music is still an open issue. It is likely that it should use
some aggregation/interpretation rules, as well as multi-criteria
decision strategy, within some front end module in charge of
mapping events and models from the game up to the control
parameters for music generation or/and adaptation.

Using symbolic-level music models as opposed to signal-
level music models brings the advantages of higher level
manipulation (at the composition level) and less computer
resources (although, recent waveform-level models such as
WaveNet [24] demonstrated the feasibility of real-time con-
ditioned generation, used for instance for intelligent assistants
such as Google Echo or Amazon Alexa). An important and
actually difficult issue remains the capacity to generate on the
fly music content and be able to adapt it, while maintaining
some continuity. (As for a musician improvising in some jazz
context, balancing between constructing and following some
musical discourse and fitting into the dynamic context, in

the first place, harmonic modulations. Also note that music
does not necessarily have to adapt immediately to events,
as opposed to sound effects.) Recent progress for control
strategies for Markov chains and as well for deep learning
show promising results. Markov constraints have been pro-
posed as an unifying framework for Markov-based generation
while satisfying constraints [25], and has been applied to real-
time improvisation [26] and to interactive composition [27].
Challenges for introducing control are somehow harder for
deep learning, (as explained, e.g., in [28, Section 10]), but
progresses are made, using control strategies such as condi-
tioning (adding some additional input to the neural network
in order to parameterize training and generation), e.g., as in
[29].

IV. CURRENT PROPOSAL

Although simpler, our current prototype shares some simi-
larity with AMS (see Section II-B and [8]), in that it uses both
neural network-based generation and an emotion reference
model. In the following sub-sections, we will describe and
motivate various aspects and components of the architecture
and of the generation process, namely: the general design
principles; the curation and pre-processing of the training
musical examples; the way music generated is layered; the
emotion model chosen to map the game play into some
control of the generated music; the mapping discipline; the
complete architecture; the implementation; and the preliminary
evaluation.

A. Design Principles

After having at first experimented with a recurrent neural
network architecture of type LSTM (part of Google’s Magenta
project library) [30], we selected the Transformer architec-
ture for its ability to enforce consistency and structure, by
better handling long-term correlations. Transformer [9] is an
important evolution of a Sequence-to-Sequence architecture
(based on RNN Encoder-Decoder), where a variable length
sequence is encoded into a fixed-length vector representa-
tion which serves as a pivot representation to be iteratively
decoded to generate a corresponding sequence (see more
details, e.g., in [31, Section 10.4]). Its main novelty is a self-
attention mechanism (as a full alternative to more classical
mechanisms such as recurrence or convolution), to focus on
contributing elements of an input sequence. For more details
on the architecture, please see the original article [9] or some
pedagogical introduction [32]). It recently became popular
for such applications as: translation, text generation (e.g.,
the Generative Pre-trained Transformer 3 aka GPT-3 model),
biological sequence analysis and music generation [10].

The proposal by Jeffries for ambient music generation based
on the Transformer [33] has also been a source of inspiration.

B. Training Examples

The user may select a corpus of music of its preference (e.g.,
classical, jazz, techno, ambient. . . , choosing a more narrow –
e.g., of a specific composer or band – or some wider corpus) to

be used as the set of training examples. The music generated
will be corresponding to this style thus defined by the user.
In the experiment described in this paper, we have chosen a
corpus of ambient music, more precisely a Spotify playlist
named “Ambient songs for creativity and calm”, curated by
Jeffries, and containing approximately 20 hours and 165 titles
[34].

The compressed audio files (mp3) corresponding to the
musical training examples have been uncompressed into wave-
form (wav) files and then, by using a pitch detector, to
symbolic (midi) files. For the polyphonic transcription to midi
files, we used the Onsets and Frames transcription system [35],
developed by the Magenta project. It uses both convolutional
and recurrent (LSTM) neural networks in order to: 1) predict
pitch onset events; and 2) use this knowledge to condition
framewise pitch predictions. Obviously, we may also use
instead directly MIDI music scores from existing symbolic
music libraries.

C. Layering

We consider layers of music, analogous to the production of
orchestral music for games [6], with currently up to 4 layers:

• 1st layer, the most conservative and neutral;
• 2nd layer, to add more excitement, e.g., though some

additional instrument;
• 3rd and 4th layers, to intensify the immersion and the

tension.
These layers are generated from the same learning corpus,

but from different seeds (starting sequences) and with differ-
ent generation parameters (currently, we vary a temperature
parameter that controls the determinism of the generation, for
some more likely or more unpredictable result), depending on
the controlling model (as will be presented in Section IV-E).
In addition to this static parameterization of their generation
according to the controlling model, each musical layer will
be dynamically activated and played (or not) (currently within
the Ableton Live platform, a real-time sequencer for live music
creation and production [36]), depending on the strategies of
the controlling model.

D. Mapping Emotions

In order to have some high-level and human understandable
control of the generation by the game play context (game
and player(s)), we chose an emotion model, more precisely
the arousal/valence model [11], in which an emotion can be
mapped using two parameters:

• the arousal, which represents the intensity of the emotion;
• and the valence, which represents its quality (e.g., if it is

positive, negative, neutral. . .).
In order to simplify our current prototype, we now consider

only 9 (discrete) emotions, as illustrated in Fig. 1.
The emotion model is designed as a server receiving control

information from the game, in order to be able to work
with various games and game values models. The game play
information (events) emitted by the game may be about the
game situation, player(s) situation, but also from various other

Fig. 1. Strategy/Layer/Emotion model, with the 9 pre-defined emotions based
on the arousal/valence emotion model

sources such as quests, terrains, etc. How to aggregate these
various informations is still an open issue for future work (see
Section V-A).

E. Strategy and Control Model

While planning for the future some more advanced state
machine for mapping the emotions into generation control
strategies (as will be detailed in Section V-A), in the cur-
rent prototype we have implemented 9 pre-defined strategies
(corresponding to the 9 emotions shown in Fig. 1). For each
strategy, different values corresponding to the parameters for
the generation: which layers are activated; which instruments
(sampled or synthetic sounds, currently selected from some
instruments library for ambient music within Ableton Live) are
used; and which effects are used. More strategies/types may
be added by adding strategy classes to the implementation.

The complete model (Strategy/Layer/Emotion) for control-
ling music generation is shown in Fig. 1. Current mapping is
as follows: the strength (arousal) corresponds to the number
of active layers, while the quality (valence) corresponds to
the choice of emotional modes of the generated musical
components.

F. Architecture

The flow logic of current architecture is as follows:
1) User’s client requests a music;
2) The server maps the user feeling through the arousal

valence parameters;
3) It fetches, from memory, a song correspondent to the

mapped emotion (this optimization is detailed in next
Section IV-G);

4) If no associated music has already being generated, it
starts the generation;

5) After the music is fetched, it attaches metadata such as
instruments;

6) It delivers the request response with the music to the
final user;

7) The memory is refreshed.

G. Implementation

To optimize the music generation process, at least one
music corresponding to each strategy is saved in memory.
The architecture is designed as a server responsible for music
generation, for various possible game clients, based on game

engines like Unity or Unreal, or specific ones. In order to
automate and scale-up the machine learning life cycle, we
have used the Pachyderm platform (pipeline) [37]. For the
implementation, we have used Nvidia CUDA development en-
vironment for high performance GPU-accelerated applications.

H. Evaluation

Current architecture has been tested with an emulated game
model and with music generated from a corpus of ambi-
ent music. The complete code as well as input and output
examples are available on the following code repository:
https://gitlab.com/music-gen/server. Arousal
valence values have been estimated according to possible
moments of the hero’s journey and the behavior of the system.
We are planning the integration with a real game using Unity.

V. PROSPECTS

A. Game/Music Mapping Model

At present time, input from the game play is limited, but it
could benefit from many more parameters and events (e.g., plot
situation, player situation, including statistics, e.g., average
player reactivity. . .) and how to aggregate them. And, as
opposed to mapping music to player state, we may want to
oppose it instead, e.g., if the player is perceived to be showing
to signs of abandon, you may want him to try to boost him
with some positive music. Last, note that [38] proposes an
additional dimension: tension, that you could compute and use
to improve the system’s emotion mapping.

In addition, as mentioned in Section IV-E, we are planning
to substitute current strategy scheme with some more abstract
and general state machine model, analog to the AMS spreading
activation model (see Section II-B and [8]), in order to track
the transitions of the player’s emotions. Better transitions
between music could also be planned ahead, through inter-
polation.

B. Interactive Coordination

A more radical approach is to substitute the sequencer-like
platform (currently, Ableton Live) by a more general platform
for interactive and collaborative control of musical components
(being generated by our current Transformer-based architec-
ture). We are thinking of the Skini platform [39]. It allows
defining some kind of “orchestral blueprint” (actually, some
cartography of possible paths) for activating various musical
components of a piece of music. It separates the macro-level
coordination from the actual micro-level components, as for
architectural/coordination languages in software architectures
[40] or distributed systems. Paths may be fixed or open with
various choices, to be decided according to the interaction with
the public (various active listeners). Fig. 2 shows an example
of visual orchestral blueprint (musical flow) in Skini.

The control expression in the Skini platform is based on the
integration of the synchronous reactive programming language
Esterel [41] in JavaScript (on the Web). The advantage over
a sequencer (which has a semi-rigid temporal structure) is the
expressive power (Turing complete) of a language like Esterel

Fig. 2. Example of orchestral flow in Skini (Opus1 Piece by Bertrand Petit).
Plain arrows represent fixed paths and bold arrows represent alternative paths
which may be decided by the public. Each music/sound component (in blue)
may be activated an unlimited number of times, except for “reservoirs” (in
red) which are set to have some maximum number of activations

(which, for example, is used to control Airbus planes), to
program any type of coordination of real-time musical events,
depending on various in-game events. Additionally, Esterel
has formal semantics and property verification tools, thus
offering possibilities of formally verifying properties, such as
the termination or non-simultaneous activation of two arbi-
trary musical components. The Skini platform’s capability for
collaborative interactive orchestration (e.g., for simultaneous
control interactions by several actors) offers us the right level
of management of various interactions and controls coming
from the game engine and from the different players. The
Skini platform (whose architecture is shown in Fig. 3) has
already been tested recently, in a first scenario with a game
platform (Unreal Engine 4), to control the scheduling and
musical orchestration depending on the situation of the player
within the game [42].

Fig. 3. Skini architecture

VI. CONCLUSION

In this paper, we have presented an architecture, based on
deep learning (more specifically, the Transformer architecture),
for generating music for video games, personalized to the user
musical preference. It uses the technique of layering, with
the activation of layers controlled by an emotion model, in
order to adapt it to the game play. Our current architecture
is a proof of concept, although it is complete and functional.
It has been tested with an emulated game model and with

music generated from a corpus of ambient music. We are
currently working on the design of a next version architecture
and its coupling with the coordination level based on the
Skini architecture. The objective is to decouple the generation
and the adaptation of musical components from the way to
coordinate and orchestrate them, in order to refine the control
of music adaptation according to the game play, independently
of the music personalization. We hope that the proposal, al-
though preliminary, as well as the discussion and the prospects
presented in this paper, may humbly contribute to a better
understanding of the issues and possible directions for next
generation game music generation.

REFERENCES

[1] T. Sanders and P. Cairns, “Time perception, immersion and music in
videogames,” in Proceedings of the 24th BCS Interaction Specialist
Group Conference, ser. BCS ’10. Swindon, U.K.: BCS Learning &
Development Ltd., 2010, pp. 160–167.

[2] A. Hufschmitt, S. Cardon, and E. Jacopin, “Dynamic manipulation of
player performance with music tempo in Tetris,” in 26th International
Conference on Intelligent User Interfaces, ser. IUI ’21. College
Station, TX, USA: ACM, 2021, pp. 290–296. [Online]. Available:
https://doi.org/10.1145/3397481.3450684

[3] G. Ramalho, “Communication during a debate/session,” Workshop on
AI for (Music and Games) Co-Creation (WAIC 2021), Nov. 2021.

[4] J.-P. Briot, G. Hadjeres, and F.-D. Pachet, Deep Learning Techniques for
Music Generation, ser. Computational Synthesis and Creative Systems.
Springer, 2019.

[5] C. Plut and P. Pasquier, “Generative music in video games: State of
the art, challenges, and prospects,” Entertainment Computing, vol. 33,
p. 100337, 2020. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S1875952119300795

[6] K. Stuart, “’Mozart would have made video game music’: composer
Eı́mear Noone on a winning art form,” The Guardian, Oct. 2019.
[Online]. Available: https://www.theguardian.com/games/2019/oct/22/
mozart-video-game-music-composer-eimear-noone

[7] Hyperbits, “Layering music: 20 ways to layer sounds,” Hyperbits, Last
access on 16/06/2022, Blog. [Online]. Available: https://hyperbits.com/
layering-sounds/

[8] P. Hutchings and J. McCormack, “Adaptive music composition for
games,” IEEE Transactions on Games, vol. 12, no. 3, pp. 270–280,
2020.

[9] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” Dec. 2017,
arXiv:1706.03762. [Online]. Available: https://arxiv.org/abs/1706.03762

[10] C.-Z. A. Huang, A. Vaswani, J. Uszkoreit, N. Shazeer, I. S. C.
Hawthorne, A. M. Dai, M. D. Hoffman, M. Dinculescu, and
D. Eck, “Music Transformer: Generating music with long-term
structure,” Dec. 2018, arXiv:1809.04281. [Online]. Available: https:
//arxiv.org/abs/1809.04281

[11] J. A. Russell, “A circumplex model of affect,” Journal of Personality
and Social Psychology, vol. 39, no. 6, pp. 1161–1178, 1980.

[12] K. Collins, From Pac-Man to Pop Music Interactive Audio in Games
and New Media. Ashgate Publishing Ltd, 2011.

[13] Vlambeer, “Luftrausers,” Devolver Digital, 2014, Game.
[14] G. Nierhaus, Algorithmic Composition: Paradigms of Automated Music

Generation. Springer, 2009.
[15] L. A. Hiller and L. M. Isaacson, Experimental Music: Composition with

an Electronic Computer. McGraw-Hill, 1959.
[16] A. Papadopoulos, F. Pachet, and P. Roy, “Generating non-plagiaristic

Markov sequences with max order sampling,” in Creativity and Univer-
sality in Language, ser. Lecture Notes in Morphogenesis, M. Degli Es-
posti, E. G. Altmann, and F. Pachet, Eds. Springer, 2016, pp. 85–103.

[17] P. Weir, “The sound of ’no man’s sky’,” 2017, Talk. [Online]. Available:
https://www.gdcvault.com/play/1024067/The-Sound-of-No-Man

[18] P. Hutchings and J. McCormack, “Using autonomous agents to impro-
vise music compositions in real-time,” in Computational Intelligence
in Music, Sound, Art and Design – 6th International Conference,
EvoMUSART 2017, Amsterdam, The Netherlands, April 19–21, 2017,

Proceedings, ser. LNCS, J. Correia, V. Ciesielski, and A. Liapis, Eds.,
vol. 10198. Springer, 2017, pp. 114–127.

[19] S. W. Wilson, “Classifier fitness based on accuracy,” Evolutionary
Computation, vol. 3, no. 2, pp. 149–175, 1995.

[20] P. N. Juslin, “What does music express? basic emotions and beyond,”
Frontiers in Psychology, vol. 4, p. Article 596, 2013. [Online].
Available: https://www.frontiersin.org/article/10.3389/fpsyg.2013.00596

[21] A. M. Collins and E. F. Loftus, “A spreading-activation theory of
semantic processing,” Psychological Review, vol. 82, no. 6, pp. 407–
428, 1975.

[22] Solarus Team, “The Legend of Zelda: Mystery of Solarus,” Solarus,
2011, Game.

[23] Blizzard Team, “StarCraft II: Wings of Liberty,” Blizzard Entertainment,
2010, Game.

[24] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals,
A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu, “WaveNet:
A generative model for raw audio,” Dec. 2016, arXiv:1609.03499.
[Online]. Available: https://arxiv.org/abs/1609.03499

[25] F. Pachet and P. Roy, “Markov constraints: Steerable generation of
Markov sequences,” Constraints, vol. 16, no. 2, pp. 148–172, 2011.

[26] F. Pachet, “Musical virtuosity and creativity,” in Computers and Cre-
ativity, J. McCormack and M. d’Inverno, Eds. Springer, 2012, pp.
115–146.

[27] A. Papadopoulos, P. Roy, and F. Pachet, “Assisted lead sheet composition
using FlowComposer,” in Principles and Practice of Constraint Pro-
gramming: 22nd International Conference, CP 2016, Toulouse, France,
September 5-9, 2016, Proceedings, ser. Programming and Software
Engineering, M. Rueher, Ed. Springer, 2016, pp. 769–785.

[28] J.-P. Briot, “From artificial neural networks to deep learning for music
generation – History, concepts and trends,” Neural Computing and
Applications (NCAA), no. 33, pp. 39–65, Jan. 2021, Special issue Neural
networks in Art, sound and Design, J. Romero and P. Machado, Eds.

[29] G. Hadjeres and F. Nielsen, “Interactive music generation with positional
constraints using Anticipation-RNN,” Sep. 2017, arXiv:1709.06404.
[Online]. Available: https://arxiv.org/abs/1709.06404

[30] Magenta, “Make music and art using machine learning,” web Site.
[Online]. Available: https://magenta.tensorflow.org/

[31] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016.

[32] M. Phi, “Illustrated guide to Transformers – step by
step explanation,” Towards Data Science, Apr. 2020,
Blog. [Online]. Available: https://towardsdatascience.com/
illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0

[33] D. Jeffries, “The musician in the machine,” Magenta blog,
Aug. 2020. [Online]. Available: https://magenta.tensorflow.org/
musician-in-the-machine

[34] ——, “Ambient songs for creativity and calm,” Spotify,
2022, Playlist. [Online]. Available: https://open.spotify.com/playlist/
6qaujvXpcysfuyFMtp7Ljn?\-si=79e3b076defb4952

[35] C. Hawthorne, E. Elsen, J. Song, A. Roberts, I. Simon, C. Raffel,
J. Engel, S. Oore, and D. Eck, “Onsets and frames: Dual-objective
piano transcription,” Jun. 2018, arXiv:1710.11153. [Online]. Available:
https://arxiv.org/abs/1710.11153

[36] Ableton team, “Ableton Live,” Ableton, Last access on 16/06/2022,
Music creation and performance software. [Online]. Available:
https://www.ableton.com/en/live/

[37] Pachyderm team, “Pachyderm,” Github, Last access on 16/06/2022,
Code documentation. [Online]. Available: https://github.com/pachyderm/
pachyderm/blob/master/README.md

[38] C. Plut and P. Pasquier, “Music matters: An empirical study on the
effects of adaptive music on experienced and perceived player affect,”
in 2019 IEEE Conference on Games (CoG), 2019, pp. 1–8.

[39] B. Petit and M. Serrano, “Skini: Reactive programming for interactive
structured music,” The Art, Science, and Engineering of Programming,
vol. 5, no. 1, p. Article 2, Jun. 2020.

[40] M. Shaw and D. Garlan, Software architecture – Perspectives on an
emerging discipline. Prentice Hall, 1996.

[41] G. Berry and G. Gonthier, “The Esterel synchronous programming
language: Design, semantics, implementation,” Science of Computer
Programming, vol. 19, no. 2, pp. 87–152, 1992.

[42] B. Petit, “Skini et jeu vidéo,” Jan. 2021, Blog. [Online]. Available:
https://youtu.be/wDoY20ewiWY

