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ABSTRACT Smart home IoT devices lack proper security, raising safety and privacy concerns. One-size-
fits-all network administration is ineffective because of the diverse QoS requirements of [oT devices. Device
classification can improve IoT administration and security. It identifies vulnerable and rogue items and
automates network administration by device type or function. Considering this, a promising research topic
focusing on Machine Learning (ML)-based traffic analysis has emerged in order to demystify hidden patterns
in [oT traffic and enable automatic device classification. This study analyzes these approaches to understand
their potential and limitations. It starts by describing a generic workflow for IoT device classification. It then
looks at the methods and solutions for each stage of the workflow. This mainly consists of i) an analysis of
IoT traffic data acquisition methodologies and scenarios, as well as a classification of public datasets, ii) a
literature evaluation of IoT traffic feature extraction, categorizing and comparing popular features, as well
as describing open-source feature extraction tools, and iii) a comparison of ML approaches for IoT device
classification and how they have been evaluated. The findings of the analysis are presented in taxonomies
with statistics showing literature trends. This study also explores and suggests undiscovered or understudied
research directions.

INDEX TERMS Classification, security, device, fingerprinting, identification, internet of things, machine
learning, network traffic, survey.

I. INTRODUCTION production, and performance) above security [2]. This results

In the last decade, the Internet of Things (IoT) has spread:
according to IoT Analytics [1], the IoT market will rise by
18% to 14.4 billion active connections in 2022. Researchers
have suggested several definitions of the IoT, but almost all
agree that it is a framework of sensors, industrial machines,
video cameras, mobile phones, etc., all of which are collec-
tively referred to as IoT devices and can interact directly
with one another or over the internet. IoT is used in smart
environments (homes, cities, campuses, etc.) to help users
understand and control their environment.

Despite its undeniable advantages, IoT expansion
raises security and privacy concerns. Most IoT device
manufacturers tend to prioritize the three Ps (prototyping,
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in an ineffective security design for IoT devices. As revealed
by Wikileaks [3], poorly secured IoT devices are ideal targets
for attackers seeking to obtain unauthorized access and infer
sensitive information: e.g., smart TVs were converted into lis-
tening devices. Attackers can also use compromised devices
to inject malicious data and conduct large-scale attacks
against third parties or other devices inside the network [4].
Automatically classifying devices is the first step toward
securing loT networks. It enables the detection of vulnerable
devices and the enforcement of access control.

The growing diversity and heterogeneity of IoT devices,
each with its own QoS requirements (cameras require more
bandwidth than smart light bulbs, healthcare device traf-
fic must be prioritized, and so on), makes one-size-fits-all
network management ineffective. loT device classification
enables network management automation. By setting QoS
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FIGURE 1. The scope of the survey is highlighted in red. We focus on loT device classification in
smart homes, also called consumer loT devices. We analyze approaches using machine

learning-based traffic analysis.

and network management policies based on the type of
device, each automatically classified device can be assigned
to a class with predetermined policies.

Note that the term device classification is often confused
with many similar tasks, namely i) traffic classification,
ii) intrusion detection, iii) device identification, and iv) device
fingerprinting. Traffic classification is a broad research field
that involves classifying network traffic based on various
parameters [5] (see Fig. 1). For instance, traffic can be classi-
fied as either legitimate or malicious based on attack patterns:
this is called intrusion detection. It can also be classified by
the device that generates the traffic (device classification).
The devices can be categorized into groups of similar devices,
such as devices for energy management or devices for health
monitoring, or according to their function, such as cameras,
hubs, home assistants, etc. Device identification classifies
devices more finely according to their model or constructor,
such as D-link camera, Nest camera, Alexa home assistant,
or Google home mini assistant, etc. Device fingerprinting is
the finest level of device classification. It gives each device
instance (e.g., camera A and camera B are two instances of
the Nest Camera) a distinct fingerprint that is “impossible to
forge and independent of environmental changes and mobil-
ity” [6]. In this study, we focus on device classification as
a specific case of traffic classification, broader than device
identification and device fingerprinting.

A simple way to classify IoT devices is to mon-
itor their MAC addresses and DHCP negotiation [7].
Sivanathan et al. [8] outline the shortcomings of this method.
First, IP and MAC addresses can be easily spoofed by other
devices, making them unreliable identifiers. Furthermore,
MAC addresses are not necessarily indicative of device man-
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ufacturers, and even if they were, there is no standard for
recognizing device brands and types accordingly. To cope
with this problem, researchers have examined IoT network
traffic and witnessed that IoT devices perform very specific
tasks [9]: for example, it is possible to turn on or off a
smart bulb or change its brightness and light color, however,
a smart bulb can not stream videos or send emails. Therefore,
we assume that the IoT network traffic could follow a stable
and predictable pattern that may characterize it. Machine
learning may reveal hidden network traffic patterns and learn
their characteristics, making device classification easier. This
study explores IoT device classification using ML-based net-
work traffic analysis. To characterize a device, we focus on all
the network traffic it creates, which is device-specific and not
application-specific because it comprises all the applications
(tasks) executed by the device, which can be distinct.
According to [10], IoT devices can be divided into con-
sumer, commercial, and industrial categories. Consumer
IoT devices include personal devices, such as smartphones,
and internet-connected home devices like cameras, home
assistants, and smart lamps. Larger organizations employ
commercial IoT devices for smart city deployments, trans-
portation and electric car monitoring, health monitoring sys-
tems, etc. Industrial IoT devices improve process control
and productivity, such as sensors, robots, and power plant
controllers. Some devices, like cameras and sensors, can
belong to multiple categories. This survey focuses on con-
sumer IoT devices, commonly called smart home devices.
This choice is motivated by the rich and abundant litera-
ture on smart home devices due to i) the availability of
data, compared to its confidentiality in the industrial world,
and ii) the large number of smart home devices, which
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FIGURE 2. Workflow of loT device classification using ML-based traffic analysis: input includes the
devices to be classified. First, raw traffic data is collected as pcap files and supplied to the feature

extraction procedure, which creates feature vectors (in text-based format) representing the raw
traffic. ML algorithms use these files to classify the originating device of each sample.
Classification results can be used in various contexts, including cyber security enforcement,

network management, and malicious usage.

represent the largest share of the IoT market (63% according
to Gartner [11]). Furthermore, many people, including those
unaware of security, use smart home IoT devices, making
their protection crucial.

Other surveys have examined IoT device classification-
related tasks, but none have focused on the topic of this
study. Tahaei et al. [7] discussed IoT traffic classifica-
tion, while [12] examined ML-based internet traffic classi-
fication, although neither focused on device classification.
Sanchez et al. [13] discussed device behavioral fingerprinting
but not IoT devices specifically. Yadav et al. [6] provided a
taxonomy for IoT device identification approaches. However,
they did not focus on ML methods and what data collection,
feature extraction, and model learning require. To the best of
our knowledge, no recent work studies exhaustive 10T classi-
fication datasets, no current work explores feature extraction
methodologies and compares the most useful and interesting
features for IoT device classification, and no previous work
examined each step of the IoT classification process as we do.

For a comprehensive literature review, we analyzed papers
from different digital libraries like IEEE Xplore, Research-
Gate, Google Scholar, etc. First, we performed a keyword
search using terms related to i) ii) loT devices, like “IoT
devices,” “wearable devices,” and “loT gadgets,” iii) classi-
fication, like “‘classification,” “clustering,” “‘identification,”
and “fingerprinting,” iv) traffic analysis, like “traffic anal-
ysis,” “traffic classification, communication analysis,”
“network characteristics,” ‘“network packets,” and “network
flows,” and v) machine learning as ‘“machine learning,”
“deep learning,” ““artificial intelligence,” “‘supervised learn-
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ing,” ‘“‘unsupervised clustering,” ‘“‘automated,” and “intel-
ligent.” Our search was limited to 2018-2022 articles to
capture recent advancements. Second, we examined the ref-
erence lists and citations of the selected articles to find
more papers. Third, we scanned titles and abstracts to reject
items that did not fit the scope (task: classification, context:
smart home, and classification approach: ML-based traffic
analysis). Finally, a deep evaluation of the publications was
conducted, and articles with insufficient information on all
stages of the classification procedure were removed. At the
end of this process, 58 papers were deemed pertinent to our
investigation.

Il. ANALYSIS STEPS AND CONTRIBUTIONS
Fig. 2 shows a general flowchart summarizing the multiple
steps and actors that can be involved in IloT device clas-
sification using ML-based traffic analysis. The initial step
is data acquisition, which consists of collecting raw traffic
from devices in pcap files (the pcap file format is the
de facto standard for packet captures). The second phase
is feature extraction, which aims at representing raw traffic
with numerical or categorical information in a text-based
format (e.g. csv (Comma-Separated Values) or text) files
that ML algorithms can use. The final stage is classifi-
cation using machine learning algorithms. The classifica-
tion result can be used for cyber security enforcement, net-
work management, as well as malicious activities like cyber
attacks.

To help develop more effective solutions for IoT device
classification, this study investigates the literature regarding
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FIGURE 3. Table of content and discussed questions.

each stage of the process and attempts to provide answers to
the following research topics.

o RQI1. How to design a practical data-acquisition method
for IoT device classification? Data acquisition is a
crucial step that should enable the practical and real-
istic capture of the most relevant information about
the environment. To design an effective and practical
solution for the IoT device classification problem, it is
essential to know: i) which devices should be used
for data-acquisition to represent a realistic smart home
environment, ii) when to collect the traffic to capture
the diversity of the devices’ operational modes, and iii)
where to place the collection probe so as to capture
traffic in an effective yet privacy-preserving manner.

e RQ2. How to create an efficient feature extraction solu-
tion? Feature extraction is a critical step that must
describe the collected traffic as accurately as possible
to reflect its patterns. To develop an appropriate feature
extraction technique for IoT device classification, it is
necessary to know: i) how to represent a single data
sample, as a packet or as a flow of packets, in other
terms, at what level to extract features (packet-level
or flow-level), ii) in the latter scenario, how to define
a packet flow (by time interval, number of packets,
or connection), and iii) which are the most informative
and discriminating features, and how to calculate them.

e RQ3. How to build effective machine learning classi-
fiers for IoT device classification? Classification using
machine learning algorithms is the last, but not the
least important step. To answer this research question,
it is essential to decide: 1) the scope of a classifier
(one classifier per device type or one multi-class classi-
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fier), 2) the learning strategy (supervised, un-supervised,
semi-supervised), and 3) the machine learning tech-
niques to use (deep or shallow algorithms).

e Q4. How to choose the classification granularity?
Device classification can be performed at different levels
of granularity. It’s crucial to understand the pros and
cons of each classification level in order to choose the
optimal granularity for each context and avoid extra
classification costs.

To the best of our knowledge, this is the first paper that
covers all of the above mentioned challenges and explores
their impact on IoT device classification. As an attempt to
address the above-mentioned research questions, this survey
also produces the following contributions (Fig. 3, which
provides a table of contents, depicts where and how the above
questions are handled in this study.):

o An analysis of the various applications for the classifi-
cation of smart home IoT devices.

« An in-depth examination of IoT traffic data collection
strategies. This includes: i) a review of the devices used
to represent a smart home setting, ii) a study of IoT
traffic types (depending on device operation mode) and
their utility for classifying devices, iii) a description of
the architecture and different traffic collection points
(depending on the traffic probe location) and a debate
on how realistic they are, and iv) an evaluation of public
datasets for IoT device classification.

o A thorough review of feature extraction approaches.
This includes: i) exploring different feature types and
comparing their significance and computation method-
ologies, ii) exploring deep learning-based automatic
feature extraction, iii) describing open-source feature

VOLUME 10, 2022
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extraction tools, and iv) investigating feature dimension-
ality reduction for better IoT device categorization.

o A comparison of machine learning approaches for IoT
device classification and how they were assessed in the
literature.

« An examination and assessment of the various classifi-
cation granularity levels.

o A summary of contributions in the form of taxonomies
and statistics to highlight trends. The statistics were
calculated based on a thorough review of each research
article with respect to taxonomies (See Tables 2 to 4 in
the Appendix). !

This document follows the classification process from

bottom to top, except for the applications of IoT device
classification, which will be shown first for sake of clarity.

lIl. THE DIFFERENT APPLICATIONS OF loT DEVICE
CLASSIFICATION

A. NETWORK AND SECURITY MANAGEMENT

Due to the variety of IoT devices, it is difficult to con-
trol them with a single policy. One solution is to describe
network and security management rules by device class
and assign each device to a class with automated policies.
Miettinen et al. [14] describe an interesting use-case where
newly introduced devices are categorized and the classifica-
tion result is used to determine whether the device is vul-
nerable. The decision is based on a vulnerability assessment
of the device type carried out by consulting a vulnerability
dataset. Consequently, the device is assigned one of the
following isolation levels: i) strict, where the device can
only interact with untrusted devices, ii) restricted, where
it can communicate with untrusted devices but has limited
internet access, and iii) trusted, where the device is allowed to
communicate with other trusted devices and has unrestricted
internet access. This mitigation approach allows vulnerable
devices to cohabit with other devices without compromising
their security.

Note that detecting vulnerable devices in a smart home
is crucial since most IoT devices suffer from poor security
design and can be easily compromised by an attacker to gain
unauthorized network access or launch massive attacks. For
instance, in 2016, the Mirai malware infected millions of
IoT devices to launch DDoS (distributed denial-of-service)
attacks [4]. The BYOD (Bring Your Own Device) trend,
which allows employees to bring their own personal IoT
devices at work and connect them to the corporate network,
extends the attack surface of companies as compromised per-
sonal devices may inject malware into the corporate network
and cross-contaminate other devices. Similarly, remote work-
ing has exposed professional devices to a less trustworthy
environment where they cohabit with possibly more vulnera-
ble smart home devices.

As described above [14], black listing approaches detect
vulnerable devices that should be disconnected from the

N dynamic version of the taxonomy and websites is available at :
https://gitlab.com/jmila/smart-home-iot-device-classification-using-
machinelearning-based-network-traffic-analysis
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network (blocked). IoT device classification can also be used
to establish an automatic whitelisting system to ensure only
authorized IoT devices can connect to the network, as pro-
posed by Meidan et al. [15]. If the determined IoT device
type is not in the white list, the organization’s SIEM system is
alerted to take appropriate action (e.g., disconnect the device
from the network).

Note that White listing is more scalable than blacklisting,
which grows with untrusted devices. Moreover, data from
authorized (whitelisted) devices is easier to obtain. Neverthe-
less, using a whitelist would be less robust against adversary
attacks, as an attacker may simulate authorized device behav-
ior to avoid the intrusion detection system.

B. MALICIOUS USAGE
IoT device classification can also be exploited by attackers to
leak sensitive information about the IoT device and its users.

For instance, Hafeez ef al. [16] demonstrate that an adver-
sary, with access to upstream traffic from a smart home net-
work, can identify the device types and user interactions with
IoT devices, with significant confidence. Dong et al. [17]
study the case where an adversary attempts to infer the type
of IoT devices behind a smart home network even when the
traffic of all devices is merged behind the gateway using
VPN (Virtual Private Network) and NAT (Network Address
Translator) techniques.

Sensitive information revealing device types and user inter-
actions, can be used to infer user activities or home pres-
ence [16]: e.g. if the smart lights are in the off state for a long
period of time, it means that there is no one at home, opening
an opportunity for a break-in. Such passive attacks are hard
to identify and mitigate. In this context, Hafeez er al. [16]
propose a traffic morphing technique helping to hide the
traffic of IoT devices, lowering the occurrence of attacks.

IV. APPROACHES TO DATA ACQUISITION

This section describes the data acquisition methodologies
found in the literature. In order to organize the findings,
we present them along four axes: first, we examine the
devices considered for data collection, second we analyze the
IoT traffic types that can be captured, third, we discuss data
collection scenarios, and finally, we provide a comparative
study of public datasets. A taxonomy in Fig. 4 illustrates the
main outcomes of this section.

A. THE CLASSIFIED DEVICES
The input to the IoT device classification process is a list
of devices to be classified. They can be both IoT and
non-IoT devices, also referred to as single-purpose and multi-
purpose devices, since IoT devices are typically intended for
a single specific task. An up-to-date list of the most common
smart home IoT devices can be found on the website [18].
Examples of non-IoT devices include laptops, cell phones,
and Android tablets.

In the literature, some approaches classify only IoT devices,
and others classify both IoT and non-IoT devices.
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discussed in Sec. IV.

Fig. 4 shows that the majority of reviewed papers (63%)
consider the classification of only IoT devices. However,
we think that this is not the most realistic scenario since
the traffic must be collected from all the devices connected
to the smart home network to ensure its security and auto-
matic management. Since IoT and non-IoT devices cohabit
in smart homes, they must be considered during the traffic
collection process. However, note that classifying both IoT
and non-IoT devices is more challenging since IoT traffic is
small and sparse compared to non-IoT data. As shown by
Dong et al. [17], some IoT devices might be easily confused
with non-IoT devices. For example, home assistants have
diverse and varied functions (compared to simple single-use
devices like light bulbs), making their behavior very similar
to non-IoT devices. To address this challenge, we suggest
training ML algorithms with mixed (IoT and non-IoT) traffic
to boost their generalization capabilities.

B. THE DIFFERENT TYPES OF IoT TRAFFIC

IoT devices generate three types of traffic based on their
operation mode, namely: i) setup traffic (also called initial
traffic) is generated by an IoT device during installation, also
called registration or enrollment, ii) interaction traffic (also
called active traffic) is generated when a device interacts with
the user or environment (e.g., a home assistant responding to
a voice request from the user), and finally, iii) idle traffic rep-
resents device activity in the absence of external stimulation.
It includes routine communications between the device and
the back-end server, as well as keep-alive or heartbeat signals.

1) THE SETUP TRAFFIC
When a new device with a new MAC address connects to
the network, it follows a device/provider-specific procedure
to connect [14]. In most situations, this operation is assisted
by a smartphone, laptop, or PC application. The installation
procedure typically involves: i) activating the device,
ii)connecting with the provider’s app, iii) transmitting WiFi
credentials, and iv) resetting and connecting to the user’s
network using the credentials provided.

To collect the installation traffic, existing approaches
record the first packets {p1,p2,p3,...,pn} exchanged

97122

between the device and the gateway. The decrease in packets
exchanged marks the end of the installation phase. To gener-
ate enough data, the installation process should be performed
multiple times for each device, with a hard reset between each
save [14].

2) THE INTERACTION AND IDLE TRAFFIC

IoT devices generate mostly interaction and idle traffic. Inter-
action traffic can be triggered either i) by a direct user request,
like adjusting light bulb color and intensity, or ii) by a change
in the environment observed by the IoT device, such as a
sensor that detects motion or a light bulb that detects an
inhabitant [19]. Idle traffic mainly includes device-Cloud
service exchanges during standby, such as heartbeat mes-
sages, regular status updates or notifications [16]. IoT devices
generate more traffic when active compared to background
mode [20]. This is reasonable since user and environmental
interaction stimulates diverse reactions [20].

3) WHICH TRAFFIC TYPE IS MOST SUITED FOR loT DEVICE
CLASSIFICATION?

Statistics detailed in Fig. 4 show that 86% of reviewed papers
use idle and (or) interaction traffic. Only 19% of reviewed
papers rely on setup traffic for device classification. The
advantage of setup traffic over idle and interaction traffic is
its stability, as the [oT device’s behavior during configuration
is the same regardless of the environment. Moreover, relying
on setup traffic allows for rapid recognition once the device
is connected to the network. However, as the initialization
state may not appear several times during the IoT device life
cycle, setup traffic is scarce, sparse, and difficult to collect
in real-world network monitoring. On the other hand, idle
and interaction traffic is more abundant and easier to collect,
making it better suited for machine learning algorithms, espe-
cially deep learning.

C. DIFFERENT LOCATIONS FOR TRAFFIC PROBE

1) ATYPICAL NETWORK SETUP FOR CAPTURING loT
TRAFFIC

Fig. 5 shows a typical smart home network architecture.
It includes IoT and non-IoT devices connected to an internet

VOLUME 10, 2022
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FIGURE 5. A typical network configuration for capturing loT traffic includes i) loT and
non-loT devices connected to the gateway via wireless or wired connections and ii)
packet capture and storage modules for collecting traffic. There are two capture points
discussed in the literature: i) at the gateway and ii) after the gateway.

gateway using wireless or wired connections. At least two
tools are required for traffic collection:

e a Packet capture module to capture the traffic as pcap
records comprising entire packets from MAC layer to
application layer. Examples include tcpdump [21] or
Wireshark [22], and

o a storage module to store the traffic data on a distant
server, or within the network.

To label the ground truth, the MAC address in the packet
header is used to reveal the identity of the device and label
the data accordingly.

2) TRAFFIC CAPTURE SCENARIOS

The literature considers two scenarios for collecting IoT
traffic depending on the location of the probe (capture point):
i) at the gateway, i.e. from inside the home device, or ii) after
the gateway, i.e. from outside the smart home.

At the gateway, the captured traffic is the one flowing
between the devices connected to the home network and
the gateway and can be separated by IP or MAC address.
Whereas the traffic captured after the gateway contains traffic
from all connected devices aggregated using a single public
IP address due to the frequent use of NAT at gateways.

3) WHICH PROBE LOCATION IS MORE PRACTICAL?

Approaches that gather traffic at the gateway assume the
ability to intercept and sniff the traffic flowing inside the
smart home. However, this clean and controlled experimental
setup does not reflect most real-world use cases where traffic
is only seen from the outside. A typical application is when
Internet Service Providers (ISPs) classify IoT traffic to iden-
tify devices inside a smart home and then allocate resources
and configure appropriate security rules according to their
population and vulnerabilities. But ISPs can not intercept
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traffic inside the home network. It is then more realistic to
collect traffic from outside the smart home after the gateway.
However, classifying devices based on such traffic is more
challenging because the original packet headers, such as
source IP and port, are hidden. Moreover, the widely used
VPN-enabled gateways encapsulate the original packets in
an encrypted tunnel, hiding the traffic characteristics. This
makes device classification even more challenging, and new
solutions should be investigated.

Although realistic, this scenario is understudied. This sce-
nario is used in only four papers: [17], [23], [24], [25]. It is
worth noting that Meidan et al. [25] and Dong et al. [17] made
their datasets public so that more research could be done on
this topic.

D. PUBLIC DATASETS COMPARISION

57% of reviewed publications use public datasets, either
completely or to complement or enrich their data. Most of the
datasets we mention in this survey were created for IoT device
classification. However, we include other datasets developed
for other topics that contain IoT traffic and can be used for
IoT device classification.

Table 1 summarizes the datasets listed below. To compare
them, we specify for each: i) the devices used to generate the
traffic (IoT only, or both IoT and non-IoT), ii) the operation
mode of the devices (i.e. setup, interaction, idle), iii) the probe
location (i.e., at or after the gateway), iv) the duration of the
collection, v) the amount of traffic collected, and we provide
vi) a direct access link to the dataset.

1) loTSentinel DATASET [14]

This dataset was collected to identify IoT devices based on
their setup traffic. To generate enough traffic, the typical
device configuration process was repeated 20 times for each
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TABLE 1. Publicly available datasets for loT device classification.

datasets Devices Device operation mode | Traffic probe location | Duration & Period Amount Access
link
I0T | Non-IoT [ Setup | Idle [ Interaction| at the gw | after the gw
IoT Sentinel [14] |31 |0 v - - v - Setup process repeated 20 times per | 540 samples [26]
device (Jan. to Apr. 2016)
UNSW [19], [27] |28 |3 - v oV v - 2 weeks (Oct. 2016 to Apr. 2017) =~ 365MB per | [28]
day
YourThings [29] 45 |0 - v |V v - 10 days (Mar. to Apr. 2018) ~ 10 GB to 13 | [30]
GB per day
ToTFinder [31] 53 |0 - v |V v - 1.5 months (Aug. to Sep. 2019) 366 MB [30]
SHIoT [32] 36 |0 - v |V v - 3.458.47 hours (2019) 382.75 GB [33]
DADABox [34] 41 |0 - v oV v - 27 weeks (2020 to 2021) 130.460 [35]
records
HomeMole [17] 10 (4 - v |V v v 49.4 hours (2019) 7.223.282 [36]
packets
ToT-deNAT [25] 8 |5 - R E v v 37 days (2020) - [37]
MON(OT)R [38] |81 |0 - v |V v v 1 month (Sep. 2018 to Feb. 2019) | 34.586 samples | [39]
T0T-23 [40] 3 0 - v |V v - Variable duration per IoT device | 387.688 MB [41]
(2018 t0 2019)

device. During the setup process, all network traffic between
IoT devices and the gateway was recorded. A representative
set of 31 IoT smart home devices available on the Euro-
pean market in the first quarter of 2016 was used. There
are 27 different device types (4 types are represented by
2 devices each). Most of the devices were connected via WiFi
or Ethernet. Some of them utilised ZigBee or Z-Wave.

2) UNSW DATASET [19], [27]

This dataset was published by UNSW researchers and covers
various IoT research areas. In addition to traffic for IoT
device classification, the dataset includes IoT attack traces,
IoT MUD profiles, and IoT IPFIX records that can be useful
for other IoT-related research topics (the relevance of MUD
profiles to device classification is discussed in Sec. VIII).
In this paper, we focus on the traffic for IoT device classi-
fication. It was first published in [19] and has since evolved.
The first version has been extensively used in the literature.
The same authors published an updated and more elabo-
rate version in [27]. Recent articles now use the modified
version.

This study focuses on the IoT traffic traces reported in [27].
They were collected over 26 weeks, from October 1%, 2016 to
April 13,2017, but only two weeks’ worth of data is avail-
able for download.

3) loTFinder [31] AND YourThings DATASETS [29]
The IoTFinder dataset was created to explore IoT device
identification using DNS fingerprints. Thus, the dataset con-
tains pcap files of DNS responses for 53 IoT devices from
different vendors. The data was collected from August 1%,
2019 to September 30, 2019.

YourThings dataset was created by the same authors to
analyze security properties for home-based IoT devices.

4) SHIoT DATASET [32]
This dataset was created for behavior-based IoT device clas-
sification. The test bed was implemented at the Faculty of
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Transport and Traffic Sciences in Zagreb. The dataset con-
tains 144 pcap files with 24-hour traffic each.

5) DADABox DATASET [34]

This dataset was created to compare some approaches to
classifying IoT devices. The testbed was developed at the
University of Cambridge, where researchers sporadically
interact with IoT devices. The dataset contains 41 different
IoT devices, and the data was collected over a period of
27 weeks.

6) HomeMole DATASET [17]

This dataset was created to identify IoT devices behind VPN
and NAT-enabled gateways in smart homes. Three collection
scenarios were developed: 1) a single device environment in
which only one device is considered, ii) a noisy environment
in which various IoT and non-IoT devices are investigated.
Multiple devices may be operating simultaneously at any
given time, resulting in traffic aggregation, and iii) a VPN
environment where VPN is enabled. In this case, traffic is
collected before and after the VPN.

7) loT-deNAT [25]

The dataset was collected to detect vulnerable IoT devices
behind a home NAT. The traffic is captured considering
only NetFlow’s [42] statistical aggregations (i.e., Netflow is
a flow-level aggregation of information, usually a 5-tuple
header and some counters) instead of the raw data to reduce
processing and storage.

8) THE MON(IOT)R DATASET [38]

This data set examines IoT device information exposure.
It contains data from 81 IoT devices deployed in two labs
(one at Northeastern University in the United States and
the second at Imperial College London in the United King-
dom) over 30 days between September 2018 and February
2019. Different types of traffic are provided: i) power traffic
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FIGURE 6. Taxonomy of feature extraction approaches. The approaches are classified according to i) the use of header or payload
packet level features, ii) the stream definition, iii) the type of used stream level features (volume, protocol, time, or periodicity), iv)
the use of automatic feature extraction (DL based), and v) the use of dimensionality reduction. Percentages show how often each
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approach is used in the reviewed papers. This highlights the trends discussed in Sec. V.

(487 samples), which is traffic generated by [oT devices when
they are turned on, ii) interaction traffic (32,030 samples),
iii) idle traffic covering an average of 8 hours per night for
one week for each lab, and iv) unlabeled traffic, which is
generated when 36 participants use the [oT devices in a studio
at their leisure during the data collection period. Data labeling
includes the name of the device, where it was used (the US or
the UK), when and for how long it was used, and whether or
not a VPN was used.

9) loT-23 DATASET [40]

[0T-23 is a dataset containing benign and malicious IoT net-
work activity. The traffic was captured at the Czech Technical
University. The dataset contains 20 pcap files from infected
IoT devices, labeled by the malware that infected them,
and 3 pcap files containing benign network traffic generated
by 3 IoT devices: a smart lamp, a voice assistant, and a smart
door lock. The packet captures are labeled with the device
that generated the traffic. As done in [43], legitimate traffic
can be used for IoT device classification,.

10) HOW VALUABLE ARE PUBLIC DATASETS?

Public datasets enable comparing different solutions. Unfor-
tunately, the available public datasets for IoT device clas-
sification are scarce (only 5 of the surveyed papers shared
their datasets publicly) and not diversified: most provide idle
and interaction traffic, and capture at the gateway, when this
is not the most realistic scenario. Since public datasets are
not diverse, researchers must collect their own data when
examining new scenarios. For instance, Yu et al. [44] identify
IoT devices based on passively receiving broadcast and multi-
cast packets, and had to collect their own data from different
WiFi networks. In conclusion, additional datasets exploring
new classification scenarios should be released, and more
diversified IoT traffic needs to be collected, in order to boost
research on IoT device classification. As shown in Fig. 4, the
most used datasets are UNSW (30%), IoTSentinel (15%), and
YourThings (6%).

V. FEATURE EXTRACTION METHODOLOGIES
This section describes feature extraction methodologies.
First, we discuss packet-level feature extraction: we exam-
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ine the most commonly used header and payload features
and compare them. Second, we analyze stream-level feature
extraction. Third, we explore deep learning based automatic
feature extraction. Fourth, we provide a list of open-source
feature extraction tools, and finally, we highlight the feature
dimensionality reduction approaches. Fig 6, gives a taxon-
omy summarizing the approaches and trends.

Feature extraction is defined in [45] as ‘“‘the process of
defining a set of features (. ..) which will most efficiently or
meaningfully represent the information that is important for
analysis and classification.” In our case, the feature extraction
step consists of describing the network traffic in the most
appropriate way to retrieve the maximum amount of infor-
mation about the device.

In the majority of examined articles, significant work
has been dedicated to the extraction of features. Existing
approaches are diverse and heterogeneous. The objective of
this section is to summarize them in a logical and consistent
manner.

Network traffic is the volume of data flowing over a net-
work. It is divided into packets of data and delivered over a
network before being reassembled by the receiving computer
or device. Packets can be used to describe the network either
individually or as a stream of packets, also called a flow
(see Fig. 7).

These two approaches are known as packet-level and flow-
level feature extraction methods, respectively. The following
sections present approaches in each category.

A. APPROACHES TO PACKET-LEVEL FEATURE EXTRACTION
These approaches describe each packet individually. A packet
consists of a header and a payload. The header contains
protocol information for a given layer, whereas the payload
contains the data.

1) THE MOST IMPORTANT PACKET HEADER FEATURES
Extracting features from a packet header is straightforward
and has no overhead. One just needs to parse the packet’s
header fields.

Depending on the layer and protocol, several fields can be
present in the packet header. For example, the IPv4 header
contains essential routing and delivery information and con-
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destination IP address; iv) destination port
number; v) protocol; iv) type of service.

FIGURE 7. The main methods for feature extraction: packet-level and stream-level. For
stream-level approaches, three definitions are proposed for the stream.

sists of 13 fields, including version, header length, service
type, total length, time to live, and protocol, etc. Relying on
source and destination IP addresses and ports for classifica-
tion is not recommended due to potential spoofing issues,
as mentioned in Sec. L.

The most important header features include i) the packet
length, which is widely used for IoT device classifica-
tion [46], and ii) the TCP window size, which is very
useful for distinguishing between IoT and non-IoT devices
as it depends on the memory and processing speed of the
device [47]. Small constrained devices, like sensors, have
small window sizes, while more powerful devices like video
cameras and home assistants have variable and larger window
sizes [47].

2) THE MOST IMPORTANT PAYLOAD FEATURES

Typically, payloads consist of the header and payload of
the upper layer, which in our case indicates the application
payload. It may consist of textual features indicating the
device’s name, location, manufacturer, type, operating sys-
tem, services, etc.

The length of the payload transported inside a TCP mes-
sage can indicate the length of the message sent by a given
device, and this is device specific [47]. The entropy of the
payload has been used as a discriminative feature [47], [48].
In [49], the distribution of payload bytes per flow is used
for IoT device classification. Encrypted packets may make
feature extraction from the payload impossible.

Note that processing each packet separately for feature
extraction is time-consuming and computationally exhaust-
ing, requiring large storage and processing resources. The
Google Chromecast generates 2,459,538 packets per day,
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compared to 11,877 traffic flows [32]. Thus, extracting fea-
tures from packets is more expensive than from flows. Unsur-
prisingly, most research concentrates on flow-level features
(81% of reviewed papers).

B. STREAM-LEVEL FEATURES EXTRACTION METHODS

In this section, we discuss the different stream definitions,
we investigate and categorize the most important features,
and we examine the approaches to calculating them.

1) STREAM DEFINITION

Features can be extracted from a set of packets known as
a “‘stream.” We have identified three main approaches to
defining a stream: i) a stream is a set of N consecutive
packets, ordered by arrival time, ii) a stream is a set of
packets exchanged within a time window A, iii) a stream is a
connection between a source and a destination where packets
are sent in both directions in a certain order. More information
on the approaches using each definition is presented below.

a: A STREAM AS A FINITE SEQUENCE OF N PACKETS

In this category, a fixed number N of consecutive packets
generated and received from a single IoT device is used to
construct a ““signature,” also called a “fingerprint” of the IoT
device. 33% of surveyed papers use this definition, in partic-
ular approaches leveraging setup traffic (cf. Sec. IV-B1) for
device classification, because they use the first packets sent
by the devices when connecting to the network. For example,
in [14] and [50], the authors use the first 12 packets to identify
an [oT device, and in [51], 30 packets are used. The authors
of [52] extract features from a sequence of 20-21 packets.
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Shahid et al. [9] consider N consecutive packets where N
varies between 2 and 10. 24% of surveyed papers use this
definition.

Note that determining the optimal value of the flow size,
N, is challenging. Small flows allow for quick classification
but may not be enough to characterize the device, whereas
large flows can be time and memory-consuming to analyze.
Moreover, the appropriate value of N may vary from device
to device since IoT devices generate different quantities of
data. A small number of packets may be enough to identify
certain device types, while a greater number may be required
for others. This is problematic because machine learning
algorithms require a fixed size for the input. The authors
of [14] added padding for devices that emit fewer packets than
the required size. Furthermore, capturing the same number
of packets for all devices may take a variable amount of
time as IoT objects do not generate traffic at the same rate.
For example, it is possible to capture packets generated by
a camera in seconds. However, it takes longer to capture the
same number of packets generated by a motion sensor [46].
This makes the data collection process complicated and time-
consuming.

b: A STREAM AS A SET OF PACKETS EXCHANGED WITHIN A
TIME WINDOW A

This consists of subdividing the captured traffic into dis-
tinct time-windows of an appropriate duration A. For exam-
ple, Fan et al. [53] extract the features every 30 minutes.
Pinheiro et al. [46] use a window of one second to enable
real-time device classification. Hafeez et al. [16] use a
10-second time window. Le et al. [54] retrieve DNS names
requested by a device over a time period ranging from 10 min-
utes to 24 hours, and found that performance decreases with
a decreasing A.

Note that as for the previous category, the choice of the
time window size is important and challenging. Long time-
windows give richer information about the device but risk
increasing classification delay and consuming more memory
to store traffic attributes [46]. Moreover, it may result in
very similar samples with little feature variation. This could
also lead to fewer data samples for learning and testing,
and thus be unsuitable for deep learning-based classification
approaches. Few and redundant samples may also introduce
a bias and overfitting. On the other hand, a small time-
windows may allow real-time classification but may not con-
tain enough information to reflect the characteristics of the
device’s behavior. Bai et al. [55] showed that a small seg-
mentation window interval degrades the classification results
compared to a larger segmentation. In addition, setting the
same interval time for all devices can be inappropriate as the
devices generate different quantities of traffic. For example,
a motion sensor generates close to 140 packets per minute at
most, and a camera generates up to 1900 packets per minute
on average [55].
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c: A STREAM AS A SET OF PACKETS BELONGING TO A
CONNECTION

Due to the abovementioned issues, the majority of reviewed
papers (50%, see Fig. 6) use this definition of stream. This is
based on the RFC 2722 [56] traffic flow definition, stating
that a flow is “an artificial logical equivalent to a call or
connection.” Thus, the flow is the ordered sequence of all
packets sent and/or received from a particular source to a
particular unicast, anycast, or multicast destination using
specific ports and transport protocols.

More concretely, a flow can be defined as a set of packets
having in common at least two of the following attributes:
i) source IP address, ii) source port number, iii) destination
IP address, iv) destination port number, v) protocol, and vi)
service type.

Depending on the criteria utilized to define the flow, there
are several definition variants. For Marchal et al. [20], the
flow is a sequence of network packets sent by a given IoT
device using a specified communication protocol. A flow is
described by Sun et al. [49] as a 5-tuple of source and des-
tination IP addresses, source and destination port numbers,
and protocol. For Meidan et al. [25], the service type is also
specified (6-tuplet).

Note that a collection of flows can also be used to describe
the traffic. The authors of [49] combine features from sev-
eral flows to provide a high-level characterization of device
activities. Meidan et al. [57] demonstrated that using a set
of consecutive flows gives better classification results since
it contains more information about the traffic. The different
stream definitions are illustrated in the left part of Fig. 7.

2) IMPORTANT STREAM-LEVEL FEATURES

In this section, we review the various stream-level features
that are widely used for IoT device classification. To orga-
nize them, we divide them into four categories: i) volume
features measure the volumetric properties of the stream, ii)
protocol characteristics describe the protocols on the stream,
iii) temporal characteristics measure the temporal aspects of
the stream, and iv) periodicity features reflect the stream’s
periodicity.

a: VOLUME FEATURES

Examples include packet length statistics, the number of
packets or bytes in the entire flow or in a specific direction
(incoming or outgoing traffic), the flow rate, etc. For instance,
Pinheiro et al. [46] identify devices based on statistics of the
packet length and number of bytes generated by each device.
Sivanathan et al. [58] use average packet size and average rate
per flow as two principal attributes. Volume features are very
important and widely used (in 60% of reviewed papers).

b: PROTOCOL FEATURES

Traffic including all protocols and layers, or selected proto-
cols, can be used to extract features. In addition to the widely
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studied layer-2 to layer-4 protocols, the following application
layer protocols have been examined:

e The Domain Name System (DNS) is an essential

Internet service, and is therefore important to IoT
devices communicating with remote Cloud services. The
DNS features differentiate IoT from non-IoT devices.
IoT devices connect to limited endpoints, mainly their
provider servers. This behavior can be captured by the
number of DNS unique queries, as 1oT devices have
fewer unique DNS queries than non-IoT devices [59],
[60]. Moreover, devices can be identified by the domain
names they communicate with [27].
The most frequently used DNS characteristics are:
1) the number of unique DNS queries, ii) the number of
unique domain names, iii) the most frequently queried
domain names, iv) the number of DNS packets, and v)
the number of DNS errors. The papers [27], [53], [54],
[59], [60], [61], and [62] exploited these features.

o TLS features: TLS/SSL is used by many IoT devices
to secure internet communication with servers. The
TLS protocol consists of two layers: handshake and
record protocols. The handshake layer is the most inter-
esting as it comprises of “text-in-the-clear” messages
exchanged between devices and servers to create a
secure channel and negotiate ciphers and encryption
keys. Fan et al. [53] use the number of TLS hand-
shakes as a feature. Sun et al. [49] analyze the unen-
crypted data of the TLS handshake and exploit the
plaintext data in the ClientHello, ServerHello,
and Certificate messages to derive the follow-
ing features: the list of proposed ciphersuites, the list
of announced extensions, and the length of the pub-
lic key. The authors noted less fluctuation in the dis-
tribution of ciphersuites and TLS extensions in IoT
devices, compared to non-IoT devices, because they
advertise a limited and fixed number of ciphersuites.
Thangavelu et al. [61] used the following TLS fea-
tures: the minimum, maximum, and mean of the
TLS packet length, the flow duration, and the num-
ber of TCP keep-alive probes used in the TLS ses-
sion. Valdez et al. [63] derive features from TLS
session initialization messages (ClientHello and
ServerHello). Features include negotiated ciphers,
proposed cipher suites, server name, and destination
end-point.

c: TIME-RELATED FEATURES

They measure the temporal aspects of the flow. Examples
include the inter-packet arrival time (IAT), i.e. the time inter-
val between two consecutive packets received, the time a flow
was active before becoming inactive, the time the last packet
was switched [25] and the flow duration, etc. For instance,
in [27] and [59], the authors calculate the sleep time of a
device, the average time interval between two consecutive
DNS requests, and the NTP interval. Thangvelu et al. [61]
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consider the flow activity duration. Sun et al. [49] calculate
idle time as it reflects device activity frequency.

It is worth noting that the IAT is one of the most useful
time-related features as it varies by device depending on the
hardware and software configurations [64]. It is therefore,
widely used in the literature ( [9], [16], [49], [51], [53], [65],
[66], [67], [68]). In particular, we note that the classification
of ZigBee, Z-Wave, and Bluetooth IoT devices is often exclu-
sively based on IAT [65], [66].

d: PERIODICITY FEATURES

IoT devices generate background communications that
always present relatively constant and periodic patterns.
Some researchers [20], [69] extract features from periodic
flows. To do this, they first discretize the flow into a binary
time series signal representing the existence or not of packets
in the traffic each second. Then, they use the Discrete Fourier
Transformation to identify the different distinct periods of
the signal. Once identified, statistical features are used to
describe these periods in detail. Examples include: the num-
ber of periods, the maximum and minimum period values, the
averages of the occurrence of periods at the minimum period
value, and the accuracy and stability of the inferred peri-
ods [20], etc. Note that approaches for extracting periodicity
features often use the time-window-based stream definition
(Fig. 7). Only 2 papers, namely [20], [69] use periodicity
features.

3) HOW ARE STREAM-LEVEL FEATURES CALCULATED?
We identified two approaches to calculate stream-level
features: concatenation and statistics.

a: CONCATENATION
Stream-level features can be calculated by concatenating
individual packet features. The authors of [51] define a n x
7 feature matrix with 7 packet header features per packet (n
packets). Similarly, Wan et al. [68] describe a stream of p
packets defining a device signature using p vector attributes.
In general, only approaches defining the stream as a set
of N packets (see Sec. V-Bla) use this method because
concatenating a small number of packets is unlikely to create
large signatures.

b: STATISTICS

The second way is to perform statistical calculations on
packet-level features. Depending on whether the measured
feature is numerical (e.g. TTL) or categorical (e.g. proto-
col type), different statistics can be generated, as described
below.

For numerical features, researchers often calculate:
o The traditional minimum, maximum, mean, sum,

standard deviation, variance, which are widely used
in the literature.

o The entropy, which measures the degree of disorder
of features. It is a way of describing the nature of the
data without focusing on the data itself. For example,
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the payload entropy indicates the information content
of a packet. Packets including text data have less pay-
load entropy than packets carrying audio data [47]. The
authors of [48] and [47], categorized IoT devices by
payload entropy. Fan et al. [53] calculate the entropy of
top DNS requests and packet lengths.

o The skewness [70] and kurtosis, [71] which measure
the asymmetry and the “tailedness’ of the probability
distribution, respectively. In [55], the authors use packet
length skewness to explore packets’ different lengths in
a flow.

o The augmented Dickey-Fuller (ADF) test [72], which
determines whether or not a given time series is station-
ary. It was used in [53] to capture how some devices send
large packets in a short period of time, causing packet
length to shift substantially.

« The spectral density, which characterizes a stationary
population time series in the frequency domain. The
authors of [73] use spectral analysis of packet length
to record device communication patterns, differentiate
IoT and non-lIoT traffic, and determine the device class
generating the packet flows.

o Note that when the stream is defined by a time win-
dow, finer granularity statistics can be generated by
computing the first quartile, second quartile, and third
quartile of numerical packet features, as [53] does for
the “‘packet length.”

For categorical features, researchers often:

o List or count feature values. Huang er al. [51] use
a binary vector coded according to whether specific
protocols exist in the traffic flow. In [49], [69], and [55],
the authors count the types of protocols involved in the
device’s communication traffic.

o Determine the dominant values or their proportion.
For example, Msadek et al. [67] identify the set of
dominant protocols (the most used). Zhang et al. [69]
count the proportion of TCP/UDP/ARP in the device
communication flow.

C. WHAT ABOUT AUTOMATIC FEATURE EXTRACTION?
While traditional ML algorithms require costly handcrafted
features, deep learning approaches may automatically extract
and learn the optimum features for the classification, directly
from raw data. As DL requires standardized input data of the
same type and size for all samples, researchers first convert
pcaps into a suitable model input. To do so, Greis et al. [74]
consider the packet captures (in pcap format) collected dur-
ing the setup phase and transform the first 784 bytes of traffic
into a 28 x 28 grey-scale image. Each pixel represents a grey
value between 0 (black) and 255 (white). When a setup phase
has less than 784 bytes, the remaining pixel values are set to 0
(black). Similarly, Kotak ez al. [75] use TCP payload to create
greyscale images of the device’s communication pattern.
Yin et al. [76] rely on traffic vectorization. They use
the first 10 packets to characterize a flow. This number was
chosen because the average number of packets in most IoT
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flows is 10. A flow is described using 2.500 bytes of data
(first 10 packets x 250 bytes). The first 250 bytes of each
packet are concatenated. Streams with fewer than 10 packets
employ padding.

Despite the benefits of these approaches, which sim-
plify and automate feature extraction, transforming data into
another format (image, vector, etc.) can lead to semantic
information loss. Moreover, this strategy does not take into
account expert knowledge, which can help find the most
important features. A minority of research papers (12% [74],
[75], [76]) explored this solution.

D. OPEN-SOURCE FEATURE EXTRACTION TOOLS

This section describes the existing feature extraction tools
found in the literature. The input of a feature extraction tool is
network traffic in pcap format collected by a packet capture
tool (e.g. tcpdump). The output is text-based format files
(often csv) containing feature vectors. A feature vector is
calculated for each observation.

CICFlowmeter [77] is an open-source feature extractor that
produces more than 80 volume- and time-related features
per TCP flow. The authors use two methods to measure the
attributes. In the first approach, they measure time-related
features over the full TCP flow, such as the time between
packets or the time the flow remains active. In the second
approach, they fix the time (e.g., every 1 second) and measure
other volume-related attributes (e.g., bytes per second or
packets per second).

Bekerman er al. [78] present a feature extraction tool,
which is implemented on top of Wireshark [22] and extracts
972 behavioral features across different protocols and net-
work layers. The features describe different observations
of various granularities, namely i) a conversation window,
ii) a group of sessions, iii) a session (e.g., a TCP session),
and iv) a transaction, i.e., an interaction (request-response)
between a client and a server.

Joy [79] extracts features from live network flows with
a focus on application layers. The main features are: IP
packet arrival lengths and times, the sequence of TLS record
arrival lengths and times, other unencrypted TLS data, such
as the list of proposed and selected ciphersuites, DNS names,
addresses, TTLs and HTTP header elements, etc.

E. FEATURES DIMENSIONALITY REDUCTION FOR BETTER
CLASSIFICATION

Feature dimensionality reduction improves classification
accuracy and reduces the computational cost. This is a
pre-processing phase that identifies relevant features and
removes irrelevant or redundant ones. Feature dimensionality
reduction is not widely used in IoT device classification.
Only 30% of reviewed papers apply this step. This is because
most publications rely on expert knowledge to derive an
accurate and small set of features, making feature reduction
unnecessary. On the contrary, articles using feature extraction
tools (see Sec V-D) generate a large number of features and
minimize them using feature reduction.
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One-class classifier | 14%
Number of classifiers

Multi-class classifier ] 90%

Supervised learning | 84%
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Unsupervised learning | 16%

Depth of classifiers

) 29 %

'<;1 Deep learning
Shallow learning ] 79 %

Evaluation using classifc metrics] 76 %

FIGURE 8. Taxonomy of ML based classification approaches. Percentages show how often each
approach is used in the reviewed papers (the percentages do not always sum up to 100 because
some papers use algorithms from multiple categories).

Ghojogh et al. [80] review feature dimensionality reduc-
tion approaches. They divide them into two groups: 1) feature
extraction approaches, where features are projected into a
lower dimensional subset to extract a new set of features,
and 2) feature selection approaches, where the best subset
of original features is selected. Note that the term ‘“‘feature
extraction” is also improperly used in the literature to rep-
resent the process of describing observations by a vector of
features (cf. Sec V).

1) APPROACHES USING FEATURE EXTRACTION BASED
DIMENSIONALITY REDUCTION

Thangavelu et al. [61] use a common feature extraction
method called “Principal Component Analysis” (PCA).
Fan et al. [53] use Convolution Neural Network- (CNN)
based dimensionality reduction. Similarly, Bao et al. [81] use
auto encoders for dimensionality reduction. Auto encoders
learn a mapping from high-dimensional observations to a
lower-dimensional representation space such that the original
observation can be reconstructed from the lower-dimensional
representation [82]. Auto Encoders are widely used for fea-
ture learning in general [80]. Similarly, representation learn-
ing [83] is a feature extraction method used to learn automatic
discriminative features. It has not been explored yet for IoT
device classification.

2) APPROACHES USING FEATURE SELECTION BASED
DIMENSIONALITY REDUCTION

According to Ghojogh et al. [80], there are two feature selec-
tion approaches: i) filter methods, and ii) wrapper methods.

a: APPROACHES EMPLOYING FILTER METHODS

Such methods minimize the feature set by selecting the
most discriminative ones. The Correlation Criteria is one of
the most widely used solutions. It is based on calculating
the correlation between each feature and the label vector.
The features with the highest correlation value are selected.
Sivanathan et al. [58] use Correlation-based Feature Subset
(CFS) and Information Gain (1G). Similarly, Cvitic et al. [32]
use CICFlowmeter for feature extraction (83 features) and
then apply IG.
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b: APPROACHES APPLYING WRAPPER METHODS

Such approaches select the features based on the classifier’s
performance. Thus, the selected set can vary from one classi-
fier to another. For instance, in [84], the authors use a genetic
algorithm based feature selection method. The genetic algo-
rithm determines the smallest set of packet header features
in all network layers that contributes significantly to the
classification for a given classifier.

VI. CLASSIFICATION

The aim of the classification step is to predict for each traffic
input, represented by a vector of features X = {xl, .. .xf},
the class ¢ of the device that has generated it. Different
classification approaches have been explored in the literature.
We will classify them according to i) the number of classes
(multi-class classifier or one-class classifier), ii) supervised
or unsupervised approaches, and iii) shallow or deep learning
algorithms. Fig. 8 illustrates the classification results.

A. MULTI-CLASS VS ONE-CLASS CLASSIFIER

1) METHODS USING MULTI-CLASS CLASSIFIER

Only one classifier is used for the multi-class classification.
The trained classification model outputs a vector of class
membership probabilities P* = {p;v } 1<i<n denoting the like-
lihood that the inspected traffic sample s comes from device
class c¢;. The traffic is labelled as originating from the device
having the highest probability. To capture unknown devices,
a threshold parameter #r can be defined and fine-tuned using
the validation dataset. If one probability p; exceeds the
threshold parameter tr (p; > tr), the traffic is classified as
originating from the device class c;. Otherwise, it is classified
as unknown. A device can also be considered as unknown
if the feature vector matches more than one class with a
low discriminative threshold (0.5 for example). This is the
most popular method in the state of the art (90% of reviewed

papers).

2) METHODS USING ONE-CLASS CLASSIFIER

(A CLASSIFIER PER DEVICE)

A minority of reviewed papers (14%) use this classification
approach. In the following, we describe how this strategy
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is employed in the literature. This consists of splitting the
dataset into numerous binary classification problems (focus-
ing on a single class, regardless of all other classes) and then
a binary classifier is trained for each device. Each classifier
provides either i) a probability p; that the traffic was generated
by a device class ¢; or ii) a binary decision on whether the
input matches the device type. In the first case, a threshold ¢
(cutoff value) should be set. If p; > ¢, the traffic is labelled
as originating from the device class c;. ¢ is empirically set
to maximize the classifier’s accuracy [57]. In the second
situation, if a device is accepted by multiple classifiers, the
conflict should be resolved, for example, by computing a
distance-based metric between the sample to identify and a
subset of samples from each class that it has a match for [14],
or by applying majority votes [15] to break the tie between
multiple matches.

Note that using this strategy, classification accuracy can be
increased by evaluating the classification results of more than
one sample before choosing the device class. For example,
in [57], the authors perform a majority vote on the classifica-
tion results of several consecutive TCP sessions to determine,
with an accuracy of 100%, if they were generated by a
certain device. The optimal number of consecutive sessions
is defined as the minimum number of sessions on which
a majority vote provides zero false positives and zero false
negatives on the test dataset.

3) MULTI-CLASS CLASSIFIER VS ONE-CLASS CLASSIFIER
Generating a model for multi-class classifiers is challenging
in practice: when a new device type is added to the net-
work or the behavior of existing device types legitimately
changes (due to firmware upgrades by device manufactur-
ers, for example), the entire model should be re-trained for
all classes [85]. On the contrary, building a classifier per
device avoids costly re-learning if a new device type is
added. In addition, building a classifier per device allows
for the discovery of new devices: if a sample is rejected by
the classifiers, it may be identified as a new device type.
Another advantage is its interpretability. When the number
of features is important, one classifier per class gives a set of
interpretable models instead of one complex model.
However, the one-class classifier approaches are more
computationally expensive since the results of more than one
classifier should be computed. Moreover, managing conflicts
might be time-consuming if a sample fits many device types.
As reported in [14], most device type identification time is
spent on tiebreaks. Moreover, unbalanced training datasets
can affect classifier performance (there are generally fewer
samples for one device type compared to the samples of all the
remaining samples combined). This issue can be solved by
utilizing under-sampling and over-sampling approaches [86].

B. SUPERVISED, UNSUPERVISED

ML-based classification algorithms are often classified
into supervised and unsupervised approaches, with the
well-known advantages and limitations of each briefly
described below.
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1) SUPERVISED CLASSIFICATION

In supervised classification, labeled datasets are split into
training, validation, and test datasets. Datasets can be
separated chronologically or randomly. However, temporal
partitioning better matches the real world scenario, when
a classifier is trained on existing data and then tested on
new data. Despite the cost of labeling and the difficulty of
detecting new devices not included in training, supervised
classification techniques are commonly employed in IoT
device classification literature (84% of reviewed papers) due
to their high accuracy and ease of implementation.

2) UNSUPERVISED CLASSIFICATION
Supervised techniques use labeled device class data. Labeling
involves significant human effort, which is tedious and not
scalable given the growing number of IoT devices.
Unsupervised learning is more scalable since it minimizes
human assistance, but it is harder to execute and its accu-
racy is likely to be lower than supervised approaches. Thus,
only 16% of reviewed papers use unsupervised classification
approaches. For instance, the authors of [43] propose a clas-
sification method using semi-supervised GANs (generative
adversarial networks).

C. SHALLOW AND DEEP LEARNING

Deep learning uses multiple layers of nonlinear processing
units. All non-deep learning approaches are shallow learning,
including most machine learning models before 2006 and
neural networks with one hidden layer.

Despite the advantages of deep learning, the majority of
reviewed papers (79%) still use shallow classification algo-
rithms, probably due to its simplicity and ease of implemen-
tation and because some shallow algorithms are intrinsically
interpretable, like decision trees. Random Forest is a popular
classifier due to its accuracy and speed, but its classification
time grows linearly with the number of classes, so it may not
scale to a large number of device types.

D. EVALUATION SCENARIOS

Accuracy, precision, recall, | score, and ROC are classic
evaluation metrics. Accuracy measures the ratio of correctly
predicted observations to the total observations. Precision
indicates what percentage of positive predictions were cor-
rect. Recall defines what percentage of positive cases a clas-
sifier has caught. F; score is a harmonic average of precision
and recall.

Most of the reviewed research papers (79%) focus on clas-
sic evaluation metrics. However, traditional evaluation does
not accurately measure the performance and limitations of
classification algorithms. For instance, accuracy gives equal
weights to all classes, which is inappropriate if the dataset
is unbalanced (e.g. you can have 90% of total accuracy but,
in minority classes, most samples are misclassified). The
performance of classifiers should be assessed in different
scenarios and through diverse metrics and measures. Below,
we describe some other metrics found in the literature to
inspire other evaluation methodologies.
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1) MEASURING CLASSIFICATION AND LEARNING SPEED
The learning time is significant since classification models
that learn rapidly are more adapted to real conditions [20].
The classification time (the time required to classify one sam-
ple) is critical for instant device identification [14]. In [46],
the authors evaluated the training time, the latency, i.e., the
time spent performing device identification, and throughput,
i.e. the number of identifications per second.

2) MEASURING CPU, MEMORY CONSUMPTION AND
COMPUTATIONAL COMPLEXITY

In [14], the authors measure the CPU used by the secu-
rity gateway for the classification and for the enforcement
mechanism. In [87], the authors calculate the computational
complexity of the different steps of their solution, namely
feature extraction, clustering, and model training. The feature
extraction cost is estimated to be m x O(n) where m is the
number of features and n is the number of packets in the
session. The cost of clustering is calculated based on the steps
and loops in the proposed algorithm. The Random Forest
training cost depends on the feature vector dimension, the
number of decision trees, and the number of training samples.

3) VARYING EVALUATION SCENARIOS

Some papers measure the variation of performance metrics
in different scenarios. For example, Huang er al. [51] test
the scalability of their approach and show that accuracy
diminishes with many device types. Meidan et al. [15] mea-
sure the classification accuracy as a function of the number
of consecutive sessions needed for classification. Similarly,
Song et al. [88] examine the relationship between identi-
fication accuracy and the number of packets required for
classification. Bai et al. [55] measure the classification results
under different time window sizes and over different ratios of
training and testing datasets. Similarly, Marchal et al. [20]
assess the evolution of accuracy as the number of training
samples changes.

4) ADDITIONAL EVALUATION METRICS

In addition to classic metrics, other evaluation scenarios can
been explored. We give the following examples: i) robustness
to adversarial attacks [89] to evaluate the classifier quality on
ambiguous examples, ii) explainability [90], i.e. if the result
can be simply interpreted, to provide better acceptance of
ML-based solutions in 10T, iii) transferability [91], that is,
whether a model learned in one context can be applied in
another, in order to reduce learning costs and provide “‘out-
of-the-box” tools.

VIl. GRANULARITY OF CLASSIFICATION

In the literature, IoT devices are classified at different lev-
els of granularity. Bezawada et al. [47] enumerate three
classification levels: i) category, ii) type, and iii) instance
(cf. Fig. 9). A device category is a grouping of similar devices;
for instance, devices can be grouped by function, e.g., cam-
eras, sensors, or home assistants. A device type, however,
designates a more specific device model within a general
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device category. For example, Google Home Mini (GHM)
and Amazon Alexa are device types within the category of
home assistants. Finally, a device instance is a physical device
instance of a device type. For example, two different GHMs
in the same network are two instances of the GHM device
type. In the following, we examine how these different levels
of classification have been considered in the literature.

A. CLASSIFYING DEVICES BY CATEGORY

Different definitions of ‘““‘category’’ have been proposed in
the literature. The most used definition relies on “‘the main
functionality (or purpose) of the device,” e.g. refrigerator,
TV, watch, or camera, as proposed in [15], [57], and [47]. For
instance, in [55], the devices are classified into hubs, electron-
ics, cameras, and switches & triggers. In [92], four categories
are discussed: IP cameras, smart on/off plugs, motion sen-
sors, and temperature/environmental sensors. A more broader
definition is proposed in [93], where the authors classify the
devices according to their application domain into healthcare,
multimedia, hubs, etc. Note that only 22% of papers exam-
ined in this survey use this classification level.

As the number of IoT devices grows, so do their applica-
tions and features, requiring new device category definitions.
To this end, Cvitic et al. [32], [94] propose classifying devices
according to their “Cu predictability index.” Cu measures
the “level of predictability of behavior™ of the device. To do
this, Cu measures the variation in data received and sent
by a device over a period of time. Devices that behave
in roughly the same way over time are easily predictable,
whereas devices whose usage and interaction with the user
modifies their behavior (and consequently the data received
and sent) are more difficult to predict. The authors derive
four device categories based on Cu. In doing so, the authors
propose a more general definition of the IoT device category.

B. CLASSIFYING DEVICE BY TYPE

This is the most common approach in the literature (81%
of surveyed papers). There are several ways to define the
device type. For instance, in [14], a device type denotes the
“combination of model and software version™ of a particular
device. In [44], a device type is defined by three param-
eters: the manufacturer, the manufacturer-type,
and the manufacturer-type-model, e.g., ‘“amazon-
kindle-v2.0.” In [81], a device type is defined by the manu-
facturer and model (e.g. for security cameras: Simple_Home
XCS7_1001).

C. CLASSIFYING DEVICES BY INSTANCE

This is the finest level of granularity, where instances of the
same device type must be distinguished. It is also the most
difficult and expensive scenario. It should be noted that, in the
literature, the use of the term fingerprint does not reflect the
definition of device instance we propose in this survey but
rather refers to device identification, i.e., the classification
of devices based on their type. Therefore, proposed solutions
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FIGURE 9. loT devices classification levels. loT devices can be classified at different levels of
granularity: i) category, ii) type, and iii) instance. In this example, home assistants and cameras are
two different categories of loT devices. GHM (Google Home Mini) and Amazon Echo Dot are two
types of Home assistants. Finally, Alexa 1 and Alexa 2, are two instances of the Amazon Echo Dot.
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FIGURE 10. Taxonomy of the classification granularity: the approaches
are classified by granularity of classification. Percentages show how often
each approach is used in the reviewed papers.

for device fingerprinting do not distinguish between device
instances.

Instance level classification has not been sufficiently
explored in the literature. To the best of our knowledge,
no solution in the literature exists for this scenario. However,
is such a classification really necessary? The answer depends
on the use case. For example, when detecting vulnerable
devices, instance-based classification is not necessary since
instances of the same type share vulnerabilities. However,
instance-based classification could be useful in some use-
cases. For example, in [95], the authors focus on 5G resource
allocation and design a solution for automatically selecting
a 5G slice based on the type of IoT device connecting to
the network, which is detected through a classification of the
radio signal shape. An extension could be envisaged based
on instance device classification, where two instances of the
same IoT device used by two users with different rights are
distinguished. This enables better 5G resource management
based on the user profile. Instance-based classification could
also be useful to track a unique user’s device.

D. HOW TO SELECT THE BEST CLASSIFICATION
GRANULARITY?

The granularity of classification should be carefully set
depending on the application scenario. Category level clas-
sification may be sufficient in many situations. For instance,
to ensure QoS by giving different priorities to flows (e.g.,
prioritizing traffic from healthcare devices during periods
of high load), it is not necessary to know the manufacturer
and software of the device. Even though the category level
classification of IoT devices is not very precise, it has the
advantage of being scalable.

Device type classification is the most commonly used
classification level in the literature due to its better ratio
between accuracy and ease of implementation. However,
many results [14], [96] have shown that it is difficult to distin-
guish devices from the same manufacturer or with the same
firmware version. This is because these devices usually have
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similar hardware and software architecture and communicate
with the same remote cloud servers using the same protocols.
Thus, they often share very similar traffic patterns. Note that
this problem is very close to the instance-based classification
problem, which is still an open problem.

VIil. KEY RESEARCH DIRECTIONS

In what follows, we consider research directions that have
received little or no attention in the literature. Follow-
ing the paper’s rationale, we discuss challenges related to
data-acquisition, feature extraction, and machine learning.
We address unbalanced data sets and provide solutions
in VIII-A, the importance of minimizing feature extraction
costs in VIII-B and improving learning quality in VIII-C.
In sections VIII-D, VIII-E, and VIII-F, we discuss challenges
related to scalability, deployment in practice and lack of
standardization, respectively.

A. THE PROBLEM OF UNBALANCED DATASETS

This is a common problem in many ML applications, but
it is accentuated in IoT device classification due to the
heterogeneous behavior of IoT devices: some devices, like
plugs, generate sparse traffic, while others, like cameras,
generate large amounts of traffic. This makes the detection of
minority class devices difficult. Bai et al. [55] report limited
data for detecting hubs and Hsu et al. [92] remark that it is
difficult to distinguish smart plug traffic from IP cam traffic.
Thus, having a balanced dataset is more important than the
size of the dataset.

Solutions based on data augmentation can be considered
during the training phase [48]. However, it is important to
avoid introducing biases when over-representing minority
classes. There is therefore a trade-off to consider to avoid
overfitting the model.

B. REDUCING THE COST OF FEATURE EXTRACTION

It is essential to consider the cost of extracting features.
Chakraborty et al. [97] distinguish three types of feature
extraction costs: 1) the computational cost involves computing
resources used to calculate the features, ii) the memory cost
measures the memory used to store running feature values
while computing, and iii) the privacy cost is related to privacy
violation, especially for features extracted from the payload
that may contain sensitive information. Desai et al. [98]
propose a framework for ranking features according to their
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discriminatory power to differentiate between devices. They
demonstrate that a small set of highly ranked features is
sufficient to achieve an accuracy close to that obtained using
all features.

Note that using a limited number of features limits the fea-
ture extraction cost but can make the classification approach
more vulnerable to adversarial attacks. In fact, it is easier for
an attacker to generate traffic that mimics the distribution of
values taken by one feature (e.g., packet size, or IAT, etc.) to
imitate the behavior of a particular IoT device and bypass the
classifier. For instance, Shahid et al. [99] generate sequences
of packet sizes representing bidirectional flows that look as
if they were generated by a real smart device. However, it is
more complex to bypass a classifier that takes into account
the values of several features because it is difficult to generate
traffic that matches the values of all these features at the same
time.

C. IMPROVING THE QUALITY OF LEARNING

1) NEED FOR CONTINUOUS LEARNING

The IoT ecosystem and device behavior evolve rapidly. Thus,
classification models must be updated to reflect recent data
trends. Kolcun et al. [34] note that the accuracy of IoT device
classification models falls by 40%, a few weeks after learn-
ing, and argue that to preserve the accuracy of the models,
they need to be continuously updated. It is then necessary
to explore continuous learning ML pipelines that keep the
machine-learned models up-to-date [100]. As mentioned in
Sec. VI-A3, techniques that train a classifier model per device
are more easily re-trained.

2) SCARCITY OF LABELED DATA

Fan et al. [53] note that collecting and labeling data is
costly and time-consuming, which cannot be scaled to the
overgrowing IoT environment. However, when labeled data
is scarce, supervised learning techniques fail. Using semi-
supervised or unsupervised approaches are possible solu-
tions. Fan et al. [53] proposed an IoT identification model
based on semi-supervised learning. To do so, they i) judi-
ciously choose the features describing the traffic, ii) perform
a CNN based dimensionality reduction, and then iii) perform
the classification using a two-layer neural network, classify-
ing the traffic into IoT and non-IoT, then specifying the class
of IoT objects. They managed to get 99% accuracy using only
5% of labeled data.

Generating labeled synthetic data is another solution: e.g,
generative adversarial networks (GAN) can generate syn-
thetic data close to the real distribution of training data by
capturing the hidden class distribution. In addition, training
classifiers with additional synthetic data points gives them
better generalization ability [99].

3) RESILIENCE TO ADVERSARIAL ATTACKS
The vulnerability of ML algorithms to adversarial attacks
has been demonstrated in several applications, and ML-based
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IoT device classification is no exception [101]. For example,
malicious devices may attempt to mimic the traffic of a
legitimate device in order to connect to the network. For-
tunately, it is very difficult to do this while preserving the
intended malicious functionality [102]. As discussed in [15],
the rogue device must be able to generate similar requests to
the manufacturer’s servers and get similar responses, which
is difficult to achieve if device authentication is required.

4) TRANSFERABILITY OF THE CLASSIFICATION MODEL
Kolcun et al. [34] reveal that the accuracy of classifiers
degrades over time when evaluated on data collected outside
the training set. However, it is desirable that classifiers that
perform well in one context can be used in another without
expensive retraining. Transfer learning [103] is a promising
solution that should be explored. For example, it would allow
a manufacturer to build a model that learns the behavior of an
IoT device and use the model in a smart home to identify the
device with little-retraining.

D. DISCUSSING SCALABILITY

Given the exponential growth of the number and types of IoT
devices, it is crucial to design scalable solutions. Scalabil-
ity must be considered at all stages of the solution design,
as explained below.

1) Traffic collection: the collection must be quick, effi-
cient, and non-exhaustive. For instance, data sam-
pling [104] (i.e., taking sufficiently representative sam-
ples rather than the entire dataset) can be used to
improve scalability. However, the choice of the sam-
pling solution must be well thought out as it may be
inappropriate for minority and sparse traffic classes,
which brings us back to the unbalanced dataset prob-
lem, discussed above in Sec. VIII-A.

2) Feature extraction: feature extraction should not be
complex, long, or costly. It is important to choose
a scalable method. For example, packet-level feature
extraction is very time- and computation-consuming,
and it is therefore not scalable. On the other hand, deep
learning (cf. Sec V-C) could be improved to simplify
and automate the feature extraction process, and is
therefore more likely to be scalable.

3) ML-based classification: the number of classifiers
(one-class classifier or multi-class classifier) should
allow for easier extension to new classes and avoid
extensive updating of all the models, as discussed
in Sec. VI-A3.

4) Classification granularity: Bai et al. [55] noticed a
decrease in accuracy with the increase in the number
of classes. One solution is to carefully choose the clas-
sification granularity according to the final application,
as discussed in Sec. VII-D.

Moreover, with the emergence of edge computing, it is
interesting to use the powerful computing and storage capa-
bilities provided by neighboring edge servers to facilitate the
IoT device classification and make it more scalable. A first
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attempt was proposed by Sun et al. [87] who designed an
edge-based 10T device classification scheme. Transfer learn-
ing, discussed above, can also be used for scalability by
minimizing learning time.

E. DEPLOYMENT IN PRACTICE

We observe a gap between academic advancements and mar-
ket implementation since reviewed IoT device categorization
solutions are seldom (if ever) deployed.

Indeed, most proposed solutions have not been imple-
mented using a realistic case study. Hence, their contribution
to improving the security or management of the IoT system
has not been evaluated, making their actual effectiveness
uncertain. The lack of such evaluation scenarios is due to
the difficulties of implementing and mastering realistic and
usually complex ecosystems. In addition, the challenges dis-
cussed above need to be addressed to make the solutions more
mature and ready for market implementation.

F. MUD AND STANDARDIZATION

Another solution for classifying and identifying IoT devices
would be to use the Manufacturer Usage Description
(MUD) [105]. The MUD is a standard defined by the
IETF [106] that allows IoT device manufacturers to publish
device specifications, including intended communication
patterns. IoT devices generally perform a specific func-
tion [107], and therefore have a recognizable communication
pattern, which can be captured formally and concisely as
a MUD profile [108]. Unfortunately, current IoT manufac-
turers do not yet support MUD specifications and mecha-
nism. Hamza et al. [108] publicly share their tool called
MUDgee [109] to automatically generate MUD profiles of
IoT devices.

IX. CONCLUSION

Classifying [oT devices has been proposed as a potential
solution to secure and manage the IoT ecosystem. This paper
reviewed relevant literature to answer the following research
questions:

Q1I. How to design a practical data-acquisition method?

Sec. IV showed that it is more practical to collect traffic
data from both IoT and non-IoT devices as they co-exist in
smart homes and can easily be confused.

There are three device operation modes: setup, idle, and
interaction. Traffic generated by the devices during idle and
interaction modes is abundant and widely used in the litera-
ture. The setup traffic is stable and allows for rapid identifi-
cation once the device is connected to the network. However,
setup traffic is difficult to collect since the initialization phase
may not appear multiple times in the device’s lifetime.

It is also more genuine to collect traffic from outside the
home (i.e., place the probe after the gateway, rather than at the
gateway) because this reflects real IoT device classification
use-cases. We found that this scenario is understudied in the
literature.
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Finally, most public datasets we surveyed suffer from the
above-mentioned biases, which are also found in papers using
them.

Q2. How to build effective machine learning classifiers for
1oT device classification?

Sec. V discussed feature extraction approaches and showed
that it is more scalable and less expensive to extract features
from streams rather than packets.

Traffic can be split by time interval, number of packets,
or connection-wise. Dividing traffic by connection (packet
flows between two endpoints) is natural and straightforward,
but not always appropriate. For instance, to identify a device
upon its connection to a network, it is more suitable to
consider the first generated packets rather than the whole
flow.

Setting the optimal time window or packet count is
required for flow splitting, yet this is challenging. Small
flows allow for rapid classification but may not be enough
to characterize the device. On the contrary, large flows can
be time- and memory-intensive to analyze. Moreover, IoT
devices generate varying amounts of data at different rates,
so the appropriate number of packets may vary.

We identified the most discriminative features and dis-
cussed how to calculate them (concatenation, statistics).

Q3. How to build effective machine learning classifiers for
IoT device classification?

Analysis in Sec. VI showed that creating one multi-class
classifier is not scalable and evolutive because the entire
model must be retrained when a new device type is added
to the network. On the contrary, building a classifier per
device reduces costly re-training, allows discovery of addi-
tional device kinds, and makes decisions more interpretable.
However, one-class classifier techniques are more compu-
tationally demanding since the results of several classifiers
must be computed and managed.

Unsupervised learning is more scalable and suited for the
rising variety of IoT device types than supervised learning
since it minimizes labeling costs. However, unsupervised
learning is understudied in the literature. Moreover, more
evaluation scenarios and metrics are required for realistic
assessment of classification algorithms.

Q4. How to set the classification granularity? In
Sec. VII, we discussed category-, type-, and instance-based
classification.

Type-instance device classification achieves the best
trade-off between accuracy and ease of implementation.
Despite being imprecise, the category level classification of
IoT devices is scalable and thus more adapted to the IoT
context where devices’ diversity is growing. To avoid costly
classification, granularity level should be set depending on
the application context.

We analyzed more issues and suggested new study direc-
tions in Sec. VIII. We discussed scalability and implemen-
tation in practice and recommended looking at additional
challenges like adversarial attack robustness and model trans-
ferability.
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TABLE 2. Papers review with respect to the to data-acquisition and classification granularity taxonomies.
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TABLE 3. Papers review with respect to the feature extraction taxonomy.

Paper | Stream definition Extracted features Dimensionality reduction | Automatic feature extraction
Packet-level | Flow level
N packets | At | Connection Volume | Protocol | Temporal | Periodic
\ [ 33% [ 24% | 50% 38% [ 60% [ 40% [ 1% [ 3% 31% [ 12%
[15] - - v - v v v - v -
[14] v - v - - - -
[57] v - - v -
[110] - v v - v v
[55] v - v v v -
[66] - - v v - v
[64] v - - - v
[47] v v - -
[51] v - - - v v
[86] v v v - v - -
[20] - v - - v - - v v
[49] - v v v v v - -
[84] v - v - - - v
[92] - v - v - v -
[27] - v v v % v -
[61] v - - v v v v -
[111] - 4 v - - - v v
[63] - 4 v - v - v -
[46] v - - v - - -
[85] - - v 4 - - v
[88] v - - v v - -
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[52] v - v - v v
[9] v - v v v
[113] | - v - - v - - v
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[54] v - v - v -
[16] v - v - v -
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[25] v - v v v - -
[116] v - v - - v -
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58] 7 7 - . >
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TABLE 4. Papers review with respect to the machine learning taxonomy.
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