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ABSTRACT Smart home IoT devices lack proper security, raising safety and privacy concerns. One-size-
fits-all network administration is ineffective because of the diverse QoS requirements of IoT devices. Device
classification can improve IoT administration and security. It identifies vulnerable and rogue items and
automates network administration by device type or function. Considering this, a promising research topic
focusing onMachine Learning (ML)-based traffic analysis has emerged in order to demystify hidden patterns
in IoT traffic and enable automatic device classification. This study analyzes these approaches to understand
their potential and limitations. It starts by describing a generic workflow for IoT device classification. It then
looks at the methods and solutions for each stage of the workflow. This mainly consists of i) an analysis of
IoT traffic data acquisition methodologies and scenarios, as well as a classification of public datasets, ii) a
literature evaluation of IoT traffic feature extraction, categorizing and comparing popular features, as well
as describing open-source feature extraction tools, and iii) a comparison of ML approaches for IoT device
classification and how they have been evaluated. The findings of the analysis are presented in taxonomies
with statistics showing literature trends. This study also explores and suggests undiscovered or understudied
research directions.
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INDEX TERMS Classification, security, device, fingerprinting, identification, internet of things, machine
learning, network traffic, survey.

I. INTRODUCTION17

In the last decade, the Internet of Things (IoT) has spread:18

according to IoT Analytics [1], the IoT market will rise by19

18% to 14.4 billion active connections in 2022. Researchers20

have suggested several definitions of the IoT, but almost all21

agree that it is a framework of sensors, industrial machines,22

video cameras, mobile phones, etc., all of which are collec-23

tively referred to as IoT devices and can interact directly24

with one another or over the internet. IoT is used in smart25

environments (homes, cities, campuses, etc.) to help users26

understand and control their environment.27

Despite its undeniable advantages, IoT expansion28

raises security and privacy concerns. Most IoT device29

manufacturers tend to prioritize the three Ps (prototyping,30

The associate editor coordinating the review of this manuscript and

approving it for publication was Taehong Kim .

production, and performance) above security [2]. This results 31

in an ineffective security design for IoT devices. As revealed 32

byWikileaks [3], poorly secured IoT devices are ideal targets 33

for attackers seeking to obtain unauthorized access and infer 34

sensitive information: e.g., smart TVswere converted into lis- 35

tening devices. Attackers can also use compromised devices 36

to inject malicious data and conduct large-scale attacks 37

against third parties or other devices inside the network [4]. 38

Automatically classifying devices is the first step toward 39

securing IoT networks. It enables the detection of vulnerable 40

devices and the enforcement of access control. 41

The growing diversity and heterogeneity of IoT devices, 42

each with its own QoS requirements (cameras require more 43

bandwidth than smart light bulbs, healthcare device traf- 44

fic must be prioritized, and so on), makes one-size-fits-all 45

network management ineffective. IoT device classification 46

enables network management automation. By setting QoS 47
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FIGURE 1. The scope of the survey is highlighted in red. We focus on IoT device classification in
smart homes, also called consumer IoT devices. We analyze approaches using machine
learning-based traffic analysis.

and network management policies based on the type of48

device, each automatically classified device can be assigned49

to a class with predetermined policies.50

Note that the term device classification is often confused51

with many similar tasks, namely i) traffic classification,52

ii) intrusion detection, iii) device identification, and iv) device53

fingerprinting. Traffic classification is a broad research field54

that involves classifying network traffic based on various55

parameters [5] (see Fig. 1). For instance, traffic can be classi-56

fied as either legitimate or malicious based on attack patterns:57

this is called intrusion detection. It can also be classified by58

the device that generates the traffic (device classification).59

The devices can be categorized into groups of similar devices,60

such as devices for energy management or devices for health61

monitoring, or according to their function, such as cameras,62

hubs, home assistants, etc. Device identification classifies63

devices more finely according to their model or constructor,64

such as D-link camera, Nest camera, Alexa home assistant,65

or Google home mini assistant, etc. Device fingerprinting is66

the finest level of device classification. It gives each device67

instance (e.g., camera A and camera B are two instances of68

the Nest Camera) a distinct fingerprint that is ‘‘impossible to69

forge and independent of environmental changes and mobil-70

ity’’ [6]. In this study, we focus on device classification as71

a specific case of traffic classification, broader than device72

identification and device fingerprinting.73

A simple way to classify IoT devices is to mon-74

itor their MAC addresses and DHCP negotiation [7].75

Sivanathan et al. [8] outline the shortcomings of this method.76

First, IP and MAC addresses can be easily spoofed by other77

devices, making them unreliable identifiers. Furthermore,78

MAC addresses are not necessarily indicative of device man-79

ufacturers, and even if they were, there is no standard for 80

recognizing device brands and types accordingly. To cope 81

with this problem, researchers have examined IoT network 82

traffic and witnessed that IoT devices perform very specific 83

tasks [9]: for example, it is possible to turn on or off a 84

smart bulb or change its brightness and light color, however, 85

a smart bulb can not stream videos or send emails. Therefore, 86

we assume that the IoT network traffic could follow a stable 87

and predictable pattern that may characterize it. Machine 88

learning may reveal hidden network traffic patterns and learn 89

their characteristics, making device classification easier. This 90

study explores IoT device classification using ML-based net- 91

work traffic analysis.To characterize a device, we focus on all 92

the network traffic it creates, which is device-specific and not 93

application-specific because it comprises all the applications 94

(tasks) executed by the device, which can be distinct. 95

According to [10], IoT devices can be divided into con- 96

sumer, commercial, and industrial categories. Consumer 97

IoT devices include personal devices, such as smartphones, 98

and internet-connected home devices like cameras, home 99

assistants, and smart lamps. Larger organizations employ 100

commercial IoT devices for smart city deployments, trans- 101

portation and electric car monitoring, health monitoring sys- 102

tems, etc. Industrial IoT devices improve process control 103

and productivity, such as sensors, robots, and power plant 104

controllers. Some devices, like cameras and sensors, can 105

belong to multiple categories. This survey focuses on con- 106

sumer IoT devices, commonly called smart home devices. 107

This choice is motivated by the rich and abundant litera- 108

ture on smart home devices due to i) the availability of 109

data, compared to its confidentiality in the industrial world, 110

and ii) the large number of smart home devices, which 111
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FIGURE 2. Workflow of IoT device classification using ML-based traffic analysis: input includes the
devices to be classified. First, raw traffic data is collected as pcap files and supplied to the feature
extraction procedure, which creates feature vectors (in text-based format) representing the raw
traffic. ML algorithms use these files to classify the originating device of each sample.
Classification results can be used in various contexts, including cyber security enforcement,
network management, and malicious usage.

represent the largest share of the IoT market (63% according112

to Gartner [11]). Furthermore, many people, including those113

unaware of security, use smart home IoT devices, making114

their protection crucial.115

Other surveys have examined IoT device classification-116

related tasks, but none have focused on the topic of this117

study. Tahaei et al. [7] discussed IoT traffic classifica-118

tion, while [12] examined ML-based internet traffic classi-119

fication, although neither focused on device classification.120

Sanchez et al. [13] discussed device behavioral fingerprinting121

but not IoT devices specifically. Yadav et al. [6] provided a122

taxonomy for IoT device identification approaches. However,123

they did not focus on ML methods and what data collection,124

feature extraction, and model learning require. To the best of125

our knowledge, no recent work studies exhaustive IoT classi-126

fication datasets, no current work explores feature extraction127

methodologies and compares the most useful and interesting128

features for IoT device classification, and no previous work129

examined each step of the IoT classification process as we do.130

For a comprehensive literature review, we analyzed papers131

from different digital libraries like IEEE Xplore, Research-132

Gate, Google Scholar, etc. First, we performed a keyword133

search using terms related to i) ii) IoT devices, like ‘‘IoT134

devices,’’ ‘‘wearable devices,’’ and ‘‘IoT gadgets,’’ iii) classi-135

fication, like ‘‘classification,’’ ‘‘clustering,’’ ‘‘identification,’’136

and ‘‘fingerprinting,’’ iv) traffic analysis, like ‘‘traffic anal-137

ysis,’’ ‘‘traffic classification,’’ ‘‘communication analysis,’’138

‘‘network characteristics,’’ ‘‘network packets,’’ and ‘‘network139

flows,’’ and v) machine learning as ‘‘machine learning,’’140

‘‘deep learning,’’ ‘‘artificial intelligence,’’ ‘‘supervised learn-141

ing,’’ ‘‘unsupervised clustering,’’ ‘‘automated,’’ and ‘‘intel- 142

ligent.’’ Our search was limited to 2018-2022 articles to 143

capture recent advancements. Second, we examined the ref- 144

erence lists and citations of the selected articles to find 145

more papers. Third, we scanned titles and abstracts to reject 146

items that did not fit the scope (task: classification, context: 147

smart home, and classification approach: ML-based traffic 148

analysis). Finally, a deep evaluation of the publications was 149

conducted, and articles with insufficient information on all 150

stages of the classification procedure were removed. At the 151

end of this process, 58 papers were deemed pertinent to our 152

investigation. 153

II. ANALYSIS STEPS AND CONTRIBUTIONS 154

Fig. 2 shows a general flowchart summarizing the multiple 155

steps and actors that can be involved in IoT device clas- 156

sification using ML-based traffic analysis. The initial step 157

is data acquisition, which consists of collecting raw traffic 158

from devices in pcap files (the pcap file format is the 159

de facto standard for packet captures). The second phase 160

is feature extraction, which aims at representing raw traffic 161

with numerical or categorical information in a text-based 162

format (e.g. csv (Comma-Separated Values) or text) files 163

that ML algorithms can use. The final stage is classifi- 164

cation using machine learning algorithms. The classifica- 165

tion result can be used for cyber security enforcement, net- 166

work management, as well as malicious activities like cyber 167

attacks. 168

To help develop more effective solutions for IoT device 169

classification, this study investigates the literature regarding 170
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FIGURE 3. Table of content and discussed questions.

each stage of the process and attempts to provide answers to171

the following research topics.172

• RQ1.How to design a practical data-acquisitionmethod173

for IoT device classification? Data acquisition is a174

crucial step that should enable the practical and real-175

istic capture of the most relevant information about176

the environment. To design an effective and practical177

solution for the IoT device classification problem, it is178

essential to know: i) which devices should be used179

for data-acquisition to represent a realistic smart home180

environment, ii) when to collect the traffic to capture181

the diversity of the devices’ operational modes, and iii)182

where to place the collection probe so as to capture183

traffic in an effective yet privacy-preserving manner.184

• RQ2. How to create an efficient feature extraction solu-185

tion? Feature extraction is a critical step that must186

describe the collected traffic as accurately as possible187

to reflect its patterns. To develop an appropriate feature188

extraction technique for IoT device classification, it is189

necessary to know: i) how to represent a single data190

sample, as a packet or as a flow of packets, in other191

terms, at what level to extract features (packet-level192

or flow-level), ii) in the latter scenario, how to define193

a packet flow (by time interval, number of packets,194

or connection), and iii) which are the most informative195

and discriminating features, and how to calculate them.196

• RQ3. How to build effective machine learning classi-197

fiers for IoT device classification? Classification using198

machine learning algorithms is the last, but not the199

least important step. To answer this research question,200

it is essential to decide: 1) the scope of a classifier201

(one classifier per device type or one multi-class classi-202

fier), 2) the learning strategy (supervised, un-supervised, 203

semi-supervised), and 3) the machine learning tech- 204

niques to use (deep or shallow algorithms). 205

• Q4. How to choose the classification granularity? 206

Device classification can be performed at different levels 207

of granularity. It’s crucial to understand the pros and 208

cons of each classification level in order to choose the 209

optimal granularity for each context and avoid extra 210

classification costs. 211

To the best of our knowledge, this is the first paper that 212

covers all of the above mentioned challenges and explores 213

their impact on IoT device classification. As an attempt to 214

address the above-mentioned research questions, this survey 215

also produces the following contributions (Fig. 3, which 216

provides a table of contents, depicts where and how the above 217

questions are handled in this study.): 218

• An analysis of the various applications for the classifi- 219

cation of smart home IoT devices. 220

• An in-depth examination of IoT traffic data collection 221

strategies. This includes: i) a review of the devices used 222

to represent a smart home setting, ii) a study of IoT 223

traffic types (depending on device operation mode) and 224

their utility for classifying devices, iii) a description of 225

the architecture and different traffic collection points 226

(depending on the traffic probe location) and a debate 227

on how realistic they are, and iv) an evaluation of public 228

datasets for IoT device classification. 229

• A thorough review of feature extraction approaches. 230

This includes: i) exploring different feature types and 231

comparing their significance and computation method- 232

ologies, ii) exploring deep learning-based automatic 233

feature extraction, iii) describing open-source feature 234
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extraction tools, and iv) investigating feature dimension-235

ality reduction for better IoT device categorization.236

• A comparison of machine learning approaches for IoT237

device classification and how they were assessed in the238

literature.239

• An examination and assessment of the various classifi-240

cation granularity levels.241

• A summary of contributions in the form of taxonomies242

and statistics to highlight trends. The statistics were243

calculated based on a thorough review of each research244

article with respect to taxonomies (See Tables 2 to 4 in245

the Appendix).1246

This document follows the classification process from247

bottom to top, except for the applications of IoT device248

classification, which will be shown first for sake of clarity.249

III. THE DIFFERENT APPLICATIONS OF IoT DEVICE250

CLASSIFICATION251

A. NETWORK AND SECURITY MANAGEMENT252

Due to the variety of IoT devices, it is difficult to con-253

trol them with a single policy. One solution is to describe254

network and security management rules by device class255

and assign each device to a class with automated policies.256

Miettinen et al. [14] describe an interesting use-case where257

newly introduced devices are categorized and the classifica-258

tion result is used to determine whether the device is vul-259

nerable. The decision is based on a vulnerability assessment260

of the device type carried out by consulting a vulnerability261

dataset. Consequently, the device is assigned one of the262

following isolation levels: i) strict, where the device can263

only interact with untrusted devices, ii) restricted, where264

it can communicate with untrusted devices but has limited265

internet access, and iii) trusted, where the device is allowed to266

communicate with other trusted devices and has unrestricted267

internet access. This mitigation approach allows vulnerable268

devices to cohabit with other devices without compromising269

their security.270

Note that detecting vulnerable devices in a smart home271

is crucial since most IoT devices suffer from poor security272

design and can be easily compromised by an attacker to gain273

unauthorized network access or launch massive attacks. For274

instance, in 2016, the Mirai malware infected millions of275

IoT devices to launch DDoS (distributed denial-of-service)276

attacks [4]. The BYOD (Bring Your Own Device) trend,277

which allows employees to bring their own personal IoT278

devices at work and connect them to the corporate network,279

extends the attack surface of companies as compromised per-280

sonal devices may inject malware into the corporate network281

and cross-contaminate other devices. Similarly, remote work-282

ing has exposed professional devices to a less trustworthy283

environment where they cohabit with possibly more vulnera-284

ble smart home devices.285

As described above [14], black listing approaches detect286

vulnerable devices that should be disconnected from the287

1A dynamic version of the taxonomy and websites is available at :
https://gitlab.com/jmila/smart-home-iot-device-classification-using-
machinelearning-based-network-traffic-analysis

network (blocked). IoT device classification can also be used 288

to establish an automatic whitelisting system to ensure only 289

authorized IoT devices can connect to the network, as pro- 290

posed by Meidan et al. [15]. If the determined IoT device 291

type is not in the white list, the organization’s SIEM system is 292

alerted to take appropriate action (e.g., disconnect the device 293

from the network). 294

Note that White listing is more scalable than blacklisting, 295

which grows with untrusted devices. Moreover, data from 296

authorized (whitelisted) devices is easier to obtain. Neverthe- 297

less, using a whitelist would be less robust against adversary 298

attacks, as an attacker may simulate authorized device behav- 299

ior to avoid the intrusion detection system. 300

B. MALICIOUS USAGE 301

IoT device classification can also be exploited by attackers to 302

leak sensitive information about the IoT device and its users. 303

For instance, Hafeez et al. [16] demonstrate that an adver- 304

sary, with access to upstream traffic from a smart home net- 305

work, can identify the device types and user interactions with 306

IoT devices, with significant confidence. Dong et al. [17] 307

study the case where an adversary attempts to infer the type 308

of IoT devices behind a smart home network even when the 309

traffic of all devices is merged behind the gateway using 310

VPN (Virtual Private Network) and NAT (Network Address 311

Translator) techniques. 312

Sensitive information revealing device types and user inter- 313

actions, can be used to infer user activities or home pres- 314

ence [16]: e.g. if the smart lights are in the off state for a long 315

period of time, it means that there is no one at home, opening 316

an opportunity for a break-in. Such passive attacks are hard 317

to identify and mitigate. In this context, Hafeez et al. [16] 318

propose a traffic morphing technique helping to hide the 319

traffic of IoT devices, lowering the occurrence of attacks. 320

IV. APPROACHES TO DATA ACQUISITION 321

This section describes the data acquisition methodologies 322

found in the literature. In order to organize the findings, 323

we present them along four axes: first, we examine the 324

devices considered for data collection, second we analyze the 325

IoT traffic types that can be captured, third, we discuss data 326

collection scenarios, and finally, we provide a comparative 327

study of public datasets. A taxonomy in Fig. 4 illustrates the 328

main outcomes of this section. 329

A. THE CLASSIFIED DEVICES 330

The input to the IoT device classification process is a list 331

of devices to be classified. They can be both IoT and 332

non-IoT devices, also referred to as single-purpose andmulti- 333

purpose devices, since IoT devices are typically intended for 334

a single specific task. An up-to-date list of the most common 335

smart home IoT devices can be found on the website [18]. 336

Examples of non-IoT devices include laptops, cell phones, 337

and Android tablets. 338

In the literature, some approaches classify only IoT devices, 339

and others classify both IoT and non-IoT devices. 340
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FIGURE 4. Taxonomy of data-acquisition approaches: the approaches are classified according to i) the devices
under consideration: only IoT, or both IoT and non-IoT devices, ii) the operation mode of the devices, iii) the
probe location, and iv) whether a public dataset is utilized or the traffic is collected by the authors.
Percentages show how often each approach is used in the reviewed papers. This highlights the trends
discussed in Sec. IV.

Fig. 4 shows that the majority of reviewed papers (63%)341

consider the classification of only IoT devices. However,342

we think that this is not the most realistic scenario since343

the traffic must be collected from all the devices connected344

to the smart home network to ensure its security and auto-345

matic management. Since IoT and non-IoT devices cohabit346

in smart homes, they must be considered during the traffic347

collection process. However, note that classifying both IoT348

and non-IoT devices is more challenging since IoT traffic is349

small and sparse compared to non-IoT data. As shown by350

Dong et al. [17], some IoT devices might be easily confused351

with non-IoT devices. For example, home assistants have352

diverse and varied functions (compared to simple single-use353

devices like light bulbs), making their behavior very similar354

to non-IoT devices. To address this challenge, we suggest355

training ML algorithms with mixed (IoT and non-IoT) traffic356

to boost their generalization capabilities.357

B. THE DIFFERENT TYPES OF IoT TRAFFIC358

IoT devices generate three types of traffic based on their359

operation mode, namely: i) setup traffic (also called initial360

traffic) is generated by an IoT device during installation, also361

called registration or enrollment, ii) interaction traffic (also362

called active traffic) is generated when a device interacts with363

the user or environment (e.g., a home assistant responding to364

a voice request from the user), and finally, iii) idle traffic rep-365

resents device activity in the absence of external stimulation.366

It includes routine communications between the device and367

the back-end server, as well as keep-alive or heartbeat signals.368

1) THE SETUP TRAFFIC369

When a new device with a new MAC address connects to370

the network, it follows a device/provider-specific procedure371

to connect [14]. In most situations, this operation is assisted372

by a smartphone, laptop, or PC application. The installation373

procedure typically involves: i) activating the device,374

ii)connecting with the provider’s app, iii) transmitting WiFi375

credentials, and iv) resetting and connecting to the user’s376

network using the credentials provided.377

To collect the installation traffic, existing approaches378

record the first packets {p1, p2, p3, . . . , pn} exchanged379

between the device and the gateway. The decrease in packets 380

exchanged marks the end of the installation phase. To gener- 381

ate enough data, the installation process should be performed 382

multiple times for each device, with a hard reset between each 383

save [14]. 384

2) THE INTERACTION AND IDLE TRAFFIC 385

IoT devices generate mostly interaction and idle traffic. Inter- 386

action traffic can be triggered either i) by a direct user request, 387

like adjusting light bulb color and intensity, or ii) by a change 388

in the environment observed by the IoT device, such as a 389

sensor that detects motion or a light bulb that detects an 390

inhabitant [19]. Idle traffic mainly includes device-Cloud 391

service exchanges during standby, such as heartbeat mes- 392

sages, regular status updates or notifications [16]. IoT devices 393

generate more traffic when active compared to background 394

mode [20]. This is reasonable since user and environmental 395

interaction stimulates diverse reactions [20]. 396

3) WHICH TRAFFIC TYPE IS MOST SUITED FOR IoT DEVICE 397

CLASSIFICATION? 398

Statistics detailed in Fig. 4 show that 86% of reviewed papers 399

use idle and (or) interaction traffic. Only 19% of reviewed 400

papers rely on setup traffic for device classification. The 401

advantage of setup traffic over idle and interaction traffic is 402

its stability, as the IoT device’s behavior during configuration 403

is the same regardless of the environment. Moreover, relying 404

on setup traffic allows for rapid recognition once the device 405

is connected to the network. However, as the initialization 406

state may not appear several times during the IoT device life 407

cycle, setup traffic is scarce, sparse, and difficult to collect 408

in real-world network monitoring. On the other hand, idle 409

and interaction traffic is more abundant and easier to collect, 410

making it better suited for machine learning algorithms, espe- 411

cially deep learning. 412

C. DIFFERENT LOCATIONS FOR TRAFFIC PROBE 413

1) A TYPICAL NETWORK SETUP FOR CAPTURING IoT 414

TRAFFIC 415

Fig. 5 shows a typical smart home network architecture. 416

It includes IoT and non-IoT devices connected to an internet 417
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FIGURE 5. A typical network configuration for capturing IoT traffic includes i) IoT and
non-IoT devices connected to the gateway via wireless or wired connections and ii)
packet capture and storage modules for collecting traffic. There are two capture points
discussed in the literature: i) at the gateway and ii) after the gateway.

gateway using wireless or wired connections. At least two418

tools are required for traffic collection:419

• a Packet capture module to capture the traffic as pcap420

records comprising entire packets from MAC layer to421

application layer. Examples include tcpdump [21] or422

Wireshark [22], and423

• a storage module to store the traffic data on a distant424

server, or within the network.425

To label the ground truth, the MAC address in the packet426

header is used to reveal the identity of the device and label427

the data accordingly.428

2) TRAFFIC CAPTURE SCENARIOS429

The literature considers two scenarios for collecting IoT430

traffic depending on the location of the probe (capture point):431

i) at the gateway, i.e. from inside the home device, or ii) after432

the gateway, i.e. from outside the smart home.433

At the gateway, the captured traffic is the one flowing434

between the devices connected to the home network and435

the gateway and can be separated by IP or MAC address.436

Whereas the traffic captured after the gateway contains traffic437

from all connected devices aggregated using a single public438

IP address due to the frequent use of NAT at gateways.439

3) WHICH PROBE LOCATION IS MORE PRACTICAL?440

Approaches that gather traffic at the gateway assume the441

ability to intercept and sniff the traffic flowing inside the442

smart home. However, this clean and controlled experimental443

setup does not reflect most real-world use cases where traffic444

is only seen from the outside. A typical application is when445

Internet Service Providers (ISPs) classify IoT traffic to iden-446

tify devices inside a smart home and then allocate resources447

and configure appropriate security rules according to their448

population and vulnerabilities. But ISPs can not intercept449

traffic inside the home network. It is then more realistic to 450

collect traffic from outside the smart home after the gateway. 451

However, classifying devices based on such traffic is more 452

challenging because the original packet headers, such as 453

source IP and port, are hidden. Moreover, the widely used 454

VPN-enabled gateways encapsulate the original packets in 455

an encrypted tunnel, hiding the traffic characteristics. This 456

makes device classification even more challenging, and new 457

solutions should be investigated. 458

Although realistic, this scenario is understudied. This sce- 459

nario is used in only four papers: [17], [23], [24], [25]. It is 460

worth noting thatMeidan et al. [25] andDong et al. [17]made 461

their datasets public so that more research could be done on 462

this topic. 463

D. PUBLIC DATASETS COMPARISION 464

57% of reviewed publications use public datasets, either 465

completely or to complement or enrich their data. Most of the 466

datasets wemention in this surveywere created for IoT device 467

classification. However, we include other datasets developed 468

for other topics that contain IoT traffic and can be used for 469

IoT device classification. 470

Table 1 summarizes the datasets listed below. To compare 471

them, we specify for each: i) the devices used to generate the 472

traffic (IoT only, or both IoT and non-IoT), ii) the operation 473

mode of the devices (i.e. setup, interaction, idle), iii) the probe 474

location (i.e., at or after the gateway), iv) the duration of the 475

collection, v) the amount of traffic collected, and we provide 476

vi) a direct access link to the dataset. 477

1) IoTSentinel DATASET [14] 478

This dataset was collected to identify IoT devices based on 479

their setup traffic. To generate enough traffic, the typical 480

device configuration process was repeated 20 times for each 481
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TABLE 1. Publicly available datasets for IoT device classification.

device. During the setup process, all network traffic between482

IoT devices and the gateway was recorded. A representative483

set of 31 IoT smart home devices available on the Euro-484

pean market in the first quarter of 2016 was used. There485

are 27 different device types (4 types are represented by486

2 devices each). Most of the devices were connected viaWiFi487

or Ethernet. Some of them utilised ZigBee or Z-Wave.488

2) UNSW DATASET [19], [27]489

This dataset was published by UNSW researchers and covers490

various IoT research areas. In addition to traffic for IoT491

device classification, the dataset includes IoT attack traces,492

IoT MUD profiles, and IoT IPFIX records that can be useful493

for other IoT-related research topics (the relevance of MUD494

profiles to device classification is discussed in Sec. VIII).495

In this paper, we focus on the traffic for IoT device classi-496

fication. It was first published in [19] and has since evolved.497

The first version has been extensively used in the literature.498

The same authors published an updated and more elabo-499

rate version in [27]. Recent articles now use the modified500

version.501

This study focuses on the IoT traffic traces reported in [27].502

Theywere collected over 26 weeks, fromOctober 1st , 2016 to503

April 13th, 2017, but only two weeks’ worth of data is avail-504

able for download.505

3) IoTFinder [31] AND YourThings DATASETS [29]506

The IoTFinder dataset was created to explore IoT device507

identification using DNS fingerprints. Thus, the dataset con-508

tains pcap files of DNS responses for 53 IoT devices from509

different vendors. The data was collected from August 1st ,510

2019 to September 30th, 2019.511

YourThings dataset was created by the same authors to512

analyze security properties for home-based IoT devices.513

4) SHIoT DATASET [32]514

This dataset was created for behavior-based IoT device clas-515

sification. The test bed was implemented at the Faculty of516

Transport and Traffic Sciences in Zagreb. The dataset con- 517

tains 144 pcap files with 24-hour traffic each. 518

5) DADABox DATASET [34] 519

This dataset was created to compare some approaches to 520

classifying IoT devices. The testbed was developed at the 521

University of Cambridge, where researchers sporadically 522

interact with IoT devices. The dataset contains 41 different 523

IoT devices, and the data was collected over a period of 524

27 weeks. 525

6) HomeMole DATASET [17] 526

This dataset was created to identify IoT devices behind VPN 527

and NAT-enabled gateways in smart homes. Three collection 528

scenarios were developed: i) a single device environment in 529

which only one device is considered, ii) a noisy environment 530

in which various IoT and non-IoT devices are investigated. 531

Multiple devices may be operating simultaneously at any 532

given time, resulting in traffic aggregation, and iii) a VPN 533

environment where VPN is enabled. In this case, traffic is 534

collected before and after the VPN. 535

7) IoT-deNAT [25] 536

The dataset was collected to detect vulnerable IoT devices 537

behind a home NAT. The traffic is captured considering 538

only NetFlow’s [42] statistical aggregations (i.e., Netflow is 539

a flow-level aggregation of information, usually a 5-tuple 540

header and some counters) instead of the raw data to reduce 541

processing and storage. 542

8) THE MON(IOT)R DATASET [38] 543

This data set examines IoT device information exposure. 544

It contains data from 81 IoT devices deployed in two labs 545

(one at Northeastern University in the United States and 546

the second at Imperial College London in the United King- 547

dom) over 30 days between September 2018 and February 548

2019. Different types of traffic are provided: i) power traffic 549
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FIGURE 6. Taxonomy of feature extraction approaches. The approaches are classified according to i) the use of header or payload
packet level features, ii) the stream definition, iii) the type of used stream level features (volume, protocol, time, or periodicity), iv)
the use of automatic feature extraction (DL based), and v) the use of dimensionality reduction. Percentages show how often each
approach is used in the reviewed papers. This highlights the trends discussed in Sec. V.

(487 samples), which is traffic generated by IoT devices when550

they are turned on, ii) interaction traffic (32,030 samples),551

iii) idle traffic covering an average of 8 hours per night for552

one week for each lab, and iv) unlabeled traffic, which is553

generated when 36 participants use the IoT devices in a studio554

at their leisure during the data collection period. Data labeling555

includes the name of the device, where it was used (the US or556

the UK), when and for how long it was used, and whether or557

not a VPN was used.558

9) IoT-23 DATASET [40]559

IoT-23 is a dataset containing benign and malicious IoT net-560

work activity. The traffic was captured at the Czech Technical561

University. The dataset contains 20 pcap files from infected562

IoT devices, labeled by the malware that infected them,563

and 3 pcap files containing benign network traffic generated564

by 3 IoT devices: a smart lamp, a voice assistant, and a smart565

door lock. The packet captures are labeled with the device566

that generated the traffic. As done in [43], legitimate traffic567

can be used for IoT device classification,.568

10) HOW VALUABLE ARE PUBLIC DATASETS?569

Public datasets enable comparing different solutions. Unfor-570

tunately, the available public datasets for IoT device clas-571

sification are scarce (only 5 of the surveyed papers shared572

their datasets publicly) and not diversified: most provide idle573

and interaction traffic, and capture at the gateway, when this574

is not the most realistic scenario. Since public datasets are575

not diverse, researchers must collect their own data when576

examining new scenarios. For instance, Yu et al. [44] identify577

IoT devices based on passively receiving broadcast andmulti-578

cast packets, and had to collect their own data from different579

WiFi networks. In conclusion, additional datasets exploring580

new classification scenarios should be released, and more581

diversified IoT traffic needs to be collected, in order to boost582

research on IoT device classification. As shown in Fig. 4, the583

most used datasets are UNSW (30%), IoTSentinel (15%), and584

YourThings (6%).585

V. FEATURE EXTRACTION METHODOLOGIES586

This section describes feature extraction methodologies.587

First, we discuss packet-level feature extraction: we exam-588

ine the most commonly used header and payload features 589

and compare them. Second, we analyze stream-level feature 590

extraction. Third, we explore deep learning based automatic 591

feature extraction. Fourth, we provide a list of open-source 592

feature extraction tools, and finally, we highlight the feature 593

dimensionality reduction approaches. Fig 6, gives a taxon- 594

omy summarizing the approaches and trends. 595

Feature extraction is defined in [45] as ‘‘the process of 596

defining a set of features (. . .) which will most efficiently or 597

meaningfully represent the information that is important for 598

analysis and classification.’’ In our case, the feature extraction 599

step consists of describing the network traffic in the most 600

appropriate way to retrieve the maximum amount of infor- 601

mation about the device. 602

In the majority of examined articles, significant work 603

has been dedicated to the extraction of features. Existing 604

approaches are diverse and heterogeneous. The objective of 605

this section is to summarize them in a logical and consistent 606

manner. 607

Network traffic is the volume of data flowing over a net- 608

work. It is divided into packets of data and delivered over a 609

network before being reassembled by the receiving computer 610

or device. Packets can be used to describe the network either 611

individually or as a stream of packets, also called a flow 612

(see Fig. 7). 613

These two approaches are known as packet-level and flow- 614

level feature extraction methods, respectively. The following 615

sections present approaches in each category. 616

A. APPROACHES TO PACKET-LEVEL FEATURE EXTRACTION 617

These approaches describe each packet individually. A packet 618

consists of a header and a payload. The header contains 619

protocol information for a given layer, whereas the payload 620

contains the data. 621

1) THE MOST IMPORTANT PACKET HEADER FEATURES 622

Extracting features from a packet header is straightforward 623

and has no overhead. One just needs to parse the packet’s 624

header fields. 625

Depending on the layer and protocol, several fields can be 626

present in the packet header. For example, the IPv4 header 627

contains essential routing and delivery information and con- 628
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FIGURE 7. The main methods for feature extraction: packet-level and stream-level. For
stream-level approaches, three definitions are proposed for the stream.

sists of 13 fields, including version, header length, service629

type, total length, time to live, and protocol, etc. Relying on630

source and destination IP addresses and ports for classifica-631

tion is not recommended due to potential spoofing issues,632

as mentioned in Sec. I.633

The most important header features include i) the packet634

length, which is widely used for IoT device classifica-635

tion [46], and ii) the TCP window size, which is very636

useful for distinguishing between IoT and non-IoT devices637

as it depends on the memory and processing speed of the638

device [47]. Small constrained devices, like sensors, have639

small window sizes, while more powerful devices like video640

cameras and home assistants have variable and larger window641

sizes [47].642

2) THE MOST IMPORTANT PAYLOAD FEATURES643

Typically, payloads consist of the header and payload of644

the upper layer, which in our case indicates the application645

payload. It may consist of textual features indicating the646

device’s name, location, manufacturer, type, operating sys-647

tem, services, etc.648

The length of the payload transported inside a TCP mes-649

sage can indicate the length of the message sent by a given650

device, and this is device specific [47]. The entropy of the651

payload has been used as a discriminative feature [47], [48].652

In [49], the distribution of payload bytes per flow is used653

for IoT device classification. Encrypted packets may make654

feature extraction from the payload impossible.655

Note that processing each packet separately for feature656

extraction is time-consuming and computationally exhaust-657

ing, requiring large storage and processing resources. The658

Google Chromecast generates 2,459,538 packets per day,659

compared to 11,877 traffic flows [32]. Thus, extracting fea- 660

tures from packets is more expensive than from flows. Unsur- 661

prisingly, most research concentrates on flow-level features 662

(81% of reviewed papers). 663

B. STREAM-LEVEL FEATURES EXTRACTION METHODS 664

In this section, we discuss the different stream definitions, 665

we investigate and categorize the most important features, 666

and we examine the approaches to calculating them. 667

1) STREAM DEFINITION 668

Features can be extracted from a set of packets known as 669

a ‘‘stream.’’ We have identified three main approaches to 670

defining a stream: i) a stream is a set of N consecutive 671

packets, ordered by arrival time, ii) a stream is a set of 672

packets exchanged within a time window 1, iii) a stream is a 673

connection between a source and a destination where packets 674

are sent in both directions in a certain order.More information 675

on the approaches using each definition is presented below. 676

a: A STREAM AS A FINITE SEQUENCE OF N PACKETS 677

In this category, a fixed number N of consecutive packets 678

generated and received from a single IoT device is used to 679

construct a ‘‘signature,’’ also called a ‘‘fingerprint’’ of the IoT 680

device. 33% of surveyed papers use this definition, in partic- 681

ular approaches leveraging setup traffic (cf. Sec. IV-B1) for 682

device classification, because they use the first packets sent 683

by the devices when connecting to the network. For example, 684

in [14] and [50], the authors use the first 12 packets to identify 685

an IoT device, and in [51], 30 packets are used. The authors 686

of [52] extract features from a sequence of 20-21 packets. 687
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Shahid et al. [9] consider N consecutive packets where N688

varies between 2 and 10. 24% of surveyed papers use this689

definition.690

Note that determining the optimal value of the flow size,691

N , is challenging. Small flows allow for quick classification692

but may not be enough to characterize the device, whereas693

large flows can be time and memory-consuming to analyze.694

Moreover, the appropriate value of N may vary from device695

to device since IoT devices generate different quantities of696

data. A small number of packets may be enough to identify697

certain device types, while a greater number may be required698

for others. This is problematic because machine learning699

algorithms require a fixed size for the input. The authors700

of [14] added padding for devices that emit fewer packets than701

the required size. Furthermore, capturing the same number702

of packets for all devices may take a variable amount of703

time as IoT objects do not generate traffic at the same rate.704

For example, it is possible to capture packets generated by705

a camera in seconds. However, it takes longer to capture the706

same number of packets generated by a motion sensor [46].707

This makes the data collection process complicated and time-708

consuming.709

b: A STREAM AS A SET OF PACKETS EXCHANGED WITHIN A710

TIME WINDOW 1711

This consists of subdividing the captured traffic into dis-712

tinct time-windows of an appropriate duration 1. For exam-713

ple, Fan et al. [53] extract the features every 30 minutes.714

Pinheiro et al. [46] use a window of one second to enable715

real-time device classification. Hafeez et al. [16] use a716

10-second time window. Le et al. [54] retrieve DNS names717

requested by a device over a time period ranging from 10min-718

utes to 24 hours, and found that performance decreases with719

a decreasing 1.720

Note that as for the previous category, the choice of the721

time window size is important and challenging. Long time-722

windows give richer information about the device but risk723

increasing classification delay and consuming more memory724

to store traffic attributes [46]. Moreover, it may result in725

very similar samples with little feature variation. This could726

also lead to fewer data samples for learning and testing,727

and thus be unsuitable for deep learning-based classification728

approaches. Few and redundant samples may also introduce729

a bias and overfitting. On the other hand, a small time-730

windows may allow real-time classification but may not con-731

tain enough information to reflect the characteristics of the732

device’s behavior. Bai et al. [55] showed that a small seg-733

mentation window interval degrades the classification results734

compared to a larger segmentation. In addition, setting the735

same interval time for all devices can be inappropriate as the736

devices generate different quantities of traffic. For example,737

a motion sensor generates close to 140 packets per minute at738

most, and a camera generates up to 1900 packets per minute739

on average [55].740

c: A STREAM AS A SET OF PACKETS BELONGING TO A 741

CONNECTION 742

Due to the abovementioned issues, the majority of reviewed 743

papers (50%, see Fig. 6) use this definition of stream. This is 744

based on the RFC 2722 [56] traffic flow definition, stating 745

that a flow is ‘‘an artificial logical equivalent to a call or 746

connection.’’ Thus, the flow is the ordered sequence of all 747

packets sent and/or received from a particular source to a 748

particular unicast, anycast, or multicast destination using 749

specific ports and transport protocols. 750

More concretely, a flow can be defined as a set of packets 751

having in common at least two of the following attributes: 752

i) source IP address, ii) source port number, iii) destination 753

IP address, iv) destination port number, v) protocol, and vi) 754

service type. 755

Depending on the criteria utilized to define the flow, there 756

are several definition variants. For Marchal et al. [20], the 757

flow is a sequence of network packets sent by a given IoT 758

device using a specified communication protocol. A flow is 759

described by Sun et al. [49] as a 5-tuple of source and des- 760

tination IP addresses, source and destination port numbers, 761

and protocol. For Meidan et al. [25], the service type is also 762

specified (6-tuplet). 763

Note that a collection of flows can also be used to describe 764

the traffic. The authors of [49] combine features from sev- 765

eral flows to provide a high-level characterization of device 766

activities. Meidan et al. [57] demonstrated that using a set 767

of consecutive flows gives better classification results since 768

it contains more information about the traffic. The different 769

stream definitions are illustrated in the left part of Fig. 7. 770

2) IMPORTANT STREAM-LEVEL FEATURES 771

In this section, we review the various stream-level features 772

that are widely used for IoT device classification. To orga- 773

nize them, we divide them into four categories: i) volume 774

features measure the volumetric properties of the stream, ii) 775

protocol characteristics describe the protocols on the stream, 776

iii) temporal characteristics measure the temporal aspects of 777

the stream, and iv) periodicity features reflect the stream’s 778

periodicity. 779

a: VOLUME FEATURES 780

Examples include packet length statistics, the number of 781

packets or bytes in the entire flow or in a specific direction 782

(incoming or outgoing traffic), the flow rate, etc. For instance, 783

Pinheiro et al. [46] identify devices based on statistics of the 784

packet length and number of bytes generated by each device. 785

Sivanathan et al. [58] use average packet size and average rate 786

per flow as two principal attributes. Volume features are very 787

important and widely used (in 60% of reviewed papers). 788

b: PROTOCOL FEATURES 789

Traffic including all protocols and layers, or selected proto- 790

cols, can be used to extract features. In addition to the widely 791
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studied layer-2 to layer-4 protocols, the following application792

layer protocols have been examined:793

• The Domain Name System (DNS) is an essential794

Internet service, and is therefore important to IoT795

devices communicatingwith remote Cloud services. The796

DNS features differentiate IoT from non-IoT devices.797

IoT devices connect to limited endpoints, mainly their798

provider servers. This behavior can be captured by the799

number of DNS unique queries, as IoT devices have800

fewer unique DNS queries than non-IoT devices [59],801

[60]. Moreover, devices can be identified by the domain802

names they communicate with [27].803

The most frequently used DNS characteristics are:804

i) the number of unique DNS queries, ii) the number of805

unique domain names, iii) the most frequently queried806

domain names, iv) the number of DNS packets, and v)807

the number of DNS errors. The papers [27], [53], [54],808

[59], [60], [61], and [62] exploited these features.809

• TLS features: TLS/SSL is used by many IoT devices810

to secure internet communication with servers. The811

TLS protocol consists of two layers: handshake and812

record protocols. The handshake layer is the most inter-813

esting as it comprises of ‘‘text-in-the-clear’’ messages814

exchanged between devices and servers to create a815

secure channel and negotiate ciphers and encryption816

keys. Fan et al. [53] use the number of TLS hand-817

shakes as a feature. Sun et al. [49] analyze the unen-818

crypted data of the TLS handshake and exploit the819

plaintext data in the ClientHello, ServerHello,820

and Certificate messages to derive the follow-821

ing features: the list of proposed ciphersuites, the list822

of announced extensions, and the length of the pub-823

lic key. The authors noted less fluctuation in the dis-824

tribution of ciphersuites and TLS extensions in IoT825

devices, compared to non-IoT devices, because they826

advertise a limited and fixed number of ciphersuites.827

Thangavelu et al. [61] used the following TLS fea-828

tures: the minimum, maximum, and mean of the829

TLS packet length, the flow duration, and the num-830

ber of TCP keep-alive probes used in the TLS ses-831

sion. Valdez et al. [63] derive features from TLS832

session initialization messages (ClientHello and833

ServerHello). Features include negotiated ciphers,834

proposed cipher suites, server name, and destination835

end-point.836

c: TIME-RELATED FEATURES837

They measure the temporal aspects of the flow. Examples838

include the inter-packet arrival time (IAT), i.e. the time inter-839

val between two consecutive packets received, the time a flow840

was active before becoming inactive, the time the last packet841

was switched [25] and the flow duration, etc. For instance,842

in [27] and [59], the authors calculate the sleep time of a843

device, the average time interval between two consecutive844

DNS requests, and the NTP interval. Thangvelu et al. [61]845

consider the flow activity duration. Sun et al. [49] calculate 846

idle time as it reflects device activity frequency. 847

It is worth noting that the IAT is one of the most useful 848

time-related features as it varies by device depending on the 849

hardware and software configurations [64]. It is therefore, 850

widely used in the literature ( [9], [16], [49], [51], [53], [65], 851

[66], [67], [68]). In particular, we note that the classification 852

of ZigBee, Z-Wave, and Bluetooth IoT devices is often exclu- 853

sively based on IAT [65], [66]. 854

d: PERIODICITY FEATURES 855

IoT devices generate background communications that 856

always present relatively constant and periodic patterns. 857

Some researchers [20], [69] extract features from periodic 858

flows. To do this, they first discretize the flow into a binary 859

time series signal representing the existence or not of packets 860

in the traffic each second. Then, they use the Discrete Fourier 861

Transformation to identify the different distinct periods of 862

the signal. Once identified, statistical features are used to 863

describe these periods in detail. Examples include: the num- 864

ber of periods, the maximum andminimum period values, the 865

averages of the occurrence of periods at the minimum period 866

value, and the accuracy and stability of the inferred peri- 867

ods [20], etc. Note that approaches for extracting periodicity 868

features often use the time-window-based stream definition 869

(Fig. 7). Only 2 papers, namely [20], [69] use periodicity 870

features. 871

3) HOW ARE STREAM-LEVEL FEATURES CALCULATED? 872

We identified two approaches to calculate stream-level 873

features: concatenation and statistics. 874

a: CONCATENATION 875

Stream-level features can be calculated by concatenating 876

individual packet features. The authors of [51] define a n × 877

7 feature matrix with 7 packet header features per packet (n 878

packets). Similarly, Wan et al. [68] describe a stream of p 879

packets defining a device signature using p vector attributes. 880

In general, only approaches defining the stream as a set 881

of N packets (see Sec. V-B1a) use this method because 882

concatenating a small number of packets is unlikely to create 883

large signatures. 884

b: STATISTICS 885

The second way is to perform statistical calculations on 886

packet-level features. Depending on whether the measured 887

feature is numerical (e.g. TTL) or categorical (e.g. proto- 888

col type), different statistics can be generated, as described 889

below. 890

For numerical features, researchers often calculate: 891

• The traditional minimum, maximum, mean, sum, 892

standard deviation, variance, which are widely used 893

in the literature. 894

• The entropy, which measures the degree of disorder 895

of features. It is a way of describing the nature of the 896

data without focusing on the data itself. For example, 897
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the payload entropy indicates the information content898

of a packet. Packets including text data have less pay-899

load entropy than packets carrying audio data [47]. The900

authors of [48] and [47], categorized IoT devices by901

payload entropy. Fan et al. [53] calculate the entropy of902

top DNS requests and packet lengths.903

• The skewness [70] and kurtosis, [71] which measure904

the asymmetry and the ‘‘tailedness’’ of the probability905

distribution, respectively. In [55], the authors use packet906

length skewness to explore packets’ different lengths in907

a flow.908

• The augmented Dickey-Fuller (ADF) test [72], which909

determines whether or not a given time series is station-910

ary. It was used in [53] to capture how some devices send911

large packets in a short period of time, causing packet912

length to shift substantially.913

• The spectral density, which characterizes a stationary914

population time series in the frequency domain. The915

authors of [73] use spectral analysis of packet length916

to record device communication patterns, differentiate917

IoT and non-IoT traffic, and determine the device class918

generating the packet flows.919

• Note that when the stream is defined by a time win-920

dow, finer granularity statistics can be generated by921

computing the first quartile, second quartile, and third922

quartile of numerical packet features, as [53] does for923

the ‘‘packet length.’’924

For categorical features, researchers often:925

• List or count feature values. Huang et al. [51] use926

a binary vector coded according to whether specific927

protocols exist in the traffic flow. In [49], [69], and [55],928

the authors count the types of protocols involved in the929

device’s communication traffic.930

• Determine the dominant values or their proportion.931

For example, Msadek et al. [67] identify the set of932

dominant protocols (the most used). Zhang et al. [69]933

count the proportion of TCP/UDP/ARP in the device934

communication flow.935

C. WHAT ABOUT AUTOMATIC FEATURE EXTRACTION?936

While traditional ML algorithms require costly handcrafted937

features, deep learning approaches may automatically extract938

and learn the optimum features for the classification, directly939

from raw data. As DL requires standardized input data of the940

same type and size for all samples, researchers first convert941

pcaps into a suitable model input. To do so, Greis et al. [74]942

consider the packet captures (in pcap format) collected dur-943

ing the setup phase and transform the first 784 bytes of traffic944

into a 28×28 grey-scale image. Each pixel represents a grey945

value between 0 (black) and 255 (white). When a setup phase946

has less than 784 bytes, the remaining pixel values are set to 0947

(black). Similarly, Kotak et al. [75] use TCP payload to create948

greyscale images of the device’s communication pattern.949

Yin et al. [76] rely on traffic vectorization. They use950

the first 10 packets to characterize a flow. This number was951

chosen because the average number of packets in most IoT952

flows is 10. A flow is described using 2.500 bytes of data 953

(first 10 packets × 250 bytes). The first 250 bytes of each 954

packet are concatenated. Streams with fewer than 10 packets 955

employ padding. 956

Despite the benefits of these approaches, which sim- 957

plify and automate feature extraction, transforming data into 958

another format (image, vector, etc.) can lead to semantic 959

information loss. Moreover, this strategy does not take into 960

account expert knowledge, which can help find the most 961

important features. A minority of research papers (12% [74], 962

[75], [76]) explored this solution. 963

D. OPEN-SOURCE FEATURE EXTRACTION TOOLS 964

This section describes the existing feature extraction tools 965

found in the literature. The input of a feature extraction tool is 966

network traffic in pcap format collected by a packet capture 967

tool (e.g. tcpdump). The output is text-based format files 968

(often csv) containing feature vectors. A feature vector is 969

calculated for each observation. 970

CICFlowmeter [77] is an open-source feature extractor that 971

produces more than 80 volume- and time-related features 972

per TCP flow. The authors use two methods to measure the 973

attributes. In the first approach, they measure time-related 974

features over the full TCP flow, such as the time between 975

packets or the time the flow remains active. In the second 976

approach, they fix the time (e.g., every 1 second) andmeasure 977

other volume-related attributes (e.g., bytes per second or 978

packets per second). 979

Bekerman et al. [78] present a feature extraction tool, 980

which is implemented on top of Wireshark [22] and extracts 981

972 behavioral features across different protocols and net- 982

work layers. The features describe different observations 983

of various granularities, namely i) a conversation window, 984

ii) a group of sessions, iii) a session (e.g., a TCP session), 985

and iv) a transaction, i.e., an interaction (request-response) 986

between a client and a server. 987

Joy [79] extracts features from live network flows with 988

a focus on application layers. The main features are: IP 989

packet arrival lengths and times, the sequence of TLS record 990

arrival lengths and times, other unencrypted TLS data, such 991

as the list of proposed and selected ciphersuites, DNS names, 992

addresses, TTLs and HTTP header elements, etc. 993

E. FEATURES DIMENSIONALITY REDUCTION FOR BETTER 994

CLASSIFICATION 995

Feature dimensionality reduction improves classification 996

accuracy and reduces the computational cost. This is a 997

pre-processing phase that identifies relevant features and 998

removes irrelevant or redundant ones. Feature dimensionality 999

reduction is not widely used in IoT device classification. 1000

Only 30% of reviewed papers apply this step. This is because 1001

most publications rely on expert knowledge to derive an 1002

accurate and small set of features, making feature reduction 1003

unnecessary. On the contrary, articles using feature extraction 1004

tools (see Sec V-D) generate a large number of features and 1005

minimize them using feature reduction. 1006
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FIGURE 8. Taxonomy of ML based classification approaches. Percentages show how often each
approach is used in the reviewed papers (the percentages do not always sum up to 100 because
some papers use algorithms from multiple categories).

Ghojogh et al. [80] review feature dimensionality reduc-1007

tion approaches. They divide them into two groups: 1) feature1008

extraction approaches, where features are projected into a1009

lower dimensional subset to extract a new set of features,1010

and 2) feature selection approaches, where the best subset1011

of original features is selected. Note that the term ‘‘feature1012

extraction’’ is also improperly used in the literature to rep-1013

resent the process of describing observations by a vector of1014

features (cf. Sec V).1015

1) APPROACHES USING FEATURE EXTRACTION BASED1016

DIMENSIONALITY REDUCTION1017

Thangavelu et al. [61] use a common feature extraction1018

method called ‘‘Principal Component Analysis’’ (PCA).1019

Fan et al. [53] use Convolution Neural Network- (CNN)1020

based dimensionality reduction. Similarly, Bao et al. [81] use1021

auto encoders for dimensionality reduction. Auto encoders1022

learn a mapping from high-dimensional observations to a1023

lower-dimensional representation space such that the original1024

observation can be reconstructed from the lower-dimensional1025

representation [82]. Auto Encoders are widely used for fea-1026

ture learning in general [80]. Similarly, representation learn-1027

ing [83] is a feature extractionmethod used to learn automatic1028

discriminative features. It has not been explored yet for IoT1029

device classification.1030

2) APPROACHES USING FEATURE SELECTION BASED1031

DIMENSIONALITY REDUCTION1032

According to Ghojogh et al. [80], there are two feature selec-1033

tion approaches: i) filter methods, and ii) wrapper methods.1034

a: APPROACHES EMPLOYING FILTER METHODS1035

Such methods minimize the feature set by selecting the1036

most discriminative ones. The Correlation Criteria is one of1037

the most widely used solutions. It is based on calculating1038

the correlation between each feature and the label vector.1039

The features with the highest correlation value are selected.1040

Sivanathan et al. [58] use Correlation-based Feature Subset1041

(CFS) and Information Gain (IG). Similarly, Cvitic et al. [32]1042

use CICFlowmeter for feature extraction (83 features) and1043

then apply IG.1044

b: APPROACHES APPLYING WRAPPER METHODS 1045

Such approaches select the features based on the classifier’s 1046

performance. Thus, the selected set can vary from one classi- 1047

fier to another. For instance, in [84], the authors use a genetic 1048

algorithm based feature selection method. The genetic algo- 1049

rithm determines the smallest set of packet header features 1050

in all network layers that contributes significantly to the 1051

classification for a given classifier. 1052

VI. CLASSIFICATION 1053

The aim of the classification step is to predict for each traffic 1054

input, represented by a vector of features X =
{
x1, . . . xf

}
, 1055

the class c of the device that has generated it. Different 1056

classification approaches have been explored in the literature. 1057

We will classify them according to i) the number of classes 1058

(multi-class classifier or one-class classifier), ii) supervised 1059

or unsupervised approaches, and iii) shallow or deep learning 1060

algorithms. Fig. 8 illustrates the classification results. 1061

A. MULTI-CLASS VS ONE-CLASS CLASSIFIER 1062

1) METHODS USING MULTI-CLASS CLASSIFIER 1063

Only one classifier is used for the multi-class classification. 1064

The trained classification model outputs a vector of class 1065

membership probabilities Ps =
{
psi

}
16i≤n denoting the like- 1066

lihood that the inspected traffic sample s comes from device 1067

class ci. The traffic is labelled as originating from the device 1068

having the highest probability. To capture unknown devices, 1069

a threshold parameter tr can be defined and fine-tuned using 1070

the validation dataset. If one probability psi exceeds the 1071

threshold parameter tr (psi > tr), the traffic is classified as 1072

originating from the device class ci. Otherwise, it is classified 1073

as unknown. A device can also be considered as unknown 1074

if the feature vector matches more than one class with a 1075

low discriminative threshold (0.5 for example). This is the 1076

most popular method in the state of the art (90% of reviewed 1077

papers). 1078

2) METHODS USING ONE-CLASS CLASSIFIER 1079

(A CLASSIFIER PER DEVICE) 1080

A minority of reviewed papers (14%) use this classification 1081

approach. In the following, we describe how this strategy 1082
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is employed in the literature. This consists of splitting the1083

dataset into numerous binary classification problems (focus-1084

ing on a single class, regardless of all other classes) and then1085

a binary classifier is trained for each device. Each classifier1086

provides either i) a probability pi that the trafficwas generated1087

by a device class ci or ii) a binary decision on whether the1088

input matches the device type. In the first case, a threshold t1089

(cutoff value) should be set. If pi > t , the traffic is labelled1090

as originating from the device class ci. t is empirically set1091

to maximize the classifier’s accuracy [57]. In the second1092

situation, if a device is accepted by multiple classifiers, the1093

conflict should be resolved, for example, by computing a1094

distance-based metric between the sample to identify and a1095

subset of samples from each class that it has a match for [14],1096

or by applying majority votes [15] to break the tie between1097

multiple matches.1098

Note that using this strategy, classification accuracy can be1099

increased by evaluating the classification results of more than1100

one sample before choosing the device class. For example,1101

in [57], the authors perform a majority vote on the classifica-1102

tion results of several consecutive TCP sessions to determine,1103

with an accuracy of 100%, if they were generated by a1104

certain device. The optimal number of consecutive sessions1105

is defined as the minimum number of sessions on which1106

a majority vote provides zero false positives and zero false1107

negatives on the test dataset.1108

3) MULTI-CLASS CLASSIFIER VS ONE-CLASS CLASSIFIER1109

Generating a model for multi-class classifiers is challenging1110

in practice: when a new device type is added to the net-1111

work or the behavior of existing device types legitimately1112

changes (due to firmware upgrades by device manufactur-1113

ers, for example), the entire model should be re-trained for1114

all classes [85]. On the contrary, building a classifier per1115

device avoids costly re-learning if a new device type is1116

added. In addition, building a classifier per device allows1117

for the discovery of new devices: if a sample is rejected by1118

the classifiers, it may be identified as a new device type.1119

Another advantage is its interpretability. When the number1120

of features is important, one classifier per class gives a set of1121

interpretable models instead of one complex model.1122

However, the one-class classifier approaches are more1123

computationally expensive since the results of more than one1124

classifier should be computed. Moreover, managing conflicts1125

might be time-consuming if a sample fits many device types.1126

As reported in [14], most device type identification time is1127

spent on tiebreaks. Moreover, unbalanced training datasets1128

can affect classifier performance (there are generally fewer1129

samples for one device type compared to the samples of all the1130

remaining samples combined). This issue can be solved by1131

utilizing under-sampling and over-sampling approaches [86].1132

B. SUPERVISED, UNSUPERVISED1133

ML-based classification algorithms are often classified1134

into supervised and unsupervised approaches, with the1135

well-known advantages and limitations of each briefly1136

described below.1137

1) SUPERVISED CLASSIFICATION 1138

In supervised classification, labeled datasets are split into 1139

training, validation, and test datasets. Datasets can be 1140

separated chronologically or randomly. However, temporal 1141

partitioning better matches the real world scenario, when 1142

a classifier is trained on existing data and then tested on 1143

new data. Despite the cost of labeling and the difficulty of 1144

detecting new devices not included in training, supervised 1145

classification techniques are commonly employed in IoT 1146

device classification literature (84% of reviewed papers) due 1147

to their high accuracy and ease of implementation. 1148

2) UNSUPERVISED CLASSIFICATION 1149

Supervised techniques use labeled device class data. Labeling 1150

involves significant human effort, which is tedious and not 1151

scalable given the growing number of IoT devices. 1152

Unsupervised learning is more scalable since it minimizes 1153

human assistance, but it is harder to execute and its accu- 1154

racy is likely to be lower than supervised approaches. Thus, 1155

only 16% of reviewed papers use unsupervised classification 1156

approaches. For instance, the authors of [43] propose a clas- 1157

sification method using semi-supervised GANs (generative 1158

adversarial networks). 1159

C. SHALLOW AND DEEP LEARNING 1160

Deep learning uses multiple layers of nonlinear processing 1161

units. All non-deep learning approaches are shallow learning, 1162

including most machine learning models before 2006 and 1163

neural networks with one hidden layer. 1164

Despite the advantages of deep learning, the majority of 1165

reviewed papers (79%) still use shallow classification algo- 1166

rithms, probably due to its simplicity and ease of implemen- 1167

tation and because some shallow algorithms are intrinsically 1168

interpretable, like decision trees. Random Forest is a popular 1169

classifier due to its accuracy and speed, but its classification 1170

time grows linearly with the number of classes, so it may not 1171

scale to a large number of device types. 1172

D. EVALUATION SCENARIOS 1173

Accuracy, precision, recall, F1 score, and ROC are classic 1174

evaluation metrics. Accuracy measures the ratio of correctly 1175

predicted observations to the total observations. Precision 1176

indicates what percentage of positive predictions were cor- 1177

rect. Recall defines what percentage of positive cases a clas- 1178

sifier has caught. F1 score is a harmonic average of precision 1179

and recall. 1180

Most of the reviewed research papers (79%) focus on clas- 1181

sic evaluation metrics. However, traditional evaluation does 1182

not accurately measure the performance and limitations of 1183

classification algorithms. For instance, accuracy gives equal 1184

weights to all classes, which is inappropriate if the dataset 1185

is unbalanced (e.g. you can have 90% of total accuracy but, 1186

in minority classes, most samples are misclassified). The 1187

performance of classifiers should be assessed in different 1188

scenarios and through diverse metrics and measures. Below, 1189

we describe some other metrics found in the literature to 1190

inspire other evaluation methodologies. 1191
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1) MEASURING CLASSIFICATION AND LEARNING SPEED1192

The learning time is significant since classification models1193

that learn rapidly are more adapted to real conditions [20].1194

The classification time (the time required to classify one sam-1195

ple) is critical for instant device identification [14]. In [46],1196

the authors evaluated the training time, the latency, i.e., the1197

time spent performing device identification, and throughput,1198

i.e. the number of identifications per second.1199

2) MEASURING CPU, MEMORY CONSUMPTION AND1200

COMPUTATIONAL COMPLEXITY1201

In [14], the authors measure the CPU used by the secu-1202

rity gateway for the classification and for the enforcement1203

mechanism. In [87], the authors calculate the computational1204

complexity of the different steps of their solution, namely1205

feature extraction, clustering, and model training. The feature1206

extraction cost is estimated to be m × O(n) where m is the1207

number of features and n is the number of packets in the1208

session. The cost of clustering is calculated based on the steps1209

and loops in the proposed algorithm. The Random Forest1210

training cost depends on the feature vector dimension, the1211

number of decision trees, and the number of training samples.1212

3) VARYING EVALUATION SCENARIOS1213

Some papers measure the variation of performance metrics1214

in different scenarios. For example, Huang et al. [51] test1215

the scalability of their approach and show that accuracy1216

diminishes with many device types. Meidan et al. [15] mea-1217

sure the classification accuracy as a function of the number1218

of consecutive sessions needed for classification. Similarly,1219

Song et al. [88] examine the relationship between identi-1220

fication accuracy and the number of packets required for1221

classification. Bai et al. [55] measure the classification results1222

under different time window sizes and over different ratios of1223

training and testing datasets. Similarly, Marchal et al. [20]1224

assess the evolution of accuracy as the number of training1225

samples changes.1226

4) ADDITIONAL EVALUATION METRICS1227

In addition to classic metrics, other evaluation scenarios can1228

been explored. We give the following examples: i) robustness1229

to adversarial attacks [89] to evaluate the classifier quality on1230

ambiguous examples, ii) explainability [90], i.e. if the result1231

can be simply interpreted, to provide better acceptance of1232

ML-based solutions in IoT, iii) transferability [91], that is,1233

whether a model learned in one context can be applied in1234

another, in order to reduce learning costs and provide ‘‘out-1235

of-the-box’’ tools.1236

VII. GRANULARITY OF CLASSIFICATION1237

In the literature, IoT devices are classified at different lev-1238

els of granularity. Bezawada et al. [47] enumerate three1239

classification levels: i) category, ii) type, and iii) instance1240

(cf. Fig. 9). A device category is a grouping of similar devices;1241

for instance, devices can be grouped by function, e.g., cam-1242

eras, sensors, or home assistants. A device type, however,1243

designates a more specific device model within a general1244

device category. For example, Google Home Mini (GHM) 1245

and Amazon Alexa are device types within the category of 1246

home assistants. Finally, a device instance is a physical device 1247

instance of a device type. For example, two different GHMs 1248

in the same network are two instances of the GHM device 1249

type. In the following, we examine how these different levels 1250

of classification have been considered in the literature. 1251

A. CLASSIFYING DEVICES BY CATEGORY 1252

Different definitions of ‘‘category’’ have been proposed in 1253

the literature. The most used definition relies on ‘‘the main 1254

functionality (or purpose) of the device,’’ e.g. refrigerator, 1255

TV, watch, or camera, as proposed in [15], [57], and [47]. For 1256

instance, in [55], the devices are classified into hubs, electron- 1257

ics, cameras, and switches & triggers. In [92], four categories 1258

are discussed: IP cameras, smart on/off plugs, motion sen- 1259

sors, and temperature/environmental sensors. Amore broader 1260

definition is proposed in [93], where the authors classify the 1261

devices according to their application domain into healthcare, 1262

multimedia, hubs, etc. Note that only 22% of papers exam- 1263

ined in this survey use this classification level. 1264

As the number of IoT devices grows, so do their applica- 1265

tions and features, requiring new device category definitions. 1266

To this end, Cvitic et al. [32], [94] propose classifying devices 1267

according to their ‘‘Cu predictability index.’’ Cu measures 1268

the ‘‘level of predictability of behavior’’ of the device. To do 1269

this, Cu measures the variation in data received and sent 1270

by a device over a period of time. Devices that behave 1271

in roughly the same way over time are easily predictable, 1272

whereas devices whose usage and interaction with the user 1273

modifies their behavior (and consequently the data received 1274

and sent) are more difficult to predict. The authors derive 1275

four device categories based on Cu. In doing so, the authors 1276

propose a more general definition of the IoT device category. 1277

B. CLASSIFYING DEVICE BY TYPE 1278

This is the most common approach in the literature (81% 1279

of surveyed papers). There are several ways to define the 1280

device type. For instance, in [14], a device type denotes the 1281

‘‘combination of model and software version’’ of a particular 1282

device. In [44], a device type is defined by three param- 1283

eters: the manufacturer, the manufacturer-type, 1284

and the manufacturer-type-model, e.g., ‘‘amazon- 1285

kindle-v2.0.’’ In [81], a device type is defined by the manu- 1286

facturer and model (e.g. for security cameras: Simple_Home 1287

XCS7_1001). 1288

C. CLASSIFYING DEVICES BY INSTANCE 1289

This is the finest level of granularity, where instances of the 1290

same device type must be distinguished. It is also the most 1291

difficult and expensive scenario. It should be noted that, in the 1292

literature, the use of the term fingerprint does not reflect the 1293

definition of device instance we propose in this survey but 1294

rather refers to device identification, i.e., the classification 1295

of devices based on their type. Therefore, proposed solutions 1296
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FIGURE 9. IoT devices classification levels. IoT devices can be classified at different levels of
granularity: i) category, ii) type, and iii) instance. In this example, home assistants and cameras are
two different categories of IoT devices. GHM (Google Home Mini) and Amazon Echo Dot are two
types of Home assistants. Finally, Alexa 1 and Alexa 2, are two instances of the Amazon Echo Dot.

FIGURE 10. Taxonomy of the classification granularity: the approaches
are classified by granularity of classification. Percentages show how often
each approach is used in the reviewed papers.

for device fingerprinting do not distinguish between device1297

instances.1298

Instance level classification has not been sufficiently1299

explored in the literature. To the best of our knowledge,1300

no solution in the literature exists for this scenario. However,1301

is such a classification really necessary? The answer depends1302

on the use case. For example, when detecting vulnerable1303

devices, instance-based classification is not necessary since1304

instances of the same type share vulnerabilities. However,1305

instance-based classification could be useful in some use-1306

cases. For example, in [95], the authors focus on 5G resource1307

allocation and design a solution for automatically selecting1308

a 5G slice based on the type of IoT device connecting to1309

the network, which is detected through a classification of the1310

radio signal shape. An extension could be envisaged based1311

on instance device classification, where two instances of the1312

same IoT device used by two users with different rights are1313

distinguished. This enables better 5G resource management1314

based on the user profile. Instance-based classification could1315

also be useful to track a unique user’s device.1316

D. HOW TO SELECT THE BEST CLASSIFICATION1317

GRANULARITY?1318

The granularity of classification should be carefully set1319

depending on the application scenario. Category level clas-1320

sification may be sufficient in many situations. For instance,1321

to ensure QoS by giving different priorities to flows (e.g.,1322

prioritizing traffic from healthcare devices during periods1323

of high load), it is not necessary to know the manufacturer1324

and software of the device. Even though the category level1325

classification of IoT devices is not very precise, it has the1326

advantage of being scalable.1327

Device type classification is the most commonly used1328

classification level in the literature due to its better ratio1329

between accuracy and ease of implementation. However,1330

many results [14], [96] have shown that it is difficult to distin-1331

guish devices from the same manufacturer or with the same1332

firmware version. This is because these devices usually have1333

similar hardware and software architecture and communicate 1334

with the same remote cloud servers using the same protocols. 1335

Thus, they often share very similar traffic patterns. Note that 1336

this problem is very close to the instance-based classification 1337

problem, which is still an open problem. 1338

VIII. KEY RESEARCH DIRECTIONS 1339

In what follows, we consider research directions that have 1340

received little or no attention in the literature. Follow- 1341

ing the paper’s rationale, we discuss challenges related to 1342

data-acquisition, feature extraction, and machine learning. 1343

We address unbalanced data sets and provide solutions 1344

in VIII-A, the importance of minimizing feature extraction 1345

costs in VIII-B and improving learning quality in VIII-C. 1346

In sections VIII-D, VIII-E, and VIII-F, we discuss challenges 1347

related to scalability, deployment in practice and lack of 1348

standardization, respectively. 1349

A. THE PROBLEM OF UNBALANCED DATASETS 1350

This is a common problem in many ML applications, but 1351

it is accentuated in IoT device classification due to the 1352

heterogeneous behavior of IoT devices: some devices, like 1353

plugs, generate sparse traffic, while others, like cameras, 1354

generate large amounts of traffic. This makes the detection of 1355

minority class devices difficult. Bai et al. [55] report limited 1356

data for detecting hubs and Hsu et al. [92] remark that it is 1357

difficult to distinguish smart plug traffic from IP cam traffic. 1358

Thus, having a balanced dataset is more important than the 1359

size of the dataset. 1360

Solutions based on data augmentation can be considered 1361

during the training phase [48]. However, it is important to 1362

avoid introducing biases when over-representing minority 1363

classes. There is therefore a trade-off to consider to avoid 1364

overfitting the model. 1365

B. REDUCING THE COST OF FEATURE EXTRACTION 1366

It is essential to consider the cost of extracting features. 1367

Chakraborty et al. [97] distinguish three types of feature 1368

extraction costs: i) the computational cost involves computing 1369

resources used to calculate the features, ii) the memory cost 1370

measures the memory used to store running feature values 1371

while computing, and iii) the privacy cost is related to privacy 1372

violation, especially for features extracted from the payload 1373

that may contain sensitive information. Desai et al. [98] 1374

propose a framework for ranking features according to their 1375
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discriminatory power to differentiate between devices. They1376

demonstrate that a small set of highly ranked features is1377

sufficient to achieve an accuracy close to that obtained using1378

all features.1379

Note that using a limited number of features limits the fea-1380

ture extraction cost but can make the classification approach1381

more vulnerable to adversarial attacks. In fact, it is easier for1382

an attacker to generate traffic that mimics the distribution of1383

values taken by one feature (e.g., packet size, or IAT, etc.) to1384

imitate the behavior of a particular IoT device and bypass the1385

classifier. For instance, Shahid et al. [99] generate sequences1386

of packet sizes representing bidirectional flows that look as1387

if they were generated by a real smart device. However, it is1388

more complex to bypass a classifier that takes into account1389

the values of several features because it is difficult to generate1390

traffic that matches the values of all these features at the same1391

time.1392

C. IMPROVING THE QUALITY OF LEARNING1393

1) NEED FOR CONTINUOUS LEARNING1394

The IoT ecosystem and device behavior evolve rapidly. Thus,1395

classification models must be updated to reflect recent data1396

trends. Kolcun et al. [34] note that the accuracy of IoT device1397

classification models falls by 40%, a few weeks after learn-1398

ing, and argue that to preserve the accuracy of the models,1399

they need to be continuously updated. It is then necessary1400

to explore continuous learning ML pipelines that keep the1401

machine-learned models up-to-date [100]. As mentioned in1402

Sec. VI-A3, techniques that train a classifier model per device1403

are more easily re-trained.1404

2) SCARCITY OF LABELED DATA1405

Fan et al. [53] note that collecting and labeling data is1406

costly and time-consuming, which cannot be scaled to the1407

overgrowing IoT environment. However, when labeled data1408

is scarce, supervised learning techniques fail. Using semi-1409

supervised or unsupervised approaches are possible solu-1410

tions. Fan et al. [53] proposed an IoT identification model1411

based on semi-supervised learning. To do so, they i) judi-1412

ciously choose the features describing the traffic, ii) perform1413

a CNN based dimensionality reduction, and then iii) perform1414

the classification using a two-layer neural network, classify-1415

ing the traffic into IoT and non-IoT, then specifying the class1416

of IoT objects. Theymanaged to get 99% accuracy using only1417

5% of labeled data.1418

Generating labeled synthetic data is another solution: e.g,1419

generative adversarial networks (GAN) can generate syn-1420

thetic data close to the real distribution of training data by1421

capturing the hidden class distribution. In addition, training1422

classifiers with additional synthetic data points gives them1423

better generalization ability [99].1424

3) RESILIENCE TO ADVERSARIAL ATTACKS1425

The vulnerability of ML algorithms to adversarial attacks1426

has been demonstrated in several applications, andML-based1427

IoT device classification is no exception [101]. For example, 1428

malicious devices may attempt to mimic the traffic of a 1429

legitimate device in order to connect to the network. For- 1430

tunately, it is very difficult to do this while preserving the 1431

intended malicious functionality [102]. As discussed in [15], 1432

the rogue device must be able to generate similar requests to 1433

the manufacturer’s servers and get similar responses, which 1434

is difficult to achieve if device authentication is required. 1435

4) TRANSFERABILITY OF THE CLASSIFICATION MODEL 1436

Kolcun et al. [34] reveal that the accuracy of classifiers 1437

degrades over time when evaluated on data collected outside 1438

the training set. However, it is desirable that classifiers that 1439

perform well in one context can be used in another without 1440

expensive retraining. Transfer learning [103] is a promising 1441

solution that should be explored. For example, it would allow 1442

a manufacturer to build a model that learns the behavior of an 1443

IoT device and use the model in a smart home to identify the 1444

device with little-retraining. 1445

D. DISCUSSING SCALABILITY 1446

Given the exponential growth of the number and types of IoT 1447

devices, it is crucial to design scalable solutions. Scalabil- 1448

ity must be considered at all stages of the solution design, 1449

as explained below. 1450

1) Traffic collection: the collection must be quick, effi- 1451

cient, and non-exhaustive. For instance, data sam- 1452

pling [104] (i.e., taking sufficiently representative sam- 1453

ples rather than the entire dataset) can be used to 1454

improve scalability. However, the choice of the sam- 1455

pling solution must be well thought out as it may be 1456

inappropriate for minority and sparse traffic classes, 1457

which brings us back to the unbalanced dataset prob- 1458

lem, discussed above in Sec. VIII-A. 1459

2) Feature extraction: feature extraction should not be 1460

complex, long, or costly. It is important to choose 1461

a scalable method. For example, packet-level feature 1462

extraction is very time- and computation-consuming, 1463

and it is therefore not scalable. On the other hand, deep 1464

learning (cf. Sec V-C) could be improved to simplify 1465

and automate the feature extraction process, and is 1466

therefore more likely to be scalable. 1467

3) ML-based classification: the number of classifiers 1468

(one-class classifier or multi-class classifier) should 1469

allow for easier extension to new classes and avoid 1470

extensive updating of all the models, as discussed 1471

in Sec. VI-A3. 1472

4) Classification granularity: Bai et al. [55] noticed a 1473

decrease in accuracy with the increase in the number 1474

of classes. One solution is to carefully choose the clas- 1475

sification granularity according to the final application, 1476

as discussed in Sec. VII-D. 1477

Moreover, with the emergence of edge computing, it is 1478

interesting to use the powerful computing and storage capa- 1479

bilities provided by neighboring edge servers to facilitate the 1480

IoT device classification and make it more scalable. A first 1481
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attempt was proposed by Sun et al. [87] who designed an1482

edge-based IoT device classification scheme. Transfer learn-1483

ing, discussed above, can also be used for scalability by1484

minimizing learning time.1485

E. DEPLOYMENT IN PRACTICE1486

We observe a gap between academic advancements and mar-1487

ket implementation since reviewed IoT device categorization1488

solutions are seldom (if ever) deployed.1489

Indeed, most proposed solutions have not been imple-1490

mented using a realistic case study. Hence, their contribution1491

to improving the security or management of the IoT system1492

has not been evaluated, making their actual effectiveness1493

uncertain. The lack of such evaluation scenarios is due to1494

the difficulties of implementing and mastering realistic and1495

usually complex ecosystems. In addition, the challenges dis-1496

cussed above need to be addressed tomake the solutions more1497

mature and ready for market implementation.1498

F. MUD AND STANDARDIZATION1499

Another solution for classifying and identifying IoT devices1500

would be to use the Manufacturer Usage Description1501

(MUD) [105]. The MUD is a standard defined by the1502

IETF [106] that allows IoT device manufacturers to publish1503

device specifications, including intended communication1504

patterns. IoT devices generally perform a specific func-1505

tion [107], and therefore have a recognizable communication1506

pattern, which can be captured formally and concisely as1507

a MUD profile [108]. Unfortunately, current IoT manufac-1508

turers do not yet support MUD specifications and mecha-1509

nism. Hamza et al. [108] publicly share their tool called1510

MUDgee [109] to automatically generate MUD profiles of1511

IoT devices.1512

IX. CONCLUSION1513

Classifying IoT devices has been proposed as a potential1514

solution to secure and manage the IoT ecosystem. This paper1515

reviewed relevant literature to answer the following research1516

questions:1517

Q1. How to design a practical data-acquisition method?1518

Sec. IV showed that it is more practical to collect traffic1519

data from both IoT and non-IoT devices as they co-exist in1520

smart homes and can easily be confused.1521

There are three device operation modes: setup, idle, and1522

interaction. Traffic generated by the devices during idle and1523

interaction modes is abundant and widely used in the litera-1524

ture. The setup traffic is stable and allows for rapid identifi-1525

cation once the device is connected to the network. However,1526

setup traffic is difficult to collect since the initialization phase1527

may not appear multiple times in the device’s lifetime.1528

It is also more genuine to collect traffic from outside the1529

home (i.e., place the probe after the gateway, rather than at the1530

gateway) because this reflects real IoT device classification1531

use-cases. We found that this scenario is understudied in the1532

literature.1533

Finally, most public datasets we surveyed suffer from the 1534

above-mentioned biases, which are also found in papers using 1535

them. 1536

Q2. How to build effective machine learning classifiers for 1537

IoT device classification? 1538

Sec. V discussed feature extraction approaches and showed 1539

that it is more scalable and less expensive to extract features 1540

from streams rather than packets. 1541

Traffic can be split by time interval, number of packets, 1542

or connection-wise. Dividing traffic by connection (packet 1543

flows between two endpoints) is natural and straightforward, 1544

but not always appropriate. For instance, to identify a device 1545

upon its connection to a network, it is more suitable to 1546

consider the first generated packets rather than the whole 1547

flow. 1548

Setting the optimal time window or packet count is 1549

required for flow splitting, yet this is challenging. Small 1550

flows allow for rapid classification but may not be enough 1551

to characterize the device. On the contrary, large flows can 1552

be time- and memory-intensive to analyze. Moreover, IoT 1553

devices generate varying amounts of data at different rates, 1554

so the appropriate number of packets may vary. 1555

We identified the most discriminative features and dis- 1556

cussed how to calculate them (concatenation, statistics). 1557

Q3. How to build effective machine learning classifiers for 1558

IoT device classification? 1559

Analysis in Sec. VI showed that creating one multi-class 1560

classifier is not scalable and evolutive because the entire 1561

model must be retrained when a new device type is added 1562

to the network. On the contrary, building a classifier per 1563

device reduces costly re-training, allows discovery of addi- 1564

tional device kinds, and makes decisions more interpretable. 1565

However, one-class classifier techniques are more compu- 1566

tationally demanding since the results of several classifiers 1567

must be computed and managed. 1568

Unsupervised learning is more scalable and suited for the 1569

rising variety of IoT device types than supervised learning 1570

since it minimizes labeling costs. However, unsupervised 1571

learning is understudied in the literature. Moreover, more 1572

evaluation scenarios and metrics are required for realistic 1573

assessment of classification algorithms. 1574

Q4. How to set the classification granularity? In 1575

Sec. VII, we discussed category-, type-, and instance-based 1576

classification. 1577

Type-instance device classification achieves the best 1578

trade-off between accuracy and ease of implementation. 1579

Despite being imprecise, the category level classification of 1580

IoT devices is scalable and thus more adapted to the IoT 1581

context where devices’ diversity is growing. To avoid costly 1582

classification, granularity level should be set depending on 1583

the application context. 1584

We analyzed more issues and suggested new study direc- 1585

tions in Sec. VIII. We discussed scalability and implemen- 1586

tation in practice and recommended looking at additional 1587

challenges like adversarial attack robustness andmodel trans- 1588

ferability. 1589
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APPENDIX1590

TABLE 2. Papers review with respect to the to data-acquisition and classification granularity taxonomies.
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TABLE 3. Papers review with respect to the feature extraction taxonomy.
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TABLE 4. Papers review with respect to the machine learning taxonomy.
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