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Abstract

In this paper, we investigate the use of Model Predictive Control (MPC) applications for quasi-Linear Pa-
rameter Varying (qLPV) systems subject to faults along the input channels. We propose a Fault Tolerant
Control (FTC) mechanism based on a robust state-feedback MPC synthesis, considering polytopic inclu-
sions. In order to alleviate the numerical burden of the robust min-max procedure, we use small prediction
horizons, in such a way that the solution becomes viable for real-time systems. The FTC system is able
to tolerate time-varying saturation of the actuator, which may happen due to malfunctions. Recursive
feasibility and poly-quadratic stability guarantees are ensured through the synthesis of adequate terminal
ingredients. Accordingly, we present a catalogue of three different LMI remedies, considering: (a) parameter-
independent ingredients, (b) a parameter-dependent terms and (c) a parameter-dependent maps that take
into account bounded rates of parameter variation. An autonomous driving car example is used to illustrate
the performances of the proposed technique, which is compared to other MPCs from the literature. The
proposed FTC method is able to ensure good performances, obtained with reduced computational demand.

Keywords: Fault Tolerant Control, Model Predictive Control, Linear Parameter Varying Systems, Small
Horizon, Saturating Actuator.

1. Introduction

Real instrumented control systems are naturally subject to possible faults, failures and component mal-
functions [1]. Accordingly, over the last couple of years, a considerable amount of attention has been given to
the synthesis of Fault Tolerant Control (FTC) schemes [2, 3, 4]. These algorithms are able to offer increased
process availability by avoiding breakdowns and maintaining performances despite faults.

FTC laws can be synthesis in either passive or active formalisms [5]. In active FTC techniques [6, 7], a
fault detection (FD) scheme is required to quantify the level of faults, while in passive techniques, no FD
layer is required. Currently, there exist different passive FTC approaches, such as fault hiding [8], and fault
accommodation [9, 10]. Under the scope of the latter, the use of Model Predictive Control (MPC) schemes
has gained special attention [11, 12], especially due to the widespread acceptance and maturity of predictive
control.

In MPC, an optimal control action is computed online by the means of a constrained optimisation
problem, written in terms of a process model, constraints, and a performance cost. The original MPC
algorithms were conceived for Linear Time-Invariant (LTI) prediction models. In this case, MPC generates
online Quadratic Programs (QPs), which are solved rapidly with many modern solvers [13, 14], enabling
real-time applications. Anyhow, when using nonlinear prediction models, MPC renders Nonlinear Programs
(NPs), which are much more complex and difficult to solve [15].
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Anyhow, many nonlinear processes can be modelled through quasi-Linear Parameter Varying (qLPV)
structures, for which the state transition depends on a scheduling law [16, 17]. In this paper, we are interested
in the application of a passive fault tolerant MPC for these systems. Specifically, we consider the case of
input fault along the input channels, which are represented as time-varying input saturation constraints, as
in [18, 19]. The major difficulties that arise when dealing with these systems are: (i) how to counteract the
input saturation that occurs due to faults1, and (ii) how to correctly predict the process behaviour despite
the unavailability of the future scheduling variables ρ.

The recent survey paper [20] discusses the possibilities of issuing (nonlinear) predictive control through
qLPV model structures, detailing the available solutions to the synthesis of these control laws for this
type of problems. As mentioned therein, the unavailability of ρ adds a complexity-optimality trade-off
barrier for the designer: either one chooses to tune a robust MPC [21, 22, 23], which complicates real-time
implementation due to numerical complexity, or to disregard stabilisation guarantees and design a sub-
optimal QP [24, 25], which makes the implementation as fast as any LTI MPC, but may lead to algorithm
infeasibility or performance degradation (in the presence of sudden faults, these may even be unstable).

1.1. Problem Statement

Motivated by this context, the main goal of this paper is to develop a passive fault tolerant control scheme
for these qLPV systems subject to input faults. These faults may occur due to malfunctions in the actuator
system, thus leading to deteriorated performances if not correctly accounted for by the controller. Therefore,
we consider the following control objectives: (1) to operate fast enough for time-critical applications, (2)
to ensure closed-loop stability and sufficient performances, despite the input-saturation faults, and (3) to
ensure robustness against the unavailable scheduling variables and the fault terms.

1.2. Proposed Method

The proposed method is a state-feedback model predictive control algorithm. The method consists in
a robust min-max procedure, using an heuristically-tuned small prediction horizon to alleviate numerical
burden. The method considers a fault-free polytopic qLPV model subject to “fault-induced” input saturation
constraints, as done in [19, 26]. By using special terminal ingredients with sector conditions related to these
saturation constraints, the method is able to ensure poly-quadratic stability and recursive feasibility of the
optimisation, despite faults.

1.3. Contributions

The main innovation of this paper lies in providing an input-fault tolerant predictive control framework
that serves for time-critical applications, does not resort to sub-optimality, and continuously maintains
stability and feasibility properties, despite faults. Accordingly, the main contributions of this paper are:

• A catalogue of three different LMI-solvable remedies for the computation of the MPC terminal in-
gredients, ensuring poly-quadratic stability of the closed-loop and recursive feasibility of the MPC
algorithm, despite input saturation that may appear due to faults/malfunctions (Theorem 3.8). This
catalogue comprises:

– (a) parameter independent / quadratic terminal ingredients (Corollary 3.9);

– (b) parameter dependent terminal terms, considering arbitrarily fast rates of parameter variation
(Corollary 3.10);

– and (c) parameter dependent terminal maps, taking into account bounded rates of parameter
variation (Corollary 3.11).

1As demonstrated in the sequel, we note that these fault-induced input constraints are time-varying and unknown. Thereof,
the controller accounts for an estimate of the fault scenario, which corresponds to a constant saturation limit for each input
channel.
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• Realistic numeric simulation results of the vertical dynamics of a vehicle are presented (Section 4).
This application serves to demonstrate the effectiveness and simplicity of proposed FTC algorithm
when compared to other MPC algorithms from the literature. Standard indexes are used to quantify
performances and certify the reduced computational complexity.

We note that our method does not resort to control reconfiguration when faults occur. Different from
prior fault tolerant MPCs from the literature [11, 6, 7], we use a fixed control algorithm, with no changes
on constraints or performance goals during the implementation. The fault tolerance is made viable through
the adequate terminal ingredients (main contribution), which ensure stabilisation even in faulty conditions,
expressed as an input-related set. The verification of recursive feasibility and stability, thus, become much
simpler than when control reconfiguration happens, which may even unstabilize the system if not correctly
accounted for.

1.4. Paper Organisation

The rest of this paper is organised as follows. In Sec. 2, the problem setup is presented, considering the
class of polytopic qLPV models with fault-induced input saturation. Sec. 3 provides the catalogue of LMI-
solvable remedies used to compute the MPC terminal ingredients. These ingredients also offer an estimate
for the set of initial conditions which allow the convergence of the algorithm. The simulation results are
provided in Sec. 4. General conclusions are drawn in Sec. 5.

Notation: Z[a,b] stands for the set integer numbers within [a, b]. ν(k + i|k) is used to represent a
predicted value of variable ν for time instant k + i, computed at instant k. An ellipsoid is denoted as
follows: for a symmetric positive definite matrix M ∈ Rnx×nx , and a positive scalar µ > 0, we obtain an
ellipsoid E (M,µ) :=

{
x ∈ Rnx : xTMx ≤ µ

}
. K refers to the class of positive and strictly increasing scalar

functions that pass through the origin.

2. Problem Setup

2.1. Process Model

We consider the class of discrete-time qLPV processes subject to fault-induced input saturation. These
systems are represented by Eq. (1) and henceforth assumed to satisfy the Assumptions presented in the
sequel:

x(k + 1) = A(ρ(k))x(k) +B(ρ(k))satf(k){u(k)} ,∀k ∈ N , (1)

y(k) = C(ρ(k))x(k) +D(ρ(k))satf(k){u(k)} ,∀k ∈ N ,

ρ(k) = fρ (x(k)) ∈ P ⊆ Rnρ ,∀k ∈ N ,

∂ρ(k) = ρ(k)− ρ(k − 1) ∈ ∂P ,∀k ∈ N ,

where x ∈ Rnx is the vector of system states, u ∈ Rnu the vector of control inputs, y ∈ Rny the vector of
controlled outputs, and ρ ∈ Rnp the vector of scheduling parameters. The fault-induced saturation function
is

satf(k){u(k)} = col {sign{uj(k)}min{|uj(k)|, ujfj(k)}} ,∀j ∈ Z[1,nu] .

Assumption 2.1. States are measurable for all sampling instants k ∈ N.

Even though the states x(k) are assumed to be measured, we aim at formulating a state-feedback control
policy in such a way that the outputs y(k) behave in a certain way, according to objectives. Furthermore,
we stress that these outputs are not necessarily equivalent to x(k), but rather a time-varying combination
of them, as gives Eq. (1).

Assumption 2.2. The fault term f ∈ Rnu is a vector col{f1 , . . . , fnu}, for which each entry fj ∈ [0 , 1]
represents the loss of effectiveness that is induced at the corresponding j-th control input.
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Next, we detail the validity of Assumption 2.2 and how the fault-induced saturation happens: consider
that a given system exhibits a fault on its first actuator, quantified by f1 = 0.8. This fault term implies
that the first control entry u1 has its performance compromised by 20%. Therefore, the corresponding
control input space is decreased, and thus we observe a saturation phenomenon. In a fault-less condition
(f1 = 1), we have satf{u} ∈ [−uj , uj ], whereas in the faulty case (with f1 = 0.8), it is implied that
satf{u} ∈ [−0.8uj , 0.8uj ].

As a concrete example of how such fault-induced actuator saturation phenomenon happens in practice,
we refer to the case of electro-rheological suspension dampers subject to faults, as modelled in [27]. When
there is an unexpected electro-rheological fluid leakage, the amount of force that the damper delivers gets
decreased by a loss of effectiveness factor which is related to the amount of lost fluid. In turn, one can
represent the damper force (actuation) as expected input saturated by an upper-bound which is related
to the fault (thus fault-induced). In [26], this phenomenon is studied and a fault estimation scheme is
developed.

Assumption 2.3. The scheduling parameters are known, bounded, and have bounded rates of variations,
considering ρ ∈ P and ∂ρ ∈ ∂P, where:

P :=
{
ρj ∈ R | ρj ≤ ρj ≤ ρj , ∀j = 1, . . . , nρ

}
. (2)

∂P :=
{
∂ρj ∈ R | ∂ρj ≤ ∂ρj ≤ ∂ρj , ∀j = 1, . . . , nρ

}
. (3)

Remark 1. Bounded rates of scheduling parameter variations are a fair hypothesis for any practical appli-
cation. The scheduling sets P and ∂P are assumed independent of time, and neither depend on the current
state value.

Assumption 2.4. The matrix pair (A(ρ) , B(ρ)) from the qLPV system in Eq. (1) is stabilizable for all
possible scheduling variable values, i.e. ∀ ρ ∈ P.

Assumption 2.5. Matrices A(·), B(·), C(·) and D(·) in Eq. (1) are polytopic on ρ, which means that they
can be expressed as follows:

A(ρ) =

2nρ∑

j=1

γj(ρ)Aj , B(ρ) =

2nρ∑

j=1

γj(ρ)Bj ,

C(ρ) =

2nρ∑

j=1

γj(ρ)Cj , D(ρ) =

2nρ∑

j=1

γj(ρ)Dj ,

where Aj, Bj, Cj and Dj are constant matrices and each of the 2nρ combination variables γj(ρ) satisfies∑2nρ

j=1 γj(ρ) = 1 and that each γj(ρ) ∈ [0 , 1]. For this class of polytopic qLPV systems, it is thus possible
to normalise and restrict the set P to the unit simplex of dimension 2nρ . The system polytope of 2nρ vertices
is henceforth denoted Ω.

The regulation of this process must be such that the state, output, and input variables are always
constrained within the following admissibility sets, respectively:

X :=
{
x ∈ Rnx | ||xj || ≤ xj , ∀ j ∈ Z[1,nx]

}
. (4)

Y :=
{
y ∈ Rny | ||yj || ≤ yj , ∀ j ∈ Z[1,ny ]

}
. (5)

U :=
{
u ∈ Rnu | ||uj || ≤ uj , ∀ j ∈ Z[1,nu]

}
. (6)
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2.2. Faults and Fault-induced Input Saturation

In this paper, as previously discussed, we consider that the qLPV system is subject to faults along the
input channel, as represented by the time-varying saturation function in Eq. (1). These faults may happen
due to unpredicted conditions or malfunctions on the actuation system of this process.

The time-varying fault term f(k) in Eq. (1) is unknown by definition. Nevertheless, we assume to know
the inferior bounds of each fault entry, this is fj := infk∈Nfj(k). Each inferior bound fj gives the maximal
loss of effectiveness of the corresponding j-th input.

Remark 2. We highlight our recent paper [27], wherein we use this fault representation framework to
model loss of effectiveness in electro-rheological dampers. Stating that fj is known, in accordance with this
framework, given that we can relate the maximal loss on a given actuator due to physical phenomena. For
instance, in that studied damper system, fj = 0.2 corresponds to the leakage of a related proportion of the
electro-rheological fluid from the damper chamber. We also mention that the case of vehicle braking systems
[28] also exhibit this kind of fault-related behaviour: the maximal deliverable braking (control input) has an
input space which naturally shrinks over time, due to lifespan characteristics. A braking system is considered
in this paper as a case study to apply the proposed FTC method (see Sec. 4).

For control purposes, we take into account the bound fj in order to build a “faulty” input set, which is
used to represent the system under faulty conditions. By doing so, we are able to use a simpler model in
the synthesis step.

Consider the fault-less input admissibility set U , which corresponds to the “wider” input limits implied
by sat[1,...,1]{u}. Then, the corresponding faulty set is given by:

U+ :=
{
u ∈ Rnu | ||uj || ≤ u+

j , ∀ j ∈ Z[1,nu]

}
, (7)

where u+
j = fjuj . Note that U+ is a shrinked version of the original admissibility set U , embedding the

effects of a stricter saturation satf{u}. In practice, the conservative restriction u ∈ U+ will be imposed as
the larger constraint when the failures occur and when the values for each term fj are unknown. This is,
in fact, the restriction that is robust with respect to the unknown fault. Furthermore, it should be noted
that the linear part of the saturation does not depend on the value of the fault. We emphasise that the
constraints ‖uj‖ ≤ u+

j , ∀ j ∈ Z[1,nu] are what we call the additional/“fault-induced” input saturation.
Figure 1 illustrates the loss of effectiveness fault-induced saturation phenomenon. In fault-less situations,

we observe fj = 1 and satf{u} ∈ U . On the contrary, when any fj 6= 1, a tightened saturation is enacted
over the corresponding control input uj (and thus satf{u} ∈ U+). Note how U+ is a “shrinked” version of
the original input admissibility set U .

Taking the previous discussion into account, we henceforth use two distinct realisations of the system
from Eq. (1): (a) a fault-less model, and (b) fault-embedded model based on f . Respectively, they are as
follows:

• Fault-less conditions (equivalent to f(k) = diag{1 , . . . , 1} in Eq. (1)):

x(k + 1) = A(ρ(k))x(k) +B(ρ(k))u(k) , (8)

y(k) = C(ρ(k))x(k) +D(ρ(k))u(k) ,

• Faulty situations (whenever any fj(k) 6= 1 in Eq. (1)):

x(k + 1) = A(ρ(k))x(k) +B(ρ(k))satf{u(k)} , (9)

y(k) = C(ρ(k))x(k) +D(ρ(k))satf{u(k)} .

Note that satf(k){satf{u(k)}} = satf{u(k)}, which means that satf(k){·} is transparent from the

viewpoint of the saturated input satf{u(k)}. Thus, synthesising a control system based on the worse-

case fault-induced saturation model from Eq. (9) implies in a control input that is robust regarding

5



Figure 1: Illustration of the fault-induced saturation phenomenon: (a) depicts the effects over a single input channel uj ,
considering a fault-less case (sat1{uj}, wider green set), a time-varying fault-induced saturation (satfj {uj}, transition zone

between the two sets), and the “worst-case” fault-induced saturation (satfj {uj}, smaller red set). (b) shows the fault-related

sets U and U+ over two inputs.

the original fault model from Eq. (1). This is: a control synthesis that stabilises Eq. (9) will ensure
the corresponding stabilisation of Eq. (1).

We cannot use both these previous models (fault-less, Eq. (8), and fault-embedded, Eq. (9)) for synthesis.
Therefore, despite U+ being known, there is no need to consider Eq. (9) as the real dynamics of the system,
since given the stricter saturation (i.e. fj(k) 6= 1) only occurs under faulty conditions.

Thus, in this paper, we are interested with the design of fault accommodation controller, which “does not
know” when faults happen and what is the value of the fault terms f(k) (we consider no FDI mechanism,
and thus a passive FTC). Nevertheless, the controller should ensure the aimed performance goals while
satisfying all process constraints. With regard to the previous models, we assume that the time-varying
f(k) is neither known nor estimated, whereas only f is known (a lower bound metric for these faults).

In any case, we proceed by proposing a control synthesis formulation based on Eq. (8), while using a
complementary input v(k) to include the saturation satf{·} from Eq. (9). The proposed control system,

thus, takes into account the nominal constraints (represented by U) and the fault-less model (Eq. (8)).
Then, stability and recursive feasibility properties of the closed-loop system are analysed altogether with
the input saturation caused by faults. Accordingly, in order to overlap the saturation function, we benefit
from a sector condition, as discussed in Section 3.

2.3. Formulation of the passive Fault Tolerant MPC

In order to control this process w.r.t. a given performance goal, despite possible faults along the input
channel, we propose a fault tolerant control scheme based on robust MPC. This paradigm is illustrated
by the block diagram in Fig. 2: we consider that a polytopic qLPV system is subject to input faults,
which coordinate the input saturation; the states are measured and, thus, a robust state-feedback predictive
control law is used to ensure that performance guidelines are met, given with regard to the output variables.
The MPC operates based on nominal constraints (of a fault-less condition), a known performance goal, and
terminal ingredients. The latter serve to ensure poly-quadratic stability of the system, as well as recursive
feasibility of the algorithm.

In an LTI setting, MPC laws are a result of quadratic optimisation problems, which are “numerically
cheap”, being solvable in real-time (within a few microseconds). Anyhow, when qLPV models (as Eq. (1))
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Figure 2: Block diagram of the proposed FTC scheme.

are considered, the MPC optimisation gets much more complicated, since unknown variables appear in the
process predictions, e.g., at sampling instant k + 2:

x(k + 2|k) = A(

unknown︷ ︸︸ ︷
ρ(k + 1))A(ρ(k))x(k) +A(

unknown︷ ︸︸ ︷
ρ(k + 1))B(ρ(k))u(k|k) +B(

unknown︷ ︸︸ ︷
ρ(k + 1))u(k + 1|k) .

Thus, in order to properly control this process, we consider a min-max MPC procedure. In this robust
setting, the future values of the scheduling variables ρ(k + j),∀j ∈ Z[1,Np] are treated as uncertainties.

Thence, the control law is obtained by minimising the “worst-case” performance cost J = max∂ρ(k+i)∈ ∂P J ,
induced by the uncertainties [29]. The procedure during the implementation is the following:

U?k = arg min
Uk




max
∂ρ(k+i)∈ ∂P

J︷ ︸︸ ︷


Np∑

i=1

`(x(k + i|k), u(k + i− 1|k))


+ V (x(k +Np|k))




(10)

s.t.

qLPV Process Model︷ ︸︸ ︷
x(k + i+ 1|k) = A(ρ(k + i))x(k + i|k) + B(ρ(k + i))u(k + i|k)
y(k + i|k) = C(ρ(k + i))x(k + i|k) + D(ρ(k + i))u(k + i|k)

, ∀i ∈ Z[1,Np] ,

Control Input Admissibility︷ ︸︸ ︷
u(k + i− 1|k) ∈ U , ∀i ∈ Z[1,Np] ,

Admissible Process Operation︷ ︸︸ ︷
x(k + i|k) ∈ X , ∀i ∈ Z[1,Np] ,

Admissible Output Values︷ ︸︸ ︷
y(k + i− 1|k) ∈ Y , ∀i ∈ Z[1,Np] ,

Terminal Set Constraint︷ ︸︸ ︷
x(k +Np|k) ∈ Xf ,

where Xf and V (·) are the so-called “terminal ingredients”. In this min-max setting, it is implied that

ρ(k + i) = ρ(k) +
∑i
j=1 ∂ρ(k + j), with ∂ρ(k + i) ∈ ∂P. Therefore, the computational cost is reduced

w.r.t. the case of arbitrarily fast variations for ρ (i.e. ∂ρ unbounded) [30]. For regularity purposes, thanks
to the definition of the scheduling parameter ρ(·) in Eq. (8), we have simultaneously ρ ∈ P, ∂ρ ∈ ∂P
and ρ + ∂ρ ∈ P. In the sequel, we detail the choice of the prediction horizon Np and the considered
output-related performance objectives.
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As previously stated, we use the fault-less model from Eq. (8) in the MPC formulation given in Eq.
(10). The fault-related aturation is disregarded in the nominal MPC predictions, but will be later on used
to generate appropriate terminal ingredients which provide robustness certificates (regarding corresponding
the faulty model from Eq. (9)).

Remark 3. In this paper, we deal with a state-feedback fault tolerant MPC, with output-related steady-state
conditions [15]. Thus, the objective of the control law is related to the output variables. Specifically, we
aim to find a control law in such a way that the outputs y(k) track a generic output-related target goal yr.
For such, it is implicitly implied by the considered model that the states should be admissibly steered to a
steady-state condition xr, and the control input to a steady-state regime ur, being xr and ur related to yr
(as detailed in the sequel, in Assumption 2.6).

Remark 4. The resulting robust MPC framework holds a close relationship with several robust MPCs for
systems with norm-bounded uncertainty, given that, at each sampling instant, the qLPV predictions are
linear with unknown (but bounded) future parameter values. However, our formulation allows to have lighter
notations and take better into account the fact that each component may have a physical interpretation,
which may not have the interval of definition. We exploit Assumption 2.3 in order to take into account
non-symmetrical intervals that will be not possible with normed variables ρ without a suitable change of
variable.

2.4. Performance Goal

In order to generalise the application of our method to the case of reference tracking of constant steady-
points, we consider the following Assumption:

Assumption 2.6. The qLPV system in Eq. (8) satisfies the following set of nonlinear equations (in a
fault-less condition):

[
A (fρ(xr, ur))− Inx B (fρ(xr, ur))
C (fρ(xr, ur)) D (fρ(xr, ur))

](
xr
ur

)
=

[
0nx×1

yr

]
, (11)

where the admissible solution pxr = (xr , ur) implies in an output steady-state operation point yr contained
inside Y.

Thus, we tune the proposed fault tolerant control scheme by taking into account an admissible solution
(xr, ur) that satisfies2 Assumption 2.6. Thus, we use a performance cost to induce the convergence of the
states x(k+i|k) to the steady-state state reference target xr, whilst forcing u(k+i−1|k) towards the steady-
state input condition ur. This conversely ensures that the output variables y(k+ i|k) track yr. Thereof, the
performance cost of the robust MPC is taken as follows:

`(x(k + i|k), u(k + i− 1|k)) = ‖x(k + i|k)− xr‖2Q + ‖u(k + i− 1|k)− ur‖2R , (12)

being Q and R the positive definite weighting matrices. Since R is positive definite, the induced cost in Eq.
(12) is convex in u. On the basis of Assumption 2.1, the control signal can be expressed as state-feedback
action, which also implies that this stage cost is convex in x. Due to the linearity in the state transition
of the qLPV model in Eq. (8), it holds that the minimisation problem derived under this cost is indeed a
QP, since ρ(k + j) are passed from the maximisation NP. The terminal cost V (x(k +Np|k), ρ(k +Np)) is
likewise set to weight the deviances from the target operation, w.r.t. the Np steps ahead sample:

V (x, ρ) = ‖x− xr‖2P (ρ) = (x− xr)T P (ρ) (x− xr) . (13)

The weighting matrix P (ρ) in Eq. (13) is symmetric and positive-definite, while it could be parameter-
dependent or parameter-independent with regard to ρ, according to the chosen stabilisation approach. This
matter is addressed in further details in the following Section, where we provide a catalogue of LMIs for
construction of P (·), according to the degree of information available regarding the controlled process.

2The solution to Eq. (11) can be provided by an offline reference planner algorithm [25]. In the case of time-varying reference
targets, we recommend other approaches [15, 31], which are out of the scope of this paper.
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2.5. Prediction Horizon Heuristic

The maximisation procedure max∂ρ(k+i)∈∂ρ J subject to constraints is computationally difficult (NP-
hard). Indeed, as evidenced in many papers [21, 29], this is a though complexity barrier of min-max
MPCs. The computational complexity of the maximisation procedure grows exponentially with respect to
the dimension of the controlled process and the size of the prediction horizon Np. In many cases, this
combination yields algorithms that are not solvable for real-time applications. One alternative is to replace
the NP maximisation by an approximated quadratic program [31], with real-time iterations or gradient-based
methods. Nevertheless, this complexity reduction comes at the expense of sub-optimality.

In order to maintain optimality of the proposed fault tolerant control method, we use an alternative
option to reduce the numerical burden of evaluating max∂ρ(k+i)∈∂ρ J : we impose a threshold to the size of
the prediction horizon Np, which is chosen heuristically3. This heuristic has been explored in the Author’s
paper [32], wherein we discuss and exploit this limitation on Np for a semi-active suspension system.

As indicated in previous papers [32, 29], there is a Pareto optimality issue behind the choice of Np
[33] : while better performances are obtained with larger horizons (smaller averaged J in Eq. (10)), more
computational time is required to implement the min-max strategy (i.e. to solve the optimisation in Eq.
(10)). Thus, we choose Np in such a way that the mean computational time required by the used solver tc
does not surpass the sampling period Ts, in order for the strategy to be implemented in real-time. This is
expressed as follows:

Np =

{
arg min

Np
{J in Eq. (10)} | tc < Ts

}
, (14)

being Np the maximal horizon size, tc the average computational time needed by the embedded solver
to analytically evaluate Eq. (10) and Ts the sampling period of the discrete-time process. The solution
to this heuristic criterion is derived with bisection algorithms, as in [34], since line-search may provide a
non-maximal Np.

The main idea of this heuristic is to obtain a good compromise between performance and computational
cost, so that the fault tolerant MPC algorithm can be used in real-time control applications. We note that
the horizon size Np will depend on the processor, on the used solver and on the dimensions of the controlled
process. For the majority of time-critical processes (for which Ts is given in the millisecond range), Np is
simply of a few steps.

We note that the size of the horizon is not changed under faulty conditions. In practice, the fault
is tolerated by the means of adequate terminal ingredients, and the choice of a small prediction horizon
does not compromise stability nor fault tolerance. The only drawback of the proposed heuristic is that
performances can be deteriorated w.r.t. those obtained with a “full-blown” nonlinear MPC. Nevertheless,
we note that the execution of an NMPC algorithm in real-time is computationally unattractive because of
its general nonlinear dependence of the predicted states on the future control inputs and states [25].

3. A Catalogue of Terminal Ingredients

In this Section, we present a catalogue of three different LMI-solvable remedies for the computation of
the terminal ingredients (V (·) and Xf ). These ingredients are used to ensure stability of the closed-loop,
despite faults, as well as the recursive feasibility of the optimisation. We stress that these ingredients are
the tools that ensure the fault tolerance of the proposed method, and, thus, the main contribution of this
work.

Robustness against faults is ensured if the controller is able to ensure performance even though there are
discrepancies between the model predictions and the real system trajectories. With regard to this matter,
we consider three different cases, which should be selected according the amount of information available on
the process:

3We acknowledge that some works [15] use two horizons, one for state predictions (Np) and another one for the control
sequence (Nu). Taking Nu < Np can help alleviating numerical burden, but since we consider constraints on states and outputs,
the effect of a long Np remains quite significative.
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1. The parameters are assumed to vary arbitrarily between sampling instants, i.e. ∂ρ unbounded, and
when the control signal quadratically stabilises the process. This yields parameter independent termi-
nal ingredients.

2. The parameters vary arbitrarily between the sampling instants, but the control signal poly-quadratically
stabilises the process. This yields ρ-dependent terminal ingredients.

3. The parameters are such that there are known bound rates of variations between sampling instants, i.e.
∂ρ ∈ ∂P, and the terminal ingredients are also ρ-dependent, ensuring poly-quadratically stabilisation
of the faulty system.

We consider these three cases in order to expand the generalisation of the proposed fault tolerant MPC
for a wide range of applications. In Section 4, we show simulation results considering these three cases
in order to demonstrate how further robustness can be guaranteed (a wider basin of attraction) if more
information is available regarding the process (third case).

The choice of which of these three cases is considered only influences on the synthesis of the terminal
ingredients, made viable through Theorem 3.8, which should be in accordance with each case. Accordingly,
we prove three Corollaries (3.9-3.11) that adapt this Theorem to the context of each case. Nevertheless, we
first present generic Theorems for recursive feasibility and stability, which are incorporated by Theorem 3.8.

3.1. Recursive Feasibility

Recursive feasibility of the algorithm is essential in order to ensure that if an initial control sequence
U?0 is computationally tractable, the following control sequences will also be tractable, meaning that the
fault tolerant control problem is well-posed and continuously solvable. This property is addressed by the
following Theorem, from [35], which provides some sufficient conditions.

Theorem 3.1. Stabilising Recursively Feasible MPC, from [35]
Let Assumptions 2.1 and 2.4 hold. Assume that a nominal state-feedback control law u(k) = K(ρ(k))x(k)
exists. Consider that the MPC policy is formulated through the optimisation problem in Eq. (10), with stage
cost `(·) that is quadratic and instantaneously convex on x. Assume that there exists a quadratic and convex
terminal stage cost V (x, ρ) and a terminal state domain Xf (ρ). Then, closed-loop stability is ensured if the
following conditions hold ∀ρ ∈ P, under axioms A1 and A2:
(C1) The origin lies in the interior of Xf (ρ);
(C2) Any consecutive state to x, in closed-loop given by (A(ρ) +B(ρ)K)x lies within Xf (ρ);
(C3) The discrete-time Lyapunov inequality is verified within this invariant set, this is, ∀ ρ , ρ+ ∈ P and
∀x ∈ Xf (ρ):

V
(
(A(ρ) +B(ρ)K(ρ))x, ρ+

)
− V (x, ρ) ≤ −xTQx− xTKT (ρ)RK(ρ)x . (15)

(C4) The image of the nominal feedback lies within the admissible control domain: K(ρ)x ∈ U , ∀ρ ∈ P
and ∀x ∈ X .
(C5) The terminal set Xf (ρ) is a subset of X .
Assuming that the initial solution of the MPC problem U?k , computed with respect to an initial state x(0), is
feasible, then, the MPC algorithm yields recursively feasible programs.
Axioms:
A1) `(x,K(ρ)x) ≥ β1(‖x‖),∀x ∈ X , β1(·) ∈ class K.
A2) 0 ≤ V (x, ρ) ≤ β2(||x||),∀x ∈ X , β2(·) ∈ class K. Furthermore, V (x) > 0 holds for x 6= 0.

Proof. This is a standard Theorem, whose Proof is found by ensuring a energy-dissipative decay of the MPC
cost function, see e.g. [25, Proof of Theorem 1] and [35, Axioms A1-A4].

10



Remark 5. As in [25], we drop the non-null steady-state arguments (xr, ur) to prove stabilisation and
recursive feasibility. This means that we verify Theorem 3.1 with xr = 0nx and ur = 0nu , for simplicity.
This change of variables is accompanied by an according change on the scheduling parameter ρ(x(k)), which
becomes ρ̃(k) = ρ(x(k) + xr) in order to preserve the physical interpretation of the system. We also note
that if the origin is stabilizable and xr is contained inside the admissible set X , it also becomes stabilizable,
refer to e.g. [15, Theorems 1, 2 and 3]. This discussion is accounted for in Lemma 3.2.

Remark 6. Condition (C3) in Theorem 3.1 is the only one that is explicitly dependent on the time instant
k. This is due to the fact that the terminal cost function V (x, ρ) depends on the time-varying scheduling
parameters ρ. Thus, the discrete-time Lyapunov difference inequality (15) requires to consider values for the
scheduling parameter at different time steps. V (·) is expressed in this condition as parameter-dependent,
i.e. V (x, ρ). This notation is given to encompass both kinds (parameter-dependent and independent) of
terminal costs. Regarding the regulation purpose in the polytopic setting, it follows that condition (C3)
should hold for all 2nρ vertices of the process polytope Ω. If (C3) is solved used a common Lyapunov
matrix P , quadratic stability is ensured, which is a more conservative approach. If (C3) is solved under a
parameter-dependent matrix P (ρ), a lighter requirement is sought, which leads to a less conservative control
strategy.

3.2. Stability

Lemma 3.2. Closed-loop steady-state, adapted from [15]
Consider the polytopic qLPV system described by Eq. (8) and subject to the process operational constraints
x(k+j) ∈ X , u(k+j−1) ∈ U , y(k+j−1) ∈ Y and to the terminal constraint x(k+Np|k) ∈ Xf . Consider
that a nominal feedback gain K(ρ(k)) ∈ Rnu×nx is used and let P (ρ(k)) be a Lyapunov matrix such that
(C3) from Theorem 3.1 holds for all vertices of Ω and for some given definite positive matrices Q ∈ Rnx×nx
and R ∈ Rnu×nu . Take an admissible constant steady-state reference condition for x(k), namely xr ∈ X .
Then, if for a given initial state condition x(0), the optimal solution of the constrained quadratic optimisation
problem in Eq. (10) is such that ‖x(0)− x?r‖2Q = 0, which implies that ‖x?r − xr‖2P = 0.

Theorem 3.3. Stability, adapted from [15]
Consider that Assumptions 2.1, 2.4 and 2.6 hold. Let the Lyapunov condition (C3) in Theorem 3.1 also
holds. Assume that the recursive feasibility has been verified for the FTC policy. Consider that the output
steady-state yr and state steady-state xr respectively belong to Y and X (this is, they are admissible targets).
Then, for any feasible initial state x0 ∈ X , the proposed MPC control policy steers the system states to xr
in an admissible way.

The proofs of Lemma 3.2 and Theorem 3.3 are provided in the Appendixes of this paper, for brevity.
It is implied by Theorem 3.3 that the set of admissible steady-states that can be tracked without error is
Xr ⊆ X . Since the evolutions of the system states remain inside the feasibility set X , any sequence of
piecewise admissible targets within Xr can be tracked without steady-state error. If the desired steady-state
target is not admissible, i.e. xr /∈ X , then the controller will not be able to steer the system to it4.

3.3. Region of Attraction

We now discuss how recursively feasibility and stability are ensured even in the situations of faults along
the input channel. In a “normal situation” (with input saturation u ∈ U), these properties are directly
ensured by the optimisation in Eq. (10). Anyhow, under a “faulty situation”, when an actuator fault that
leads to additional input saturation occurs, we must demonstrate that certificates are available despite this
additional clipping (u ∈ U+, refer to Eq. (7)).

Consider that the MPC is represented by a state-feedback u(k) = K(ρ(k))x(k). Then, the corresponding
closed-loop dynamics should be analysed for the broader case, when faults are present. Thus, we must take

4Another closest admissible steady-state x?r could be fostered to be a stabilisable condition if the MPC cost function includes
an extended artificial reference condition, as argued in [15].
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the saturation term satf{K(ρ(k))x(k)} into account. For such, consider the following dead-zone function

from [36]:

Ψ(u(k)) = col{uj(k)− satf{uj(k)}} = u(k)− satf{u(k)} . (16)

Eq. (16) facilitates the calculation of a guess for the domain of attraction of the proposed fault tolerant
MPC method, in faulty conditions. Coupling the dead-zone function to Eq. (9) generates the following state
dynamics:

x(k + 1) = Acl(ρ(k))x(k)−B(ρ(k))Ψ (K(ρ(k))x(k)) , (17)

Acl(ρ(k)) = A(ρ(k) +B(ρ(k)K(ρ(k)) . (18)

It holds that Aclj = Aj + BjK for each vertex j of the polytope Ω, if the state-feedback gain is
independent of ρ. If the state-feedback is parameter-dependent, i.e. K = K(ρ), it follows that Acl{i,j} =

Ai + BiKj , where i and j are vertices of Ω in this case, Acl{i,j} is defined over a (nρ)
2 grid, since A(ρ) =∑

i γiAi, B(ρ) =
∑
i γiBi and K(ρ) =

∑
j γjKi.

Following the lines of [37], we consider a signal v(k) = Gx(k) as an auxiliary degree-of-freedom used
for analysis purposes. This signal represents “a corrective signal”, which, subtracted to the nominal state-
feedback, yields a signal that respects the saturation bounds. The set S is defined as the set within which
lie the system states for when u(k)− v(k) is norm bounded by col{u+

j }, this is:

S =
{
x ∈ Rnx | ||(K −G)x|| ≤ col{u+

j }
}

. (19)

In order to account for S, we use the generalised “sector condition” [38], which defines a region for which
the signal (u(k)− v(k)) does not saturate.

Lemma 3.4. Sector Condition, Lemma 1 in [38]
If the signal (u(k)− v(k)) ∈ U+ and, equivalently x(k) ∈ S, then, it holds that:

Ψ(u(k))TS (Ψ(u(k))− v(k)) ≤ 0 , (20)

for every diagonal positive definite matrix S ∈ Rnu×nu .

Lemma 3.5. Lyapunov Sector Condition [37, 15]
In order to ensure condition (C3) of Theorem 3.1) of the predictive control framework, the associated Lya-
punov condition must include the Sector Condition from Lemma 3.4, this is, ∀x ∈ Xf and ∀ ρ, ρ+ ∈ P,
the following adapted discrete-time Lyapunov inequality must be verified:

V
(
(A(ρ) +B(ρ)K)x, ρ+

)
− V (x, ρ) + xTQx+ xTKTRKx ≤ SC , (21)

2 (Ψ(Kx))
T
S (Ψ(Kx)−Gx) = SC . (22)

Proof. Consider that inequality (21) is satisfied. If x ∈ S, then, thanks to Lemma 3.4, the generalised
sector condition (20) holds and, thus, (21) implies (C3) in Theorem 3.1. Note that S implies in a local
condition, defined by the region the input saturates. This concludes the proof.

Remark 7. We stress that the considered sector condition from Eq. (20) is conceived with regard to the
faulty model from Eq. (9). This means that the dead-zone function Ψ(u) given in Eq. (16) is expressed with
regard to the constant saturation function satf . Since it is implied that f ≤ f(k), the used sector condition

is a conservative bound (since satf represents a “stronger” saturation than satf(k)). Note that SC in (21)

is a sufficient upper bound for a corresponding sector condition related to satf(k). Nevertheless, since f(k)
is not known, this conservative sector is what remains.
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Definition 3.6. Region of Attraction
The set of all initial conditions x0 = x(0) that result in converging trajectories is denoted RA ⊆ Rnx ,
and called the region (basin or domain) of attraction in closed-loop of the fault tolerant MPC controller
u(k) = K(ρ(k))x(k).

The task of analytically determining RA is not trivial (even for the case of low-order LTI systems), since
this set can be non-convex, open and unbounded [39]. Therefore, an origin-centred closed Rnx -ball RE can
be taken as an estimate for the actual region of attraction such that RE ⊆ RA.

A reasonable and direct manner that can be used to compute this estimated region is to use level sets
[40] of a candidate Lyapunov map associated to the closed-loop expression of Eq. (17). We note that the
Lyapunov map is used to describe the terminal stage cost in Theorem 3.1. Considering that there exists
a generic parameter-dependent quadratic Lyapunov candidate function M−1(ρ), the associated level set is
denoted:

LV (µ) =
{
x ∈ Rnx |

(
xTM−1(fρ(x))x

)
≤ µ

}
. (23)

Finally, as discussed in [40], such level set LV (µ) can be used as a reasonable estimate for the region of
attraction of the closed-loop system with a known nominal state-feedback gain K ∈ Rnu×nx , i.e. RE ⊂
LV (µ) for an adequate value of µ.

For V (·) to be indeed an admissible Lyapunov function for all x(k) ∈ RE with state trajectories described
by Eq. (17), Theorem 3.1 must be ensured taking Xf ⊆ RE while respecting the sector condition in Eq.
(20). For such, we provide a catalogue of three LMI-solvable problems that can be verified in order to
compute the terminal ingredients. These are the main contributions of this paper, since the offered terminal
ingredients are able to ensure Poly-quadratic Stability of the closed-loop qLPV system regulated under
MPC, despite the fault-induced input saturation.

Definition 3.7. Poly-quadratic Stability [41]
The qLPV system with explicit saturation constraints in Eq. (17) is subject to a nominal MPC control
policy of state-feedback form u(k) = K(ρ(k))x(k). The closed-loop dynamics are locally poly-quadratically
stable if there exists some Lyapunov candidate function which is quadratic in the state x(k) ∈ RE , as given
in Eq. (13).

3.4. Terminal Ingredients for Local Poly-quadratic Stability

As previously discussed, if the terminal stage cost V (·) is more than a candidate map, but rather an
actual admissible Lyapunov function for all x(k) contained inside the region of attraction estimate RE , then,
it verifies stability and ensures recursive feasibility.

Accordingly, we provide LMI-solvable remedies for the computation of the terminal ingredients of the
proposed fault tolerant MPC policy, ensuring poly-quadratic local stability and recursive feasibility. These
terminal ingredients can be selected according to the amount of information available regarding the process,
with regard to the three possible cases presented in the beginning of this Section. As of this, we provide
three Corollaries which adapt Theorem 3.8 to the context of each case:

1. Corollary 3.9 yields parameter-independent Lyapunov maps, corresponding to the case of quadratic
stabilisation and arbitrarily varying parameters (case 1);

2. Corollary 3.10 generates parameter-dependent Lyapunov maps, for the case of arbitrary varying
scheduling parameters (case 2);

3. Corollary 3.11 results in parameter-dependent Lyapunov maps, for the case of scheduling parameters
with bounded rates of variations (case 3).
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Theorem 3.8. Terminal Ingredients
Consider the discrete-time polytopic qLPV system described by Eq. (9) being controlled under the fault
tolerant MPC action nominally given by u(k) = K(ρ)x(k). The complementary control input used to
ensure the sector condition is nominally given by v(k) = G(ρ)x(k). Assume that Axioms A1 and A2 hold.
Then, conditions (C1)-(C5) from Theorem 3.1 are satisfied if there exist a positive definite matrix H ∈
Rnx×nx , a symmetric parameter-dependent positive definite matrix Y (ρ) : Rnp → Rnx×nx , a parameter-
dependent square matrix X(ρ) : Rnp → Rnx×nx , four parameter-dependent rectangular matrices L(ρ) :
Rnp → Rnu×nx , M(ρ) : Rnp → Rnu×nx , Z(ρ) : Rnp → Rnu×nu and W (ρ) : Rnp → Rnu×nx , and
a definite positive diagonal matrix T ∈ Rnu×nu such that Y (ρ) = P−1(ρ) > 0, L(ρ) = K(ρ)X(ρ),
W (ρ) = G(ρ)X(ρ) and that the following LMI optimisation holds for all ρ, ρ+ ∈ P:

min
Y (ρ),L(ρ),W (ρ),T,H,X(ρ)

H (24)

subject to

[
Yi I
? H

]
≥ 0 , ∀ i ∈ 0, . . . , np ,

and LMIs (25), (26), (27) and (28) .




Y (ρ) ? ? ? ?
−W (ρ) 2T ? ? ?

A(ρ)Y (ρ) +B(ρ)L(ρ) 0 Y (ρ+) ? ?
Y (ρ) 0 0 Q−1 ?
L(ρ) 0 0 0 R−1




> 0 , (25)

[
Y (ρ) ?
IiL(ρ) u2

j

]
> 0 , (26)

[
Y (ρ) ?

Ii (L(ρ)−W (ρ))
(
u+
j

)2
]

> 0 , (27)

[
x2
j ?

ITj Y
T (ρ) Y (ρ)

]
> 0 , (28)

where Ij denotes the j-th row of the identity matrix I. In LMIs (26) and 27, it is given w.r.t. to an identity
Inu , i.e. these LMIs must hold for all i ∈ Z[1,nu]. In LMI (28), it is given w.r.t. to an identity Inx , i.e.
this LMI must hold for all j ∈ Z[1,nx].

Then, for any admissible initial condition x(0) = x0 ∈ RA, the proposed fault tolerant MPC method
ensures that the controlled process will be locally and poly-quadratically stabilised at the aimed steady-state
operation (xr , ur), Moreover, recursive feasibility is verified for the admissible sequence of solutions Uk
and that all closed-loop trajectories departing from inside RE will converge to its interior domain, taking
RE ⊂ LV (·,·)(µ) =

{
x0 ∈ Rnx |

(
xT0 P (fρ(x0))x0

)
≤ µ

}
.

We stress that the proposed MPC, which operates by the means of the optimisation in Eq. (10), generates
closed-loop trajectories that remain within a (terminal) region of attraction RE . This region of attraction, in
practice, is directly related to the solution of the LMIs in Theorem 3.8 and thus affected by the level of faults,
as quantified by f and U+. For systems subject to harder faults (i.e. terms fj closer to 0), the constraint

input upper bounds u+
j also gets closed to 0, which imply in a smaller region mapped by P (ρ). Notice that

LMI (27) imposes an upper bound u+
j upon the projection of each control input uj = Ij(K(ρ) − G(ρ))x

along the ellipsoid xTP (ρ)x, and thus shrinks the available input space with regard to this bound.
If a feasible solution to Theorem 3.8 exists, then proposed fault tolerant MPC is able to ensure that

the closed-loop dynamics tolerate faults as strong as quantified by the worst-case lower bounds fj > 0, i.e.

any fj(k) ∈ [fj , 1]. In practice, the maximal level of faults tolerated by the proposed scheme (and thus the

existence of feasible terminal ingredients) depends on the system model and constraints on states, inputs
and scheduling variables.
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We adapt Theorem 3.8 with respect to the three considered cases. As of this, the variables Y (·), W (·),
and L(·) are treated in different manners (as parameter-dependent or independent functions). We stress
that the same LMI problem formulation is kept for less conservative or more conservative solutions, which
differ according to the level of knowledge of the designer regarding the process. The following Corollaries
take into account each of the considered cases.

Corollary 3.9. Constant Lyapunov Map
Assume that the scheduling parameters vary arbitrarily along the discrete-time iterations, and that the system
is to be quadratically stabilised. Therefore, the LMIs (25), (26), (27) and (28) in Theorem 3.8 are solved
over the vertices of the polytope, as follows:




Y ? ? ? ?
−Wi 2T ? ? ?

AjY +BjLi 0 Y ? ?
Y 0 0 Q−1 ?
Li 0 0 0 R−1




> 0 , ∀ (i, j) , (29)

[
Y ?
IiLi u2

j

]
> 0 , ∀ i , (30)

[
Y ?

Ii (Li −Wi)
(
u+
j

)2
]

> 0 , ∀ i , (31)

[
x2
j ?

ITj Y
T Y

]
> 0 , (32)

which yields a single ellipsoid E (Y−1, 1) regarding the level set definition in Eq. (23).

Corollary 3.10. Parameter-dependent Lyapunov Map
Assume that the scheduling parameters vary arbitrarily along the discrete-time iterations, and that the system
is to be poly-quadratically stabilised. Therefore, the LMIs (25), (26), (27) and (28) in Theorem 3.8 can solved
for all vertices of the polytope:




Yi ? ? ? ?
−Wi 2T ? ? ?

AjYi +BjLi 0 Yj ? ?
Yi 0 0 Q−1 ?
Li 0 0 0 R−1




> 0 , ∀ (i, j) , (33)

[
Yi ?
IiLi u2

j

]
> 0 , ∀ i , (34)

[
Yi ?

Ii (Li −Wi)
(
u+
j

)2
]

> 0 , ∀ i , (35)

[
x2
j ?

ITj Y
T
i Yi

]
> 0 , ∀ i . (36)

This procedure results in 2nρ + 1 ellipsoids E
(
Y −1
i , 1

)
.

Corollary 3.11. Parameter-dependent Lyapunov Map, Bounded Rates of Parameter Variations
Assume that the scheduling parameters have bounded rates of variations, i.e. ∂ρ ∈ ∂P, and that the system
is to be poly-quadratically stabilised. Consider that ∂ρ ≤ ρ+ − ρ ≤ ∂ρ, i.e. ∂ρ+ ρ ≤ ρ+ ≤ ∂ρ+ ρ. Thus,
define the following polytope for (ρ, ρ+):

(
ρ
ρ+

)
= HθΘ , (37)
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where Θ is a vector given within an nh simplex and Hθ depends on the bounds ρ, ρ and ∂ρ and ∂ρ.

Take Ỹ (Θ) at the place of Y (ρ) and Ŷ (Θ) at the places of Y (ρ+), as follows:

Y (ρ) =

2nρ∑

i=1

γiYi =

2nρ∑

i=1

([
Ii 0i

]
Yi
)
HθΘ (38)

=

nh∑

j=1

(
2nρ∑

i=1

Yi
[
Ii 0i

]
)
hθj

︸ ︷︷ ︸
Ỹi(Θ)

Θj ,

Y (ρ+) =

nh∑

j=1

(
2nρ∑

i=1

Yi
[

0i Ii
]
)
hθj

︸ ︷︷ ︸
Ŷi(Θ)

Θj , (39)

Therefore, the LMIs (25), (26), (27) and (28) in Theorem 3.8 can be solved over the vertices of the polytope
defined in terms of Θi ∈ Θ, as follows:




Ỹi ? ? ? ?

−W̃i 2T ? ? ?

Aj Ỹi +BjL̃i 0 Ŷi ? ?

Ỹi 0 0 Q−1 ?
Li 0 0 0 R−1




> 0 , ∀ (i, j) , (40)

[
Ỹi ?

IiL̃i u2
j

]
> 0 , ∀ i , (41)

[
Ỹi ?

Ii

(
L̃i − W̃i

) (
u+
j

)2
]

> 0 , ∀ i , (42)

[
x2
j ?

ITj Ỹ
T
i Ỹi

]
> 0 , ∀ i . (43)

This procedure results in 2nρ + 1 ellipsoids E
(
Y −1
i , 1

)
.

The proof of Theorem 3.8 (and Corollaries 3.9, 3.10, and 3.11) is provided in the Appendixes. We note
that the solution of the LMI problem presented in Theorem 3.8 ensures a positive definite parameter de-
pendent matrix P (ρ), which can be used to compute the MPC terminal ingredients V (·) and Xf such that
input-to-state stability of the closed-loop is guaranteed, verifying the conditions of Theorem 3.1. Further-
more, when the MPC algorithm uses these terminal ingredients, for whichever initial condition x(0) ∈ Xf

it starts with, it remains recursively feasible for all consecutive discrete time instants k > 0.

Remark 8. For the qLPV systems as in Eq. (1), for which the scheduling parameters ρ are not defined within
a simplex, the application of Theorem 3.8 (and the subsequent Corollaries) depends on an adaptation of
these parameters. The solution holds through by replacing the parameter dependency on ρ by the convex
weighted sum of γi(ρ), with

∑
i γi(ρ) = 1. Instead of using a physically-related scheduling parameter, the

LMIs are solved over a parameter that describes an adapted polytope. Note that this change of variables
also implies in a new polytope w.r.t. the scheduling parameter derivatives, since these variables are affine on
ρ and allow time-domain derivation. As an example, a qLPV system with one physically-related scheduling

parameter ρ, which yields γ1 = ρ−ρ
ρ−ρ and γ2 =

ρ−ρ
ρ−ρ .

Remark 9. As a final comment, we stress that the terminal ingredients generated by any of the proposed
solutions (Theorem 3.8 or its variations under Corollaries 3.9, 3.10, and 3.11) are explicitly affected by
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the scheduling parameters ρ, while implicitly influenced by the maximal fault level f . With regard to
the scheduling variables, the terminal ingredients are nominally ρ-dependent, and synthesised with regard
the available information regarding the behaviour of these variables (as gives each Corollary), accordingly
implying in a more or less conservative control scheme. In terms of the fault information f(k), we note that
the lower bound f is used to define the maximal saturated control entries, as illustrated by Fig. 1 and given

in Eq. (7). These control signal limits, e.g. u+
j ,∀j ∈ Z[1,nu], are used to construct the sector condition from

Ineq. (21), which is embedded to the proposed solution (specifically, the sector conditions appears in LMIs
(27), (31), (35) and (42)). Note that the sector condition acts by shrinking the available input space with
regard to the level of faults. In practice, a system subject to higher degree of faults will have a corresponding
stricter terminal region related to the control input.

3.5. Overall FTC Process

Before presenting application results of the proposed passive FTC method, we briefly recap the main
elements and present an algorithm, for implementation ease. Overall, the following aspects are of importance:

• We consider the class of discrete-qLPV processes subject to fault-induced input saturation, as given
by Eq. (1). This system must be controlled in such way that the outputs y meet certain performance
criteria, while the process constraints (u ∈ U , x ∈ X , and y ∈ Y) are satisfied, despite the presence of
faults f .

• For such, a parameter-dependent state-feedback MPC law is formulated u(k) = K(ρ(k)), enable by
the solution of an online min-max optimisation.

• The proposed MPC works as a robust passive FTC by considering the uncertainties implied in the
dynamics by the future behaviour of scheduling parameters, and by handling the fault-induced satura-
tion by stabilising terminal ingredients. Furthermore, the MPC operates with an heuristically-chosen
(small) prediction horizon Np.

• Specifically, the MPC optimisation is based on a fault-free prediction model of the system, as gives
Eq. (8), while requiring the terminal ingredients V (·) and Xf , which dependent on the level of faults.

• These terminal ingredients can be generated according to the information available regarding the
process, as gave Theorem 3.8, Corollaries 3.9-3.11.

• Algorithm 1 summarises the offline preparation and the online implementation of the proposed passive
FTC method.

4. Results: Application to Vehicle Dynamics

In this Section, we demonstrate how the proposed fault accommodation technique can be applied in
practice. Accordingly, we compare the proposed robust MPC method with other MPC algorithms from the
literature, which are not designed to take the issue of faults into account. The difference between our method
and the others is that the novel terminal ingredients provided in Section 3 enable recursive feasibility and
stabilisation even when the process is subject to the fault-induced time-varying saturation along the input
channels.

We proceed by evaluating the obtained performances using standard indexes, such a root-mean-square
(RMS) metric an the average computational time required to solve the optimisation, during implementation
(denoted tc). Through the sequel, we refer to “tracking performances/results” as the regulation of the error
trajectories of given variables to the origin. We use an output reference model, which is constant and known.

Specifically, we compare the proposed technique with a “full-blown” nonlinear MPC (denoted “NMPC”),
which solves a nonlinear optimisation problem, using x(k + j + 1) = fx(x, u, k + j) and y(k + j) =
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Algorithm 1 Proposed Passive FTC

Input: Fault-less model (A(·),B(·),C(·),D(·), fρ(·))
Input: Process constraints (X , Y, U , P, δX )
Input: Fault level (f1, . . . , fnu)
Input: Output steady-state target (yr)

Offline Preparations:
1: (1) Generate the state and input targets (xr, ur), via Eq. (11);
2: (2) Generate the terminal ingredients through Theorem 3.8;
3: (3) Compute the MPC horizon, solving Eq. (14).

Online Implementation:
4: for k = 0 to end of implementation do
5: Measure x(k);
6: Compute ρ(k) = fρ(x(k));
7: Solve the MPC optimisation from Eq. (10);
8: From the solution U?k , apply the first entry u?(k|k) = K(ρ(k))x(k).
9: end for

fy(x, u, k + j) to predict the future behaviour of the states and outputs, as in [42, Chapter 7]. This is the
optimal theoretical solution in a nominal case, without any fault-induced saturation (i.e. Eq. (8)). We use
this technique as a comparison benchmark because it allows us to evaluate the enhancements provided with
our method with respect to: (1) fault accommodation, since the NMPC does not analytically consider the
effects of faults into account; and (2) computational load, since the nonlinear program is possibly impractical
from an implementation perspective.

4.1. Vehicle Dynamics Control

Automotive/vehicular systems include complex dynamics of motion. One can enhance the vertical,
roll and pitch dynamics of a car, which are related to comfort performances of the passengers, see [43].
Moreover, safety characteristics of a vehicle can be enhanced when longitudinal, lateral and yaw movements
are controlled. What is done in (industrial and academic) practice is that two sets of control systems are
synthesised: one concerning the suspension system of the car [44], which embeds the first dynamics, and
another one regarding the steering and braking systems, which relates to the safety cautions [28].

In this Section, the simulation results of the proposed MPC algorithms will be presented focusing on the
safety problem of an automotive system, concerning, more specifically, lateral and yaw dynamics. In the
recent literature, it has been shown that the joint use of braking and steering systems can highly enhance
these lateral safety performances. In this perspective, interesting recent developments have been presented,
mostly involving MPC with linearised models, as in [45, 46, 47].

Anyhow, for realistic implementation, full nonlinear models should be considered in order to represent
the complete dynamics, as done in [48]. Nevertheless, these models can imply in control laws that are
excessively demanding from a computational perspective. The main interest of using a full nonlinear model
is that it embeds the nonlinear load transfer between the vehicle corners and the fast dynamics present in
the tire force behaviour. These characteristics are especially interesting in dangerous driving situations, for
which a linearised model may neglect behaviours and thus lead to possible accidents.

In terms of the lateral behaviour, the main nonlinear dynamics under interest are the sideslip of the car
β(t) and the yaw ψ(t) dynamics. These dynamics are included in what is usually referred to as a “bicycle
model” [49, 50], which models the vehicle from an horizontal perspective, as illustrated in Figure 3.

The dynamic bicycle model is governed by the following nonlinear equations:

mvβ̇(t) = Ftyf (t) + Ftyr (t) +mvψ̇(t) , (44)

Zzψ̈(t) = lf
(
−Ftxf (t) sin(δf (t)) + Ftyf (t) cos(δf (t))

)
− lrFtyr (t)−∆Ftxr (t)tr +Mdz(t) , (45)
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Figure 3: Bicycle model of a car.

where Ftyf (t), Ftyr (t) and ∆Ftxr (t) are the front, rear and tire lateral forces and the longitudinal rear
differential forces, respectively; these forces depend on the sideslip angle β(t) and on the slip ration λ(t).

The car’s longitudinal speed is given by v(t) =
√

(Ẋ(t)2 + Ẏ (t)2), its total mass is denoted m and its

inertia along the vertical z axis is denoted Zz. Finally, δf (t) denotes the steering angle and Mdz(t) the yaw
moment disturbance.

For low slip values (which is regular for controlled situations), i.e. |λ(t)| < 0.1, the longitudinal rear
differential forces can be expressed as:

∆Ftxr (t) =
µcRmrg

2
(Tbrl(t)− Tbrr (t)) , (46)

being mr the mass of the rear part of the car, g the gravitational constant, Tbrj (t) the rear braking torque
at the left (j = l) and right (j = r) sides.

Moreover, under these same conditions, the front and rear forces along the y-axis are given by:

Ftyf (t) = −µcCfβ(t)− µcCf lf
v

ψ̇(t) + Cf sin(δf (t)) , (47)

Ftyr (t) = −µcCrβ(t) +
µcCf lr
v

ψ̇(t) . (48)

Note that for low steering angles, Ftxf (t) renders very little effects upon ψ̈(t) and, therefore, it will be
neglected for simplification purposes.

The first actuator for this system is the braking (EMB) system, which provides a continuously variable
braking torque, as follows:

Ṫbrl(t) = 2πω (u1(t)− Tbrl(t)) , (49)

Ṫbrl(t) = 2πω (u2(t)− Tbrl(t)) , (50)
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where ω = 10 Hz is the actuator cut-off frequency and u1(t) and u2(t) are the control inputs, which are
constrained to:

u1(t) ∈ U1 := {u1(t) ∈ R | 0 ≤ u1(t) ≤ umax1 } , (51)

u2(t) ∈ U2 := {u2(t) ∈ R | 0 ≤ u2(t) ≤ umax2 } . (52)

Remark 10. In the majority of the aforementioned papers, a second actuator is considered for active steering
conditions. In this case, the front steering angle δf (t) is given as the sum of the angle provided by the driver
and an additional steering angle provided by a vehicle stability controller, see [48]. In this paper, we
consider an hierarchical control scheme, meaning that a vehicle stability controller is responsible to generate
δf (t) = fδ(x(t)) in order to maintain stability, while a braking controller is concerned with sideslip and yaw
rate tracking. We design herein braking control system. Assuming that δf (t) = fδ(x(t)) complicates the
control problem, since a full nonlinear prediction of the states is computationally complex.

In terms of possible faults that may occur in this system, we note that the braking torque upper bounds
(umax1 and umax2 in Eqs. (51)-(51), respectively) vary over time. The braking system naturally deteriorates
over its lifespan, which reduces the available braking torque. Other malfunctions in components of the
braking system may also degrade its effectiveness, thus also decreasing these upper bounds. These fault-
related phenomena are taken into account using the fault-induced saturation model, as given in Eq. (1).
These details are explained in the sequel.

The proposed fault tolerant control method can be used either as an Advanced Driver-Assistance System
(ADAS) or even as a driving control for autonomous vehicles. In these two different contexts, the bounds
over ρ and δρ differ. Table 1 gathers all the symbology and parameter values for the dynamic bicycle model,
considering a Renault Mégane Coupé vehicle. Model parameters have been obtained from [48], which exhibits
an ADAS application.

Table 1: Bicycle Model Parameters.

Symbol Value Physical Meaning
m 1535 kg Vehicle mass
mr 648.3 kg Vehicle rear mass
Zz 2149 kgm2 Vehicle yaw inertia
Cf 42042 N/rad Lateral tire front cornering stiffness
Cr 43671 N/rad Lateral tire rear cornering stiffness
R 0.3 m Tire radius
lf 1.4 m Distance front axle - COG
lr 1 m Distance rear axle - COG
tr 1.4 m Rear axle length

umax1 120 Nm Maximal front braking torque
umax2 120 Nm Maximal rear braking torque
µc [0.4 , 1] Tire/road contact friction interval
v [50 , 120] km/h Vehicle velocity interval
g 9.81 m/s2 Gravitational constant

4.2. qLPV Model

In this work, it is assumed that the sideslip angle β(t), the total front steering angle δf (t) and the yaw

variation ψ̇(t) are known and measurable. Moreover, one considers only constant velocity scenarios for
v = 30 m/s and a tire/road contact friction of µc = 1. Therefore, the following qLPV model is obtained.
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For synthesis and control design, it is discretised with a Ts sampling period. This model is obtained by
plugging Eqs. (46)-(50) into Eqs. (44)-(45) and considering an Euler discretisation method.

ẋ(t) = A(ρ(t))x(t) +B1satf(t)u(t) +B2(ρ(t))w(t) , (53)

y(t) = Cx(t) , (54)

where x(t) =
[
β(t) ψ̇(t) Tbrl(t) Tbrr (t)

]′
is the system state vector, y(t) =

[
β(t) ψ̇(t)

]′
is the

output vector, u(t) =
[
u1(t) u2(t)

]′
is the control input vector, and w(t) =

[
δf (t) Mdz(t)

]′
is the

disturbance vector.
The saturation term satf(t){u(t)} represents the fault-induced loss of effectiveness that occurs on each

braking system (rear-left and rear-right wheels). Accordingly, in the following scenarios, we use f
j

= 0.6 as

the lower bound for the faults on both actuators. This means that the fault-induced saturation satf(t){u(t)}
implies in a maximal decrease of 40% on the effectiveness of each braking torque.

The scheduling parameters ρ(t) =
[
ρ1(t) ρ2(t)

]T
, chosen according to [48], are given by:

ρ1(t) = cos(δf (t)) ∈ [0.5 , 1] , (55)

ρ2(t) =
sin(δf (t))

δf (t)
∈ [0.8 , 1] , (56)

being δf (t) ∈ [−60 , 60] o.
For the control paradigms developed in this paper, bounds are needed on the variation of the scheduling

parameters. These bounds are:

∂ρ1(t) = − sin(δf (t))δ̇f (t) ∈ [−0.86 , 0.86]δ̇f , (57)

∂ρ2(t) = δ̇f (t)

(
cos(δf (t))δf (t)− sin(δf (t))

(δf (t))2

)
∈ [0.2 , 1.31]δ̇f , (58)

where δ̇f = ‖δ̇f‖∞ is the upper bound on the variation of the frontal steering angle.
Finally, the matrices in the qLPV model in Eq. (53) are affine on the scheduling parameter ρ(t), as

follows:

A(ρ(t)) =




−
(
µc
mv (Cf + Cr)

) (
1 + µc

mv2 (lrCr − lfCf )
)

0 0(
µc
Zz

(lrCr − lfCfρ1(t))
)
−
(
µc
Zzv

(l2rCr + l2fCfρ1(t))
)
−
(
µcRmrgtr

2Zz

) (
µcRmrgtr

2Zz

)

0 0 − (2πω) 0
0 0 0 − (2πω)


 ,

B1 =




0 0
0 0

2πω 0
0 2πω


 , B2(ρ(t)) =




Cfρ2(t)
mv 0

lfCfρ2(t)
Zz

1
Zz

0 0
0 0


 ,

C =
[
I2 02

]
, D = 02× 2 .

4.3. Control Goals

Considering that δf (t) is determined by some other active steering control system, Eq. (53) becomes a
qLPV representation of a vehicle braking system. The considered performance objective are the following,
despite faults:

1. To sufficiently reduce the yaw rate error with respect to a reference model, for comfort or sport driving
performances;
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2. To track smooth sideslip performance signals, also given by some reference model;

3. To ensure that the braking control signal can be achieved by the considered Electro-Mechanical Brakes
(EMB actuators), i.e., respecting the control constraints given in Eqs. (51)-(52).

4.4. Problem Solution and Simulation Scenario

In the sequel, we use a nonlinear model validated on a real Renault Megané Coupé car (refer to [48]).
The qLPV model in Eq. (53) is Euler-discretised with a sampling period of Ts = 5 ms, which is the usual
operational sampling of embedded automotive control systems [51].

The results presented in the sequel were achieved using Matlab software, Yalmip toolbox and fmincon
and SDPT3 solvers. All numerical simulations in this paper were performed on the same 2.4 GHz, 8 GB
RAM Macintosh computer.

The weights used for the synthesis of all MPC controllers are Q = diag{ 10 100 0.1 0.1 } and
R = diag{ 0.5 0.5 }, since the main control priority/goal is the yaw rate performances.

For simplicity of illustration, we show only the results achieved with Corollary 3.11, which is the “com-
plete” case of Lyapunov parameter-dependency and bounded rates of parameter variation (more information
is available regarding the process). More conservative results are obtained with the other Corollaries5.

We provide full nonlinear simulation results in the sequel. The following results correspond to 5 s simu-
lation under an avoidance manoeuvre.

Figure 4 presents the disturbances applied to the system (the front steering angle δf and the yaw moment
disturbance Mdz) together with the scheduling parameters (and their variation rates). Recall that the front
steering angle is also used to compute the references to β and ψ̇, using an adequate performance model. We
use a step-like signal f(t) in order to represent loss of effectiveness faults of 20% (f1 = f2 = 0.8) and 40%
(f1 = f2 = 0.6) on both braking systems. These faults may happen due to malfunctions which restraint the
amount of braking effort available.

4.5. Tuning of the Prediction Horizon

First, we tune the size of the prediction horizon w.r.t. to the heuristic criterion given in Eq. (14). The
chosen horizon given in number of discrete-time samples is the one that maximises performances, while
abiding to the sampling period threshold of 5 ms.

With regard to this matter, Table 2 shows the different Np-dependent computational stress index values
of the min-max procedure, being tc = tMin

c + tMax
c , i.e. the first term is respective to the min. QP while

the later is respective to the max. NP. This table also shows the RMS indexes for the variables of interest,

(β − βr) and
(
ψ̇ − ψ̇r

)
.

We note that smaller indexes indicate better performances, although for these to be attained, more
computational time is required to implement the min-max strategy. This is a Pareto optimality issue
[33], since better performances are provided with longer horizons, whereas the optimisation becomes more
demanding as they increase. Complementary Figure 5 illustrates two Pareto planes, showing how the NRMS
index of the variables of interest w.r.t. to different horizon sizes and the yielded computational stress tc.

Therefore, w.r.t. the previous discussions, we proceed with the application of a horizon of Np = 6 steps
for this vehicle dynamics problem, which enables its real-time operation under the threshold of Ts = 5 ms.

4.6. Performance Evaluation

Now, we show the regulation results with the proposed method against those obtained with a nonlinear
MPC tool. The full-blown NMPC is synthesised with a larger control horizons of Np = 25, as suggests [51].
Furthermore, SSMPC denotes the proposed FTC method with Np = 6 (we use “SS” as an abbreviation for

5This is quite reasonable, since cases 1 and 2 allow less knowledge regarding the controlled process. The first case (Corollary
3.9 implies in quadratic stabilisation, which is the most conservative of the three. The second case (Corollary 3.10) implies
in poly-quadratic stabilisation using parameter-dependent terminal ingredients, but bounded rates of the variations of the
scheduling variables between samples are not considered.

22



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-50

0

50

(º
)

Steering angle (avoidance manoeuvre)
 f

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0.8

0.9

1

(-
) Scheduling

Parameters

1

2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

2

4

(N
.m

) Yaw Moment Disturbance
Mdz

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time (s)

0.6

0.8

1

(-
)

 Faults f1, f2

0 1 2 3 4 5
-2

0

2
 1

 2

Load Disturbance

20 % Loss of Effectiveness
on both actuators 40 % Loss of Effectiveness

on both actuators

Figure 4: Faults, Disturbances and Scheduling Parameters.

Table 2: Prediction Horizon Tuning.

Np RMS{β − βr} RMS{ψ̇ − ψ̇r} tMin.
c tMax.

c tc
2 0.4834 0.3176 0.24 ms 3.40 ms 3.64 ms
5 0.4721 0.1268 0.29 ms 3.45 ms 3.75 ms
6 0.4718 0.1256 0.31 ms 4.12 ms 4.43 ms
10 0.4646 0.1244 0.42 ms 10.42 ms 10.85 ms
20 0.4624 0.1206 0.52 ms 19.09 ms 19.61 ms
25 0.4623 0.1206 0.68 ms 27.83 ms 28.51 ms

short-sighted, due to the small horizon size). In terms of the considered fault events, the braking torques
are limited by 20% from t = 1.5 s onwards (i.e. u+

j = 96 N.m) and by 40% from t = 3 s onwards (i.e.

u+
j = 72 N.m). We recall that the FTC is synthesised to tolerate a fault degradation of up to 40 %, since

the LMIs are solved for f
j

= 0.6.

First off, we compare the proposed algorithm to the NMPC in terms of the average computational stress
required to generate the control law. With respect to this matter, Table 3 summarises the average time
required by the algorithms to solve the resulting optimisation programs. As we can see, the “full-blown”
NMPC would not be able to run in a real-time, embedded in an on-board vehicle micro-controller, since its
average computational effort is much longer than the sampling period of 5 ms. Nonetheless, the proposed
method enables real-time operation due to the heuristic criterion used to choose Np, which is a key feature
and major advantage for time-critical systems.

With respect to the aforementioned control objectives, Figure 6 depicts the achieved results with these
two controllers in terms of angle and yaw rate reference tracking6. The curves labeled “No Control” are
those obtained in an open-loop scenario, with only active steering and no coordinated braking (i.e. taking

6A reference model xr is used and the corresponding tracking error trajectories x − xr are steered by the control to the
origin.
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Figure 5: Pareto Planes (β − βr)× tc and (ψ̇ − ψ̇r)× tc.

Table 3: Average Computational Stress of the MPCs.

Method Average Computational Stress
NMPC 60.08 ms

SSMPC (FTC) 4.53 ms

u = 0).
In terms of sideslip angle β tracking (which is the second minimisation priority in the MPC cost function,

according to the chosen value for matrix Q), we can argue that the both control strategies present similar
results. Numerically, we assess effectiveness of the controllers using an RMS index of the error trajectories,
which are presented in Table 4. The proposed method slightly outperforms the NMPC, but the effects of
fault on the sideslip angle are minor. We indicate the RMS index with regard to the fault-less conditions
(before the fault-induced saturation occurs) and those subject to faults.

In terms of the main control priority, which is yaw rate ψ̇ tracking, we can notice the advantages of
the proposed method much clearer. The effect of the fault-induced saturation becomes more visible in this
output, as marked (and zoomed) in Fig. 6, which shows the advantages of the fault accommodation ensured
by the robustness provided with the terminal ingredients. The effectiveness of the algorithms are once
again measured in terms of an RMS index, given in Table 4, with regard to faulty and fault-less situations.
When the fault-induced saturation is enacted, we are able ensure 28% better performances, which is quite
significant.

Finally, Fig. 7 shows the clipped control actions derived with the controllers. The presence of fault-
induced saturation is emulated from t = 1.5 s onwards. With the proposed terminal ingredients, the
FTC method is able to smoothly accommodate faults and thus maintains stability and recursive feasibility
properties.

We stress that the abrupt peaks in the control actions, derived with the FTC strategy, occur due
to the maximisation part of the robust MPC formulation, which computes harsher variations of the future
scheduling parameters at these moments. These peaks, nevertheless, do not compromise the achieved results.
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Figure 6: Results: Sideslip Angle β Tracking (left) and Yaw rate ψ̇ Tracking (right).

Table 4: RMS of the Error Trajectories

Sideslip angle tracking NMPC SSMPC (FTC) Enhancement
Fault-less conditions: t ∈ [0, 1.5) s 0.7331 0.7299 0.4 %

Faulty conditions: t ∈ [1.5, 3] s 0.5923 0.5829 1.58 %

Yaw rate tracking NMPC SSMPC (FTC) Enhancement
Fault-less conditions: t ∈ [0, 1.5) s 0.2966 0.2746 7.41 %

Faulty conditions: t ∈ [1.5, 3] s 0.2865 0.2051 28.41 %

One could consider a slew rate constraint to further smooth this control signal. We note that the state
constraints are respected by all algorithms. Furthermore, these variations on the control do not affect the
stability of the vehicle, nor maneuvering concerns, as discussed next.

In terms of the stability of the vehicle itself, we show in Fig. 8 the obtained trajectories for β and ψ̇ with
the FTC method with regard to the driving stability regions presented in [47] and the steering manoeuvre
stability region given in [28]. As it can be seen, the obtained trajectories (dashed blue lines) are stable in a
driving sense.

4.6.1. Poly-Quadratic Stability and Region of Attraction

In order to conclude, we present the estimates for the region of attraction of the proposed method.
Accordingly, we present each estimated domainRE , as defined in Eq. (23), considering parameter-dependent
and independent-cases, and bounded rates of parameter variations (cases 1, 2, and 3, which depend on the
amount of information regarding the controlled process).

We note that, for all cases, the Lyapunov cases are defined through Theorem 3.8, being symmetric and
holding a Lyapunov condition with sector constraints for the whole scheduling polytope Ω. Theorem 3.8,
Corollary 3.9 yields a quadratic P (case 1), Theorem 3.8, Corollary 3.10 yields a parameter-dependent P (ρ)
(case 2) and Theorem 3.8, Corollary 3.11 yields a parameter-dependent P (ρ) for bounded rates of parameter
variation ∂ρ (case 3). The previous results were shown for the broader case (case 3).
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Figure 7: Control Actions.

Below, Figure 9 presents a phase diagram of tracking variables w.r.t. the first and second states (variables
of interest β−βr and ψ̇−ψ̇r) of the controlled system and the respective Lyapunov matrices7 P . The ellipsoids
encompass the three cases provided by the catalogue of terminal ingredients. We note that the estimated
regions of attraction through each Corollary are presented as the intersections of each ellipsoid pair. As it
can be clearly seen, the evolution of the trajectories of these states always lies within the ellipsoids, for initial
conditions that also departed from their interiors. This means that, indeed, local poly-quadratic asymptotic
stability is verified for the proposed method, together with recursive feasibility. We must stress that the
same conjecture remains true for the other states of the system.

Complementary, this figure also shows the sector condition from Eq. (20), where the ellipsoid is computed
w.r.t. S in Theorem 3.8. We note that the fault-related saturation only occurs w.r.t. the second control
signal, since the MPC always computes some u1 ≤ u+

1 in the considered simulations.
Below, we present the numerical values obtained for the Lyapunov matrices P (·) = Y −1(·) and the

sector ellipsoids S, with each Corollary. We note that only a pair of Lyapunov matrices are made necessary
since, in the considered model of Eq. (53), A(ρ) is only dependent on ρ1 and B(·) is, in fact, parameter-
independent. The parameter-dependency on ρ2 only appears w.r.t. B2(ρ), which does not appear in the
proposed LMIs.

YCorollary 3.9 =







6.85 −3.17 0.03 −0.02
? 1.67 −0.01 6˙10−3

? ? 3˙10−3 −2˙10−3

? ? ? 4˙10−5


 ˙10−3




−1

, (59)

7Indeed, P is of 4× 4; what is shown, in fact, is TT
x PTx, where Tx is a transformation matrix such that

(
β(k) ψ̇(k)

)
=

Txx(k).
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YCorollary 3.10(ρ) = γ1(ρ)







9.26 −5˙10−3 3˙10−5 − ˙10−3

? 0.74 − ˙10−3 −10−6

? ? 2˙10−4 −2˙10−5

? ? ? 4˙10−6


 ˙10−3




−1

(60)

+ γ2(ρ)







7.97 5˙10−3 −3˙10−6 −8˙10−4

? 0.64 −1.1˙10−3 1˙10−5

? ? 2˙10−4 −1˙10−5

? ? ? 4˙10−6


 ˙10−3




−1

,

YCorollary 3.11(ρ) = γ1(ρ)







4.7 −0.05 1˙10−4 −7˙10−4

? 0.58 −1˙10−3 2˙10−5

? ? 1˙10−4 −1˙10−5

? ? ? 3˙10−6


 ˙10−3




−1

(61)

+ γ2(ρ)







5.2 −0.05 1˙10−4 −8˙10−4

? 0.64 − ˙10−3 2˙10−6

? ? 2˙10−4 − ˙10−5

? ? ? 4˙10−6


 ˙10−3




−1

,

where:

γ1(ρ) =

(
ρ1 − ρ1

ρ1 − ρ1

)
and γ2(ρ) =

(
ρ1 − ρ1

ρ1 − ρ1

)
. (62)
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SCorollary 3.9 =

[
0.33˙10−3 0

? 0.33˙10−3

]
, (63)

SCorollary 3.10 =

[
0.28˙10−3 0

? 0.28˙10−3

]
, (64)

SCorollary 3.11 =

[
0.29˙10−3 0

? 0.29˙10−3

]
. (65)

4.6.2. Discussion

Based on the results shown in the prequel, we present some concluding remarks:

• Indeed, a full-blown NMPC method that uses nonlinear realistic predictions yields good results for the
considered application, despite faults (represented by time-varying input saturation). Nevertheless,
this kind of method is not easily applicable in real-time embedded control units, since the average
computational time needed to compute the control policy is longer than the sampling period of the
system. Moreover, if the fault-induced saturation effects are not taken into account in the design
procedure, the performances are affected.

• Regarding performances, we stress that the proposed fault tolerant MPC scheme is able to obtain good
results in both faulty and fault-less conditions, and for the resulting algorithm can be evaluated within
the sampling period threshold of 5 ms. Moreover, the proposed method ensures poly-quadratic stability
guarantees and recursive feasibility property, even in the case of additional saturation (due to input-
faults in the front and rear braking systems). When faults occur, we demonstrate that a significant
enhancement is made viable regarding yaw rate tracking, which tracks the reference trajectory with a
28% smaller RMS.

• The proposed methodology is, in its core, a passive Fault Tolerant Control method, considering that
the actuators present possible losses of effectiveness, which are conversely translated as additional
input saturation. The MPC algorithm itself does not have to be “warned” when extra saturation
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occurs and naturally ensures stabilisation, leveraging from the Lyapunov condition augmented with
the sector arguments.

5. Conclusions

In this article, we presented a fault tolerant control method for qLPV systems subject input faults, which
are represented by the means of a fault-induced time-varying saturation effect. The proposed algorithm is
based on a robust min-max MPC, using small prediction horizons in order to ensure that the optimisation
procedure does not violate the sampling period threshold. A new Theorem is presented for the construction
of terminal ingredients which ensure closed-loop stabilisation and recursive feasibility of the algorithm,
despite the input saturation caused by faults on the actuators. As evidenced by the realistic simulation
results applied to a vehicle braking system, the proposed method is able yield effective reference tracking
performances, nearly as good as a full nonlinear MPC method. Some key points of this work should be
emphasised:

• The proposed control algorithm is able to operate in real-time, which is a significant advantage over
regular robust MPCs. The proposed scheme was applied in a real-time application with a sampling
frequency of 200 Hz and tested through realistic simulation scenarios, considering complex nonlineari-
ties.

• The terminal ingredients are provided through LMI-solvable problems, ensuring local poly-quadratic
stability of the closed-loop system regulated by the proposed short-sighted algorithm. These LMIs
also verify recursive feasibility and enable one to estimate the region of attraction of these algorithms.

• The method inherently ensures stabilisation despite the fault-induced saturation, maintaining perfor-
mances and avoiding degradation.

For further works, an interesting theme is to further compare the proposed methods considering different
kinds of applications. Furthermore, our method could be extended to the case of admissible time-varying
references, which can be treated through online reference planners or time-varying terminal sets. Validation
tests are also expected to be performed considering a real vehicle testbed.
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[42] F. Allgöwer, A. Zheng, Nonlinear model predictive control, Vol. 26, Birkhäuser, 2012.
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Appendix A. Proof of Lemma 1

Assume that x(0) = x?r is some initial steady-state and that the reached steady-state x?r 6= xr. Since
the system at instant k0 has stabilised at x?r , x

?
r is a steady-state state condition for the polytopic qLPV

system described by Eq. (1). The control sequence Uk0−1 that gave the steady input u?r that leads to x?r is
the optimal solution of the constrained QP and, therefore, J = ‖x(k0|k0−1)−xr‖2Q+‖u?r−ur‖2R+‖x(k0 +

Np|k0− 1)−xr‖2P . Take x?r 6= xr. This leads to the hypothesis that there exist two ambiguous steady-state
conditions x?r ∈ X and xr ∈ X (and respective inputs u?r ∈ U and ur ∈ U) such that the control sequence
Uk0 derived from the control law u(k0) = K(ρ(k0))x(k0) is indeed admissible. It yields from A2 in Theorem
3.1 that V (x?r − xr) ≤ β2(‖x?r − xr‖) < ‖x?r − xr‖2P . Then, take ‖x?r − xr‖2P = V ?(x?r − xr) as another
optimal cost. Note that if V ?(x?r − xr) is indeed an optimal cost, the above inequality contradicts the
optimality of V (·). Therefore, it can only remain that x?r = xr, which imperiously means that x(k0) = xr.
This proves that the reached steady-state is indeed the steady-state reference xr.

Appendix B. Proof of Theorem 2

Consider u?(k) as the optimal solution obtained from solving Eq. (10) at time k. The internal model-
based prediction associated to the optimisation is denoted x?(k + 1) = A(ρ(k))x?(k) + B(ρ(k))u?(k), for

31



which x?(0) = xk is the initial value taken for these predictions departing from a measured real value
x(k) = xk. Feasibility : Assuming that recursive feasibility has been verified, it is easy to see that if the
state at the current time is admissible, i.e. x(k) ∈ X , and that the optimal solution u?(k) derives from an
optimal cost J?, then the actual states for the future instant x(k + 1) is conducted by a future sequence of
control inputs given by Uk+1, whose first entry is u?(k+1|k+1). This means that u?(k+1) = u?(k+1|k+1)
is feasible due to the feasibility of the optimal solution at instant k, which consequently steers the states
to an admissible x(k + 1) ∈ X . Convergence: Considering that recursive feasibility is verified, the solution
u?(k + 1) for all k + 1 ∈ Z exists. Assume that the target steady-state reference is fixed along the horizon
given by xr. Then, it is implied that Condition (C3) holds due to the recursive feasibility property, which
equivalently leads to:

V ?(x(k + 1)) ≤ V (x(k))− `(x(k), u(k − 1)) (B.1)

≤ V ?(x(k))− ||x(k)− x?r ||2Q − ||u(k − 1)− ur||2R .

It is reasonable to verify that ||u(k−1)−ur||2R has a constant value, since u(k−1) is a control policy that has
already been applied to the process. Moreover, note that the above inequality has a positive definite optimal
cost V ? with non-increasing evolution along k. Therefore, we can directly infer that limk→∞ ||xk−x?r ||Q = 0
and, from the use of Lemma 3.2, and it is implied that limk→∞ ||x?r − xr||P = 0. Consequently, it is true
that x(k) is stereed to xr if this is indeed an admissible steady-state state condition. This concludes the
proof.

Appendix C. Proof of Theorem 3, Corollaries 1, 2, and 3

We proceed by demonstrating the validity of this Theorem in a generic sense, considering parameter-
dependent matrices. We note that the actual solutions depend on the formulations regarding the knowledge
of the process, as gave the previous Corollaries and their according matrix manipulations.

We show that each of the five conditions from Theorem 3.1 are satisfied through the LMI problem in
Eq. (24), from (C1) to (C5). This proof takes (xr, ur) = (0nx , 0nu), for notation ease, as done in the prior.

Firstly, we note that condition (C1) trivially holds due to the form of Xf (·). As gives Eq. (13), this
terminal set is defined as an ellipsoid, which holds the origin of Rnx in its interior, by construction.

The second condition (C2), of control invariance of the terminal set Xf (·), is verified due to the fact that
this set is taken as a sub-level set of the terminal cost V (·). Therefore, if condition (C3) is verified, (C2) is
consequently ensured.

The fourth condition (C4) is verified through the LMI in Eq. (26). Firstly, we replace L(ρ) and Y (ρ) by
K(ρ)P−1(ρ) and P−1(ρ), respectively, which gives:

[
P−1(ρ) ?

IiK(ρ)P−1(ρ) u2
i

]
> 0 . (C.1)

Pre and post-multiplying this LMI by diag{P (ρ), 1} and its transpose, respectively, yields:

[
P (ρ) ?
IiK(ρ) u2

i

]
> 0 . (C.2)

Applying a Schur complement to this LMI leads to:

P (ρ)− (IiK(ρ))
T

(
1

u2
i

)
(K(ρ)Ii) > 0 . (C.3)

This inequality is a sufficient condition for ‖IiK(ρ)x‖2
(ui)2

≤ xTP (ρ)x, ∀x. Due to the fact that the maximum

norm of the projection Fx of an x that belongs to some ellipsoid xTPx ≤ 1 is given by
√
FT (P−1)F ,

it holds that Eq. (C.3) implies that the projection IiK(ρ)x (i.e. i-th control signal) is upper-bounded, in
norm, by ui. Refer to [52]. This satisfies (C4).
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Finally, (C5) is verified in a similar procedure to the last step of the verification of (C4). Applying the
Schur complement to (28), it follows that:

ITj (Y (ρ)) Ij < x2
i . (C.4)

Eq. (C.4) ensures that the projection Ijx (i.e. j-th state) is norm-bounded by xj , which satisfies condition
(C5).

Now, we show that LMI (27) yields a the agreement of the sector condition of Eq. (19). Note that
xTP (ρ)x ≤ 1 and ‖Ii(K(ρ) − G(ρ))x‖2 ≤ (u+)2 is a sufficient condition for SC≤ 0. Thus, we aim
to ensure that (K(ρ)−G(ρ))x is norm bounded by u+ for all x inside the ellipsoid. We use a sufficient

condition for ‖Ii(K(ρ)−G(ρ))x‖2
(u+)2

≤ xTP (ρ)x:

(Ii (K(ρ)−G(ρ)))
T

(
1

(u+)2
)

)
(Ii (K(ρ)−G(ρ)))− P (ρ) < 0 , (C.5)

which can be rearranged as:

P (ρ)− (Ii (K(ρ)−G(ρ)))
T

(
1

(u+)2
)

)
(Ii (K(ρ)−G(ρ))) > 0 . (C.6)

Applying a Schur complement to this last inequality leads to:
[

P (ρ) ?

Ii (K(ρ)−G(ρ)) (u+
i )2

]
> 0 , (C.7)

Pre and post-multiplying this inequality by diag{P−1(ρ) , 1} and its transpose, respectively, leads to:
[

Y (ρ) ?

Ii (K(ρ)−G(ρ))Y (ρ) (u+
i )2

]
> 0 . (C.8)

Using L(ρ) = K(ρ)Y (ρ) and W (ρ) = G(ρ)Y (ρ) in inequality (C.8), we get LMI (27), which ensures
that the projection of Ii(K(ρ) − G(ρ))x is upper-bounded, in norm, by the stricter input saturation given
by
(
u+
i

)
. The satisfaction of this sector condition is equivalent to the satisfaction of (C4) through LMI (26).

Regarding the discrete-time Lyapunov condition (C3), as adapted to include the Sector Condition as of
Lemma 3.5, we would like to have a generic LMI condition that ensures:

V (Acl(ρ), ρ+)− V (x, ρ) + xTQx+ xTKT (ρ)RK(ρ)x− 2ΨT (x)S (Ψ(x)−G(ρ)x) ≤ 0 . (C.9)

We note that inequality (C.9) is equivalent to:

xTATcl(ρ)P (ρ+)Acl(ρ)x− xTP (ρ)x+ xTQx+ xTKT (ρ)RK(ρ)x− 2ΨT (x)S (Ψ(x)−G(ρ)x) ≤ 0 , (C.10)

or, likewise, in matrix form:

(
x

Ψ(x)

)T [
ATcl(ρ)P (ρ+)Acl(ρ)− P (ρ) +Q+KT (ρ)RK(ρ) ?

SG(ρ) −2S

](
x

Ψ(x)

)
≤ 0 , ∀ (x,Ψ(x)) .(C.11)

A sufficient condition for inequality (C.11) is:
[
P (ρ)−ATcl(ρ)P (ρ+)Acl(ρ)−Q−KT (ρ)RK(ρ) ?

−SG(ρ) 2S

]
> 0 . (C.12)

Applying two consecutive Schur complements to inequality (C.12), we get:



P (ρ) ? ? ? ?
−SG(ρ) 2S ? ? ?
Acl(ρ) 0 P−1(ρ+) ? ?

I 0 0 Q−1 ?
K(ρ) 0 0 0 R−1




> 0 . (C.13)
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We can pre and post-multiply inequality (C.13) by diag{P−1(ρ), I, I, I, I} and its transpose, respectively,
which leads to:




P−1(ρ) ? ? ? ?
−SG(ρ)P−1(ρ) 2S ? ? ?
Acl(ρ)P−1(ρ) 0 P−1(ρ+) ? ?

P−1(ρ) 0 0 Q−1 ?
K(ρ)P−1(ρ) 0 0 0 R−1




> 0 . (C.14)

Using Y (ρ) = P−1(ρ) > 0, L(ρ) = K(ρ)Y (ρ) and W (ρ) = G(ρ)Y (ρ), we get:




Y (ρ) ? ? ? ?
−SW (ρ) 2S ? ? ?

A(ρ)Y (ρ) +B(ρ)L(ρ) 0 Y (ρ+) ? ?
Y (ρ) 0 0 Q−1 ?
L(ρ) 0 0 0 R−1




> 0 . (C.15)

We note that the polytope derived through inequality (C.15) is written in terms of Y (ρ) = P−1(ρ)

and not in terms of P (ρ). In the general parameter-dependent case, we take Y (ρ) =
∑2nρ

i= 0 γiYi, which

translates to P (ρ) =
(∑2nρ

i= 0 γiYi

)−1

, meaning that we find not a polytope over P but the inverse of a

summation in terms of Y .
Likewise, the polytopes on L and W are respectively given as: L(ρ) = L0 +

∑2nρ

i= 0 γiLi and W (ρ) =

W0 +
∑2nρ

i= 0 γiWi. Therefore, we get: K(ρ) = L(ρ)Y −1(ρ) =
(
L0 +

∑2nρ

i= 0 γiLi

)(∑2nρ

j= 0 γjYj

)−1

and

G(ρ) = W (ρ)Y −1(ρ) =
(
W0 +

∑2nρ

i= 0 γiWi

)(∑2nρ

j= 0 γjYj

)−1

.

Note, thus, that inequality (C.15) can be converted into an LMI that is somehow simple and more
common, whereas with more complex variables P (ρ), K(ρ) and G(ρ). Note that A(ρ) and B(ρ) are known,
which means that only the nonlinear term SW (ρ) should be eliminated. Anyhow, since S > 0, we can pre
and post-multiply inequality (C.15) by diag{I, S−1, I, I, I} and use a change of variables as T = S−1, which
leads to:




Y (ρ) ? ? ? ?
−W (ρ) 2T ? ? ?

A(ρ)Y (ρ) +B(ρ)L(ρ) 0 Y (ρ+) ? ?
Y (ρ) 0 0 Q−1 ?
L(ρ) 0 0 0 R−1




> 0 . (C.16)

Note that inequality (C.16) is indeed an LMI over Y , W , L and T . This LMI is a sufficient condition
for the Lyapunov inequality in (C3), while respecting the sector condition.

Finally, we note that the LMI problem proposed in this Theorem is such that the level set LV (1), as
defined by the intersection of level sets in Eq. (23), is maximised. This is, by taking Y (ρ) =

∑nρ
i= 1 ρiYi

with
∑nρ
i= 1 ρi = 1, we choose:

RE =

nρ⋂

i=1

E
(
Y −1
i , 1

)
=

nρ⋂

i=1

{
x ∈ Rnx |

(
xTY −1

i x
)
≤ 1

}
. (C.17)

Indeed, we show that RE ⊂ LV (·,·)(1). Note that, if x ∈ RE , then, ∀ i = 1 , . . . , nρ, we have that(
xTY −1

i x
)
≤ 1. Since each Y −1

i > 0 is invertible, by definition, we can apply a Schur complement to this
inequality, yielding:

[
1 ?
x Yi

]
≥ 0 , ∀ i , (C.18)
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Thence, for ρ0 = fρ(x), with
∑nρ
i= 1 ρ0i = 1, we have that:

nρ∑

i= 1

ρ0i

[
1 ?
x Yi

]
=

[
1 ?
x Y (ρ)

]
≥ 0 , ∀ i , (C.19)

for which another Schur complement can be applied, owing to xTY −1(ρ0)x ≤ 1, which leads to xTP (ρ0)x ≤
1 and, consequently, to x ∈ LV (·,·)(1).

Therefore, the level sets can be directly taken as the intersection of the ellipsoids in terms of each Yi.
Thus, we write the LMI problem in order to enlarge each ellipsoid E

(
Y −1
i , 1

)
in the trace sense, as follows:

[
Yi I
? H

]
≥ 0 , ∀ i . (C.20)

This concludes the proof.
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